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1 Introduction

Planarity of graphs is a well-studied and well-understood topic, but as soon as
we modify planarity in any one of many different ways such as allowing cross-
ings, clustering vertices, requiring monotone drawings, simultaneously drawing
multiple graphs, or partially embedding the graph, we very quickly lose the
ground under our feet; some problems become NP-complete (upward planarity,
book embeddability), for others feasible algorithmic solutions are unknown (c-
planarity, constrained planarity, simultaneous planarity).

In 1972 Tutte published his paper “Toward a Theory of Crossing Numbers”
in which he suggested an algebraic treatment of crossing numbers.1 This ap-
proach has led to some research on crossing number variants, but it had little
impact on the crossing number itself. Our plan is to investigate how the al-
gebraic approach fares for crossing number zero. The most famous result in
Tutte’s paper (found earlier by Hanani) is the Hanani-Tutte theorem which
states that a graph is planar if and only if it can be drawn in the plane so that
every pair of independent edges crosses an even number of times (including not
at all). We rephrase this as a crossing number result: given a drawing D of G,
let iocr(D) be the number of pairs of independent edges of G that cross oddly in
D. The independent odd crossing number of G, iocr(G), is defined as the min-
imum of iocr(D) over all drawings of G. In crossing number terminology, the
Hanani-Tutte theorem states that a graph G is planar if and only if iocr(G) = 0.

The Hanani-Tutte theorem opens up an algebraic approach to planarity;
the condition iocr(G) = 0 can be written as a system of linear equations over
GF(2), leading to a simple polynomial-time algorithm for planarity testing; we
discuss this well-known algebraic criterion in Section 3. This algorithm is not
very efficient—it takes O(n6) time, where n = |V (G)| + |E(G)|, but it can be
implemented so it is feasible for small graphs.

Remark 1.1 (Running Times). For many of the planarity problems we solve using
Hanani-Tutte there are existing algorithms running in linear or quadratic time. Algo-
rithms based on Hanani-Tutte will not be able to compete with these running times
unless we find a clever way to implement Hanani-Tutte style systems (see Remark 3.5
for a positive example). My current implementation is written in Python 3.2 and runs
on an Intel I7 processor. The program can solve a simultaneous planarity problem on
50 vertices and 175 edges in about 40 seconds. The linear system for this example has
dimension 9376 × 8400 (it’s a sparse system though), and takes 8 seconds to create
and 32 seconds to solve. We hope to be able to report more detailed results in a later
article.

In this paper we begin a systematic study of whether and how the Hanani-
Tutte theorem extends to variants of planarity. The theorem turns out to be
very versatile and adaptable, giving rise to a uniform approach to many of the
variants of planarity considered in the literature. Table 1 summarizes known
and new results on Hanani-Tutte theorems. All planarity notions will be defined
and discussed in the next section. We describe the complexity of problems using

1There were precursors to his approach, notably the paper by Hanani [16], but also work
by Flores, van Kampen, and Wu. Some of the history can be found in [67].
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standard classes from computational complexity, including P for polynomial
time and NP for non-deterministic polynomial time. NP-hard means as hard
as any problem in NP, and NP-complete, or NPC, means NP-hard and in
NP [36].

All of our Hanani-Tutte characterizations are based on redrawing results,
collected in Section 4. The following conjecture gives a flavor of what these
redrawing results look like.

Conjecture 1.2. Suppose a graph G with subgraph H can be drawn so that
every edge of H crosses every independent edge of G evenly. Then there is a
drawing of G in which edges of H do not cross each other, and there are no new
pairs of independent edges crossing oddly.

The truth of this conjecture would imply a single polynomial-time algo-
rithm for nearly all known planarity variants, including the infamous case of
c-planarity. The reason for this is that, (i), Conjecture 1.2 implies that simul-
taneous planarity of two graphs can be tested using a simple algebraic criterion
(see Corollary 6.23 and Lemma 6.24), and, (ii), nearly all planarity variants
are special cases of simultaneous planarity of two graphs, including c-planarity
(Theorem 6.17), and variants of constrained, book and level planarity.2 The
results on relationships between different planarity variants will be discussed in
the next section; Figure 2 summarizes the results.

Algorithmically, the algebraic approach cannot (currently) compete with
PQ-trees and SQPR-trees which give linear-time algorithms in many cases. It
does, however, lead to a deeper understanding of planarity, by offering a unified
view of planarity, and, in some cases, yields algorithmic solutions where no other
algorithms are currently available.

The paper proceeds as follows: In Section 2 we introduce all relevant notions
of planarity, and summarize what is known about them with respect to our focus
of interest: complexity of the recognition problem, Hanani-Tutte characteriza-
tions, obstruction sets, and relationships between them. In Section 3 we explain
our approach in some detail for the case of standard planarity, reviewing some
well-known results. Section 4 collects redrawing tools used in the remainder of
the paper. The core of the paper then consists of Section 5 on partially embed-
ded planarity, which is a powerful notion to have control over, and Section 6 on
simultaneous planarity, which we do not yet fully control.

2 Notions of Planarity

We introduce various notions of planarity, and summarize known and new re-
sults. For an overview of variants of planarity, see the survey by Maurizio

2To clarify the status of the polynomial-time algorithm for simultaneous planarity: the
algorithm exists and runs in polynomial time, we just do not know whether it is correct.
However, it can be modified (while still running in polynomial time) so it either gives a
correct answer, or, presents a counterexample to Conjecture 1.2. We have to leave the details
for a later paper.
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Hanani-Tutte
planarity notion recognition obstr. result algorithm

standard linear [44,
61]

[52] [16, 73] Cor 3.4
(folklore)

outer linear [44] [13]
partially embedded linear [3] [46] Thm 5.6 Cor 5.12
partial rotation linear,

Cor 5.10
open Thm 5.9

partial rotation
(with flips)

in P,
Cor 6.43

open open open

partially con-
strained PQ-
planarity

special cases
in linear [11]

open open open

ec-planarity linear [40] open open open
ec-planarity
(with free edges)

open open open open

x-monotone linear [48] open [56, 57, 34] quadratic [34]
level linear [48] open Thm 6.8,

[34]
quadratic [34]

T -coherent level special cases
in P

open open special case,
Cor 6.11

radial level linear [7] open open open
upward NPC [37] Ex 2.2
projective linear [39, 6] [62] open
book NPC [17],

special cases
in P

special case,
Sec 6.1.2

special cases

partitioned book NPC [45] open open
c (clustered) in NP,

special cases
in P

open special cases open

cl (clustered level) open (in
NP)

open open open

simultaneous in NP [38],
special cases
in P

open special cases,
Sec 6

special cases

Table 1: Summary of known and new results on planarity variants.
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Patrignani in the “Handbook of Graph Drawing” [61]. A drawing of a graph
maps the vertices of the graph to distinct points in the plane and edges to simple
arcs connecting the endpoints of the edge. We reserve the word embedding for
crossing-free drawings, that is, drawings in which no two edges have any points
in common (other than a common endpoint).3

2.1 Planarities and Hanani-Tutte

Planarity A graph is planar if it can be embedded in the plane, that is, drawn
so that no two edges cross each other. There are several linear-time al-
gorithms for recognizing planar graphs and embedding them, the first
being due to Hopcroft and Tarjan [44]. For surveys, see [55, 61]. Kura-
towski [52] showed that planar graphs can be characterized by a set of
excluded (topological) minors, namely {K3,3,K5}. The classic Hanani-
Tutte theorem was phrased for this standard notion of planarity [16, 73].
We will review this material in Section 3.

Outerplanarity. Outerplanarity easily reduces to planarity by adding an apex
vertex4 to the graph, so testing and embedding are special cases of pla-
narity. There is a finite obstruction set, {K4,K2,3} [13]. There is no
separate Hanani-Tutte theorem, but van der Holst has found a homologi-
cal characterization of outerplanar graphs [74].

Constrained Planarity Constrained planarity is a somewhat vague term de-
scribing various planarity restrictions [61], but it mostly seems to be asso-
ciated with restricting the rotation system of an embedding. A rotation at
a vertex is a cyclic ordering of the edges incident to the vertex. A drawing
realizes the rotation if the cyclic clockwise ordering of the edges leaving
the vertex in the drawing corresponds to the rotation. A rotation system
is a collection of rotations for each vertex of the graph. Embeddings are
typically described by rotation systems (though that does not work so well
for disconnected graphs, see Remark 5.1; that is the reason that partially
embedded planarity warrants a separate entry below). In the reverse di-
rection, we can ask whether a graph has an embedding given a rotation
system. This becomes interesting if instead of specifying a particular ro-
tation at each vertex, there is a more general scheme determining a set of
admissible rotations. For example, instead of specifying the cyclic order of
all edges incident to a vertex, we could specify a partial rotation in which
the ordering is fixed only for a subset of the edges incident to v. We are
aware of two other schemes5: ec-planarity6, due to Gutwenger, Klein, and

3For simultaneous embeddings, which we will see later, we do allow some crossings in the
drawing, but only between edges belonging to different graphs. These crossings do not count.

4An apex vertex is adjacent to every every other vertex of the graph.
5We will not be able to do full justice to ec-planarity or partially constrained PQ-planarity,

there is not time and space enough to include detailed definitions; we have to refer the reader
to the original papers [40, 11].

6The acronym “ec” abbreviates “embedding constraint”.
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Mutzel [40], and partially constrained PQ-planarity, introduced by Bläsius
and Rutter [11]. These notions combine a couple of common elements in
different ways: a tree is used to limit admissible rotations at a vertex.
The nodes of the tree can: allow an arbitrary ordering of their children
(P -nodes in [11], gc-nodes in [40]), fix the clockwise order of their children
(oc-nodes in [40]), or allow the rotation of the children to be either as
specified or reversed (mirrored, thus mc-node in [40], Q-nodes in [11]). It
may appear that ec-planarity is more powerful, than partially constrained
PQ-planarity, since it allows oc-nodes, but that is not the case, since ec-
planarity does not allow for partial rotations, which partially constrained
PQ-planarity does. Gutwenger, Klein, and Mutzel mention this option,
calling it ec-planarity with free edges. To the extent of my knowledge, this
is the most general constrained planarity notion available at this point.

We know that ec-planarity (without free edges) can be tested in linear
time [40], and partially constrained PQ-planarity can be tested in linear
time for 2-connected graphs [11] (and it is conceivable that this result can
be extended to allow oc-nodes as well). We consider the case of partial
rotation systems (where the rotation at each vertex is constrained by an
oc-node with free edges) and partial rotation systems with flips (where
the rotation at a vertex is constrained by a single mc- or oc-node with free
edges). For partial rotation systems, there is a Hanani-Tutte characteri-
zation, Theorem 5.9, and a linear-time algorithm, Corollary 5.10. Partial
rotation systems with flips can be decided in polynomial time, Corol-
lary 6.43, as a special case of a simultaneous planarity problem. We do
not know about obstruction sets or appropriate notions of minor-orderings
for the various constrained planarity notions.

Partially embedded planarity Given a graph G and an embedding H of a
subgraph H of G, we can ask whether H can be extended to an embedding
of G, or in other words, whether there is a planar drawing of G that con-
tains H. There is an SPQR-tree algorithm for testing partially embedded
planarity in linear time due to Angelini, Di Battista, Frati, Jeĺınek, Kra-
tochv́ıl, Patrignani and Rutter [3]. There also is a finite obstruction set
found by Jeĺınek, Kratochv́ıl and Rutter [46]. We will establish a Hanani-
Tutte characterization based on this obstruction set. This yields a new (if
not particularly efficient) polynomial-time algorithm for testing partially
embedded planarity.

x-monotonicity. An ordered graph is a graph G = (V,E) together with a
linear ordering of V . An x-monotone drawing of G is a drawing in which
the left-to-right ordering of vertices agrees with the linear ordering and
each edge is x-monotone, that is, it is drawn like the graph of a function
(every vertical line crosses each edge at most once). The x-monotone
graphs are a special case of leveled graphs (which we discuss shortly),
and as such they are known to be recognizable and embeddable in linear
time [48, 47]. In spite of several attempts, a complete obstruction set for
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x-monotone graphs is not currently known. Pach and Tóth [56, 57] proved
a weak Hanani-Tutte theorem for x-monotone graphs.7 A strong Hanani-
Tutte theorem for x-monotone graphs is established in [34]; it yields a
simple, quadratic-time algorithm for testing x-monotonicity based on the
Hanani-Tutte characterization. If one requires a drawing to be monotone
with respect to both x and y, one gets the notion of bi-monotonicity,
introduced in [34]; an example in that paper shows that even the weak
Hanani-Tutte theorem fails for bi-monotonicity.

