
Journal of Graph Algorithms and Applications
http://www.cs.brown.edu/publications/jgaa/

vol. 4, no. 3, pp. 183–191 (2000)

Dynamic WWW Structures in 3D

Ulrik Brandes Vanessa Kääb Andres Löh Dorothea Wagner
Thomas Willhalm

Department of Computer & Information Science
University of Konstanz

78457 Konstanz, Germany
http://www.inf.uni-konstanz.de/

~{brandes,kaeaeb,loeh,wagner,willhalm}
{Ulrik.Brandes, Vanessa.Kaeaeb, Andres.Loeh, Dorothea.Wagner,

Thomas.Willhalm}@uni-konstanz.de
Abstract

We describe a method for three-dimensional straight-line representa-
tion of dynamic directed graphs (such as parts of the World Wide Web).
It has been developed on the occasion of the 1998 Graph Drawing Contest
and constitutes a customized blend of techniques known from the Graph
Drawing literature. Since we feel that they may be of interest to others
facing similar graph drawing problems, some technical details are mixed
in.

The animation of the contest graph and accompanying material are
available from the Journal of Graph Algorithms and Applications’s Web
site.

Communicated by G. Liotta and S. H. Whitesides: submitted November 1998, revised
October 1999.



Brandes et al., Dynamic WWW Structures in 3D , JGAA, 4(3) 183–191 (2000)184

1 Introduction

Since 1993, a contest is organized along with the annual Symposium on Graph
Drawing [7, 8, 10, 11, 9]. It usually features graphs from different applications
posing distinct problems with respect to graphical presentation. In the present
case [9], a dynamic graph of links between World Wide Web (WWW) pages
was given as a list of link additions and deletions, shown in Figure 1. The
contestants should

“. . . depict the content and structure of the graph as it evolves.”

Our primary interest was to study the implied dynamic graph layout problem.
Hence, we largely ignored content and focussed on evolving structure.

