
Journal of Graph Algorithms and Applications
http://jgaa.info/ vol. 17, no. 4, pp. 495–513 (2013)
DOI: 10.7155/jgaa.00301

Graph Drawing in TikZ

Till Tantau

Institute of Theoretical Computer Science
Universität zu Lübeck

D-23562 Lübeck, Germany

Abstract

At the heart of every good graph drawing algorithm lies an efficient
procedure for assigning canvas positions to a graph’s nodes. However, any
real-world implementation of such an algorithm must address numerous
problems that have little to do with the actual algorithm, like handling
input and output formats, formatting node labels, or styling nodes and
edges. We present a new framework, written in the Lua programming
language, that allows implementers to focus on core algorithmic ideas and
leave all other aspects to the framework. Algorithms implemented for the
framework can be used directly inside the TikZ graphics language and
profit from the capabilities and quality of the TEX typesetting engine.
The framework comes with implementations of standard tree drawing al-
gorithms, a modular version of Sugiyama’s layered algorithm, and several
force-based multilevel algorithms.

Submitted:
December 2012

Reviewed:
February 2013

Revised:
March 2013

Accepted:
March 2013

Final:
April 2013

Published:
July 2013

Article type:
Regular paper

Communicated by:
W. Didimo and M. Patrignani

This is an extended version of the paper [15] presented at the Graph Drawing 2012 conference.

E-mail address: tantau@tcs.uni-luebeck.de (Till Tantau)

http://dx.doi.org/10.7155/jgaa.00301
mailto:tantau@tcs.uni-luebeck.de

496 Till Tantau Graph Drawing in TikZ

1 Introduction

A graph drawing algorithm is, at its core, a way of mapping graphs to drawings
of graphs. The idea underlying an algorithm can be very simple, but it is a
long way from just an idea to a complete system for drawing graphs that allows
the configuration of node distances, preferred edge slopes, or the font used for
text labels in nodes. This “long way” consists of three main steps: First, the
input graphs need to be specified in some way. Typically, a syntax is defined
that authors1 must use to describe the graphs they wish to be drawn, and the
system must be able to parse the syntax to construct internal representations
of input graphs. Second, the algorithm itself needs to be implemented in some
programming language. Third, the computed drawing of the graph must be
rendered in such a way that authors can further process the result. Typically,
the output is a vectorized or bitmap drawing in some standard format like pdf
or png that can then be used for printing or inclusion in a document.

A major obstacle to implementing new graph drawing algorithms is that
researchers are typically forced to address all three of the above problems, even
though they would like to focus on the implementation part. This leads to
interesting graph drawing algorithms being available only as prototypes that
lack many features necessary to make them usable in practice (an example is
the force-based Lombardi graph drawer presented at the Graph Drawing 2011
conference [2]). Even when algorithms are part of powerful toolkits, these toolk-
its may be difficult to integrate into a typesetting workflow (as is the case for
mathematica or the Open Graph Drawing Framework [3]) or extending them
by new algorithms may be a nontrivial software engineering problem (as for the
graphviz toolkit [7]). Keeping even simple styling parameters like font sizes or
arrow tips consistent across several drawings is a major problem when different
systems are used (and often even when the same system is used).

The present paper introduces a new framework for implementing graph draw-
ing algorithms that aims at letting implementers focus on the implementation of
new algorithmic ideas by handling the other steps. In particular, implemented
algorithms can immediately be used by authors within a widely used typesetting
system, namely TEX. The framework augments an existing graphics description
language, called “TikZ”2 [14], by graph drawing facilities. This language al-
lows authors to specify graphics directly inside TEX documents using special
macros and the graphics are produced on-the-fly during a run of the TEX pro-
gram on the manuscript. As an example, to draw a graph using the Sugiyama
method [6, 13], authors add the option “layered layout” to the description of
the graph as demonstrated in Figure 1.

While the framework makes it easy for authors to apply powerful graph
drawing algorithms to graphs specified inside a TEX document, its main pur-

1Users who employ a graph drawing framework to draw graphs will be referred to as authors
in the following, while users who implement algorithms on top of a graph drawing framework
will be referred to as implementers.

2TikZ means “TikZ ist kein Zeichenprogramm,” a recursive German acronym in the tra-
dition of “Gnu is Not Unix” cautioning that TikZ is not a graphical editor.

JGAA, 17(4) 495–513 (2013) 497

% Somewhere in the TeX manuscript

Consider the diagram

\tikz \graph [layered layout] {

a -> {b, c, d} -- e <-> a

};

Consider the diagram
a

b c d

e

Figure 1: On the left a typical excerpt from a manuscript is shown; running
TEX on it results in the output shown on the right.

pose is to allow the rapid implementation of new graph drawing algorithms by
researchers from the field. Such algorithms must be implemented in Lua [9], a
light-weight, well-designed scripting language in which the complete framework
is written. Lua was chosen, firstly, because it is part of modern versions of TEX
and both the framework and new algorithms work out-of-the-box on all sys-
tems running TEX. Secondly, the speed of Lua is perfectly sufficient for drawing
small to medium-size graphs on-the-fly during a run of the TEX program, see
the conclusion for some benchmark results. Thirdly, libraries written in C can
both be accessed and loaded dynamically by Lua, making C code a viable, but
less portable option for time-critical parts of graph drawing algorithms for large
graphs and for integrating algorithms already implemented in C or C++.