Level planarity. A leveled graph is a graph G = (V,E) with a leveling ℓ of
the vertices, where ℓ : V → N. A leveled embedding of a leveled graph is
an embedding in which u ∈ V is to the left (right) of v ∈ V if ℓ(u) < ℓ(v)
(ℓ(u) > ℓ(v)), and each edge is x-monotone. The difference to x-monotone
graphs is that we may have ℓ(u) = ℓ(v) in which case u and v have to
lie on the same vertical line. Level planarity testing and embedding are
solvable in linear time due to work by Jünger, Leipert, and Mutzel [48,
47]. No complete obstruction sets are known [25]. The Hanani-Tutte
characterizations of x-monotonicity can be extended to level planarity
(this follows from work in [34], see Theorem 6.8). The quadratic-time
Hanani-Tutte algorithm for testing x-monotonicity can be adapted to test
level planarity [34].

T -coherent level planarity. A generalized k-ary tanglegram is a triple (G, ℓ, T )
consisting of a leveled graph (G, ℓ) and a family T of trees T1, . . . , Tn so
that the leaves of Ti are exactly the vertices at level i in (G, ℓ).8 We say
(G, ℓ, T ) can be embedded if (G, ℓ) has a T -coherent level planar embed-
ding, that is, if (G, ℓ) has a level planar embedding in which the ordering
of the vertices at level i is consistent with an ordering of the leaves of Ti in
a facial walk along some embedding of Ti (this corresponds to a PQ-tree
without Q-nodes). The complexity of the general problem is open, though
there are polynomial-time results for special cases in work by Wotzlaw,
Speckenmeyer and Porschen [75]. No obstruction sets or Hanani-Tutte
style characterizations are known.

Radial level planarity Radial level planarity is a variant of level planarity in
which vertices are placed on concentric circles rather than parallel lines.
Edges have to keep moving away from the common center c, they cannot
double back; more formally, an edge is radial monotone if it crosses every
cycle with center c at most once. All edges in a radial level planar drawing
must be radial monotone. Radial level planarity can be recognized in linear
time [7]. We are not aware of any work on obstruction sets or Hanani-
Tutte style characterizations.

7Remark 3.2 explains the difference between weak and strong variants of Hanani-Tutte.
8Generalized k-ary tanglegrams were introduced by Wotzlaw, Speckenmeyer and

Porschen [75]. In the original definition, (G, ℓ) is required to be proper, that is all edges
have to be between adjacent levels. We drop that restriction here.
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Upward planarity. A directed graph is upward planar if it can be drawn so
that the tail of each edge is drawn to the left of its head, and each edge
is x-monotone. Testing a directed graph for upward planarity is NP-
complete [37].9 That would seem to make a Hanani-Tutte style character-
ization of upward planarity unlikely, since such characterizations typically
lead to polynomial-time algorithms, but this is not necessarily the case.
We’ll argue in Example 2.2 that there is a Hanani-Tutte theorem for up-
ward planarity. We do not expect a nice obstruction set, though.

Projective planarity. A graph is projective planar if it can be embedded in
the projective plane. The testing and embedding problem for projective
planarity are in linear time [53]. A finite obstruction set is known [39,
6], and, based on that, a Hanani-Tutte characterization [62]. It is open
whether the Hanani-Tutte theorem generalizes to any other surface, e.g.
the Klein Bottle or the torus.

Book embeddings. A k-page book consists of k half-planes identified along the
boundary (the spine). In an embedding of a graph in a k-page book all
vertices have to lie on the spine, and edges may not cross each other or the
spine, so each edge is embedded in a particular page. Graphs embeddable
in a single page are just the outerplanar graphs. Graphs embeddable in
a 2-page book are exactly the planar subgraphs of Hamiltonian graphs,
so the recognition problem is NP-complete [17, Corollary 4.4]. Variants
include assigning edges to pages, called partitioned book embeddings in [4],
and restricting the ordering of the vertices along the spine to be consistent
with the ordering of the leaves of a given tree T , called T -coherent in [4].
Partitioned book embeddability is known to be NP-complete [45], but is
is open whether this remains true for a fixed number of pages; partitioned
2-page book embeddability can be tested in P [43, 1].

c-planarity. Roughly speaking, a clustered graph is a graph in which certain
subsets of the vertices are identified as belonging together (clustered).
The clustered graph is then called c-planar if it can be drawn so that
vertices belonging to the same cluster can be drawn in the same region.
We will give a formal definition in Section 6.1.6. There have been partial
results on testing and embedding c-planar graphs in polynomial time,
but the general problem remains open [61, Section 1.8.2]. We are not
aware of any obstruction sets or a Hanani-Tutte style characterization of
c-planarity, but there is recent work by Fulek, Kynčl, and Pálvölgyi for
special cases (e.g. the case of two clusters) [33].

Clustered level planarity. Given a graph which is equipped with a leveling
and a clustering, one can ask whether there is a level planar drawing of
the graph which is also c-planar so that every cluster is bounded by two
x-monotone curves. This notion was introduced in [30, 31], the complexity

9Chimani and Zeranski [15] recently suggested an exact algorithm for solving upward pla-
narity that seems to perform well in practice.
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of the recognition problem seems to be open (we remark that c-planarity
is not obviously a special case, because clusters are not allowed to double-
back between levels).

Simultaneous planarity. Two graphs G1 = (V1, E1) and G2 = (V2, E2) that
have some vertices and edges in common are simultaneously planar if there
are planar drawings of each, in which the common graph G1 ∩ G2 :=
(V1 ∩ V2, E1 ∩ E2) is drawn identically. This problem is also known as
Simultaneous Embeddability with Fixed Edges for two graphs (SEFE2).
A more flexible, equivalent, definition, requires a drawing of G1 ∪ G2 =
(V (G1) ∪ V (G2), E(G1) ∪E(G2)) in which no two edges belonging to the
same graph, G1 or G2, cross each other. This second definition has the
advantage that it easily generalizes to an arbitrary number of graphs. We
write SEFEk if we want to emphasize that we are considering the variant
for k graphs, and SEFE if we allow arbitrarymany graphs. The complexity
of testing and embedding two graphs simultaneously is open, but several
special cases have been settled [41, 4], also see the survey by Bläsius,
Kobourov, and Rutter [9]. No obstruction sets are known, and there is no
Hanani-Tutte style characterization. Conjecture 6.20 proposes a very nat-
ural Hanani-Tutte style characterization of which we prove several special
cases, which in turn give polynomial-time algorithms for some recogni-
tion problems. Example 2.3 shows that we cannot expect a Hanani-Tutte
theorem for simultaneous planarity of three or more graphs.

Weak realizability. A topological graph is a graph G = (V,E) equipped with
a symmetric relation R ⊆ E × E. We say (G,R) is weakly realizable if
there is a drawing of G in which only pairs of edges in R are allowed
to cross. In a sense, weak realizability is the universal planarity prob-
lem, since it encodes the topological inference problem in the form of the
region connection calculus RCC8 [69].10 Testing weak realizability is NP-
complete [50, 68]. Therefore, we do not expect there to be obstruction
sets or a Hanani-Tutte style characterization. It was observed in [38] that
simultaneous planarity (for arbitrary many graphs) and weak realizabil-
ity are equivalent.11 Example 2.3 then implies that there will not be a
traditional Hanani-Tutte style characterization for weak realizability.

Remark 2.1 (Geometric Planarity). Our list of planarity notions does not contain
any geometric (straight-line, rectilinear) drawing variants. Hanani-Tutte does not
seem to be the right tool to approach problems with a geometric flavor: it cannot
capture rectifiability (stretchability) of a drawing. Or if it does, that seems accidental,

10The region connection calculus allows predicates for how two different regions can relate to
each other including equality, disjointness, overlap, and containment. Satisfiability of Boolean
formulas over the domain of simple closed regions turns out to be equivalent to the weak
realizability problem.

11The simultaneous planarity of G1, . . . , Gk is equivalent to (G,R) being weakly realizable,

where G =
⋃k

i=1
Gi and R = {(e, f) : there is no i so that e, f ∈ Gi}. On the other hand,

weak realizability of (G,R) can be modeled by creating a new graph Gi for every pair of edges
(e, f) 6∈ R.
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as in the case of straight-line planarity which is equivalent to planarity by Fary’s
theorem. So while Fary’s theorem implies that there is a Hanani-Tutte theorem for
straight-line planarity, there is no direct connection between the Hanani-Tutte theorem
and the existence of a straight-line drawing. Similarly, there is a Fary theorem for
level-planarity [24, 56, 23], so the Hanani-Tutte theorem captures straight-line level-
planarity, but again, not immediately.12

If we modify partially embedded planarity to require H and the final drawing of G
to be straight-line embeddings, the problem becomes NP-complete [60].13 Similarly,
simultaneous geometric planarity for two graphs is NP-hard [26], while it is conjec-
tured that simultaneous planarity lies in polynomial time (as would be implied by our
Conjecture 6.20 for example).

So we will not treat the geometric case here, but it is an interesting open question
for which notions of planarity (geometric or not) and under which assumptions ana-
logues of Fary’s theorem can be established (Thomassen [72] found a characterization
of rectifiable 1-planar graphs). Apparently, even the case of geodesic embeddings on
surfaces is open.

The results and conjectures suggest a generic form of the Hanani-Tutte the-
orem. Let X-planar be any notion of planarity. Say a drawing satisfies X ′ if it
is X-planar with one modification: any requirement that two independent edges
do not cross is replaced by the requirement that they cross evenly and adjacent
edges are allowed to cross arbitrarily. Since there are different ways of defining
notions of planarity, X ′-planarity is not necessarily well-defined.

G is X-planar if and only if there is a drawing of G satisfying X ′.

This generic Hanani-Tutte scheme can be made to match any of the planarity
notions in Table 1. For example, by the classical Hanani-Tutte theorem, G is
planar, if and only if there is a drawing of G in which every two independent
edges cross evenly.

Example 2.2 (Upward planarity). Let us consider the case of upward planarity.
The generic Hanani-Tutte result would then be: G is upward planar if and only if
there is a drawing of G in which all edges are x-monotone and directed the same
way, and every two independent edges cross evenly. This is true by Theorem 6.8,
the Hanani-Tutte theorem for level planarity.

Example 2.3 (Simultaneous Planarity). The generic Hanani-Tutte theorem is
not true for all possible planarity notions. For simultaneous planarity it would
state that a family of graphs (Gi)

k
i=1 is simultaneously planar if and only if

there is a drawing of
⋃k

i=1 Gi in which any two independent edges that belong
to the same graph Gi, for some i, cross evenly. Figure 1 shows a simultaneous
drawing of three graphs in which all pairs of edges belonging to the same graph
cross evenly, but the graphs are not simultaneously planar. This means that

12We’d be amiss not to mention a Fary theorem for c-planarity: c-planarity is equivalent
to straight-line rectangular c-planarity [5], so c-planarity would be another case in point if a
Hanani-Tutte theorem can be established for it.

13Partially embedded planarity first entered the graph drawing literature in its geometric
variant [12, Problem 9].
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Hanani-Tutte fails for simultaneous planarity of three graphs and thus for weak
realizability.

Figure 1: A simultaneous drawing of three graphs—with solid, dashed and
dotted edges—that are not simultaneously planar.

The generic Hanani-Tutte theorem also fails for c-planarity [33] and, as men-
tioned above, for bi-monotonicity [34]. There may still be Hanani-Tutte char-
acterizations for these cases, but they will not fit the generic model described
above.

2.2 Relationships among Planarities

There are strong relationships between many of the planarity notions we saw.
We borrow a notion from computational complexity to express this: a problem
A reduces to problem B if there is a polynomial-time computable function f
so that x ∈ A if and only if f(x) ∈ B. If two problems reduce to each other,
we call them equivalent. This notion of reduction relates the complexity of two
problems rather than their inherent structure: for example, c-planarity reduces
to book embeddability, since c-planarity lies in NP and book embeddability
is NP-complete. However, we cannot (directly) read off a c-planar embedding
of G from a book embedding of f(G). Our reductions will be “natural” in
the context of graph drawings, in that an embedding of f(G) will encode an
embedding of G—admittedly “natural” is a somewhat vague notion. Figure 2
summarizes known and new reductions.

