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Abstract

A graph is Bk-VPG when it has an intersection representation by paths
in a rectangular grid with at most k bends (turns). It is known that all
planar graphs are B3-VPG and this was conjectured to be tight. We
disprove this conjecture by showing that all planar graphs are B2-VPG.
We also show that the 4-connected planar graphs constitute a subclass
of the intersection graphs of Z-shapes (i.e., a special case of B2-VPG).
Additionally, we demonstrate that a B2-VPG representation of a planar
graph can be constructed in O(n3/2) time. We further show that the
triangle-free planar graphs are contact graphs of: L-shapes, Γ-shapes,
vertical segments, and horizontal segments (i.e., a special case of contact
B1-VPG). From this proof we obtain a new proof that bipartite planar
graphs are a subclass of 2-DIR.
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1 Introduction

Planar graphs have a long history of being described as geometric intersection
(and contact) graphs; i.e., for a planar graph G, each vertex can be mapped to
a geometric object Ov such that (u, v) is an edge of G if and only if Ov and Ou

intersect.1 Two well-known results of this variety are that: every planar graph
is an intersection graph of curves in the plane [12] (1978), and every planar
graph is a contact graph of discs in the plane [21] (1936).

In this paper we consider representations of planar graphs as the intersection
and contact graphs of restricted families of curves in the plane. The most general
class of intersection graphs of curves in the plane is the class of string graphs.
Formally, a graph G = (V,E) is STRING if and only if each v ∈ V can be
associated with a curve cv in the plane such that for every pair u, v ∈ V ,
(u, v) ∈ E if and only if cu and cv intersect. STRING was first considered
regarding thin film RC-circuits [27].

Perhaps the most significant result describing planar graphs as intersection
graphs of curves is the recent proof of Scheinerman’s conjecture that all planar
graphs are segment graphs (SEG); i.e., the intersection graphs of line segments
in the plane. Scheinerman conjectured this in his Ph.D. thesis (1984) [26], and
it was proven in 2009 by Chalopin and Gonçalves [5]. Leading up to this result
were several partial results. Bipartite planar graphs were the first subclass
shown to be intersection graphs of line segments having two distinct slopes (2-
DIR) [10, 4]. This was followed by triangle-free planar graphs being shown to
be intersection graphs of line segments having three distinct slopes (3-DIR) [8].
It has also been proven that segment graphs include every planar graph that
can be 4-colored so that no separating cycle uses all four colors [9]. Planar
graphs were also shown to be representable by curves in the plane where each
pair of curves intersect in at most one point (i.e., only “simple” intersections are
allowed) [6] – the proof of Scheinerman’s conjecture was a strengthening of this
result. The early work on this topic led West to conjecture that every planar
graph is an intersection graph of line segments in four directions (4-DIR) [31].

Segment graphs have been generalized to k-segment graphs (k-SEG) where
each vertex is represented by a piecewise linear curve consisting of at most
k segments [23]. Interestingly, a very recent result is that all planar graphs
are contact 2-SEG [1]. In this context one may now consider k-SEG where
the segments of the piecewise linear curves have a bounded number of slopes.
Recently, Asinowski et al. [3] introduced the class of vertex intersection graphs
of paths in a rectangular grid (VPG); equivalently, VPG is the set of intersection
graphs of axis-aligned rectilinear curves in the plane (or

⋃
k≥1 k-SEG where each

segment is either vertical or horizontal). They prove that VPG and STRING are
the same graph class (this was known previously as a folklore result). Also, they
focus on the subclasses which are obtained when each path in the representation
has at most k bends (turns) and they refer to such a subclass as Bk-VPG (i.e.,
this is (k + 1)-SEG with two slopes). Several relationships between existing

1In the case of contact representations, objects may only “touch” each other, but not “cross
over” each other.
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graph classes and the Bk-VPG classes were observed. For example, every planar
graph is B3-VPG (this was also conjectured to be tight) and every circle graph
is B1-VPG. In other words, planar graphs are 4-SEG where the segments only
have two distinct slopes. This result follows from the fact that every planar
graph has a representation by a T-contact system [11] and each T-shape can be
simulated by a rectilinear curve with three bends.

In this paper we present the following results. Our main contribution is
that every planar graph is B2-VPG (disproving the conjecture of Asinowski
et al. [3]). This result consists of the following interesting components. We
first demonstrate that every 4-connected planar graph is the intersection graph
of Z-shapes (i.e., a special case of B2-VPG). This result is extended to show
that every planar graph is B2-VPG (this extension involves the additional use
of C-shapes – i.e., it uses the full capability of B2-VPG) and that a B2-VPG
representation of a planar graph can be constructed in O(n3/2) time. The
secondary contribution of this paper is that every triangle-free planar graph
is a contact graph of: L-shapes, Γ-shapes, vertical segments, and horizontal
segments (i.e., it is a specialized contact B1-VPG graph). We show how to
construct such a contact representation in linear time. Moreover, if the input is
bipartite then each path is a horizontal or vertical segment. In particular, we
obtain a new proof that planar bipartite graphs are 2-DIR. Interestingly, the
class of contact segment graphs has recently been shown to be the same as the
class of contact B1-VPG graphs [20].