The framework treats graph drawing algorithms as transformations from
one class of graphs to another, a design principle advocated by Di Battista
et al. [5]. Graph drawing algorithms declare which kinds of graphs they accept
as input and which kind of graphs they produce as output, and the framework
will automatically apply appropriate pre- and post-transformations to ensure
that any input graph can be given as input and be used with any algorithm.

Even though the seamless integration of the framework with TikZ was an im-
portant design goal, the framework’s architecture treats TEX as just one possible
system from which it receives to-be-drawn graphs and to which it sends back
canvas positions for the nodes. The framework can also be linked to systems
such as interactive graph editors or command line tools.

Related Work. One of the earliest systems that integrates a graph drawing
algorithm into TEX dates back to 1989: the TreeTEX program of Brüggemann-
Klein and Wood [1] is an improved version of the Reingold–Tilford algorithm
implemented directly in the TEX programming language. Since then, dozens
of both in- and interdependent packages have been developed in the context of
TEX that implement a variety of specialized graph drawing algorithms covering
different fields. For instance, there are dedicated packages for drawing pedigree
trees in medicine [16] or message sequence charts in software engineering [10].
The packages all come with their own special-purpose syntax and design philoso-
phies and they differ strongly with respect to their portability.

The system presented in the following seems to be the first serious attempt at
augmenting a general-purpose graphics description language like postscript,

498 Till Tantau Graph Drawing in TikZ

pstricks, metafont, or svg by general graph drawing facilities. One could
argue that the mathematica system is an example of treating graph drawing
as a subtask of producing documents (called “notebooks” in mathematica),
but describing graphics and typesetting documents do not lie at the heart of
mathematica.

Concerning the range of algorithms implemented, the framework is roughly
comparable to the graphviz toolkit [7], except for the algorithms for radial
graph drawings, which are still missing. Compared to the Open Graph Draw-
ing Framework (ogdf) [3], many of ogdf’s advanced support algorithms (like
computing spqr decompositions) are not available. In both cases, the fact that
graphviz and ogdf use compiled code makes them much faster than our Lua
implementation.

Organisation of this Paper. This paper describes graph drawing in TikZ
from three different perspectives: the author’s perspective, the integration per-
spective, and the implementer’s perspective.

Following a brief review of the graphics description language TikZ below,
we explore the syntax authors can use in TikZ for the description of graphs;
see Section 2. I will argue that choices in the syntax are not only a matter
of taste, but can influence the quality of graph drawings. In Section 3 on
integration issues, we contrast the extension of an existing graphics description
language by graph drawing capabilities to the approaches taken by other graph
drawing systems. Section 4 is addressed at implementers of graph drawing
algorithms, explaining the framework’s design and architecture. This section
contains a complete, commented implementation of a simple graph drawing
algorithm. We will see how the framework can be asked to perform a number
of automatic graph transformations that allow the implementer to focus on the
core algorithmic idea and write lean code.

The Graphics Description Language TikZ in a Nutshell. TikZ is a
vector graphics description language implemented as a TEX macro package. It
has been under continuous development for the last ten years and comes with
over one thousand pages of documentation. Being part of any standard TEX
installation and being written entirely as a collection of macros, it can be used
out-of-the-box on any system running the TEX program.

TikZ’ syntax borrows from metafont, a graphic description language de-
signed by Donald Knuth, and pstricks, a macro package similar to TikZ but
tailored specifically to the postscript language, which is widely used in print-
ing industry. The macros of TikZ convert the description of a graphic into
a stream of low-level primitives for the output format of the specific version
of TEX used. In particular, pdf, postscript, and even svg output are directly
supported.

The most important feature of TikZ for the purposes of the present paper
will be its support for specifying nodes and edges between them. Nodes can
have one of many possible shapes (the libraries define dozens of possible shapes,

JGAA, 17(4) 495–513 (2013) 499

and arbitrarily complex new shapes can be defined) and edges can be routed
in different manners. Nodes have anchors, which are coordinates inside the
node that can be referenced later and which are similar to the ports of nodes
common in the context of graph drawing. The below code shows a typical, but
admittedly artificial example of creating and connecting nodes using the TikZ
syntax.

\tikz {

\node (a) at (0,0) {α^2};

\node (b) [dashed] at (0,1) {β};

\node (c) [circle] at (1,2) {Γ};

\node (d) [cloud] at (2,0) {d};

\draw (a) edge (b);

\draw (b) edge [->, dotted] (c);

\draw (b) edge [<->, "ϵ"] (d); };

α2

β

Γ

d

ε

ε
α2 β

Γ

d

Above, coordinates for the nodes have been specified
explicitly in centimeters. The main purpose of the
graph drawing framework described in the following
is to compute these positions for us. Leaving out
the at-parts and adding the options [tree layout,

grow=right] after \tikz on the first line yields the
result shown on the right.