Question 2.4. We know that SEFE3 is NP-complete [38], so any SEFE prob-
lem can be translated into an SEFE3 problem. Is there a natural construction
that achieves this?

Figure 2 suggests that SEFE2 deserves special attention, since it is a uni-
versal problem for many planarity variants, and may turn out to be tractable,

15Because of layout restrictions, some planarity variants are missing, including projective
planarity, partially constrained PQ-planarity (a special case of ec-planarity with free edges),
and the different variants of SEFE2.
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Outer

Standard

Level ec-planar
Partial
Rotation

Partitioned
2-page

Radial
Level

Partially
Embedded

Partial
Rotation
(with flips)

T -coherent
Level

ec-planar
with free
edges

Partitioned
T -coherent
2-page

Clustered (c)
Partitioned
T -coherent
k-page

Clustered
Level (cl)

SEFE2

Upward SEFE3
Partitioned
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alizability

L 6.12 T 6.15

[38]
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T 6.16

T 6.17

L 6.7

R 6.19

T 6.14

L 6.7
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C 6.13
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P

Figure 2: A directed edge denotes a natural reduction between two problems.
Reductions for which no reference is given are folklore or straightforward. Ab-
breviations are (T)heorems, (C)orollaries, (L)emmas and (R)emarks.15
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as opposed to SEFE3 and weak realizability. As we mentioned earlier, Conjec-
ture 1.2 would be sufficient to show that SEFE2 can be recognized in polynomial
time.

Remark 2.5 (Embedding Problems). We concentrate on the recognition problem,
mostly ignoring the embedding issue. For most notions of planarity, the embedding
problem polynomial-time Turing reduces to the recognition problem: an embedding
of a graph G can be constructed by asking a sequence of recognition type questions,
typically for subgraphs of G, that allow one to construct the embedding step by step.
This leads to an additional factor in the running time, of course.

3 Planarity

This section introduces the Hanani-Tutte theorem in its classical setting: pla-
narity. Most of the material is well-known. Our goal is to illustrate the Hanani-
Tutte approach in the simplest, and best-understood, case. Remember that
iocr(G) is the minimum of iocr(D) over all drawings D of G, where iocr(D) is
the number of pairs of independent edges of G that cross oddly in D. We say
a drawing D of G is iocr-0 if iocr(D) = 0. We call an edge in a drawing (inde-
pendently) even if it crosses every other (independent) edge an even number of
times.

Theorem 3.1 (Hanani-Tutte). A graph G is planar if and only if iocr(G) = 0.

A typical proof of the theorem proceeds as follows: if G is planar, then
iocr(G) = 0. For the reverse direction it is sufficient to show that, (i), iocr(G) >
0 for G = K3,3 and G = K5, and, (ii), iocr(G) > 0 if iocr(H) > 0 for some minor
H of G (we will see proofs of these easy facts in Section 5.2). By Kuratowski’s
theorem every non-planar graph G contains K3,3 or K5 as a minor, so iocr(G) >
0 by (i) and (ii). Even after completing the details, the use of the obstruction
set for planarity leads to a very short, slick proof of the Hanani-Tutte theorem,
but this approach has two disadvantages as we look ahead to adapting it to
other notions of planarity or embeddability: explicit obstruction sets are rarely
known, and they do not typically guide the way to an embedding algorithm.

Remark 3.2 (Weak Hanani-Tutte). There is a weak version of the Hanani-Tutte
theorem: if G has a drawing in which all edges are even, then G is planar. Letting
ocr(D) be the number of pairs of edges of G that cross oddly in D, and ocr(G) be
the minimum ocr(D) for all drawings D of G, we can state the weak version as: G

is planar if and only if ocr(G) = 0. Weak Hanani-Tutte characterizations are often
easier to prove and sometimes yield stronger conclusions. For planarity, for example,
ocr(G) = 0 implies that G has a planar embedding with the same rotation system as
the drawing realizing ocr(G) = 0. See [67] for a survey on weak and strong Hanani-
Tutte theorems for planarity. We will discuss weak Hanani-Tutte characterizations
only rarely in this paper, since they typically cannot be turned into polynomial-time
testing algorithms. The strong variants are superior in that respect, as we are about
to see in the case of planarity.

The Hanani-Tutte theorem is an algebraic criterion. Start with an arbitrary
drawing D of G, and let iD(e, f) be the number of times that e and f cross in
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D. By the Hanani-Tutte theorem planarity of G is equivalent to the existence
of a drawing D′ in which iD′(e, f) = 0 for all pairs of independent edges e and
f . If G is planar then such a D′ can be obtained (as we will see) from D by a
set of (e, v)-moves. An (e, v)-move consists of taking a small section of e and
deforming it in a narrow tunnel to make it pass over v (while avoiding passing
over vertices other than v). See Figure 3 for an illustration. The effect of an
(e, v)-move in a drawing D is that the crossing parity (the parity of the number
of crossings) between e and every edge incident to v changes, while the crossing
parity of no other pair of edges is affected.

v

e

Figure 3: An (e, v)-move. Parity of crossing changes between e and every edge
incident to v.

This leads us to the following system P1(D) of equations over GF(2). Create
a variable xe,v for every e ∈ E(G) and v ∈ V (G). For every pair (e, f) of
independent edges in G we require that

iD(e, f) + xe,h(f) + xe,t(f) + xf,h(e) + xf,t(e) = 0 mod 2,

where t(g) and h(g) denote the two endpoints of edge g (in an arbitrary orien-
tation of G). If we let D′ be the drawing obtained from D by making all the
(e, v)-moves for which xe,v = 1, then iD′(e, f) = iD(e, f) + xe,h(f) + xe,t(f) +
xf,h(e) + xf,t(e) mod 2 for all pairs of independent edges (e, f).

Lemma 3.3 (Tutte [73], Wu [76]). Let D be a drawing of G. G is planar if
and only if the system P1(D) has a solution over GF(2).

Proof. Let D be a drawing of G. If G is planar, then there is a planar drawing
D′ of G. Without loss of generality, we can assume that every vertex v ∈ V (G)
has the same location in D and D′. Hence, only the drawings of edges differ
between D and D′. Let Dt, t ∈ [0, 1] be a sequence of drawings changing from
D to D′ continuously and smoothly. For two independent edges e and f , the
value iDt

(e, f) can only change parity if e passes over an endpoint of f or f
passes over an endpoint of e. Set xe,v = 1 if e passes over v an odd number of
times and 0 otherwise, this yields a solution to P1(D).
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On the other hand, a solution to P1(D) gives us a way to turn D into an
iocr-0 drawing: for every (e, v) for which xe,v = 1 in the solution, perform an
(e, v)-move. In the resulting drawing D′, we will have i′D(e, f) = iD(e, f) +
xe,h(f) + xe,t(f) + xf,h(e) + xf,t(e) = 0 mod 2 for every pair of independent edges
e and f . Then G is planar by Theorem 3.1.

Corollary 3.4 (Folklore). Planarity of a graph can be tested in polynomial
time.

Proof. By Lemma 3.3 planarity of a graph G can be phrased as a linear system
of equations over GF(2). Choose an initial drawingD for which iD(e, f) is easily
computable (e.g. place the vertices in convex position). Then solvability of the
linear system can be decided in polynomial time.

Remark 3.5. The algorithm from Corollary 3.4 runs in O(n6) time for n = |V (G)|+
|E(G)|, since there are O(n2) variables and solving the linear system takes cubic time.
There are better results on solving linear systems over GF(2), but not significantly
better than cubic time, so that trying to improve that part is unlikely to lead to even
a quadratic-time algorithm for planarity. However, one may be able to rewrite the
linear system to a point where solvability or unsolvability is easily decided. For level
planarity this is done in [34], leading to a very simple quadratic algorithm.

What makes the algebraic approach exciting is that many types of con-
straints that are often placed on planar drawings can be expressed in it. Take,
for example, the rotation at a vertex. Suppose we ask whether G is planar with
the rotation of one of its vertices fixed. Let w be that vertex, and let D be
a drawing in which w has the required rotation. We build a system P2(D) as
follows: Create a variable xe,v for every e ∈ E(G) and v ∈ V (G). We require
that

iD(e, f) + xe,h(f) + xe,t(f) + xf,h(e) + xf,t(e) = 0 mod 2

for every pair of independent edges (e, f) and every pair of edges (e, f) that
share endpoint w. Then G has a planar embedding in which v has the required
rotation, if and only if the system P2(D) has a solution over GF(2). We will not
argue this special case, but develop a more general result for partial rotations
in Sections 5.3 and 6.6.

Remark 3.6 (Obstruction Sets from Hanani-Tutte). The planarity criterion of Hanani-
Tutte brings together computational, algebraic and combinatorial aspects of the pla-
narity problem, but that relationship is far from being well-understood. One issue
that, as far as we know, has not been investigated, is whether there is any relation-
ship between unsolvability of the system P(D) and obstructions to planarity. This
relationship would have to explain obstructions in algebraic terms (that is where the
Hanani-Tutte theorem started in the work of Hanani). In other words, the chosen
notion of obstruction (minor, subdivision, subgraph) has to be found in the algebraic
system. With partially embedded planarity we will see a system where the obstruction
set is infinite even for rather strong notions of minor, so if there is a result relating
algebraic unsolvability to obstruction sets it will have to account for that.

So far this has only been achieved for planarity and outerplanarity by van der
Holst [74]. Since there are proofs of Hanani-Tutte that do not require Kuratowski’s
theorem [63] this gives an alternative route to Kuratowski’s theorem.
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4 Redrawing Tools

We establish various redrawing tools that are used in the remainder of the paper.
The tools center around redrawing substructures of a graph G, such as edges,
cycles, and subgraphs, typically under the assumption that the substructure
already has a reasonably good drawing, but we want a better one and so that
the overall drawing of G is not affected badly. For example, reasonably good
can mean even, in which case better would be crossing-free. Or it could mean
independently even, in which case better may mean even. The Hanani-Tutte
theorem assumes that all edges are independently even, but we need redrawing
results that work under weaker, local assumptions, and that allow us to redraw
those pieces that are reasonably good. The redrawing results in this section are
mostly of this nature: we are given a drawing of G with subgraph H . Edges in
H may be independently even, even, free of crossings with H-edges, or entirely
free of crossings (each category is better than the previous one). We try to
improve the drawing of H in this hierarchy without introducing odd crossings
with edges in G−H . Redrawing results for simultaneous planarity are covered
later, in Section 6.2.3.

The results in this section are not yet systematic and are only a small first
step towards establishing a set of tools to tackle Conjecture 6.20 which would
imply nearly all the results in this paper. It may be better to skip the proofs in
this section in a first reading.

We begin with a basic tool for removing crossings between edges crossing
evenly; this idea has also been used in [35, 64] though it may be older than that.

Lemma 4.1. If an edge e is crossed an even number of times by another edge
f , then we can redraw f so as to remove all crossings of e with f , and without
affecting the crossing parity of any pair of edges. Crossing-free edges remain
crossing-free after the redrawing, but f may consist of more than one component
(one of them an arc connecting the endpoints of f ; any additional components
are closed curves).

Proof. Imagine e is drawn as a horizontal straight line segment (if e has a self-
crossing, it can be redrawn close to the crossing so as to remove the self-crossing),
see Figure 4(a). Since e and f cross evenly, we can match up the crossings of f
with e in consecutive pairs along e. Cut f at all those crossings, creating two
ends for each crossing. Connect paired ends on each side of e, see Figure 4(b).
This process does not change the crossing parity of any pair of edges, removes all
crossings of f with e, and, since the only crossings introduced in the redrawing
are with edges already crossing e, crossing-free edges remain crossing-free after
the redrawing. Since f has only two ends, those two ends remain connected
by an arc-component, but there may now be additional components of f which
have to be closed curves as there are no ends of f remaining.

Lemma 4.1 can be used to prove the following result, which in turn can
be used to prove the strong Hanani-Tutte theorem in the plane without using
Kuratowski’s theorem..
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e

f

e

f

e

f

(a) (b) (c)

Figure 4: Removing crossings of an edge f crossing e evenly. (a) Initial drawing.
(b) After cutting f and reconnecting its ends in consecutive pairs. (c) After
reconnecting closed components using narrow tunnels.

