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Abstract

The celebrated Four-Color Theorem was first conjectured in the 1850’s.
Since then there had been many partial results. More than a century later,
it was first proved by Appel and Haken [1] and then subsequently improved
by Robertson et al. [8]. These proofs make extensive use of computer for
various computations involved. In mathematical community, there con-
tinues to be an interest for a proof that is theoretical in nature. Our result
provides an interesting restatement of the Four-Color Theorem that re-
quires only approximate colorings. Tait proved in 1880 [11] that the Four-
Color Theorem is equivalent to showing that two-edge connected, cubic,
planar graphs have edge 3-colorings. Our main result is that this can be
weakened to show that if there exists an approximate edge 3-coloring for
these graphs, then the Four-Color Theorem is true.
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1 Introduction

We first state the Four-Color Theorem (4CT) and then provide several results
related to an attempt in proving it.

Theorem 1 (Four-Color Theorem) Every planar graph is face 4-colorable.

One of the earliest results related to the 4CT is by Tait [11]:

Theorem 2 ([11]) Let G be a two-edge connected, cubic, planar graph. G has
an edge 3-coloring if and only if G has a face 4-coloring.

In the proof of Theorem 2, Tait shows that if a graph G has an edge 3-coloring,
then the face 4-coloring can be constructed in linear time. This fact will be used
later on in our work.

In the hope of proving the 4CT, multiple restatements of the 4CT have been
established. In [9], a survey of several equivalents forms of the 4CT is presented
along with references to the original or related papers. Appel and Haken [1]
were the first one to prove the 4CT. Their proof is based on an unavoidable
set of configurations of every planar triangulation and relies on a computer
to verify the various configurations. Robertson et al. [8] simplified the proof,
cutting the number of configurations from 1500 to 633. Presently both of them
are computer-aided, and hence impossible to humanly verify.

There continues to be considerable interest in finding a proof of the 4CT that
does not rely on computer-aided search. In this spirit, our paper introduces
new restatements of the 4CT. Before stating our results, we provide relevant
definitions here. We say v is an error-vertex in an edge 3-coloring of a cubic,
planar graphG if any two edges incident on v have the same color. And we define
the number of errors in a coloring of G as the number of error-vertices. Further,
we denote the number of vertices in G by n. Now, we state the contributions
of our paper as the following two theorems. Note that we regard the 4CT as a
conjecture (otherwise, the theorem statement is trivial).

Theorem 3 (Size Bound Theorem) Every two-edge connected, cubic, pla-
nar graph G can be edge 3-colored with o(n) errors =⇒ 4CT.

Theorem 4 (Diameter Bound Theorem) For some constants d and ε < 1
2 ,

every two-edge connected, cubic, planar graph G with diam(G) > d can be edge
3-colored with < 2ε·diam(G) errors =⇒ 4CT.

It is easy to observe that cubic graphs have diameter at least log n. So the
statement of Theorem 4 is strictly weaker than Theorem 3 for graphs G with
log n ≤ diam(G) ≤ 1

ε log o(n). However, for graph with diam(G) > 1
ε log o(n),

we do not need to prove anything if we are using Theorem 4 but would still need
to prove o(n) bound if we are using Theorem 3. Therefore, both these theorems
provide different results.

We now compare our results with Tait’s theorem. Brook’s theorem [3] states
that every cubic graph is edge colorable using three or four colors. Tait’s ap-
proach needs every two-edge connected, cubic, and planar graph be edge col-
orable using just three colors. One way of viewing our result is that to prove
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Figure 1: An example of constructing G′ from four copies of G.

the 4CT, it is sufficient to find an algorithm to color these graphs using four
colors such that the fourth color is used on o(n) edges, where n is the number
of vertices in the graph.

We conclude this section by mentioning the work related to approximate
graph coloring. Since coloring 3-colorable graphs with three colors is NP-hard [6,
10], the problems of minimizing the number of colors [2, 5, 12] and maximizing
the number of non-monochromatic edges [4,7] are studied extensively. However,
our approach differs from these problems in that we do not compare our solution
to the optimal solution; rather we want to compare it to the number of vertices
in one case and to the graph diameter in another.

In the following sections we provide the proofs of our Theorems 3 and 4. The
main idea for both of these proofs is to construct an amplified graph with many
copies of G and select a very small ε so that we can isolate at least one copy of
G that has no errors. It is important to note that our proofs are existential.

2 Proof of Size Bound Theorem 3

The condition that every two-edge connected, cubic, planar graph G can be
edge 3-colored with o(n) errors is equivalent to the following statement.

For every ε, there exists n0 such that every two-edge connected, cubic,
planar graph with n ≥ n0 vertices is edge 3-colorable with at most εn
errors.