2 The Author’s Perspective: Specifying Graphs
and the Quality of Graph Drawings

Graph drawing systems should make it easy for authors to specify the graphs
that they wish to be drawn. Examples of graph description languages include
graphml, an xml-based markup language; the dot format used by graphviz;
or the gml format used by the Open Graph Drawing Framework. Graphs
can also be specified indirectly as the results of computations, as in computer
algebra systems like mathematica, allowing succinct graph specifications of
large graphs.

Desirable Properties of Graph Description Languages in the Context
of Graph Drawing. It may seem to be largely a matter of taste which for-
mat is used for specifying graphs; graph drawing algorithms, including those
implemented using the framework presented in this paper, internally work on
an abstract representation of the graph anyway, namely on a set of nodes and
a set of edges. However, especially for graphs specified by humans as part of a
manuscript, there are several reasons why a format needs to be chosen carefully.

Firstly, authors should be able to provide hints to graph drawing algorithms
by means of syntax. An important hint is actually the order in which nodes
and edges are specified by an author; it typically has semantic meaning. The

500 Till Tantau Graph Drawing in TikZ

importance of this information is well-recognized; for instance, experiments by
Gansner et al. [8] have shown that cycle removal, a first step in algorithms for
drawing layered graphs, should be based on a depth-first traversal of the input
graph as specified by the author rather than on using, say, randomized methods
(see for instance [5]) that do not take the graph description into account. The
quality of cycle removals can be further improved if authors can indicate “back-
ward edges” in a natural way. While the node ordering is implicit in almost
any format, specifying hierarchical dependencies or special edge kinds can be
cumbersome or even impossible. To illustrate the subtleties involved, consider
the problem of using a general-purpose graph description language to specify
ternary trees in which nodes may have “missing” children, like a missing left or
middle child, for which space needs to be reserved in the layout.

Secondly, while the above considerations aim at improving the quality of the
results produced by graph drawing algorithms, a good format will also make
it easy for authors to specify a graph in a succinct and self-explaining manner.
Authors will prefer to write (and, later on, also to read) a -> b -> c -> a, as
in the dot format, over having to first create three nodes (using \node thrice in
TikZ or the <node> tag in graphml or node[...] in gml) followed by having
to specify three edges (using edge, <edge>, or edge[...]). Styling options,
label texts, and “hints” to graph drawing algorithms should also be easy to
specify.

A Graph Description Language for Graph Drawing in TikZ. All of
the existing formats have drawbacks: The standard way of specifying nodes and
edges in TikZ using the \node command is too verbose and the same is true
for graphml and all other xml-based formats. The dot format used in the
graphviz toolkit is more concise and defines a number of ways of styling nodes
and edges, but this set of options is neither extensible nor extensive. Moreover,
styling options cannot always be provided next to the object to which they
apply. As a consequence, a new format was developed that is tailored to the
specific needs of graph drawing in TikZ (but the standard syntax and other
formats can also be used). The basic syntax of this new format leans on the
dot format and graphs specified using only the basic features of dot can be
processed directly. Nodes can be grouped and connected hierarchically as in the
following examples:

\tikz [spring layout, vertical=d to b]

\graph {a -- b -- c -- d -- a; b -- d}; a
b

c
d

\tikz [tree layout] \graph {

root -> { % second child is "missing"

a, , c, d -> { "δ_1", "δ_2" }

}};

root

a c d

δ1 δ2

The first main difference to the dot format is the place where options
are specified: The \graph command, each node, and also each edge indica-

JGAA, 17(4) 495–513 (2013) 501

tor (strings like -- or ->) can be followed by options written in square brackets.
In particular, in a sequence of nodes connected by edges, each node and each
edge can have its own options without any need for repeating the node names:

\tikz [tree layout, grow=right]

\graph { a[cloud] ->[dashed] b[nudge up=2mm]

--[dotted] c[ultra thick] };

a
b

c

By attaching appropriate options to nodes, we can easily fine-tune graph
drawings: In the example, nudge up raises (“nudges up”) b’s placement by two
millimeters relative to the position computed by the algorithm.

The second main difference concerns the semantics of edge indicators, of
which there are five (--, ->, <-, <->, and the special -!- meaning “remove
an edge specified earlier”). While graph descriptions in dot format are se-
quences of edges plus syntactic sugar (we can write a -> b -> c instead of
a -> b; b -> c and a -> {b; c} instead of a -> b; a -> c), we now inter-
pret graph descriptions as graph expressions, that is, as terms whose atoms are
single vertices and whose function symbols combine subgraphs to larger graphs.
The text {a, b, c} -- {d, e, f} is interpreted as the term γ(G1, G2) where
G1 = ({a, b, c}, ∅) and G2 = ({d, e, f}, ∅) are two discrete three-node graphs and
γ is a combining function that takes the union of the two (possibly overlapping)
graphs and adds some edges. Which combining function is used can be changed
for each use of an edge indicator, allowing authors to describe graphs in a suc-
cinct and, ideally, self-explaining manner. In the following example, the first
two layers form a complete bipartite graph as prescribed by the first combining
function, while the last two layers form a matching.