Lemma 4.2 (Pelsmajer, Schaefer, Štefankovič [63]). Let E0 be the set of even
edges in a drawing of a graph G. Then there is a drawing of G with the same
rotation system in which all edges of E0 are free of crossings and there are no
new pair of edges crossing oddly.

A proof of this lemma along the lines of Lemma 4.1 can be found in [35], it is
shorter and simpler than the original proof from [63]. The proof does require a
bit of care: simply dropping all closed components after applying Lemma 4.1 will
not work, since this can change the crossing parity between edges; dropping the
large closed component of f in Figure 4(b) changes the crossing parity between
f and the dashed edge.

Lemma 4.3 is a useful tool for removing crossings with (well-behaved) forests
in the graph.

Lemma 4.3. Suppose H is a subgraph of G all of whose edges are free of
crossings, F is a subgraph of G, and E0 is a set of edges in E(G) − E(H) so
that

(i) E(F ) ⊆ E0,

(ii) every edge in E0 crosses every edge in F evenly,

(iii) any cycle in H ∪ F is a cycle in H.

Then there is a drawing of G in which the edges of F do not cross any of the
edges in E0. In this redrawing, H remains crossing free, the rotation system
of G remains the same, and there are no new pairs of edges crossing oddly. In
particular, if the drawing of G was iocr-0, it remains so.

Note that (iii) implies that F is a forest, explaining the remark introducing
the lemma.

Proof. The goal is to clear edges in F of crossings with edges in E0 while main-
taining several properties of the initial drawing. Let F ′ be the (possibly empty)
subgraph of F containing all edges of F that have no crossings with any edge
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in E0. Note that edges in F ′ cannot separate the face of H they lie in, because
of (iii) (and the fact that H is free of crossings).

If F ′ = F , we are done. So there must be an edge e in F not yet in F ′. Using
Lemma 4.1 we can remove all crossings of e with edges of E0 without changing
rotation or crossing parity between any two edges and without creating crossings
with crossing-free edges.

Some (or all) edges of E0 may consist of multiple components now. Re-
connect any closed components of an edge to its arc-part by a tunnel, as in
Figure 4(c), that avoids edges of F ′ ∪ {e} and H . This can be done, since the
drawing of F ′ ∪ {e} ⊆ F cannot separate the face of H it lies in, by condition
(iii) and because no two edges in F ′ ∪ {e} ∪ H cross each other (edges in H
remained crossing-free, edges in F ′ do not cross each other, and we removed
crossings of e with edges in E0 which includes all of F , by (i) and thus F ′). We
can now add e to F ′, eventually reaching F ′ = F , which proves the result.

Lemma 4.4 shows that we can free a subgraph H of G of crossings between
edges of H in the right circumstances.

Lemma 4.4. Let H be a subgraph of G so that every two edges in H cross
each other evenly, and every edge of H crosses every independent edge in G
evenly. Then there is a drawing of G in which edges of H do not cross each
other, the rotation system of H remains the same, and there are no new pairs of
independent edges crossing oddly. In particular, if the drawing of G was iocr-0,
it remains so.

Proof. Let e be some edge of H . We want to use Lemma 4.1 to remove crossings
with e and then reconnect closed components, but this can lead to problems ifH
contains cycles as we may be separating closed components from their arc-parts
without being able to reconnect them.

We therefore start with a maximal spanning forest F of H . Let E0 = E(H)
and apply Lemma 4.3 to find a drawing of G in which no edge in E′ := E(F ) ⊆
E0 crosses any edge in E0 (when applying Lemma 4.3 we choose H to be the
empty graph). We will add edges to E′ until E′ = E(H) while maintaining
the property that no edge in E′ crosses any edge in H . Once we have reached
E′ = E(H) the lemma is proved as long as we make sure not to create a new
pair of independent edges crossing oddly.

So assume there is an edge e ∈ E(H)−E′ that still has crossings with some
edge f in H . By assumption every such edge f ∈ E(H) crosses e evenly. Let
H ′ be H restricted to E′ ∪ {e}. Then H ′, by itself, is embedded, since edges in
E′ do not cross e. Pick a cycle C in H ′, so that e lies on C, and the edges of C
bound a face of the embedding of H ′ (e is not a cut-edge of E′ ∪ {e}, since F is
a maximal spanning forest of H).16

The cycle C (as a curve) is free of self-crossings, since it is part of H ′, so we
can speak of the inside and outside region of C. If there is an edge g ∈ E(G)

16C is not necessarily a facial cycle in the strict sense: it may not be equal to the facial
walk bounding the same face, since H′ need not be 2-connected. However, the edges of C are
contained in such a facial walk of H′.



JGAA, 17(4) 367–440 (2013) 385

that crosses any edge of C oddly, then g must have an endpoint on C (incident
to the edge or edges of C it crosses oddly). We can then move the end of g
in the rotation at that endpoint so that g is even with respect to all edges of
C. Repeating this for all such edges g, we can make all edges in E(C) even.
We then apply Lemma 4.1 for every edge in E(C) and every edge crossing it,
removing all crossings with C. If any edge consists of multiple components now,
reconnect the closed components to the arc-part of that edge as long as that
is possible without introducing crossings with E′ ∪ {e}. Let E′ := E′ ∪ {e}.
Note that no edge in E′ crosses any edge in H , and the crossing parity of any
pair of edges has not changed (in particular, any two H-edges still cross evenly).
However, some edges now consist of multiple components: edges in E(G)−E(H)
that crossed C and edges of H that crossed e. We want to argue that dropping
all closed components simultaneously does not lead to two edges crossing oddly
that currently cross evenly. Suppose there are two edges f, g ∈ E(G) that cross
evenly, but if we drop all their closed components, they cross oddly. But then the
arc-parts of f and g must cross oddly and, in particular, lie in the same face σ
of H ′. Any closed components of f and g that could not be reconnected to their
arc-parts cannot lie in σ (otherwise they would have been reconnected), and,
in particular, cannot intersect f or g. Since any two closed components cross
each other evenly, dropping all of them cannot change the crossing parity of f
and g. Hence, the new drawing does not contain any new pairs of independent
edges crossing oddly. Since e now belongs to E′ we have made the required
progress.

Lemma 4.4 is a useful tool, but we would really like to be able to prove the
stronger result we stated as Conjecture 1.2 earlier:

Suppose a graph G with subgraph H can be drawn so that every
edge of H crosses every independent edge of G evenly. Then there
is a drawing of G in which edges of H do not cross each other, and
there are no new pairs of independent edges crossing oddly.

Because of Lemma 4.4 it would be sufficient to find a drawing in which
every two edges of H cross each other evenly (and there are no new pairs of
independent edges). There is a partial result along the lines of Conjecture 1.2
in [65, Lemma 2.3], but it avoids dealing with cut-vertices and cut-edges of H ,
which is where the problem gets difficult. In the absence of cut-vertices and
cut-edges, we can settle the conjecture.

Lemma 4.5. Let H be a subgraph of G whose connected components are all 2-
connected. If G can be drawn so that every edge of H crosses every independent
edge in G evenly, then there is a drawing of G in which edges of H are free of
crossings, and there are no new pairs of independent edges crossing oddly.

The induction in the following proof uses ideas from [63].

Proof. Fix a drawing of G in which every edge of H crosses every independent
edge in G evenly. We need to show that there is a drawing of G in which
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all edges of H are free of crossings. To that end, we induct over w(G,H) :=
∑

v∈V (H) d(v)
3, where d(v) is the degree of v in G. For two graphs with the same

weight, we induct over the number of unprocessed edges in H . We only label an
H-edge processed if it is free of crossings, and we guarantee that it remains so.
Initially, we call all edges in E(H) unprocessed. We write (G′, H ′) < (G,H) if
w(G′, H ′) < w(G,H) or w(G′, H ′) = w(G,H) and the number of unprocessed
edges in H ′ is smaller than in H . Our goal is to prove the following claim, which
is sufficient to establish the lemma inductively:

If the statement of the lemma is true for every (G′, H ′) < (G,H),
then it is true for (G,H) as well.

It is hard to remove crossings from edges in H as long as H has vertices of
H-degree 4 or more. This problem is hard in general (we do not know how to
do it), but in this particular case we can deal with it, since H is 2-connected:
we clear cycles of H of crossings, which allows us to turn H into a subcubic17

graph.
Suppose H contains a cycle C and a vertex v belonging to C which has

degree at least 4 in H . Modifying the rotations at vertices of C, we can make
edges of C even (edges of C can only be crossed oddly by adjacent edges, by
assumption on H , hence this can be done by adjusting the rotations of vertices
belonging to C). Applying Lemma 4.2 gives us a drawing of G in which C is
free of crossings; note that the redrawing procedure does not introduce pairs of
independent edges crossing oddly. Since v was incident to at least four edges
of H , v is either incident to at least one H-edge outside and at least one H-
edge inside of C, or v is incident to at least two H-edges on the same side
of C (both inside or both outside). In the first case, we split v into v and v′

lengthening C so that v remains incident to the inside edges, and v′ is incident
to the outside edges. In the second case, we split v into v and v′ by pushing
v′ off of C on the side that the incident H-edges are, and add an edge vv′ to
H . In both cases, the component containing C remains 2-connected. Consider
(G′, H ′). All components of H ′ are 2-connected, and no odd crossings between
pairs of independent edges were introduced. The overall weight decreases: let
a ≤ b be the number of edges v be incident to on the two sides of C before the
split. We know that a + b ≥ 2, and v contributes (a + b + 2)3 to the overall
weight. Let us consider v and v′ after the split. In the first case, they contribute
(a+1)3+(b+1)3 < (a+ b+2)3 for a, b ≥ 1. In the second case, they contribute
33 + (b + 1)3 < (b + 2)3 = (a + b + 2)3 for b ≥ 2 (a = 0 in this case). In both
cases w(G′, H ′) < w(G,H). Hence, by induction, we can assume that there is
a a drawing of G′ in which H ′ is free of crossings, and there are no new pairs of
independent edges crossing oddly. Since H ′ includes the new edge vv′, we can
contract vv′ obtaining a drawing G in which H is free of crossings, and in which
there are no new pairs of independent edges crossing oddly.

We can therefore assume that every vertex of H has degree at most 3 in H .
Suppose there is an edge in H that is crossed oddly by some other edge; this

17A graph is subcubic if all its vertices have degree at most 3.
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edge is part of some cycle C in H , since H is 2-connected. Let f be an arbitrary
edge on C that is crossed oddly by some edge (f has to be unprocessed). If f is
not incident to a processed edge, we can make f even by modifying the rotation
at its endpoints without introducing crossings with processed edges. Otherwise,
f is incident to a processed edge, say f = uv and v is incident to a processed
edge. Then v lies on a previously processed cycle C′. So v has H-degree exactly
3 (since f is unprocessed), and f does not cross either of the other two H-edges
incident to v (since they both belong to the crossing-free cycle C′). Now f can
be made even with respect to edges incident to v by moving their ends in the
rotation at v. Since C′ is crossing free, any edge crossing f must be on the same
side of C′ as f , so we do not need to introduce crossings along already processed
edges. Repeating this process, we obtain a drawing in which all edges of C are
even, and all processed edges have remained crossing free. Applying Lemma 4.2
gives us a drawing of G in which C is free of crossings, all previously processed
edges remain crossing-free (since they are even), and there are no new pairs of
independent edges crossing oddly. We now call all edges on C processed. Since
we know that C contained at least one unprocessed edge, this increases the
number of processed edges by at least 1.

The remaining results in this section start with the assumption that a sub-
graphH of G is already embedded free of self-crossings, and show how to remove
additional crossings. Call a crossing between two edges independent if the two
crossing edges are independent (i.e. not adjacent).

Lemma 4.6. Suppose we are given an iocr-0 drawing of a graph G containing
a planar embedding H of a subgraph H ⊆ G. Let C be a cycle in H. Then we
can find an iocr-0 drawing of G containing H in which all edges of C are free
of crossings. If C is contained in a facial walk of H, then we can assume that
the iocr-0 redrawing does not contain any new independent crossings with edges
in H.