2 Preliminaries

A grid path (a path in the plane square grid) consists of horizontal and vertical
segments that appear alternatingly along the path. Every horizontal segment
has a left endpoint and a right endpoint, and every vertical segment an upper
endpoint and a lower endpoint in the obvious meaning. A path is a k-bend
path if it has k bends, i.e., k points that are the endpoints of a horizontal and
a vertical segment. Equivalently, k-bend paths are those with precisely k + 1
segments.

A Bk-VPG representation of a graph G is a set of grid paths (one for each
vertex) with at most k bends such that two paths intersect if and only if the
corresponding vertices are adjacent in G. For every vertex v we denote the
corresponding grid path in a given Bk-VPG representation by v. Consequently
a Bk-VPG representation of a graph G is denoted by G. A graph is called
Bk-VPG if it has a Bk-VPG representation.

3 Planar Graphs are B2-VPG

In this section we show that every planar graph G has a B2-VPG representation.
We fix any plane embedding of G and assume without loss of generality that G
is a maximally planar graph, i.e., all faces are triangular. To achieve this we
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may put a dummy vertex into each face of G and triangulate it. In a B2-VPG
representation of this graph the paths corresponding to dummy vertices may be
removed to obtain a B2-VPG representation of G.

Our construction of the B2-VPG representation of the maximally planar
graph G relies on two well-known concepts. Using the separation tree TG of G,
we show in Section 3.1 how to divide G into its 4-connected maximally planar
subgraphs. Each such subgraph, if we remove one outer edge, has a rectangular
dual, i.e., a contact representation with axis-aligned rectangles. In Section 3.2
we show how to construct a B2-VPG representation from a rectangular dual. In
particular we will convert each rectangle to a Z-shaped path by choosing “part”
of the top of it, the complementary “part” of the bottom of it and connecting
them via a vertical segment. In Section 3.3 we put the obtained representations
of all 4-connected maximally planar subgraphs of G together to obtain a B2-
VPG representation of our graph. The same method has been used to prove
that every planar graph is a B4-EPG graph, where EPG stands for emphedge-
intersecting paths in the grid [18].

3.1 Separation Tree

A triangle ∆ in a graph is a triple of pairwise adjacent vertices. We say that
a triangle is separating when its removal disconnects the graph. Also, in a
maximally planar graph G a triangle ∆ is said to be non-empty when at least
one vertex of G lies inside the bounded region inscribed by ∆. Notice that every
separating triangle is non-empty. In fact, each non-empty triangle is either the
outer triangle or separating.

We say that a triangle ∆1 is contained in a triangle ∆2, denoted by ∆1 @ ∆2,
if the bounded region enclosed by ∆1 is strictly contained in the one enclosed by
∆2. For example, the outer triangle contains every triangle in the graph (except
itself), and no triangle in G is contained in an inner facial triangle.

Definition 1 ([28]) The separation tree of G is the rooted tree TG whose ver-
tices are the non-empty triangles in G, with ∆ being a descendant of ∆′ if and
only if ∆ is contained in ∆′.

The separation tree has been introduced by Sun and Sarrafzadeh [28]. The
root of TG is the outer triangle. For every non-empty triangle ∆ we define H∆

to be the unique 4-connected maximally planar subgraph of G that contains ∆
and at least one vertex of G that lies inside ∆. Equivalently, H∆ is the union of
∆ and all triangles contained in ∆ but not contained in any triangle that itself
is contained in ∆; i.e., H∆ = ∆ ∪

(⋃
∆′@∆ and @∆′′:∆′@∆′′@∆ ∆′

)
.

Theorem 1 ([28]) The separation tree of G and all subgraphs H∆ can be com-
puted in O(n3/2).

3.2 Rectangular Duals

Throughout this section let H be a triangulation of the 4-gon, i.e., H is a plane
graph with quadrangular outer face and solely triangular inner faces. Such
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graphs are also known as irreducible triangulations of the 4-gon. We denote the
outer vertices by T,R,B,L in this clockwise order around the outer face.

Definition 2 A rectangular dual of H is a set of |V (H)| non-overlapping axis-
aligned rectangles in the plane (one for each vertex) such that every edge of
H corresponds to a non-trivial overlap of the boundaries of the corresponding
rectangles.

The rectangle corresponding to a vertex v is denoted by R(v). In every
rectangular dual the rectangles R(T ), R(B), R(L) and R(R) that correspond to
the outer vertices of H inscribe a rectangular hole that contains all the remaining
rectangles. We assume without loss of generality that R(T ), R(B), R(L) and
R(R) are laid out as in Fig. 1 a), i.e., the bottom side of R(T ) forms the top
side of the hole, the left side of R(R) forms the right side of the hole, and so on.