\tikz \graph [layered layout] {

{ a, b, c, d } --[complete bipartite]

{ e, f, g, h } ->[matching]

{ i, j, k, l }

};

a b c d

e f g h

i j k l

Options attached to nodes or edges provide local information to graph draw-
ing algorithms. In order to communicate information about larger structures
inside the input graph, authors can specify subgraphs of the input graph. For in-
stance, hyperedges can be modeled as discrete subgraphs, just as the “same rank
clusters” of the dot format. “Clusters of edges” can also be regarded as sub-
graphs whose edges should be routed similarly by an edge routing algorithm. To
handle all of these and future applications in a uniform manner, implementers
can declare subgraph kinds like “hyper” for hyperedges or “same layer” for
same layer clusters. Using an option key like same layer at the beginning of a
group indicates that everything inside the group is part of a subgraph.

502 Till Tantau Graph Drawing in TikZ

\tikz \graph [layered layout] {

a -> { b, c } -> d -> e;

{[same layer] b <-> c };

{[same layer] d, e };

};

a

b c

de

Authors can specify that on certain subgraphs a graph drawing algorithm
differing from the main algorithm should be used. Running the different algo-
rithms and resolving conflicts are handled automatically by the framework.

Making Syntactic Structure Visible to Graph Drawing Algorithms.
Just like any other general-purpose graph drawing framework, our framework in-
ternally works on abstract representations of the input graphs that do, however,
include all of the syntactic “hints” given by the author in a format-independent
way. For instance, we store the options trailing a node or an edge as tables
attached to the node’s or edge’s representing object. We use arrays to store
nodes and edges in the order in which they appear. Information about nodes
that are “not there” is communicated by a string of events that are generated by
the parser whenever “something interesting happens” (such as “missing node
encountered”). For each of the above-mentioned subgraph kinds, a separate
array stores all encountered subgraphs of this type.

3 The Integration Perspective:
Graph Drawing and Typesetting

Typesetting a document and drawing a graph are generally treated as two un-
related problems. On the one hand, we have specialized software and formats
for typesetting documents, like Donald Knuth’s TEX, Adobe’s indesign, or
Apache’s openoffice; on the other hand, we have specialized software and
formats for drawing graphs, like graphviz, the graph drawing packages inside
mathematica, or the Open Graph Drawing Framework. This separation into
two distinct spheres of development allows for very efficient and specialized im-
plementations. The separation, however, also implies the need to establish an
interface between the two worlds.

Interfacing Between a Graph Drawer and a Typesetter. The typical
interface between a graph drawer and a typesetter is simple and one-way: At
some point, a document author will run the graph drawing program (manu-
ally or triggered by a “makefile”), resulting in drawings in a vectorized format
like pdf or svg or in a bitmap format like png. These drawings must then
somehow be embedded into the document. Unfortunately, it is hard for authors
to ensure that the drawings produced by the graph drawing system match the
style sheet used for the main document. Basic requirements like matching col-
ors can often be met, but already font sizes are harder to get right. Meeting

JGAA, 17(4) 495–513 (2013) 503

advanced requirements such as including mathematical text in node labels is
typically impossible even when powerful graph drawing systems are used; let
alone when special-purpose, standalone graph drawing systems are employed
that are tailored for one specific visualization task.

Many of these problems can be avoided by using the graph drawing system
only for computing positions for the nodes of a graph and leaving the render-
ing of the graph to the typesetting system; for instance using metafont or
pstricks (or TikZ for that matter) in conjunction with TEX. Unfortunately,
this approach entails a new problem: The graph drawing system now misses
information concerning the sizes of text labels, which is vital for many graph
drawing algorithms.

Integrating a Graph Drawer into a Typesetter. The graph drawing
framework for TikZ sidesteps the indicated problems by integrating the typeset-
ter with the graph drawer. No separate program is used for the graph drawing;
rather, the framework is called directly from the typesetting program TEX. The
framework is written in Lua, a language that has been integrated into current
versions of TEX. It is this recent addition to the TEX program that makes graph
drawing in TikZ feasible: Although TEX is Turing-complete, programming di-
rectly in TEX is an arcane art practised by only a few devout disciples. In
contrast, Lua is a small, elegant, and fast scripting language that is easy to use
both for beginners and experts.

To get a feeling for how the integration works, let us consider the command
\tikz \graph[tree layout] {a -> b -> {c, d}};. Upon encountering the
special option tree layout, TikZ tells the framework that a “graph drawing
scope” has started. This “telling” is done by calling a method of the frame-
work’s class InterfaceToDisplay. The class encapsulates all of the function-
ality offered by the framework to a system like TEX, whose main job from the
framework’s point of view is to “display” graphs – hence the class’ name.