Proof. We first make all edges of C even. If some edge f crosses an edge of C
oddly, then f must be an edge in E(G)−E(H) incident to a vertex in C. We can
then move the end of f at that vertex, so f crosses both edges of C it is incident
to evenly. We apply Lemma 4.1 for all edges f ∈ E(G) and e ∈ E(C) for which
f crosses e (necessarily, f 6∈ E(H), so this is possible). At this point, edges
of C are free of crossings. Closed components of an edge that lie on the same
side of C as their arc-components can be reconnected to their arc-components
without changing the crossing parity of any two edges or introducing crossings
with C. All remaining closed components are dropped. This does not change
the crossing parity of any two edges: suppose e and f cross oddly now, whereas
they used to cross evenly before we dropped the closed components. Since C
is free of crossings, both e and f must lie on the same side of C. The closed
components of e and f we dropped must have been on the other side of C, but
any two closed components cross evenly, so dropping them cannot have changed
the crossing parity of e and f .
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If C is contained in a facial walk of H, then we can redraw more carefully
so that there are no new independent crossings with edges in H : First, note
that the applications of Lemma 4.1 only lead to local redrawings along edges of
C, which consists of H-edges and thus cannot be crossed by other H-edges, so
no new crossings with edges in H are created. We do introduce new crossings
when making edges of C even, but those crossings are between adjacent edges,
since we are moving ends of edges. We are thus left with reconnecting the
closed components. But this can be done by routing the connecting tunnels
of the components close to the facial walk that contains C; that introduces no
crossings with H .

The following corollary shows that one can get rid of independent crossings
with edges of H entirely.

Corollary 4.7. Suppose we are given an iocr-0 drawing of a graph G containing
a planar embedding H of a subgraph H ⊆ G. Then we can find an iocr-0 drawing
of G containing H in which edges of H are not involved in independent crossings.

Proof. Apply Lemma 4.6 for every (simple) cycle contained in a facial walk. If
an H-edge e crosses an independent edge f in the resulting drawing, then e
must be a cut-edge of H , so both sides of e lie on a facial walk of H. We can
then apply Lemma 4.1 to remove crossings of f with e and then, just as in the
proof of Lemma 4.6 reconnect components of f by routing the tunnels close to
the facial walk.

The next lemma allows us to clear a single even edge of crossings; we only
need and state the result for edges in E(G) − E(H), but using ideas from the
proof of Lemma 4.6 it is easily seen to be true for edges in E(H) as well.

Lemma 4.8. Suppose we are given an iocr-0 drawing of a graph G containing
a planar embedding H of a subgraph H ⊆ G. Let e be an even edge in E(G) −
E(H). Then we can find an iocr-0 drawing of G containing H in which e is free
of crossings.

Proof. Apply Corollary 4.7 so that the only crossings with H are between adja-
cent edges. We need to argue that this can be done so that e remains even. The
only problem occurs when in an application of Lemma 4.6 the end of an edge
f at a vertex u is moved, where u is an endpoint of e. This situation occurs
when we have to make f even with respect to a cycle C containing u; Figure 5
illustrates all possible cases: if f and e are on opposite sides of C, then f crosses
either one, (a), or both, (b), edges of C it is adjacent to oddly; if f and e are
on opposite sides, then f either crosses both C-edges oddly, (e), or only one of
them, in which case we distinguish whether that edge is on the same side of e
as f , as in (c), or on the far side, (d). If the end of f is moved past e, this may
result in e and f crossing oddly. If we can, we move the end of f in the other
direction—cases (a), (c), and (e) in Figure 5. There are two cases in which we
cannot: if the end of f is on the other side of C from e and f crosses both
C-edges incident to u oddly, case (b), and if f is on the same side of C as e, but
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crosses the far C-edge oddly, while crossing the close C-edge evenly, case (d).
In both cases we allow the end of f to move over e; the point is that in both
cases, the end of f ends up on the opposite side of C from e, so after making C
free of crossings, e and f no longer cross at all, so it does not matter that we
temporarily introduced an odd crossing between them.

u

f

e

C

u

f

e

C

(a) (b)

u

f e
C

u

f e
C

u

f e
C

(c) (d) (e)

Figure 5: Redrawing at u. Edge f is black and dashed, e gray and dashed;
changes to f are drawn as dotted lines.

So e is still even, and it no longer crosses any edges of H except for edges it
is incident to. We just argued that Lemma 4.6 can be applied so as to keep e
even. Apply the lemma for all cycles in H that contain an endpoint of e. Since
e is (and remained) even, its ends never have to be moved in the redrawing,
so we do not create new crossings of e with edges in H , so e only crosses cut-
edges of H it is incident to. Those crossings we can remove as in the proof of
Corollary 4.7: we cut e and reconnect it following a facial walk of H containing
both sides of the cut-edge.

Any remaining edges crossing e belong to E(G) − E(H), and we can apply
Lemma 4.1 to remove their crossings with e (reconnecting their closed compo-
nents arbitrarily, just avoiding e itself). At this point e is free of crossings.

Removing crossings is much easier if we do not have to worry about edges
in E(H) as the following lemma shows. Lemma 4.9 and Lemma 4.8 will be
the main tools in establishing the Hanani-Tutte theorem for partially embedded
planarity.

Lemma 4.9. Suppose we are given an iocr-0 drawing of a graph G containing
a planar embedding H of a subgraph H ⊆ G. Let E0 be the set of even edges of
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G and E(H) ⊆ E0. Then we can find an iocr-0 drawing of G containing H in
which all edges of E0 are free of crossings.

Remark 4.10. Lemma 4.9 extends Lemma 4.2 from planarity to partially embedded
planarity, but it needs the stronger assumption that the initial drawing is iocr-0. The
lemma will not remove crossings with even edges in the presence of pairs of independent
edges crossing oddly. However, this version suffices for our purposes; we suspect that
a stronger version of Lemma 4.9 analogous to Lemma 4.2 can be proved. We would
also like to drop the condition E(H) ⊆ E0, but Lemma 4.8 shows that even clearing
a single even edge is non-trivial if we do not assume that edges of H are even.18

Proof of Lemma 4.9. We want to use Lemma 4.1 to remove crossings of an edge
f with an edge e. There is a problem, however, if f ∈ E(H) since we may not
redraw edges of H . Instead we proceed as follows: let e ∈ E(H) and f ∈ E(G)
so that f crosses e and crosses it evenly (in particular f 6∈ E(H) since two edges
in H cannot cross).

Apply Lemma 4.1 to remove crossings of f with e (note that connecting
the severed ends of f does not introduce crossings with edges in H , since the
connections are routed along e ∈ E(H), and e does not cross edges in H).
Repeat this for all such pairs e ∈ E(H) and f ∈ E(G) for which f crosses
e evenly (and at least once). Note that we can apply Lemma 4.1 even if f
already consists of multiple components due to earlier cuts. Reattach closed
components to their corresponding arcs via thin tunnels as long as this can be
done without crossing any edges in H . As always, the crossing parity between
no two edges changes, since tunnels introduce two crossings every time they pass
through an edge. This may still leave closed components that are separated from
their arcs by a cycle in H . In other words, some edge f has an arc component
that lies (without loss of generality) within a region bounded by a cycle C for
which E(C) ⊆ E(H) and there is a closed curve belonging to f that lies outside
the cycle C. If the arc-component of f crosses some arc-component of some
edge g oddly, then the arc-component of g lies within the region bounded by
C since C consists of H-edges and thus is free of crossings. But then a closed
curve belonging to f that lies outside C can only cross g by crossing a closed
component of g. Since any two closed components cross evenly, we can drop all
remaining closed components without affecting the crossing parity between any
two edges. Edges in E(H) are free of crossings.

We now repeat a similar process for edges e ∈ E0 and f ∈ E(G) to remove
crossings with edges of E0 one edge at a time. Let E′ ⊆ E0 be those edges in E0

that are already free of crossings. We already established that E(H) ⊆ E′. If
E′ = E0 we are done; otherwise there is some e ∈ E0−E′. Note that e 6∈ E(H).
Now e crosses some edges in E(G). However, e cannot cross any edges in E(H)
since edges in H are free of crossings. So let f be an arbitrary edge crossing e,
then f ∈ E(G) − E(H). Perform the cutting move from Lemma 4.1 to remove
crossings of f with e (note that connecting the severed ends of f cannot lead to

18We should clarify: we know that these stronger versions of Lemma 4.9 are true, since they
are directly implied by Theorem 5.6, but we are looking for direct redrawing proofs of these
results, not requiring the obstruction set machinery.
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crossings with an edge in E′ since we reroute close to e and edges in E′ cannot
cross e). We repeat this for all edges f ∈ E(G) which cross e. We reattach
closed components to their corresponding arcs as long as we can do so without
crossing edges in E′.

We want to argue that if at this point we drop all closed curve components,
the remaining drawing is iocr-0. If this were not the case, there would have
to be two independent edges f and g whose arc components cross oddly after
dropping all closed components. However, since the drawing was iocr-0 to start
with, f and g (as independent edges) crossed evenly before dropping the closed
components. Since closed components cross each other evenly, this means that
some closed component of f crossed the arc-part of g or vice versa. Let us
assume (without loss of generality) that f had a closed component that crossed
the arc-part of g. But we know that the arc-part of f also crosses the arc-part of
g. Since g crosses none of the edges in E′ we could have connected the arc-part
of f to its closed component by routing a tunnel close to g. Hence, we can drop
all the closed curve components to get an iocr-0 drawing of G without closed
components. Moreover, in this drawing e is now free of crossings. This proves
the claim inductively.

Lemma 4.9 is sufficient to prove a weak Hanani-Tutte theorem for partially
embedded planarity. The goal of Section 5.2 is the strong version of this lemma,
Theorem 5.6. Call a drawing ocr-0 if every two edges of the drawing cross evenly.

Corollary 4.11. If G has an ocr-0 drawing containing a planar embedding H
of a subgraph H ⊆ G, then there is an embedding of G extending H.

We conclude this section with a nearly trivial result that will nevertheless
turn out to be quite useful. It is easy to redraw edges incident to a vertex
of degree 3 so that they cross each other evenly: suppose two such edges cross
oddly. Then their ends at the vertex must be consecutive, so we can move one of
the ends beyond the other in the rotation, changing their crossing parity (and
leaving the third edge unaffected). The next lemma shows that this remains
true if part of the graph is (and has to remain) embedded.

Lemma 4.12. Suppose we are given a graph G and a planar embedding H of
a subgraph H ⊆ G. Let v be a vertex of degree 3 in G. Then we can redraw
edges of E(G) − E(H) locally at v so that all edges incident to v cross each
other evenly and so that the crossing parity of all other pairs of edges remains
the same.

Proof. If all edges incident to v belong to H , then there is nothing to show;
otherwise, we can moves the ends of E(G) − E(H)-edges at v so that all edges
incident to v cross evenly.

5 Partially Embedded Planarity

A partially embedded graph (PEG) is a triple (G,H,H) consisting of a graph
G, a subgraph H of G, and an embedding H of H in the plane. We consider
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two embeddings topologically equivalent in the plane if there is an orientation-
preserving homeomorphism of the plane that takes one to the other.

Remark 5.1 (Rotation Systems and Embeddings). The definition of a partially em-
bedded graph requires an embedding H rather than just a rotation system of H . The
reason is that we do not require H to be connected, so two embeddings of H may
have the same rotation system without being topologically equivalent: a rotation sys-
tem does not restrict which face of a connected component another component lies in.
If two embeddings of a connected graph H have the same rotation system, they are
equivalent in the sense that there is an orientation preserving homeomorphism of the
sphere that takes one to the other; on the plane, the two embeddings may still look
different, since they can differ in which face is the outer face. If H consists of a single
connected component that is acceptable, since one can correct for it with a single
homeomorphism of the sphere, but if H consists of multiple connected components,
each component may require a different homeomorphism, e.g. if the outer face of one
component remains the same, but changes for another. In short, we have to be careful
if we work with rotation systems, in particular if the graph is not connected. Sec-
tion 5.3 discusses a weakening of partially embedded planarity that captures only the
rotation system. Hoffman and Richter [42] worked out the details of a combinatorial
description of an embedding of a disconnected graph on a surface.

A PEG (G,H,H) is planar if there is a planar embedding of G that con-
tains H. If H and H′ are two topologically equivalent embeddings of H , then
(G,H,H) is planar if and only if (G,H,H′) is planar, so we can redraw H as
long as we maintain topological equivalence.