T

R

L

B

(a)

T

R

L

B

(b)

Figure 1: (a) A rectangular dual; and (b) its transversal structure.

Rectangular duals have been considered several times independently in the
literature [30, 24, 22, 29, 25]. In particular, the following theorem is well-known.

Theorem 2 A triangulation of a 4-gon admits a rectangular dual if and only
if it is 4-connected, i.e., contains no non-empty triangle.

We define here transversal structures as introduced by Fusy [14], which were
independently considered by He [17] under the name regular edge labelings. For
a nice overview about regular edge labelings and their relations to geometric
structures we refer to the introductory article by D. Eppstein [13].

Definition 3 (Fusy [14]) A transversal structure of a triangulation H with
outer vertices T, L,B,R is a coloring and orientation of the inner edges of H
with colors red and blue such that:

(i) All edges at T are incoming and blue, all edges at B are outgoing and blue,
all edges at R are incoming and red, all edges at L are outgoing and red.

(ii) Around each inner vertex v the edges appear in the following clockwise
cyclic order: One or more incoming red edges, one or more outgoing blue
edges, one or more outgoing red edges, one or more incoming blue edges.



480 Chaplick and Ueckerdt Planar Graphs as VPG-Graphs

We denote a transversal structure by (Er, Eb), where Er and Eb is the set of
red and blue edges, respectively.

We obtain a transversal structure from any rectangular dual of H as follows.
If the right side of a rectangle R(u) has a non-trivial overlap with the left side
of some rectangle R(v), then we color the edge {u, v} in H red and orient it
from u to v. Similarly, if the topside of R(u) overlaps with the bottom side of
R(v) then {u, v} is colored blue and oriented from u to v. Fig. 1(b) depicts
the transversal structure obtained from the rectangular dual in Fig. 1(a). It is
known that every transversal structure of H arises from a rectangular dual of
H in this way.

Theorem 3 (Kant & He [19]) Every transversal structure maps to a rectan-
gular dual.

If we identify combinatorially equivalent rectangular duals, i.e., those in
which any two rectangles touch with the same sides in both duals, then The-
orem 3 actually states that rectangular duals and transversal structures are in
bijection. Transversal structures (and hence combinatorially equivalent rectan-
gular duals) can be endowed with a distributive lattice structure [15]. For our
purposes, we describe the minimal transversal structure of H; i.e., the minimum
element in the distributive lattice of all transversal structures of H.

Lemma 1 (Fusy [15]) Consider four vertices v, w, x, y in the minimal trans-
versal structure (Er, Eb), such that v → w ∈ Eb, x → y ∈ Eb, v → x ∈ Er,
w → y ∈ Er. Then we have neither x→ w ∈ Eb nor v → y ∈ Er.

Moreover, the minimal transversal structure can be computed in linear time.

v

w

x

y

v

w

x

y

Figure 2: Two configurations that do not appear in the minimal transversal
structure.

Fig. 2 shows the two configurations described in Lemma 1 that do not appear
in the minimal transversal structure. The rectangular dual that corresponds to
the minimal transversal structure is also called the minimal rectangular dual.
Fig. 3(a) depicts the graph from Fig. 1 together with its minimal rectangular
dual and the corresponding transversal structure. We remark that if, besides
these two, a third certain configuration is forbidden in the transversal structure,
then this already characterizes the minimal transversal structure [15].
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Let us call a rectangular dual non-degenerate if the top sides of two rectangles
lie on the same horizontal line only if there is a rectangle whose bottom side
overlaps with both of them. It is not difficult to see that there always exists a
non-degenerate minimal rectangular dual.

Given a rectangular dual and any inner vertex v we consider the rightmost
rectangle overlapping the top side of R(v). We denote the corresponding vertex
of H by v•. In other words, (v, v•) is the outgoing blue edge at v whose clockwise
next edge is red (and outgoing). Similarly, R(v•) is the bottommost rectangle
overlapping the right side of R(v), i.e., (v, v•) is the outgoing red edge at v
whose clockwise next edge is blue (and incoming). Moreover, R(•v) (R(•v))
is the leftmost (topmost) rectangle overlapping the bottom side (left side) of
R(v), which means that (•v, v) ((•v, v)) is the incoming blue (red) edge at v
whose clockwise next edge is red (blue). Note that if the transversal structure
is minimal then every inner edge of H can be written as (v, v•), (v, v•), (•v, v)
or (•v, v) for some inner vertex v.

From H and its fixed transversal structure (Er, Eb) we define a new graph
H∗, called the split graph, and its transversal structure (E∗r , E

∗
b ) as follows.

• The outer vertices of H and H∗ are the same.

• For every inner vertex v of H there are two vertices v1 and v2 in H∗.