The parsing of the graph inside the braces results in four nodes and three
edges being created. Each of the four nodes is rendered normally, resulting
in TEX boxes that contain all of the low-level primitives needed to render the
nodes, including label texts, borders, shadows, and whatever else might have
been specified. Normally, such a box would now be added to the page; but
inside a graph drawing scope, the box gets intercepted at this point and passed
down to the framework (again, by calling methods of the interface class). The
contents of the box are stored in an internal table, together with detailed size
information. From TEX’s point of view, the box disappears at this point. In
contrast, edges are not rendered when they are encountered. Instead, only the
information where an edge starts, where it ends, and the edge’s local options
are passed down.

At the end of the graph drawing scope, a complete description of the graph,
consisting of all nodes, including their exact convex hulls, all edges, including
their labels and options, will have accumulated inside the framework in the form
of Lua tables. At this point, the framework switches over completely to Lua

504 Till Tantau Graph Drawing in TikZ

TikZ Layer (written in TEX)

\graph[tree layout]{

a -> b -> {c, d}

};

node positioning callback

edge positioning callback

InterfaceToDisplay (written in Lua)

beginGraphDrawingScope(...)

createVertex(...)

createEdge(...)

runGraphDrawingAlgorithm()

endGraphDrawingScope()

load algorithm and run it

Figure 2: Call graph of the interaction between TikZ and the interface of the
framework. Naturally, this figure has been created using graph drawing in
TikZ: The Sugiyama method was applied to the call graph and same layer

was used with all node pairs that needed to be aligned horizontally. For the
edges between nodes on different layers, TikZ’s capability of rendering edges
using only horizontal and vertical segments was harnessed.

and runs the graph drawing algorithm corresponding to the option tree layout

(this happens to be the Reingold–Tilford algorithm). When the algorithm termi-
nates, the node and edge objects are storing the computed canvas coordinates.
Since, from the typesetter’s perspective, the nodes and edges “disappeared”
during the parsing of the graph drawing scope, they need to be reinserted into
the page and, only now, the edges, too, get rendered. The call graph in Figure 2
visualizes this back-and-forth between the typesetter and the framework.

Although nodes disappear and reappear from the typesetter’s memory, from
TEX’s perspective there is no difference between nodes inside graph drawing
scopes and nodes positioned without the use of the graph drawer. In particular,
the nodes inside a graph drawing scope can be referenced from outside this scope
just like any other node, allowing the seamless integration of drawn graphs into
larger graphics, see Figure 3.

4 The Implementer’s Perspective: Lean Imple-
mentations of Graph Drawing Algorithms

Whether a new idea of how to draw graphs really works in practice can only be
tested by implementing a prototype. Such prototypes then need to be expanded
or even rewritten if authors are really supposed to use them. In the following, we

JGAA, 17(4) 495–513 (2013) 505

\tikz {

\graph [spring electrical layout,

nodes={circle, ball color=white},

edges={decoration=coil, decorate}] {

1 -- 2 -- {3, 4, 5}; 4 -- 3 -- 5 -- 6 -- 3;

};

\scoped[on background layer]

\filldraw [black!20, line width=2.5em,

line join=round]

(2.center) -- (4.center) -- (3.center) --

(5.center) -- cycle; }

1

2

3

4 5

6

Figure 3: Example of a picture where the graph drawing system is used to
first render a six node graph using a spring electrical layout. Subsequently, the
positioned nodes can be referenced normally such as in the code that adds the
shaded area on the background.

have a look at how implementers are helped by the graph drawing framework
with turning prototypes into implementations that create publication-quality
graph drawings.

Graph Drawing as a Sequence of Transformations. The design of the
graph drawing framework adheres to the philosophy advocated by Di Battista
et al. [5] of seeing graph drawing as a series of graph transformations. We start
with an “arbitrary” input graph and end with a graph whose nodes and edges
are embedded in the plane. For instance, the popular Sugiyama method for
drawing layered graphs consists of first decomposing the input graph into con-
nected components, then transforming each component into a directed acyclic
graph, followed by a whole series of further transformations. In contrast, most
force-based algorithms will also decompose the input graph but will then turn
each component into a simple, undirected graph. Other typical transforma-
tions include planarization or the decomposition of the graph into singly, bi-, or
tri-connected components.