Partially embedded planarity can be tested in linear time using SPQR-trees,
a result due to Angelini, Di Battista, Frati, Jeĺınek, Kratochv́ıl, Patrignani,
and Rutter [3]. If H is a straight-line embedding, and we require G to have a
straight-line embedding extending H, then the problem is NP-complete [60].

5.1 Minors and Obstructions

Jeĺınek, Kratochv́ıl, and Rutter [46] give a forbidden obstruction characteri-
zation of partially embedded graphs. Since we are dealing with a partially
embedded graph (G,H,H), the usual minor operations need some modification;
for example, we cannot arbitrarily contract edges in E(G) − E(H) since the
effect on H can be ambiguous, and there are new operations available to us: if
we delete an edge in H , do we delete it in G as well? The following operations
are considered in [46].

(ia) Edge Removal. Removing an edge e ∈ E(G).

(ib) Vertex Removal. Removing a vertex v ∈ V (G) and all edges incident to
it.

(iia) Edge relaxation. Relaxing an edge e ∈ E(H), that is, removing e from
E(H) but keeping it in E(G).

(iib) Vertex Relaxation. Relaxing a vertex v ∈ V (H), that is, removing v
and edges incident to it from E(H), but keeping them in E(G).
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(iii) H-Edge Contraction Contracting an edge in H . This requires modify-
ing H, but the result is unique (up to topological equivalence), since the
embedding of H is given.

(iva) Simple G-Edge Contraction. Contracting an edge in E(G) − E(H)
which has at least one endpoint not in V (H).

(ivb) Complicated G-Edge Contraction. Contracting an edge in E(G) −
E(H) for which (i) the endpoints belong to different components of H ,
but (ii) there is a face of H so that both endpoints are incident to that
face, and (iii) both endpoints are incident to exactly one H-edge. This
requires modifying H, but this can be done, by (ii), and uniquely so since
the contraction does not create a cycle in H , by (i), and there is a unique
way of joining the rotations of H-edges at the endpoints of the contracted
edge, by (iii).

(ivc) Stronger G-Edge Contraction. Contracting an edge E(G)−E(H) for
which (i) there is a unique face of H that is incident to both endpoints,
and (ii) both endpoints occur exactly once on a facial walk of that face.
This requires modifying H, with a unique result, since the edge is uniquely
located in the rotation system of H at its endpoints.

Operations in group (i) are traditional, but operations in groups (ii)-(iv)
are new. Jeĺınek, Kratochv́ıl, Rutter observe that (ivc) implies (ivb).

Definition 5.2 (Jeĺınek, Kratochv́ıl, Rutter [46]). We say that (G,H,H) is a
PEG-minor of (G′, H ′,H), and write (G,H,H) � (G′, H ′,H), if (G,H,H) can
be obtained from (G′, H ′,H) by a sequence of operations in groups (i)-(iv).

Remark 5.5 explains why this definition differs slightly from the original
definition given by Jeĺınek, Kratochv́ıl, and Rutter in [46]. The obstructions for
partially embedded planarity with respect to this notion of minor are pictured
in Figure 6. We need to explain the infinite family of obstructions Ak called
k-fold alternating chains.

Definition 5.3 (Jeĺınek, Kratochv́ıl, Rutter [46]). A PEG (G,H,H) is a k-fold
alternating chain, an Ak, k ≥ 3, if H consists of a cycle C on k+1 vertices and
two vertices u and v that lie on opposite sides of the cycle if k is odd and on
the same side otherwise. There are also k paths P1, . . . , Pk with endpoints on
C so that P1 has length 2 and passes through u and Pk has length 2 and passes
through v, and all other paths are single edges (length one). The endpoints of
two consecutive paths alternate on C. Finally, all vertices on C have degree 4
except two which are endpoints of P2 and Pk−1 which have degree 3.

Note that Ak does not denote a single graph, there are multiple k-fold alter-
nating chains for k ≥ 5.

Theorem 5.4 (Jeĺınek, Kratochv́ıl, Rutter [46]). A PEG-graph (G,H,H) is
planar if and only if it does not contain any of the obstructions K5, K3,3, or
D1, D2, D3, D4, D11, D14, D16, D17 or Ak, k ≥ 3 as a PEG-minor.
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Remark 5.5. Jeĺınek, Kratochv́ıl, and Rutter [46] do not allow operation (ivc) in
their definition of PEG-minor, but discuss it as an option, and show that allowing
(ivc) reduces the set of obstructions to the ones listed in Theorem 5.4. Our goal,
different from theirs, is to make the set of obstructions as small as possible, so we
use the more powerful notion of PEG-minor that allows (ivc). We keep the original
numbering of the obstructions, which explains the gaps in the sequence of Dis. Jeĺınek,
Kratochv́ıl, and Rutter introduce an additional operation that reduces the infinite set
of alternating chain obstructions to a finite set. We avoid that operation, since it
is somewhat awkward, and it is rather easy to deal with the infinite family of Aks
directly.

5.2 Hanani-Tutte for Partially Embedded Planarity

Recall that a drawing of a graph is iocr-0 if every two independent edges cross
each other an even number of times.

Theorem 5.6. Suppose we are given a graph G and a planar embedding H of
a subgraph H ⊆ G. Then G has a planar embedding that extends H if and only
if there is an iocr-0 drawing of G containing H.

We hope to give a direct proof of Theorem 5.6 at some point, however, in
the current paper we base the proof of Theorem 5.6 on the set of obstructions
for partially embedded graphs. To do so, we need two results.

Lemma 5.7. Suppose (G,H,H) is a PEG-minor of (G′, H ′,H′) and there is
an iocr-0 drawing of G′ extending H′. Then there is an iocr-0 drawing of G
extending H.

Proof. Fix an iocr-0 drawing of (G′, H ′,H′). We need to verify that all the
minor operations in groups (i)–(v) can be performed without making a pair of
independent edges cross oddly. This is clear for operations in groups (i) and
(ii).

For (iii) and (iv) let uv be the edge being contracted. We deal with (iii)
first, so uv ∈ E(H). Since H-edges do not cross each other at all, only edges
in E(G) − E(H) can cross uv. Any such edge crossing uv will do so evenly,
unless it is incident to u or v, let us say edge f ∈ E(G) − E(H) incident to
u. Performing an (f, u)-move ensures that f crosses e evenly. Repeating this
for all such edges f turns uv into an even edge. We contract uv by moving v
along uv towards u and identifying u and v. Since uv is crossed evenly by all
edges that cross it, this does not change the crossing parity between any pair
of edges. Merging the rotations of u and v when identifying them leads to a
unique rotation of H-edges at u = v, since uv ∈ E(H). Finally, we did not
introduce crossings between edges in H , so the induced drawing of H is still an
embedding. This explains (iii).

For operations in group (iv) we proceed similarly. We first consider (iva).
Let u be the endpoint not belonging to V (H). Then u is not incident to any
edges belonging to H . By changing the rotation at u we can make uv even with
respect to all edges incident to u. Contract uv by moving u along uv to v and
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Figure 6: Illustrations of obstructions to partially embedded planarity: K5,
K3,3, or D1, D2, D3, D4, D11, D14, D16, D17. Vertices and edges of H are
black, vertices and edges in G−H are gray. For space reasons, some labels are
placed on the edges (or paths, in the case of the Ak) they label. Based on [46,
Figures 1 and 2]
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identifying u and v. The only way the contraction can create a new pair of
edges that cross oddly, is if one of the edges, say f , crossed uv oddly, while the
other edge, say g, is incident to u, so it picks up an odd number of crossings
with f . However, f must have u or v as an endpoint if it crossed uv oddly, so
it is now adjacent to g, so the contraction did not create a pair of independent
edges crossing oddly, which is all that matters. Finally the contraction does not
affect H at all, so (iva) is fine.

We can ignore (ivb) since it is subsumed by (ivc), so let us consider that
operation. Suppose an endpoint of uv hasH-degree larger than 1, say x ∈ {u, v}.
Then there is a cycle C in H which contains x so that the two C-edges incident
to x belong to the unique face of H that contains both u and v (which exists
by assumption). Make C free of crossings using Lemma 4.6. Then uv does not
cross anyH-edges incident to x: not the two H-edges belonging to C since those
are free of crossings, and not any other H-edges incident to x, since those have
to lie on the other side of C (remember that x occurs only once in the boundary
walk). We can then make uv even with respect to all edges in E(G) − E(H)
incident to x by moving their ends in the rotation at x. If, on the other hand,
uv has H-degree 1 at x ∈ {u, v} we can perform an (uv, x)-move, if necessary,
so that uv is even with respect to the H-edge incident to x. We then modify
the rotation of the remaining edges incident to x so they cross uv evenly (this
is easy, since they belong to E(G) − E(H)). In all combinations of cases, uv
is now an even edge. Then Lemma 4.8 allows us to clear uv of all crossings,
and we can contract it, identifying u and v, without changing the number of
crossings between any pair of edges. Note that all the redrawing could be done
keeping H embedded.

Lemma 5.8. There is no iocr-0 drawing of any of the obstructions K5, K3,3,
or D1, D2, D3, D4, D11, D14, D16, D17 and Ak, k ≥ 3.

Proof. K5 and K3,3 do not have iocr-0 drawings. This is well-known (as part
of the traditional proofs of the Hanani-Tutte theorem), but we include a short
argument: Suppose there were an iocr-0 drawing of K5 or K3,3. Take a Hamil-
tonian cycle C of either K5 or K3,3, and make all its edges even (by moving ends
of edges at the vertices of the cycle). By Lemma 4.6 there is an iocr-0 drawing
in which C is free of crossings (H is the empty graph). In the case of K3,3 this
means that the drawing is ocr-0, since any pair of adjacent edges (the only pairs
that can cross oddly in an iocr-0 drawing) includes at least one crossing-free
edge of C, so by Corollary 4.11, K3,3 is planar, which is a contradiction. For
K5 any pair of adjacent edges that crosses oddly must lie on the same side of
C and the ends of the two edges are thus consecutive at their common end.
Hence, we can turn the iocr-0 drawing of K5 into an ocr-0 drawing, which, by
Corollary 4.11 yields a planar embedding of K5, again a contradiction.

A similar argument works for the Ak, k ≥ 3. Consider an iocr-0 drawing of
an Ak graph (G,H,H). Let C be the cycle in H . By Lemma 4.6 we can assume
that C is free of crossings. Since the drawing is iocr-0 only adjacent edges can
cross each other oddly. As C is free of crossings, such a crossing has to occur
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between two edges sharing an endpoint on C or between two edges sharing an
endpoint at the two isolated vertices of H . The isolated vertices of H have
degree 2, so we can assume that the edges incident to them cross evenly. Now
two edges incident to the same vertex v of C must lie on the same side of C
to cross. Those two edges are the only edges incident to v, inside or outside of
C, so we can swap their ends at v to make them cross evenly. We obtain an
ocr-0 drawing of Ak, which gives us a planar drawing of Ak (via Corollary 4.11)
contradicting Theorem 5.4.

Suppose D1, D2, or D16 has an iocr-0 drawing. Since all these graphs have
max-degree 3, we can use Lemma 4.12 to get an ocr-0 drawing of these graphs.
But then, by Corollary 4.11 these graphs are planar, which contradicts Theo-
rem 5.4.

Let (G,H,H) be D3, D4, and let C be the 4-cycle contained in H , or let
(G,H,H) be D17 and C the 3-cycle contained in H . Suppose one of these
(G,H,H) has an iocr-0 drawing. Use Lemma 4.6 to remove all crossings with
C. Since C contains all edges of H in all cases except for D3 (which contains an
H-edge not in C), we conclude that all edges of H are free of crossings unless
(G,H,H) = D3. But the conclusion is also true for D3, since the only edge in
E(G)−E(H) that could cross the remaining H-edge would have to do so oddly,
which is not possible in an iocr-0 drawing. Hence, we can assume in all cases
that all edges of H are free of crossings. For D3 and D4 the only remaining
odd crossings can be between edges that share a common endpoint of degree 2,
so they can easily be made even with respect to each other; but then we would
have an ocr-0 drawing of D3 or D4 which, by Corollary 4.11, implies that these
graphs are planar, contradicting Theorem 5.4. For D17 we note that if C is free
of crossings, it must bound an empty face; we can add a vertex into this face
and connect it to every vertex of C, yielding a graph that contains an iocr-0
drawing of K3,3 which we know is not possible.