(1)

Assume (1) holds. We show that G is face 4-colorable.
Line construction: Select ε = 1

n+4 . We construct a planar graph G′ from n0
copies of G as follows (Figure 1). For i = 1, 2, ..., n0, let Gi be a copy of G with
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an outer edge e ∈ E(G) subdivided two times for i = 1 and n0, and four times
for other values of i. Denote the new vertices in G1 by u31 and u41, in Gn0 by u1n0

and u2n0
, and in Gi, for other values of i, by u1i , u

2
i , u

3
i , u

4
i . For every 1 ≤ i < n0,

add an edge u3iu
2
i+1 and u4iu

1
i+1.

Lemma 1 There is an edge 3-coloring of G′ such that for some i, the subdivi-
sion of Gi, along with its incident edges, has no errors.

Proof: By construction, G′ is cubic, planar, and, since no bridge is introduced,
it is two-edge connected. We now apply (1) to G′. Since |V (G′)| = n0(n +
4)− 4 ≥ n0, there exists an edge 3-coloring C of G′ such that there are at most

ε|V (G′)| = n0(n+4)−4
n+4 < n0 errors. Therefore, there exists 1 ≤ i ≤ n0 such that

C colors Gi with no error vertices. Gi with its incident edges is the desired
graph. �

Let H∗ be the subgraph Gi guaranteed by Lemma 1. Let H be the union of
H∗ and the two or four incident edges.

Lemma 2 H∗ is face 4-colorable.

Proof: Suppose that H has k incident edges e1, e2, ..., ek (where k is either 2
or 4). Let C be an edge 3-coloring of H. Let H1 and H2 be two copies of H
but let H2 be drawn in such a way that it is a mirror (or horizontal flip) of
H. We construct a cubic, planar graph H ′ by connecting and merging together
each pair of edges ei in H1 and H2. Extend C to an edge 3-coloring of H ′

by coloring each edge in H ′ with the same color as its corresponding edge in
H (See Figure 2). Note that by construction, H ′ is cubic, planar and two-
edge connected. Therefore, by Tait’s theorem 2, H ′ has a face 4-coloring C ′.
To obtain a face 4-coloring of H∗ color every internal face the same way it is
colored by C ′ and color the unbounded face the same color of unbounded face
of H ′. Since any pair of adjacent faces of H∗ are also adjacent in H ′, it is a
valid face 4-coloring of H∗. The crucial point is that the face originally in G
adjacent to edge e is still adjacent to the outer face, as we had only subdivided
the edge e, without drawing additional edges from the original vertices of e. �

Since H∗ is a subdivision of G, we can obtain a face 4-coloring of G from the
face 4-coloring of H∗. For an example, see Figure 3. This completes the proof
of Theorem 3.

3 Proof of Diameter Bound Theorem 4

We use the tree construction in Figure 4 to obtain a graph G′ formed by a
binary tree along with h copies of G. For every copy of G, we shall subdivide an
outer edge twice (for the leftmost and rightmost copy of G) or thrice and draw
edges from the new vertices. The central edge will connect to a leaf of the tree,
while the left and right vertices will connect to the left and right leaf copies of
G in the tree.
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Figure 2: An example of extending an edge 3-coloring.
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Figure 3: An example of a reaching a valid face 4-coloring of G from a valid
edge 3-coloring of H ′.

Suppose for all G with diam(G) > d, we have errors < 2ε·diam(G) for some

ε < 1
2 . We choose h such that h = max{2d, 2

2εn
1−2ε }. By construction of G′, we

have,

diam(G′) ≤ 2 · diam(G) + 2 log h

≤ 2n+ 2 log h

To use the previous technique of isolating one copy of G with no edge-coloring
errors, we require the following condition to hold true,

h ≥ 2ε·diam(G′)

which is implied by the following

h ≥ 2ε(2n+2 log h)

Notice that by our choice of h, it follows that diam(G′) > log h ≥ d. Therefore,
we have errors < 2ε(2n+2 log h). So what we need is the following.

h ≥ 2ε(2n+2 log h)

=⇒ h ≥ {2n}
2ε

1−2ε

However, this condition is again true by our choice of h. Therefore, we can
isolate at least one copy of G with no error vertices. Using the technique in
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Figure 4: Tree construction

the proof of Theorem 3 (starting with the mirror trick), we can obtain a face
4-coloring of G. This completes the proof of Theorem 4.

4 Future Work

We conclude with an open question of whether there are simple proofs for the
existence of, or algorithms for the computation of edge 3-colorings as required
by our two main Theorems 3 and 4. Further, it might be interesting to improve
the error bound in Theorem 4 to o(2diam(G)). We would then need to only
consider graphs with diameter log n + O(1) and prove an error bound of o(n),
thereby generalizing both our theorems.
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