The principle of treating graph drawing as graph transformations is reflected
by the way graph drawing algorithms must be implemented. Each new algo-
rithm is actually just a transformation and it must declare which kinds of graphs
the algorithm expects and what kind of graphs it will output, using a Lua table
stating preconditions the graph must meet and postconditions the graph will
meet. For instance, the precondition “works only on connected graphs” tells the
framework that it must first decompose the input graph into connected compo-
nents and that these components must be passed to the algorithm individually.
Similarly, the precondition “needs a spanning tree” tells us that the algorithm
will work on trees (or at least will need a spanning tree in addition to the origi-
nal graph). Other properties concern the output graphs rather than the input:
The postcondition “upward oriented” tells the framework that the result of the
transformation is a layered drawing where nodes on the same layer have the

506 Till Tantau Graph Drawing in TikZ

same y-coordinate and the larger the layer index, the larger the y-coordinate.
Pre- and postconditions give algorithm designers fine control over which

transformations are applied to a graph before and after the actual algorithm
runs. Standard transformations include decomposition into connected compo-
nents, shifting and rotating to meet author-specified anchoring and orientation
requirements, as well as rotating tree-like graphs so that they “grow” at an
author-specified angle. The last transformation is especially useful since graph
drawing algorithms for trees and layered graphs only need to handle the case
that a tree grows upwards and the framework will automatically rotate the graph
when a user requests that the tree should grow in another direction. Having
access to the convex hulls of the nodes, the framework can even correctly com-
pensate for the effects of rotating a drawing of a graph, but not rotating the
individual nodes.

Framework Architecture: Separation of Concerns. An implementation
of a graph drawing algorithm should neither have to worry about how graphs
are specified nor about how transformations are applied to them prior or after
the algorithm has run. Rather than just encouraging algorithms to be indepen-
dent of the internal workings of the framework, its layered architecture actually
enforces it:

1. The display layer interacts with the display system that the author uses.
In the framework’s terminology, a display system is any software that
“displays graphs” such as TEX in conjunction with TikZ; but a graphical
editor would also constitute a display system.

All functionality offered by the framework to a display system is encap-
sulated in the class InterfaceToDisplay mentioned earlier. While this
class includes the bulk of the code necessary for the interaction with an
arbitrary display system, each display system requires a small amount
of specific “binding” code in a special “binding class.” The framework
was carefully designed so that nothing TEX-specific is used or even just
assumed anywhere except inside the class binding to TEX; in particular,
the framework can be used completely independently of TEX, provided an
appropriate binding is created.

2. Implementers of graph drawing algorithms see the algorithm layer of the
graph drawing framework. It consists of Lua classes for graphs, nodes,
and edges, as well as libraries for common algorithmic tasks such as graph
traversal, graph decomposition, and so on.

Graph drawing algorithms can neither access nor influence the communi-
cation between the framework and the display layer. Rather, they must
use the class InterfaceToAlgorithms, which is a counterpart to the in-
terface of the framework to display systems. The fact that algorithms
cannot access the display system makes sure that algorithms implemented
for the framework work with all display systems.

JGAA, 17(4) 495–513 (2013) 507

Display System such as TikZ or a graphical editor

InterfaceToDisplay Binding

Transformation Control

InterfaceToAlgorithms

Sugiyama ReingoldTilford1981 . . .

Framework

Figure 4: Overview of the framework architecture. Arrows indicate function
calls. The framework is made up by the shaded area; the display system at the
top as well as the example algorithms at the bottom use the framework, but
they are not part of it. Like Figure 2, this figure has been created using TikZ
in conjunction with the layered graph drawing layout. Observe how the overall
styling of Figure 2 is consistent with the above figure, even though they depict
quite different kinds of graphs.

An important functionality offered by the InterfaceToAlgorithms class
is the declaration of algorithms and options together with their properties
and even documentation at runtime. Display systems can use this infor-
mation to display lists of available algorithms and options together with
their documentation.

3. The heart of the framework is the transformation control; the other layers
communicate with this control. Its job is to take the graph description as
communicated by the display system through the InterfaceToDisplay

and apply the necessary series of graph transformations to it. The most
important transformation will be the call of the algorithm(s) selected by
the author, but other transformations will also be performed as indicated
earlier. Once the input graph has been transformed into a graph embedded
in the plane, the computed positions are passed back to the display system
through its binding.

The main aspects of the architecture of the framework are depicted in Fig-
ure 4.

Example Implementation of a Tree Drawing Algorithm. The graph
drawing framework aims at facilitating lean graph drawing algorithm imple-
mentations that focus on the core ideas. What this means in practice will be
demonstrated in the following by presenting an example implementation of a
tree drawing algorithms.

508 Till Tantau Graph Drawing in TikZ

The “core idea” behind this algorithm is to recursively apply the following
rule to each node: Consider the bounding boxes of the trees rooted at the node’s
children. Arrange these boxes from left to right with a fixed padding between
them. Then center the node below these drawn trees. (This placement strategy
is not particularly clever, unforgivingly ignores the node sizes, and only used
for the purposes of this example.)

The algorithm’s code, which we typically place in its own file, starts with
the creation of an (empty) algorithm class and the declaration of its properties.
For the declaration, we first need to import the key interface function declare.

-- File TreeExample.lua

local declare = require "pgf.gd.interface.InterfaceToAlgorithms".declare

local TreeExample = {} -- As yet empty algorithm class,

-- methods are defined later

declare {

key = "tree example layout", -- name for the display layer

algorithm = TreeExample, -- bind the name to this class

preconditions = { tree = true },

postconditions = { upward_oriented = true },

summary = "A tree layout algorithm for demonstration purposes"

}

The precondition in the declaration ensures that when the framework in-
vokes the run method, the algorithm only gets a tree as input – even if the
original input graph is neither acyclic nor even connected: the algorithm will be
invoked once for each connected component with a spanning tree of the compo-
nent as input. As with all other transformations, the to-be-used algorithm for
computing spanning trees can be selected by authors through options.