add www.att.com/catalog/consumer -> www.att.com

add www.att.com/att -> www.att.com/catalog/consumer

add www.att.com -> www.att.com/catalog/consumer

add www.att.com/catalog/consumer -> www.att.com/cmd/custcare

add www.att.com/catalog/consumer -> www.att.com/write

add www.att.com -> www.att.com/worldnet

add www.att.com/catalog/consumer -> www.att.com/terms.html

add www.att.com/att -> www.att.com/learningnetwork

add www.att.com/catalog/consumer -> www.att.com/cgi-bin/ppps.cgi

add www.att.com -> www.att.com/catalog/small_business

add www.att.com/whatsnew -> www.att.com/catalog/consumer

add www.att.com/catalog/small_business -> www.att.com/cgi-bin/bmd_cart.cgi

add www.att.com/catalog/consumer -> www.att.com/cmd/jump

add www.att.com/att -> www.att.com/catalog

add www.att.com/textindex.html -> www.att.com/catalog/small_business

add www.att.com/catalog/small_business -> www.att.com/bmd/tollfree

add www.att.com/whatsnew -> www.att.com/worldnet/wmis

add www.att.com/catalog/consumer -> search.att.com

add www.att.com/catalog/small_business -> www.att.com/bmd/jump

add www.att.com/features -> www.att.com/rock

add www.att.com/catalog/small_business -> www.att.com

add www.att.com/home -> www.att.com/catalog/consumer

delete www.att.com -> www.att.com/catalog/consumer

add www.att.com/catalog/small_business -> www.att.com/services

delete www.att.com/att -> www.att.com/learningnetwork

delete www.att.com/catalog/consumer -> www.att.com/cmd/custcare

add www.att.com/catalog/small_business -> www.att.com/write

add www.att.com/net -> www.att.com/worldnet/wis/sky/signup.html

add www.att.com/catalog/small_business -> www.att.com/bmd/products

add www.att.com/catalog/small_business -> search.att.com

add www.att.com/net -> www.att.com/worldnet/wmis

add www.att.com/catalog/small_business -> www.att.com/terms.html

delete www.att.com/catalog/small_business -> www.att.com/bmd/tollfree

add www.att.com/att -> www.att.com/catalog/small_business

add www.att.com/news -> www.att.com/catalog/consumer

add www.att.com/whatsnew -> www.att.com/catalog/small_business

add www.att.com/net -> www.att.com/worldnet/intranet

delete www.att.com/whatsnew -> www.att.com/catalog/consumer

add www.att.com/catalog/small_business -> www.att.com/bmd/custcare

add www.att.com/catalog/consumer -> www.att.com/cgi-bin/cart.cgi

delete www.att.com/home -> www.att.com/catalog/consumer

add www.att.com/catalog/small_business -> www.att.com/cmd

add www.att.com/catalog/consumer -> www.att.com/services

add www.att.com/worldnet -> www.att.com/worldnet/intranet

add www.att.com/services -> www.att.com/catalog

delete www.att.com/catalog/consumer -> www.att.com

add www.att.com/services -> www.att.com/catalog/consumer

delete www.att.com/catalog/consumer -> www.att.com/services

add www.att.com/services -> www.att.com/catalog/small_business

add www.att.com/whatsnew -> www.att.com/news

delete www.att.com/whatsnew -> www.att.com/worldnet/wmis

add www.att.com/catalog/consumer -> www.att.com/cmd/products

delete www.att.com/net -> www.att.com/worldnet/wis/sky/signup.html

delete www.att.com/catalog/small_business -> www.att.com/services

add www.att.com/speeches -> www.att.com/speeches/index96.html

add www.att.com/worldnet -> www.att.com/worldnet/wmis

delete www.att.com/att -> www.att.com/catalog

add www.att.com/textindex.html -> www.att.com/catalog/consumer

delete www.att.com/services -> www.att.com/catalog

add www.att.com/news -> www.att.com/catalog/small_business

add www.att.com/international -> www.att.co.uk

delete www.att.com/catalog/small_business -> search.att.com

add www.att.com/business -> www.att.com/catalog/small_business

delete www.att.com/textindex.html -> www.att.com/catalog/consumer

add www.att.com/write -> www.catalog.att.com/cmd/jump

Figure 1: Data given for Graph A of the 1998 Graph Drawing Contest

By definition the graph starts out empty, and directed edges, sometimes
introducing new vertices, are added and deleted. To get a first impression of



Brandes et al., Dynamic WWW Structures in 3D , JGAA, 4(3) 183–191 (2000)185

0
1

2
3

4 5

6

7

8

9

10

11

12

13

14
15

16
17

1819

2021 22

23

24
25

26

27 28

29

30

31

32

33

34

35

36

37

38

39

40

41

42
43

44

45
46

47

48

49

Figure 2: 2D representation with insertion (black edges) or deletion (gray edges)
times. Edge curvature indicates the order of creation of incident vertices

the graph’s structure, in particular of its size and density, it was input in a
graph editor (LEDA’s [12] GraphWin), with edges colored differently, if they are
inserted and later deleted. See Figure 2.

We found that the graph was sufficiently small and sparse to try animating
a straight-line representation in space. For such an animation we essentially
had to cope with three aspects, each of which is addressed in a subsequent
paragraph. First of all, a dynamic layout model had to be devised, specifying
vertex trajectories. Secondly, unlike in two-dimensional representations, a point
from which to view the graph had to be selected carefully, because otherwise
substantial parts of the structure might be occluded. And finally, a rendering
had to be specified. In Section 5 we conclude with lessons learned from this
project.

2 Dynamic Graph Layout

Since no dynamic three-dimensional straight-line layout algorithm was known
to us, we did our own experiments using random field layout models, a flexible
modeling scheme introduced in [1]. A prototypical implementation of a corre-
sponding layout module was available to us because of its use in other projects.1

Our dynamic layout model consists of a sequence of static layouts and is
hence described in two steps. First, structures are mapped into space by static
layout models, which are then extended into a sequence of dependent layouts,
in sync with graph modifications.

1One of these projects is described in this issue [3], together with a brief overview of the
modeling framework.



Brandes et al., Dynamic WWW Structures in 3D , JGAA, 4(3) 183–191 (2000)186

Static layout model. Suppose we are given a single directed graph G =
(V, A), and suppose further that vertices ought to be represented by points in
space, while edges ought to be represent by straight lines. It is then sufficient
to compute a vector p = (pv)v∈V of vertex positions. Any such vector is called
a layout. An objective function defined on p is used to formally capture the
quality of a layout, defined by local criteria such as uniform vertex distribution,
uniform edge lengths, and sufficient distance between vertices and those edges
they are not incident to.