– There is a red edge v1 → v2 in E∗r .

– There is a red edge v2 → w1 in E∗r for every edge v → w ∈ Er.

– There are blue edges v1 → w1 and v1 → w2 in E∗b for every edge
v → w ∈ Eb.

– There is a blue edge v2 → (v•)2 in E∗b .

See Fig. 3(b) for an example of a split graph and its rectangular dual. It
is straight-forward to check that (E∗r , E

∗
b ) is indeed a transversal structure,

namely that for every v ∈ V (H) incoming and outgoing red and blue edges
appear around v1 and v2 in accordance with Definition 3. We refer to Fig. 3(b)
for an illustration of this fact. Note that defining R(v) := R(v1) ∪ R(v2) for
every vertex v we obtain the transversal structure we started with.

3.3 VPG-representation

We want to construct a B2-VPG representation for every maximally planar
graph G. To this end we split G into its 4-connected maximally planar sub-
graphs. The outer face ∆ of such a subgraph H∆ is either the outer face of G
or an inner face of H∆′ , where ∆′ is the father of ∆ in the separation tree. We
start by representing the outer face of G as depicted in Fig. 4. The highlighted
area in the figure is called the frame for H∆. Formally, the frame for H∆ is
a rectangular area such that either: the paths corresponding to two vertices of
∆ pass through it vertically and the path for the third vertex passes through
it horizontally, or the paths corresponding to two vertices of ∆ pass through it
horizontally and third passes through it vertically. When defining the B2-VPG
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(a)

T

R

L

B

(b)

;v v1

v2

v•

•v

•v

v•

(v•)2

(c)

Figure 3: (a) The minimal rectangular dual of the graph in Fig. 1 with its
transversal structure overlaid on it. (b) A rectangular dual of the split graph
of (a). (c) Splitting a vertex v into v1 and v2 and the corresponding transversal
structure.

representation of any H∆ we assume that we have already constructed the paths
for the vertices in ∆ and that there is a frame for H∆.

We now describe how to obtain a B2-VPG representation of a 4-connected
maximally planar graph H∆ given a frame F for it. Our construction is based
on a non-degenerate minimal rectangular dual and its split graph. Let u and
w be the two vertices of ∆ whose paths do not intersect inside F and denote
the third vertex in ∆ by v. Then we consider the graph H obtained from
H∆ by removing the edge {u,w}. Notice that H is a 4-connected triangula-
tion of a 4-gon and we assume without loss of generality that u = L, v = T ,
and w = R. Consider the minimal transversal structure, a corresponding non-
degenerate minimal rectangular dual of H, and its split graph H∗ together with
the transversal structure (E∗r , E

∗
b ). By rotating and stretching it appropriately

we place the non-degenerate rectangular dual of H∗ inside the frame F , such
that the right side of L, the bottom side of T and the left side of R is contained
in u, v and w, respectively.

We define the 2-bend path B for the vertex B to be a C-shape path that is
contained in F and whose horizontal segments intersect u and v, the upper one
being contained in the top side of R(B). See Fig. 4 for an illustration.

We define a 2-bend path v for every inner vertex v of H as follows. First,
let v be the union of the top side and right side of R(v1) and the bottom side
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Figure 4: Left: The VPG representation of the outer face of G and its frame.
Right: Placing a rectangular dual inside a frame and constructing the path B.

of R(v2). Now consider the vertex •v. We extend the left horizontal end of v
to the right side of R((•v)1). In case •v = L we do not extend the left end of v.
Similarly we extend the right horizontal end of v horizontally to the right side
of R((v•)1), unless v• = R. See Fig. 5(a) for an illustration.

R(v1)
v
R(v2)

(a)

T

R

L

B

(b)

Figure 5: (a) The path v based on the rectangles R(v1) and R(v2) in the rectan-
gular dual of the split graph. Note: the wide edges indicate the border between
split rectangles. (b) The Z-shapes arising from the split graph in Fig. 3(b).

Lemma 2 The above construction gives a B2-representation of H.

Proof: Clearly every path defined above has at most two bends. So it remains
to prove that the paths u and v intersect if and only if {u, v} is an edge in G.
Evidently, all outer edges {T, L}, {L,B}, {B,R}, and {T,R} are realized, i.e.,
the corresponding paths intersect. Moreover, T ∩B = ∅ = L ∩R which means
that no unwanted edge is created.

Now consider a blue edge u→ v ∈ Eb. By definition of the split graph and
its transversal structure (E∗r , E

∗
b ) we have an edge u1 → v2 in E∗b , i.e., the top

side of R(u1) and the bottom side of R(v2) overlap. In particular u ∩ v 6= ∅,
since u and v contains the top side of R(u1) and the bottom side of R(v2),
respectively.