The run method just calls a recursive placement function, which we will
define in a moment and whose parameters are the to-be-drawn tree (self.
spanning_tree), the root node of this tree, a horizontal position for the tree’s
left-most node, and a vertical position for the root:

local recursion -- This is a forward declaration

function TreeExample:run() -- This method gets called by the framework

recursion(self.spanning_tree, self.spanning_tree.root, 0, 0)

end

The recursive method first reads the desired distance of the root node to
its children from the node’s option table. Such tables are created during the
parsing and get attached to all vertices, edges, and to the graph as a whole; the
framework provides default values when the author has not specified an option’s
value explicitly.

function recursion(tree, root, left_end, y)

local level_dist = root.options[’level distance’]

local sibling_dist = root.options[’sibling distance’]

Now comes the implementation of the core idea: The algorithms loops over
all outgoing edges of the root and recursively draws the trees rooted at the

JGAA, 17(4) 495–513 (2013) 509

“heads” of these edges (the children of the root). Each recursive call returns
the position of the rightmost position used, which we increase by the sibling
distance and use as the left end of the next child tree.

local outgoing_edges = tree:outgoing(root)

local right_end = left_end

for i,edge in ipairs(outgoing_edges) do -- a Lua for-loop

right_end = recursion(tree, edge.head, right_end, y + level_dist)

if i < #outgoing_edges then -- pad all but last node

right_end = right_end + sibling_dist

end

end

The last step is to center the root by modifying the root’s position field:

root.pos.x = (left_end + right_end) / 2

root.pos.y = y

return right_end

end

We can immediately use the code as demonstrated in Figure 5.

\usegdlibrary{TreeExample} % Loads the Lua file

\tikz [tree example layout,

grow’=45, sibling distance=2em]

\graph {

a -> {b, c -> {d, e}, f -> g},

b -- d

};

a

b

c

d

e

f

g

Figure 5: Example use of the example tree drawing algorithm in a TEX doc-
ument. The algorithm requires its input to be a tree, which is not the case
here, and draws this tree “upwards,” which is not desired by the author. The
framework automatically removes the b--d edge to turn the input graph into a
tree and applies transformations to honour the requested 45◦ direction of “tree
growth.”

Naturally, the implementations of the “real” graph drawing algorithms that
are already part of the framework are more complex than the above example:
The implementation of the Reingold–Tilford [12] tree drawing method has 130
lines of code; the modular implementation of the Sugiyama method [6, 13] needs
a bit over 2000 lines of code, nearly half of which implement the network simplex
algorithm [4]; implementations of different force-based algorithms need between
350 and 500 lines of code and another 500 lines for supporting multilevel ap-
proaches.

510 Till Tantau Graph Drawing in TikZ

5 Conclusion

The framework presented in this paper allows researchers to rapidly implement
and test new graph drawing algorithms, which authors can immediately use to
produce high quality drawings of graphs that are part of a larger text. Since
the framework is fully integrated into a graphics description language, the full
power of the language can be used to modify and augment graph drawings.
Being part of the main TikZ code trunk, the framework is available through
sourceforge.net/projects/pgf and will automatically be part of future stan-
dard TEX distributions.

Since the core of the graph drawing framework is implemented in Lua, it is
much faster than equivalent code written in TEX, but much slower than code
written in compiled languages such as C. For smaller graphs, Lua implementa-
tions of graph drawing algorithms turn out to be sufficiently quick: TEX needs
3.2 seconds on a 2.8GHz cpu to typeset the present paper, but only 0.5 of
these 3.2 seconds are needed by the Lua graph drawing algorithms to draw the
eleven graphs of the present paper. A larger example, the 47-node graph from
the graphviz example suite that depicts the Unix history, already needs 1.2
seconds to draw and even larger graphs drawn using force-based methods may
need minutes or hours to process. This problem can partly be sidestepped by
using TikZ’s built-in facilities for only (re)processing pictures whose syntactic
description has changed in the manuscript. This drops the total processing time
for the present manuscript to 1.2 seconds. Alternatively, time-critical parts of
algorithms can be implemented in C libraries that get loaded dynamically by
Lua; but this entails the portability and deployment problems that come along
with compiled C code.

Concerning the future of the framework, apart from adding more standard
or experimental algorithms, three avenues of development seem particularly
promising: First, the integration of the Open Graph Drawing Framework would
immediately make a large number of sophisticated (and fast) algorithms avail-
able to authors. A first implementation in the source repository demonstrates
the great potential of this integration, but the deployment of the compiled C
code is, indeed, tricky. Second, a command-line interface for the framework
would make integration with non-TEX-based workflows easier. From the frame-
work’s point of view, the command-line interface would constitute a display
system and an appropriate binding would have to be implemented. Finally, I
would like to recommend more research on graph drawing algorithms that ad-
dress the drawing of small graphs specified by humans in a graph description
language.