To simplify the discussion of the remaining two graphs, D11 and D14, we use
the following claim; the reader can visualize the situation using D11.

Claim. Suppose we have an iocr-0 drawing of a PEG (G,H,H) for which H is
a tree, and there are three vertices x, y, and u so that: e = xy is an even edge,
xu, yu ∈ E(H), and u is a cut-vertex of H so that G − {u, x, y} is connected.
Then there is an iocr-0 drawing of (G,H,H) in which

(i) xy, xu, and yu do not cross each other,

(ii) all ends of E(G)− E(H)-edges incident to u lie outside xuy,

(iii) all E(G)− E(H)-edges incident to u cross both xu and yu evenly.

The redrawing can be performed without changing the crossing parity between
any pair of edges or changing the rotation at any vertex.

Let us first prove the claim. Use Lemma 4.8 to remove all crossings with e,
establishing (i), since H-edges xu and yu do not cross each other, in particular
xuy bounds a triangular region. Note that since H is a tree, the redrawing
performed in Lemma 4.8 does not change the crossing parity for any pair of
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edges, and the rotation of all vertices remains the same. Since G − {u, x, y} is
connected, there is a path connecting any two vertices in V (G)−{u, x, y}. Any
edge of such a path must cross the boundary edges of xuy evenly (since these
pairs of edges do not share endpoints and the drawing is iocr-0), so any two
vertices in V (G) − {u, x, y} lie on the same side of the region xuy, let us say
the outside. Let f ∈ E(G) − E(H) be incident to u. Move the end of f to lie
outside of xuy. Then f either crosses both xu and yu evenly, or both oddly. In
the second case, perform an (f, u)-move, so that in either case f crosses both
xu and yu evenly, establishing (iii), and the end of f ′ lies outside xuy, which
was required by (ii). This completes the proof of the claim.

For D11 we proceed as follows: make e = xy even using (e, ·), (f, ·) and
(h, ·)-moves. By the claim, we can assume that f ′ lies outside xuy and crosses
both xu and yu evenly. Move the end of f ′, if necessary, so it also crosses g
evenly (keeping it outside xuy). At this point, all four edges incident to u cross
each other evenly. Repeat the same argument with e′ = xy and v to ensure
that all four edges incident to v cross each other evenly (this does not affect the
crossing parity between f ′ and edges incident to u). We can now move the ends
of h and h′ at their shared endpoint so both g and g′ are even. The remaining
vertices have degree 3, so we can use Lemma 4.12 to ensure that any two edges
sharing one of the remaining vertices as an endpoint cross evenly. At this point
all pairs of edges cross each other evenly with the possible exception of h and h′.
Apply Lemma 4.9 to obtain a drawing of D11 in which all edges except possibly
h and h′ are free of crossings. If h and h′ do cross, we can route one along the
other starting at one of the crossings to the common endpoint and make sure
they cross each other evenly. At this point, another application of Lemma 4.9
yields a planar embedding of D11 which contradicts Theorem 5.4.

This leaves us with D14. We apply the claim to e = xy and v to ensure that
both f and f ′ cross vx and vy evenly. Since the ends of f and f ′ at v now lie
outside xvy we can move them, if necessary, so both f and f ′ cross g′ evenly
(it is possible that f and f ′ cross oddly at this point). Now apply the claim to
h = xy and u to make e′ cross both xu and yu evenly. Move the end of e′ so
it crosses the third H-edge incident to u evenly as well, so now any two edges
incident to u cross evenly. Move the ends of h and h′ at their common endpoint
so they cross both g and g′ evenly. Use Lemma 4.12 to ensure that any two
edges sharing one of the remaining vertices as an endpoint cross evenly. At this
point all edges in H are even; if there are any odd pairs left, they must be among
(h, h′) and (f, f ′). Apply Lemma 4.9 to obtain a drawing of D14 in which all
edges except edges in the set {h, h′, f, f ′} are free of crossings. Together with
the edges ofH , e′ separates f from f ′ (the rotation at u is determined by h), so f
and f ′ cannot cross each other. Hence, after another application of Lemma 4.9,
the only remaining pair of edges that cross are h and h′. We deal with them
just as we dealt with them in the case of D11, showing that there is a planar
drawing of D14 which contradicts Theorem 5.4.

We can now complete the proof of Theorem 5.6.
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Proof of Theorem 5.6. A planar embedding of a PEG (G,H,H) is iocr-0, so it
remains to show that if there is an iocr-0 drawing of G that extends H, then
G has a planar embedding extending H. Suppose not, then (G,H,H) contains
one of the obstructions listed in Theorem 5.4 as a PEG-minor. By Lemma 5.7,
there is an iocr-0 drawing of that minor, which contradicts Lemma 5.8.

5.3 Partial Rotation Systems

When we ask whether a PEG (G,H,H) is planar we start with a fixed planar
embedding H of H . What if we only have a rotation system for H , or even
weaker than that, a partial rotation system? Say ρ is a partial rotation system
for a graph G if ρ specifies a cyclic order of a subset Eρ

v of the edges Ev incident
to v for every vertex v. Specifying a partial rotation system is more general than
specifying the rotation system of a subgraphH , since the partial rotation system
does not necessarily fix both ends of an edge in their respective rotations. It does
not capture partial embeddability, though, unless H in (G,H,H) is connected.
Corollary 5.10 shows that embeddability of graphs with partial rotation systems
can be reduced to partial embeddability.

Let cr(G, ρ) be the minimum cr(D) over all drawings D of G that respect
the partial rotation system ρ, where we say that D respects ρ if the cyclic
rotation of edges Eρ

v at v is as prescribed by ρ. For iocr(G, ρ) we use a modified
definition which counts odd crossings between adjacent edges if they are part
of the same Eρ

v . Given a drawing D respecting ρ, we define iocr(D, ρ) :=
iocr(D)+

∑

v∈V (H)

∑

e,f∈E
ρ
v
(iD(e, f) mod 2). Let iocr(G, ρ) be the minimum of

iocr(D, ρ) where D ranges over all drawings of G respecting ρ.

Theorem 5.9. If iocr(G, ρ) = 0 then cr(G, ρ) = 0.

Proof. Fix a drawing D of G with iocr(D, ρ) = 0. Let G′ be the graph obtained
from G by subdividing each edge of G twice (adding two vertices to each edge),
and let ρ′ be the rotation induced by ρ on G′. We claim that iocr(G, ρ) =
iocr(G′, ρ′). To see that this is true, we subdivide the edges of G one edge at a
time, which is sufficient to establish the claim by induction. So let uv be the edge
about to be subdivided. Edges crossing uv fall into three disjoint categories:
edges incident to u, edges incident to v, and edges incident to neither u nor v.
Push all crossings with edges adjacent to u along uv close to u, and crossings
with edges adjacent to v close to v. Note that this does not change the crossing
parity between any two edges, since we introduce two new crossings as we push
one edge past another along uv. We can now split uv into three parts: the part
which is crossed by edges incident to u (which starts at u), the part which is
crossed by edges incident to v (which starts at v), and the middle part which is
crossed by all other edges. Introduce new vertices to separate these parts; the
value of iocr of the drawing does not increase since crossings between adjacent
edges remain crossings between adjacent edges, so iocr(G′, ρ) ≤ iocr(G, ρ). On
the other hand, iocr(G, ρ) ≤ iocr(G′, ρ′), since we can suppress the new vertices
of G′, and the truth of the claim follows.
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Hence, we now have a drawing D′ of G′ satisfying iocr(D′, ρ′) = 0. Then, by
definition, iD′(e, f) = 0 mod 2 for all e, f ∈ Eρ′

v for all v ∈ V (G). We now apply
Lemma 4.4 with the graph H on edges E(H) =

⋃

v∈V (G)E
ρ′

v (we could also use

Lemma 4.3), to obtain a drawing D′′ of G′ in which H by itself is embedded,
say it has embedding H, and the rotation system of H has not changed. Since
the overall drawing is iocr-0, Theorem 5.6 allows us to conclude that there is
a planar drawing of G′ containing H. In that drawing, suppress all vertices in
V (G′)− V (G) to obtain a planar drawing of G which respects ρ.

From this theorem we can obtain an algebraic criterion for testing whether
a graph G has an embedding respecting a partial rotation system ρ, but it is
easier to just use the reduction from embedding (G, ρ) to partially embedded
planarity which is implicit in the proof of Theorem 5.9. Note that up to topo-
logical equivalence, H is the unique embedding of H respecting ρ, since after
the subdivision, H is a forest.

Corollary 5.10. Embeddability of a graph with partial rotation system reduces
to partially embedded planarity.

Since partially embedded planarity can be tested in linear time using the
algorithm of Angelini, Di Battista, Frati, Jelnek, Kratochvl, Patrignani, and
Rutter [3], embeddability of graphs with partial rotation systems can be tested
in linear time as well.

One can imagine various variants of this problem. For example, what hap-
pens if rotations are allowed to flip? We take that problem up again in Sec-
tion 6.6. Or, we could allow ρ to specify a partial (cyclic) order of the edges Ev

incident to v. The resulting problem is NP-complete problem, since Angelini,
Di Battista and Frati [2] showed that it is NP-complete to test whether 14
embedded graphs (on the same vertex set) have a simultaneous embedding in
which the embedding of each graph is respected (so the partial order at each
vertex is the disjoint union of 14 total orders). They also show that for three
graphs the problem can be solved in polynomial time. Is there a Hanani-Tutte
characterization for that case?

5.4 Testing Partially Embedded Planarity

In this section we show how the algebraic criterion for partially embedded pla-
narity given in Theorem 5.6 can be turned into a polynomial-time algorithm.
There is, of course, a linear-time algorithm for this task by Angelini, Di Battista,
Frati, Jeĺınek, Kratochv́ıl, Patrignani, and Rutter [3].

For a given drawingD of a PEG (G,H,H) let iD(e, f) be the number of times
that e and f cross in D. Consider the following system PEP(D) of equations
over GF(2).19 We have variables xe,v for every e ∈ E(G) and v ∈ V (G). For
every pair (e, f) of independent edges we require that

iD(e, f) + xe,h(f) + xe,t(f) + xf,h(e) + xf,t(e) = 0 mod 2,

19The particular system PEP(D) is based on the suggestion of one of the referees and
significantly simplifies the original system which used more complicated moves.
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and xe,v = 0 for e ∈ E(H) and v ∈ V (H). Intuitively, this last restriction
ensures that the embedding of H does not change.

Theorem 5.11. Let D be a drawing of PEG (G,H,H). Then (G,H,H) is
planar if and only if the system PEP(D) has a solution over GF(2).

Theorem 5.11 implies that recognizing whether a PEG is planar can be tested
in polynomial time. Start with a drawing D for which iD is easy to calculate
(e.g. draw edges in E(G) − E(H) as straight-line segments). Then PEP(D)
is a linear system with |E(G)| · |V (G)| variables and |E(G)| · |E(G)| equations
over GF(2) which can be solved in O(|E(G)|6) time. For another approach via
simultaneous planarity, see the discussion after Corollary 6.39.

Corollary 5.12. Partially embedded planarity can be recognized in polynomial
time.

For the interesting direction in Theorem 5.11, one would like to argue as
follows: if PEP(D) has a solution, then there is an iocr-0 drawing D of G such
that the rotation system of H in D agrees with the rotation system of H, and
every two edges in H cross each other evenly (for adjacent edges this is true
because we do not allowH-edges to move overH-vertices). Lemma 4.4 allows us
to remove crossings between edges of H , without changing the rotation system,
and Theorem 5.6 then gives us an embedding of G. This proof works as long
as H is connected, since in that case the rotation system of H determines the
embedding H. If H consists of multiple components, however, Lemma 4.4 does
not guarantee that the embedding of H it produces is topologically equivalent
to H. It cannot guarantee this, in general, but in the special case of PEP(D) in
which we do not allow edges of H to move over vertices of H , the embedding
does not change. Rather than creating a modified version of Lemma 4.4, we will
prove this directly.

Proof of Theorem 5.11. Let D be as in the statement. If (G,H,H) is planar,
then there is a drawing D′ of (G,H,H) which is planar and which contains H.
We can assume that H is in the same location in both D and D′.