Next consider a red edge of G. Since the underlying rectangular dual is
minimal, it does not contain the configuration in the right of Fig. 2. Thus,
every red edge can be written as (v, v•) or (•v, v) for some inner vertex v. By
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definition the right end of v lies on the right side of R((v•)1) (or R in case
v• = R) and the left end of v lies on the right side of R((•v)1) (or L in case
•v = L). Hence both edges are properly represented by intersecting paths.

Finally we need to argue that no two paths that correspond to non-adjacent
vertices of G intersect. Therefore consider the parts of v that lie outside R(v).
The left extension of v passes through R((•v)2). This could be along the top
side of R((•v)2), which is by definition of the split-graph strictly contained
in the bottom side of some R(w2). Similarly, the right extension of v passes
through R((v•)1) and this could be along the bottom side of this rectangle,
which is strictly contained in some R(w1). In other words all left extensions are
contained in

⋃
v∈V R(v2) and all right extension are contained in

⋃
v∈V R(v1).

Thus a left extension may intersect a right extension only if these pass through
R(v2) and R(v1) corresponding to the same vertex v, respectively. Since the
underlying rectangular dual is non-degenerate the two extensions lie on distinct
y-coordinates and hence are disjoint. �

Slightly changing the paths corresponding to outer vertices we can easily
transform them into Z-shapes and make L and R intersect. Thus we obtain the
following corollary.

Corollary 1 Every 4-connected planar graph has a B2-representation where
every path has a Z-shape and no two paths cross. �

We have shown so far how to define a B2-VPG representation of H∆ given
a frame for H∆. It remains to identify a frame for each ∆′ @ ∆ that is a son of
∆ in the separation tree. We modify the representation for this purpose.

Consider a horizontal line ` that supports horizontal sides of some rectangles
different from R(T ). We partition the paths that have a horizontal segment on
` into two sets: A contains all paths whose vertical segment lies above ` and
B all paths whose vertical segment lies below `. Next we extend the vertical
segments of all paths in B by some small amount, keeping all lower horizontal
segments unchanged. The extension is chosen small enough so that no unwanted
intersections are created. See Fig. 6 for an illustration. Since the underlying
rectangular dual is minimal, it does not contain the configuration in the left
of Fig. 2. It follows that all vertical segments of paths in A lie to the left of
the vertical segments of paths in B. Thus, if v ∈ A and w ∈ B were touching
before, then they are crossing after this operation.

−→

Figure 6: Extending the vertical segments of all paths in B.

Next we identify a frame for every inner face ∆′ of H. In case ∆′ is a
non-empty triangle of G this will be the frame for H∆′ .
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Lemma 3 One can find in H∆ a frame for every inner face of H∆, such that
each frame is contained in F and all frames are pairwise disjoint.

Proof: First consider the triangle {L,B,R}, which is an inner face of H∆ but
not after the removal of the edge {L,R}. We define the frame for {L,B,R} as
illustrated in Fig. 4 to partly contain the lower horizontal segment of B and the
vertical segments of L and R.

Now consider any inner face f of H∆ different from {L,B,R} and let u, v, w
be the vertices of f appearing in this clockwise order. Then f is an inner face of
H corresponding to the three mutually touching rectangles R(u), R(v) and R(w)
in the rectangular dual. Thus there is a point pf where those three rectangles
meet; two rectangles having a corner at pf . Without loss of generality let R(v)
be the rectangle that does not have corner at pf . We distinguish the four cases
according to which side of R(v) contains pf . See Fig. 7 for an illustration.

pf pf
pf

pfp p p p

a) b) c) d)

R(v)

R(u)

R(w)

pfp

R(v)

R(v)

R(v)R(w)

R(u)

R(u)

R(w)R(u) R(w)

Figure 7: Identifying the frame for an inner face of H∆.

If the top side of R(v) contains pf , then consider the point p where R(u1),
R(u2) and R(v1) meet. By definition p is the lower bend of u and the right hor-
izontal end of w. Moreover, the upper horizontal segment of v lies immediately
above p, crossing u. Now, the frame for f is defined around p as illustrated in
Fig. 7 a).

If the bottom side of R(v) contains pf , then consider the point p where
R(u1), R(u2) and R(v2) meet. Now right above p lies the upper bend of u and
the left horizontal end of w, while v goes horizontally through p. The frame for
f is then defined as illustrated in Fig. 7 b).

If the right side of R(v) contains pf , let p be the common point of R(u1),
R(w1) and R(w2), i.e., p is the lower bend of u. The upper horizontal segment
of w lies right above p and ends on the vertical segment of v. The frame for f
is then defined as illustrated in Fig. 7 c).

Finally, if the left side of R(v) contains pf , let p be the common point of
R(u2), R(w1) and R(w2), i.e., right above p lies the upper bend of w. The lower
horizontal segment of u runs through p and ends on the vertical segment of v.
The frame for f is then defined as illustrated in Fig. 7 d).