Acknowledgements

The first prototype of the framework was implemented as a graduate project
in 2010 by Renée Ahrens, Olof-Joachim Frahm, Jens Kluttig, Matthias Schulz,
and Stephan Schuster. The prototype was greatly extended by Jannis Pohlmann

JGAA, 17(4) 495–513 (2013) 511

while working on his Diploma thesis [11], in which he details his implementations
of the modular Sugiyama algorithm and of the multilevel force-based methods.

I would also like to very much thank the anonymous reviewers for their
valuable feedback and careful proofreading of this paper.

512 Till Tantau Graph Drawing in TikZ

References

[1] A. Brüggemann-Klein and D. Wood. Drawing trees nicely with TEX. Elec-
tronic Publishing, 2(2):101–115, 1989.

[2] R. Chernobelskiy, K. I. Cunningham, M. T. Goodrich, S. G. Kobourov,
and L. Trott. Force-directed Lombardi-style graph drawing. In Pro-
ceedings of the 19th International Conference on Graph Drawing, (GD
2011), pages 320–331, Berlin, Heidelberg, 2012. Springer-Verlag. doi:

10.1007/978-3-642-25878-7_31.

[3] M. Chimani, C. Gutwenger, M. Jünger, K. Klein, P. Mutzel, and M. Schulz.
The Open Graph Drawing Framework. Poster at the 15th International
Symposium on Graph Drawing 2007 (GD 2007), 2007.

[4] W. H. Cunningham. A network simplex method. Mathematical Program-
ming, 11(1):105–116, 1976. doi:10.1007/BF01580379.

[5] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing,
Algorithms for the Visualization of Graphs. Prentice Hall, 1999.

[6] P. Eades and K. Sugiyama. How to draw a directed graph. Journal of
Information Processing, 13(4):424–436, 1990.

[7] J. Ellson, E. Gansner, E. Koutsofios, S. North, and G. Woodhull.
Graphviz and Dynagraph – Static and dynamic graph drawing tools.
In M. Junger and P. Mutzel, editors, Graph Drawing Software, Math-
ematics and Visualization, pages 127–148. Springer-Verlag, 2004. doi:

10.1007/978-3-642-18638-7_6.

[8] E. Gansner, E. Koutsofios, S. North, and K.-P. Vo. A technique for drawing
directed graphs. IEEE Transactions on Software Engineering, 19(3):214–
230, 1993. doi:10.1109/32.221135.

[9] R. Ierusalimschy. Programming in Lua. Lua.org, 2nd edition, 2006.

[10] S. Mauw and V. Bos. Drawing message sequence charts with LATEX. TUG-
boat, 22(1/2):87–92, 2001.

[11] J. Pohlmann. Configurable graph drawing algorithms for the TikZ graphics
description language. Diploma thesis, Institute of Theoretical Computer
Science, Universität zu Lübeck, Lübeck, Germany, Oct. 2011.

[12] E. M. Reingold and J. S. Tilford. Tidier drawings of trees. IEEE Trans-
actions on Software Engineering, 7(2):223–228, 1981. doi:10.1109/TSE.

1981.234519.

[13] K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understanding
of hierarchical system structures. IEEE Transactions on Systems, Man and
Cybernetics, 11(2):109–125, 1981. doi:10.1109/TSMC.1981.4308636.

http://dx.doi.org/10.1007/978-3-642-25878-7_31
http://dx.doi.org/10.1007/978-3-642-25878-7_31
http://dx.doi.org/10.1007/BF01580379
http://dx.doi.org/10.1007/978-3-642-18638-7_6
http://dx.doi.org/10.1007/978-3-642-18638-7_6
http://dx.doi.org/10.1109/32.221135
http://dx.doi.org/10.1109/TSE.1981.234519
http://dx.doi.org/10.1109/TSE.1981.234519
http://dx.doi.org/10.1109/TSMC.1981.4308636

JGAA, 17(4) 495–513 (2013) 513

[14] T. Tantau. The TikZ and pgf Packages, Manual for version 2.10-cvs,
2013. Available online at http://sourceforge.net/projects/pgf/. Accessed
March 2013.

[15] T. Tantau. Graph drawing in TikZ. In Proceedings of Graph Drawing
2012, volume 7704 of Lecture Notes in Computer Science, pages 517–528.
Springer, 2013. doi:10.1007/978-3-642-36763-2_46.

[16] B. Veytsman and L. Akhmadeeva. Drawing medical pedigree trees with
TEX and PSTricks. TUGboat, 28(1):100–109, 2007.

http://dx.doi.org/10.1007/978-3-642-36763-2_46

	Introduction
	The Author's Perspective: Specifying Graphs and the Quality of Graph Drawings
	The Integration Perspective: Graph Drawing and Typesetting
	The Implementer's Perspective: Lean Implementations of Graph Drawing Algorithms
	Conclusion