The corresponding terms of our objective function (see Table 1), which is
very similar to [5], are called potentials, since the objective function itself can be
interpreted as an energy measuring layout distortion with respect to the above
criteria. The additional potentials account for the contest graph being directed
and, most of the time, disconnected. To avoid that disconnected components
drift arbitrarily far apart, one representative vertex of each component is con-
nected to the layout space origin by an invisible edge.2 Even though WWW
links form a general directed graph, they tend to contain hierarchical, tree-like
substructures (if purely navigational links are omitted, as is the case in the
contest data).3 To encode the direction of edges graphically, we hence favor
them pointing downward, thus displaying edge directions in context rather than
locally by using cone-shaped arrows at the end of an edge. Note that this is
similar to layered [14] and upward [6] layouts, however in 3D. Our rotation po-
tentials are an adaptation of rotative forces used in [13] to align edges with an
imaginary magnetic field. Note that squaring a normalized angle renders an-
gles larger than π

2 (upward pointing edges) more severe a distortion than small
deviations (downward pointing edges not exactly parallel to the the z-axis).

Dynamic layout model. The contest data implies a sequence G(0), . . . , G(65)

of directed graphs, where G(0) is the empty graph. To produce a smooth an-
imation, a sequence of static layouts was computed. Vertex positions in these
layouts were then used as break points of splines, i.e. smooth curves interpolat-
ing these points and thus defining vertex trajectories for the animation.

For every G(t) with 0 < t ≤ 65 we computed three layouts, p(t,0), p(t,1), p(t,2),
in slightly different ways described below. For graceful animation it is necessary
that consecutive layouts depend on each other. For simplicity, we let each layout
depend only on its predecessor, so that the sequence of layouts has the form

↓ G(1)

p(1,0) → p(1,1) → p(1,2)

↓ G(2)

p(2,0) → p(2,1) → p(2,2)

↓ G(3)

p(3,0) → p(3,1) → p(3,2)

...
2For the contest graph, these vertices could be selected manually, since in each component

there is at least one vertex that is present the entire life of the component. In general, one
could use the vertex closest to the origin whenever the previous representative is deleted.

3Presumably because of hierarchical content organization and storage in likewise filesys-
tems. An alternative considered briefly was therefore to use horizontal layers defined by
subdirectories.



Brandes et al., Dynamic WWW Structures in 3D , JGAA, 4(3) 183–191 (2000)187

potential definition effect
repulsion for each pair of non-adjacent ver-

tices u, v ∈ V evaluate

c4
δ

d(pu, pv)2

spreads vertices evenly in space

distance for each pair of adjacent vertices
u, v ∈ V evaluate

c4δ
d(pu, pv)2

+ d(pu, pv)2

causes edges to have length roughly
equal to cδ

repulsion for each pair v ∈ V and (u, w) ∈ A
evaluate

cδ

d(pv; pu, pw)2

prevents edges going through ver-
tices

attraction for a representative v ∈ V of each
component evaluate

d(pv, (0, 0, 0))2

prevents components from drifting
apart by tying them to the origin

rotation for each (u, v) ∈ A evaluate

c% · c3δ ·
(

arccos zu−zv
d(pu,pv)

π
2

)2

favors edges pointing downward

Table 1: Building blocks of a static layout objective function for a directed
graph G = V, A), where pv = (xv, yv, zv) is a point in space, d(pu, pv) denotes
the Euclidean distance between positions pu and pv, and d(pv; pu, pw) denotes
the smallest Euclidean distance between pv and any point on the straight line
connecting pu and pw. We used cδ = 60 and c% = 0.25

The first layout of each graph G(t), p(t,0), was computed by minimizing the
static layout objective function, subject to p

(t,0)
v = p

(t−1,0)
v for those vertices

v that are present in both G(t) and G(t−1). That is, the at most two newly
introduced vertices are placed optimally in the unchanged previous layout.

It is argued in [2] that dependencies between layouts should be modeled
by adding a stability term to the objective function. Good choices for sta-
bility terms are difference metrics [4] capturing the notion of change between
two layouts. A natural candidate for straight-line embeddings is the sum of Eu-
clidean distances between positions of corresponding vertices. To compute p(t,i),
i = 1, 2, we hence augmented the static layout model with stability potentials

σi · d
(
p(t,i)

v , p(t,i−1)
v

)2

for all vertices v, attracting vertices to their previous position. Constant σi

controls the strength of the attraction and thus relative importance of stability.
We used σ1 = 1.5 and σ2 = 0.75. For obvious reasons, this notion of stability is
called anchoring, and it has an interesting probabilistic interpretation [2].



Brandes et al., Dynamic WWW Structures in 3D , JGAA, 4(3) 183–191 (2000)188

Figure 3: Insertion of an edge (directed left to right)

The resulting minimization problems were solved approximately by simulated
annealing, an iterative method for combinatorial optimization, again because
we already had the implementation available. Though simulated annealing is
notoriously slow, its running time was negligible in this context (see below).
Quality of the 195 layouts generated was controlled using simple VRML4 output
(ball-and-stick representations, see Figure 3).