Clearly, each frame is contained in the frame for H∆. Moreover, each frame
contains one bend or lies very close to one. Given the bend one can find the
corresponding pf to the left if it is a lower bend, and to the bottom-right if it
is an upper bend. It follows that frames and bends are in bijection and hence
that all frames are pairwise disjoint. �
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We end this section with its main theorem. It is not difficult to see that this
theorem follows from Theorem 1, and Lemmas 2 and 3.

Theorem 4 Every planar graph is B2-VPG. Moreover, a B2-VPG represen-
tation can be found in O(n3/2), where n denotes the number of vertices in the
graph.

Proof: Given a maximally planar graph G with a fixed embedding, we find the
separation tree of G in O(n3/2) and all 4-connected maximally planar subgraphs
H∆ of G (Theorem 1). We define a B2-VPG representation of the outer triangle
∆ of G as explained in Section 3.3 and identify the frame for H∆ (Fig. 4). Then
we traverse the separation tree starting with the root and consider for each
non-empty triangle ∆ the frame F for the corresponding graph H∆. If u and
w are the vertices of ∆ whose paths u and w do not intersect within F , we
consider the graph H = H∆ \{u,w}. We find the minimal transversal structure
of H in O(|V (H)|) (Lemma 1) and build the split graph H∗ as described in
Section 3.2. We then construct a B2-VPG representation of H within the frame
F as described in Section 3.3 and identify frames for each non-empty triangle
∆′ that is an inner face of H∆. The construction of the split graph and the
B2-VPG representation can be easily done in O(|V (H)|). Hence the overall
running time is dominated by the time needed to find the separation tree, i.e.,
a B2-VPG representation can be constructed in O(|V (G)|3/2). �

4 Triangle-Free Planar Graphs are B1-VPG

In this section we prove that every triangle-free planar graph is B1-VPG with
a very particular B1-VPG representation. Namely, every vertex is represented
by either a 0-bend path or a 1-bend path whose vertical segment is attached
to the left end of its horizontal segment. This means that we use only two out
of the four possible shapes of a grid path with exactly one bend. Moreover,
whenever two paths intersect, it is at an endpoint of exactly one of these paths;
i.e., no two paths cross. We call a 1-bend path an L if the left endpoint of
the horizontal segment is the lower endpoint of its vertical segment, and a Γ if
the left endpoint of the horizontal segment is the upper endpoint of its vertical
segment. A VPG representation in which each path that has a bend is an L or
a Γ, and in which no two paths cross, is called a contact-L-Γ representation.

We say that two contact-L-Γ representations of the same graph G are equiv-
alent if the underlying combinatorics is the same. That means that paths cor-
responding to the same vertex have the same type (either L, Γ, horizontal or
vertical segment), the inherited embedding of G is the same, and that the fashion
in which two paths touch is the same, e.g., the right endpoint of u is contained
in the vertical segment of v in both representations. However, it is convenient
in our proofs to deal with actual contact-L-Γ representations instead of equiv-
alence classes of contact-L-Γ representations. Therefore we need the following
lemma.
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Lemma 4 Let G be a plane graph and v be a vertex of G. Let u and w be two
paths in G that touch v at the same segment but from different sides. Then
there exists a contact-L-Γ representation of G that is equivalent to G in which
the touching points of u and w with v come in the reversed order along v.

Proof: We obtain the required representation from G with a simple operation,
called slicing. Assume without loss of generality that the segment sv of v that
is touched by u and w is vertical, i.e., the horizontal segments su of u and
sw of w touch sv. Assume further without loss of generality that su ∩ sv lies
above sw ∩ sv and that su lies to the left and sw to the right of sv, respectively.
Consider any 2-bend grid path P containing su and sw and extend its left and
right endpoints to the left and to the right to infinity, respectively. Then P
divides the plane into two unbounded regions. We denote the lower region by A
and consider su to be contained in A, and the upper region by B and consider
sw to be contained in B. Now we increase the y-coordinates of every point in
B by some amount large enough that sw ∩ sv lies above su ∩ sv. All vertical
segments that cross P , including sv and maybe the vertical segments of u and
w are extended so that the corresponding paths are connected again.

sv

su
sw

P

A

B

sv

su

sw
P

A

B

Figure 8: The slicing operation.

The slicing operation is illustrated in Fig. 8. Figuratively speaking, we cut
the plane along P and pull the two pieces apart until su and sw change the
order along sv, while paths that cross P are stretched instead of cut. �

The main result of this section is the following.

Theorem 5 Every triangle-free planar graph has a contact-L-Γ representation.

Note that if some graph G admits a contact-L-Γ representation then so does
every subgraph H of G. Indeed every edge (u, v) in E(G)\E(H) corresponds to
a contact point of u and v in the representation G. Moreover, this contact point
is an endpoint of one of the two paths. If we shorten this path a little bit, and
do this for every edge that is in G but not in H, then we obtain a contact-L-Γ
representation of H. Thus we assume for the remainder of the section without
loss of generality that G is a maximally triangle-free planar graph, i.e., G is
2-connected and every face of G is a quadrangle or a pentagon. Moreover, we
can assume by adding one vertex (if necessary) that the outer face of G is a
quadrangle.
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Consider a contact-L-Γ representation C of a cycle C on four vertices v1,
v2, v3, v4 and assume without loss of generality that any two paths in C touch
at most once. Then v1 ∪ v2 ∪ v3 ∪ v4 inscribes a simple rectilinear polygon P .
We call the parts of C that do not lie in the interior of P the outside of C. See
Fig. 9 for an example.

Figure 9: A contact-L-Γ representation of a 4-cycle. Its outside is highlighted.

We prove the following stronger version of Theorem 5.

Theorem 6 Let G be a maximally triangle-free planar graph with a fixed plane
embedding and a quadrangular outer face Cout. Let Cout be any contact-L-Γ
representation of Cout. Then there is a contact-L-Γ representation of G with the
same underlying embedding in which the outside of the induced representation
of Cout is equivalent to that in Cout.

Proof: We do induction on the number of vertices in G, distinguishing the
following three cases.

Case 1: G has a separating 4-cycle C. Let VC be the set of vertices interior
to C and G1 be the graph G−VC . Note that G1 is maximally triangle-free and
with outer face Cout. Hence by induction we find a contact-L-Γ representation
G1 of G1 such that Cout is represented with an equivalent outside as in Cout.
Since the representation G1 respects the embedding of G1, the interior of C
is empty. We again apply induction to G2 = G[C ∪ VC ] with respect to the
representation C induced by G1 and obtain a contact-L-Γ representation G2.
Since the outside of the representation of C in G2 is equivalent to that in G1

we can put together G1 and G2 and obtain a contact-L-Γ representation G of
G that satisfies our requirements.

Case 2: G has a facial 4-cycle C = {v1, v2, v3, v4}. Let v1 and v3 be two
opposite vertices on C that have distance (counted by the number of edges) at
least 4 in G − {v2, v4}. Since G is triangle-free and planar, such vertices exist
and we can moreover assume without loss of generality that v1 is not an outer
vertex. Let G̃ be the graph resulting from G by merging v1 and v3, and denoting
the new vertex by ṽ. Note that G̃ is a maximally triangle-free planar graph that
inherits a plane embedding from G. Moreover G̃ has outer cycle Cout where
possibly v3 is replaced by ṽ. By induction we find a contact-L-Γ representation
G̃ of G̃. Next we split the path ṽ in G̃ into two, one for v1 and one for v3, which
will result in a contact-L-Γ representation G of G. See Fig. 10 for an example.
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v2
v4

ṽ v1

v3

v2
v4

v2

v3

v4
v1

ṽ
v4v2

→ → →

G G̃ G̃ G

Figure 10: How to split a face in Case 2.

Consider the circular ordering of contacts when tracing around ṽ in G̃. The
paths v2 and v4 split the circular ordering into two consecutive blocks, that is,
subsets of contacts one corresponding to neighbors of v1 and one corresponding
to neighbors of v3 in G. (There are no common neighbors of v1 and v3 apart
from v2 and v4, because v1 and v3 are at distance at least 4 in G − {v2, v4}.)
Now define v3 to be the sub-path of ṽ defined by the block of neighbors of v3.
Moreover define v1 in the same way w.r.t. the neighbors of v1, except that v1

is translated by some small amount “towards its block”. Finally, every path
u corresponding to a neighbor u of v1 different from v2 and v4 is shortened
or extended so that it touches v1. The procedure for Case 2 is illustrated in
Fig. 10.

It is important to note that, even if an outer edge is involved in the above
construction, the outsides of Cout in G is equivalent to that in G̃.

Case 3: Neither Case 1 nor Case 2 applies and there is an edge (u, v) in G
with interior vertices u and v. We contract the edge (u, v) and denote by ṽ the
new vertex in the resulting graph G̃. Since neither Case 1 nor Case 2 applies,
u and v are at distance 4 in G − (u, v) and thus G̃ is maximally triangle-free.
Moreover G̃ has outer cycle Cout and inherits its plane embedding from G. By
induction we find a contact-L-Γ representation G̃, in which we want to split ṽ
into two paths v and u, such that the result is a contact-L-Γ representation G
of G.

As in the previous case we trace the contour of ṽ and see two disjoint blocks,
each consisting of those contacts that correspond to neighbors of u and v in
G, respectively. We denote the block corresponding to u and v by Bu and
Bv, respectively. Without loss of generality assume that Bu ∪ Bv is the entire
contour of ṽ. We distinguish the following four sub-cases. By symmetry we
assume that ṽ is not a Γ-shape and denote its vertical segment (if existent) by
s.