3 Viewpoints

There were no truly three-dimensional media available to display the animation.
We therefore had to select two-dimensional projections of the graph, i.e. posi-
tions of an observer in space and his or her directions of view. For an overview
of viewpoint selection we refer to [15]. Here, we used a simple heuristic to find
a decent viewpoint under perspective projection once after each modification of
the graph. In the course of the animation we let the observer follow a spline
through these points while focusing on the origin.

Good viewpoints are those that are not bad. A viewpoint is said to be bad,
if it yields a projection in which an item hides another one or false incidences
are suggested. A projection is said to yield a vertex-vertex, a vertex-edge,
or an edge-edge occlusion, if two vertices, a vertex and an edge, or a two edges
coincide in the projection, but not in the three-dimensional layout. The random
viewpoint of Figure 3 is bad.

For a given distance from the origin, we can imagine the observer to sit on a
sphere centered at the origin. Recall that we let the observer focus on the origin
at all times. A point on the sphere yields an occlusion, if it is collinear with
either two vertices, a vertex and an edge, or two edges. Because the points on

4Virtual Reality Modeling Language, see http://www.web3d.org/vrml/. Since we had to
use VRML 1.0, the effectiveness of the dynamic model was checked using a script that remotely
loaded the output files into the VRML browser, one at a time.



Brandes et al., Dynamic WWW Structures in 3D , JGAA, 4(3) 183–191 (2000)189

(a) thumbnails (b) spatial relations (c) viewpoints

Figure 4: Three out of 3250 frames

the sphere that are collinear with any two points on a pair of non-coplanar edges
cover large areas on the sphere, we ignore edge-edge occlusions altogether. In
general we cannot expect to find any point on the sphere not yielding an edge-
edge occlusion, anyway.

The goodness of a viewpoint is defined to be its minimum great-circle dis-
tance from any occlusion. This measure of goodness is called rotational sepa-
ration in [15]. For the animation we approximated the best viewpoint under
rotational separation within great-circle distance at most π/2 from the previous
one to suppress large rotations, by placing an spherical grid on the observer’s
semi-sphere and exhaustively searching for the best grid point.

Finally, we fit the graph onto the screen by adjusting the radius of the
observer sphere such that all vertices are just inside the finite projection area.

4 Rendering

As a small hint on the actual content of the graph, vertices were represented by
boxes with corresponding WWW pages texture-mapped onto their sides (thumb-
nail representations).5 Figure 4(a) shows the initial frame in which positions
have been modified manually to yield a more attractive get-go. Springs are
used to render edges, just because they are reminiscent of the physical analogy
underlying the layout. It is a by-product that their coils also visualize the stress
on an edge. It can be seen from Figure 4(b) that referred pages are hooked
to their referring pages. In the case of bidirectional edges, just one spring is
shown but both ends are hooked. Edges added or deleted in a modification are
highlighted during that event. A spherical grid surrounding the graph helps to
distinguish between vertex movements and movements of the viewpoint.

Spline break points and rendering information are specified in a POV-Ray6

scene description file. Using the ray tracer, we generated 50 still frames per mod-
ification, which were subsequently converted into an animation with 25 frames
per second (among others, in MPEG-17 format).

5One page could not be retrieved and is therefore represented all white. Towards the end of
the animation, two boxes seem to not have thumbnails, but in fact the corresponding WWW
pages have a black background.

6Persistence of Vison Ray Tracer, see http://www.povray.org/.
7Moving Picture Experts Group, see http://drogo.cselt.stet.it/mpeg/



Brandes et al., Dynamic WWW Structures in 3D , JGAA, 4(3) 183–191 (2000)190

5 Conclusion

The final animation can be retrieved from the accompanying WWW page.8

Compared to the time it took to render all 3250 frames (one and a half nights
on half a dozen workstations), layout and viewpoint selection times were negligi-
ble (35 minutes on a SUN Ultra-1 workstation, 80% for viewpoints). We believe
that both layout and viewpoint selection can be improved to interactive speed.
Since the layout objective function has no discrete terms, standard force-directed
methods may be applied. Moreover, very few iterations are needed, since the
initial layouts are by definition close to a locally optimal solution. Using newer
features not present in VRML 1.0 and a sufficiently fast browser, we therefore do
think that our approach can be customized for interactive applications. Given
the convincing result of our off-line experiments, we definitely encourage re-
search in this direction. The main open problem will be to deal with directed
cycles, since, depending on the rest of the graph, they either cause several layers
to be lifted onto one, or destroy the otherwise emergent layering altogether.