In Case 3a either s is completely covered by one block, say Bu, or ṽ is
only a horizontal segment and Bu is the block that contains the left endpoint
of it. We define u and v to be the sub-paths of ṽ that are covered by Bu and
Bv, respectively. We shift v a little bit up or down and attach a short vertical
segment to its left endpoint so as to touch u. The construction is illustrated in
Fig. 11.
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v

u
ṽ→ →

G G̃ G̃ G

ṽ
v

u

→

Figure 11: How to split an edge in Case 3a.

In Case 3b the left side of s is completely covered by one block, say Bu. We
define u to be the sub-path of ṽ that is covered by Bu. If Bv is contained in
s, we define v to be a very short horizontal segment touching the right side of
s immediately below the Bv. Otherwise we define v to be the sub-path of the
horizontal segment of ṽ that is covered by Bv and shift v a little bit up. Note
that each path that touches the right side of s is only a horizontal segment.
We shorten the left endpoint of each such path that corresponds to a neighbor
of v a little bit and attach a vertical segment to it that touches v from above.
This can be done so that no two such paths intersect. Moreover, every vertical
segment touching ṽ and corresponding to Bv is shortened or extended a bit so
as to touch v. See the left of Fig. 12 for an illustration.

ṽ

→ v

u ṽ

v

u
→

Case 3b Case 3c

ṽ

→ v

u

ṽ

→
v

u

Case 3d

ṽ
u

v
↓

Figure 12: How to split an edge in Case 3b, Case 3c, and Case 3d.

In Case 3c either the horizontal segment of ṽ is completely covered by one
block, say again Bu, or ṽ is only a vertical segment and Bu is the block that
contains the lower endpoint of it. Note that since Case 3b does not apply, Bv

partially covers the left side of s. By Lemma 4 we can assume that no point of
s is covered on the left by Bu and on the right by Bv. We define u and v to be
the sub-paths of ṽ that are covered by Bu and Bv, respectively, and shift v a
little bit to the left. Again we shorten or extend each path that corresponds to a
neighbor of v so that it touches v. See the middle of Fig. 12 for an illustration.

In the remaining case, Case 3d, both blocks Bu and Bv appear on both sides
of the vertical and horizontal segment of ṽ. Let Bu be the block that contains
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the upper end of ṽ. Consider paths that touch the horizontal segment of ṽ on
the upper side and within the block Bu. By Lemma 4 may can assume that the
horizontal segment of each such path lies above the block Bv. We define u and
v to be the sub-paths of ṽ that are covered by Bu and Bv, respectively. We
shift the horizontal segment of u up to the upper endpoint of v and move u a
little bit to the left so that v touches u from below. Moreover, we shorten or
extend every path corresponding to a neighbor of u so that it touches u. This
completes Case 3.

Finally, if neither of Case 1, Case 2 and Case 3 applies, then G consists
only of the outer cycle Cout, for which a Contact-L-Γ representation Cout is
given by assumption. This concludes the proof. �

Theorem 5 can be easily transferred into a linear-time algorithm to find a
contact-L-Γ representation of a triangle-free planar graph. Note that such an
algorithm should first construct the combinatorics of the representation, since
slicing operation would have to be done in O(1). The computation of the actual
coordinates of each path can be easily carried out afterwards in linear time.
Moreover the constructed representation can be placed into the n × n grid,
since every path requires only one horizontal and one vertical grid line. Here n
denotes the number of vertices in G.

5 Future Work and Open Problems

We have disproved the conjecture of Asinowski et al. [2] that B3-VPG is the
simplest Bk-VPG graph class containing planar graphs. Specifically, we have
demonstrated that every planar graph is B2-VPG and that 4-connected planar
graphs are the intersection graphs of Z-shapes (i.e., a special subclass of B2-
VPG). We have also shown that these representations can be produced from a
planar graph in O(n3/2) time. We have additionally shown that every triangle-
free planar graph is a contact graph of: L-shapes, Γ-shapes, vertical segments,
and horizontal segments (i.e., it is a specialized contact B1-VPG graph). Fur-
thermore, we demonstrated how to construct such a contact representation in
linear time. As an further consequence, we obtain a new proof that planar
bipartite graphs are 2-DIR.

Interestingly, there is no known planar graph which does not have an inter-
section representation of L-shapes; i.e., even this very restricted form of B1-VPG
is still a good candidate to contain all planar graphs. Further to this, a colleague
of ours has observed (via computer search) that all planar graphs on at most ten
vertices are intersection graphs of L-shapes [16]. Similarly, all small triangle-free
planar graphs seem to be contact graphs of L-shapes. These observations lead
to the following two conjectures.

Conjecture 1 Every planar graph is the intersection graph of L-shapes.

Conjecture 2 Every triangle-free planar graph is the contact graph of L-shapes.
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[22] K. Koźmiński and E. Kinnen. Rectangular dual of planar graphs. Networks,
15(2):145–157, 1985.
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