In working on this project, we found that the contest is a unique opportunity
to experiment with graph drawing techniques and to spread knowledge of them.
Three of the authors were students at that time, but certainly all of us have
learned more about graph drawing and short term project management. The
task nicely split into almost independent subtasks (layout, viewpoints, render-
ing) and most of the time pragmatic solutions would be preferred over quality or
running time improvements. The restricted time span, gradual (visually com-
prehensible!) improvement of intermediate results, and the competitive nature
of a contest combined to keep motivation high. It goes without saying that the
party we were able to throw with the prize money (featuring a continuously
running animation on a large canvas) was considered a rewarding finale.

Acknowledgments

We wish to thank the referees for greatly improving the presentation. Special
thanks to the editors of this issue for giving us the opportunity to write this
non-standard kind of paper.

References

[1] U. Brandes. Layout of Graph Visualizations. PhD thesis, University of Kon-
stanz, 1999. See http://www.ub.uni-konstanz/kops/volltexte/1999/
255/.

[2] U. Brandes and D. Wagner. A Bayesian paradigm for dynamic graph layout.
G. Di Battista, editor. Proc. 5th Intl. Symp. Graph Drawing (GD ’97),
Lecture Notes in Computer Science vol. 1353, pages 236–247. Springer,
1997.

[3] U. Brandes and D. Wagner. Using graph layout to visualize train intercon-
nection data. In this issue.

8The animation submitted to the Graph Drawing Contest was rendered at 640×480 pixels.
Due to its immense file size, a reproduction with 320 × 240 pixels is provided instead.



Brandes et al., Dynamic WWW Structures in 3D , JGAA, 4(3) 183–191 (2000)191

[4] S. Bridgeman and R. Tamassia. Difference metrics for interactive orthogo-
nal graph drawing algorithms. In this issue.

[5] I. F. Cruz and J. P. Twarog. 3D graph drawing with simulated annealing.
F. J. Brandenburg, editor. Proc. 3rd Intl. Symp. Graph Drawing (GD ’95),
Lecture Notes in Computer Science vol. 1027, pages 162–165. Springer,
1996.

[6] G. Di Battista and R. Tamassia. Algorithms for plane representations of
acyclic digraphs. Theoretical Computer Science, 61:175–198, 1988.

[7] P. Eades and J. Marks. Graph drawing contest report. R. Tamassia and
I. G. Tollis, editors. Proc. 2nd Intl. Symp. Graph Drawing (GD ’94), Lecture
Notes in Computer Science vol. 894, pages 143–146. Springer, 1995.

[8] P. Eades and J. Marks. Graph-drawing contest report. F. J. Brandenburg,
editor. Proc. 3rd Intl. Symp. Graph Drawing (GD ’95), Lecture Notes in
Computer Science vol. 1027, pages 224–233. Springer, 1996.

[9] P. Eades, J. Marks, P. Mutzel, and S. C. North. Graph drawing contest
report. S. H. Whitesides, editor. Proc. 6th Intl. Symp. Graph Drawing
(GD ’98), Lecture Notes in Computer Science vol. 1547, pages 423–435.
Springer, 1998.

[10] P. Eades, J. Marks, and S. C. North. Graph-drawing contest report. In S. C.
North, editor, Proc. 4th Intl. Symp. on Graph Drawing (GD ’96), Lecture
Notes in Computer Science vol. 1190, pages 129–138. Springer, 1996.

[11] P. Eades, J. Marks, and S. C. North. Graph-drawing contest report.
G. Di Battista, editor. Proc. 5th Intl. Symp. Graph Drawing (GD ’97),
Lecture Notes in Computer Science vol. 1353, pages 438–445. Springer,
1997.

[12] K. Mehlhorn and S. Näher. The Leda Platform of Combinatorial and
Geometric Computing. Cambridge University Press, 1999. Project home
page http://www.mpi-sb.mpg.de/LEDA/.

[13] K. Sugiyama and K. Misue. Graph drawing by the magnetic spring model.
Journal on Visual Languages and Computing, 6(3):217–231, 1995.

[14] K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understanding
of hierarchical system structures. IEEE Transactions on Systems, Man and
Cybernetics, 11(2):109–125, 1981.

[15] R. Webber. Finding the Best Viewpoint for Three-Dimensional Graph
Drawings. PhD thesis, University of Newcastle, 1998. See http://www.
cs.mu.oz.au/~rwebber/research/thesis/.