Since the locations of all vertices in V (H) are fixed, the two drawings differ
only in the locations of vertices in V (G) − V (H) and edges in E(G) − E(H).
Let Dt, t ∈ [0, 1] be a sequence of drawings changing continuously from D to
D′ (without changing H).

For two independent edges e and f , the value iDt
(e, f) can only change

parity if one of the edges passes over an endpoint of the other edge, or if an
endpoint of an edge passes over the other edge. For every vertex v ∈ V (G) let
xe,v = 1 if edge e passes over v an odd number of times (as t goes from 0 to 1)
and 0 otherwise. Note that xe,v = 0 if e ∈ E(H) and v ∈ V (H) since neither e
nor v move, and so the xe,v satisfy PEP(D).

We next argue that a solution to PEP(D) gives us a way to turn D into an
iocr-0 drawing of (G,H,H), since then, by Theorem 5.6, (G,H,H) is planar,
and we are done. Starting with D, create a new drawing D′ as follows: for



402 Schaefer, Marcus Toward a Theory of Planarity

every xe,v = 1, where e ∈ E(G) − E(H) and v ∈ V (G), perform an (e, v)-
move. For every xe,v = 1, where e ∈ E(H), add a closed component of e
around v (not containing any other vertices). In this second case, we know
that v ∈ V (G) − V (H), since xe,v = 0 if e ∈ E(H) and v ∈ V (H). We now
have an iocr-0 drawing of G which contains H, except that some edges of H
have additional closed components. We will remove those closed components
using a strategy that is based on the proofs of Lemma 4.3 and Lemma 4.4.
During the redrawing it can happen that a vertex is surrounded by multiple
closed components belonging to the same edge. Since removing an even number
of these closed components does not affect the crossing parity, we can always
assume that each vertex is surrounded by at most one closed component from
each edge.

We make use of a new move which we call a (v, e)-move. A (v, e)-move
requires a simple curve c that connects v to some interior point of e (without
crossing e otherwise) and has at most finitely many crossings with other parts
of the drawing. Then a (v, e)-move along c moves v along c to e and then just
beyond e. Edges incident to v are moved with v in a narrow tunnel surrounding
c. All closed components that surrounded v at its original position are moved
to v’s new location. Let L ⊆ E be the list of edges that v crosses oddly in this
redrawing. For every f ∈ L − E(H) perform an (f, v)-move. For every f ∈
L∩E(H) add a closed component belonging to f around v (and then reduce as
described above, if necessary). A (v, e)-move does not affect the crossing parity
between any pair of edges, since we compensated for any crossings we introduced
while moving v. Moreover, if v was surrounded by a closed component of e, then
after the (v, e)-move, that component will be gone. However, the overall number
of closed components may have increased.

Let F be a maximal spanning forest of H . Suppose some edge f ∈ F has
an associated closed component around vertex v. Perform a (v, f)-move along a
curve c from v to f that avoids F (this is possible, since F is a forest). After this
move, the closed component of f around v will have been removed, and we have
not introduced any new closed components of edges in F (since c avoided F ).
Repeating this procedure, we can ensure that no edge of F has any associated
closed components.

Suppose there is an edge e ∈ E(H) − F which still has associated closed
components. As above, perform (v, e)-moves for every vertex v which is sur-
rounded by a closed component belonging to e. Choose curves cv avoiding F
and e (since F together with the arc-component of e has at most two faces, with
e on the boundary, this is always possible). At the end of all these moves, e
will no longer have any associated closed components, however, we may have
introduced closed components of edges in E(H) − F that are crossed by a cv.
If this happened, however, note that the vertex v now lies in a different face of
F ∪ {e}—recall that e consists of a single arc-component at this point—than
the arc-components of the edges of E(H) − F it passed through. We can then
proceed as follows: Let C be the unique cycle in F ∪ {e}. Edges of C do not
cross each other (or other edges of H), so we can make all edges of C even by
moving the ends of edges in E(G)−E(H) at the rotation of their endpoints in
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C. We then use Lemma 4.1 to remove all crossings with edges in C, resulting in
edges of E(G) − E(H) with closed components. Reconnect closed components
of E(G) − E(H) to their arc-components if this can be done without crossing
C. Any remaining closed components of edges in E(G)−E(H) lie on the other
side of C from their arc-components. The same, as we argued earlier, is true for
those edges in E(H) for which closed components were added during the initial
(v, e)-moves. Hence, we can drop all closed components belonging to edges in
E(G) − E(H) and all closed components added during the (e, v)-moves, with-
out changing the crossing parity between any pair of edges. As a result, we
have reduced the overall number of closed components of the drawing before
performing the (v, e)-moves by at least one.

Repeating this procedure, we can therefor remove all closed components of
edges in E(H) − F , without introducing new closed components. Thus, the
final drawing we obtain is an iocr-0 drawing of (G,H,H) without any closed
components, which is what we needed.

5.5 Combinatorial Complexity

If we know that (G,H,H) is planar, can we say anything about how complex
the drawing of G may have to be—given a natural measure of complexity for
G and H such as the number of bends in a poly-line drawing? In terms of
computational complexity, this problem is hard: Patrignani [60] showed that
if H is a straight-line embedding of H , then it is NP-complete to tell whether
there is a straight-line embedding of G containing H. Since we know that we
can check in polynomial time whether (G,H,H) is planar, this means that even
if (G,H,H) is planar, it is NP-complete to check whether G has a straight-line
drawing extending H. But what happens if we allow a poly-line drawing of
edges in E(G) − E(H)?

The special case in which E(H) = ∅ and vertex locations are given was
solved by Pach and Wenger [59] when they showed that we can find a poly-line
drawing of a planar graph with at most a linear number of bends along each
edge.

Question 5.13. Given a planar PEG (G,H,H) with H a straight-line embed-
ding, is there a poly-line drawing of G containing H that contains at most a
polynomial (linear) number of bends along each edge?

We conjecture that the answer is yes; there is related work by Di Giacomo,
Didimo, Liotta, Meijer, and Wismath [19] if H is a tree and vertices in V (G)−
V (H) have to be chosen from a given set of available locations. The general
problem seems to be open.

It is tempting to conjecture that a greedy algorithm can find a poly-line
embedding of G without too many bends: add edges to the poly-line drawing
one at a time so that the drawing remains planar and the new edge minimizes
some reasonable parameter such as the number of bends. This will not work
for every ordering of edges, an example found by Kratochv́ıl and Matoušek [51]
for string graphs can be adapted to show that adding the edges in a bad order
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can force an exponential number of bends (even if E(H) = ∅). See for example
Dudeney’s Chinese Railway puzzle in Figure 7.

Figure 7: Dudeney’s Chinese Railway Puzzle: Can you route each train to
its depot without any of the tracks crossing? Problem 80 in Dudeney’s “The
Canterbury Puzzles” [22] of 1907.

If we replace the depots by points and lay tracks in the order D, E, B, A, C,
we can solve the problem with 9 bends. On the other hand, if we first connect
C, then there is no solution. If we start with D and A, then B will require 4
bends going back and forth.

Question 5.14. Given a planar (G,H,H) so that H is a straight-line embed-
ding, is there an ordering of the edges in E(G)−E(H) that leads to a poly-line
drawing of G with at most polynomially many bends if we add edges in the
given order to H while minimizing the number of bends along each edge in each
step?

Even the case where E(H) is empty should be of interest. Finding a good
ordering of E(G) − E(H) may be computationally hard.

6 Simultaneous Graph Drawing

A simultaneous drawing (with fixed edges) of two graphs Gi = (V (Gi), E(Gi)),
i ∈ {1, 2}, is a drawing of G1 ∪G2 = (V (G1) ∪ V (G2), E(G1) ∪ E(G2)). It is a
simultaneous embedding (with fixed edges) of the two graphs if the drawings of
G1 and G2 considered by themselves are planar embeddings. In other words, if
any two edges e and f cross in the drawing, we must have e ∈ E(G1)− E(G2)
and f ∈ E(G2) − E(G1) or vice versa.20 We also say (G1, G2) is, or G1 and

20The qualification “with fixed edges” refers to the fact that every edge belonging to both
graphs, a common edge, is represented by a single curve. For a simultaneous embedding
without fixed edges there is no requirement to draw common edges as the same curve. It is
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G2 are, simultaneously planar. We earlier saw the common graph G1 ∩ G2 =
(V (G1)∩V (G2), E(G1)∩E(G2)) of G1 and G2 which will play an in important
role.

Remark 6.1. Simultaneous planarity is often defined for two graphs on the same
vertex set, V (G1) = V (G2), leading to a slightly restricted version of the simultaneous
embeddability problem. For example, if we assume that V (G1) = V (G2) it is known
that simultaneous planarity can be tested for two graphs whose common graph is a
star [4, 43]. If we do not assume that V (G1) = V (G2), then we need to phrase this
result differently, and require that the common graph is a star and contains all vertices
of G1 ∪G2, as we do in item (vi) below.

Simultaneous planarity generalizes to arbitrarily many graphs; we will use
SEFEk to refer to simultaneous planarity of k graphs, and simply SEFE for
the general problem. SEFEk is known to be NP-complete for k ≥ 3 [38]. The
complexity of simultaneous planarity for two graphs remains open, but it is
tempting to conjecture that it is in P. In fact, we will state a (combinatorial)
conjecture later, that implies that simultaneous planarity is inP. Several special
cases have been solved recently. One can test whether (G1, G2) is simultaneously
planar

(i) in linear time if G1 ∩G2 is 2-connected (Haeupler, Jampani, Lubiw [41]),

(ii) in linear time if G1 ∩ G2 consists of disjoint cycles (Bläsius, Rutter [10],
for an arbitrary number of graphs),

(iii) in quadratic time if a rotation system of G1 ∩ G2 is given (Bläsius, Rut-
ter [10]),

(iv) in quadratic time if G1 and G2 are 2-connected, and G1 ∩G2 is connected
(Bläsius, Rutter [11]),

(v) in linear time if G1 is a pseudoforest and G2 is planar (Fowler, Gutwenger,
Jünger, Mutzel, and Schulz [32]),

(vi) in linear time if G1 ∩G2 is a star on all vertices of G1 ∪G2 (Angelini, Di
Battista, Frati, Patrignani, Rutter [4], Hong, Nagamochi [43]).

Results on more than two graphs are rarer, though Angelini, Di Battista, and
Frati showed that we can test in polynomial time whether three embedded
graphs have a simultaneous embedding that respects the original embeddings;
for 14 graphs, the problem is NP-complete [2]. For a survey on simultaneous
planarity, see [9].

We proceed as follows. In Section 6.1 we will see that several well-known
graph drawing problems are special cases of simultaneous planarity, including
some whose complexity status was only resolved recently (partially embedded
planarity) or is still open (the infamous c-planarity problem). We show that

generally agreed that the nomenclature is unfortunate, but it has become standard. Since we
will not discuss the model without fixed edges in this paper, we typically drop “with fixed
edges”.
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there are Hanani-Tutte style theorems for simultaneous planarity in the follow-
ing cases:

• G1 ∩ G2 consists of disjoint 2-connected components and subcubic com-
ponents (Theorem 6.32),

• at least one of G1 or G2 is the disjoint union of subdivisions of 3-connected
graphs (Theorem 6.38).

In particular, there are polynomial-time algorithms for testing simultaneous
planarity in all of these cases (Corollary 6.34, Corollary 6.39). These generalize
the results listed under (i) and (ii) above (without achieving the same running
time).

We also give algebraic characterizations of simultaneous planarity if each
connected component of G1 ∩ G2 has a fixed embedding or a rotation system
of G1 ∩ G2 is given (Corollary 6.31), extending (iii) above. We do not know
whether (iv)–(vi) have a Hanani-Tutte style characterization, though we suspect
they do.

We can apply the results on simultaneous planarity to show a Hanani-Tutte
style result for graphs with a partial rotation system where flipping of rotations
is allowed (Lemma 6.41, Corollary 6.43).

6.1 The Power of Simultaneous Planarity

In this section we investigate the connections between simultaneous planarity
and other notions of planarity, including partially embedded planarity, book em-
beddings, (radial) level planarity, upward planarity, constrained, and (leveled)
c-planarity.

6.1.1 Partially Embedded Planarity

Theorem 6.2. Partially embedded planarity reduces to the SEFE2 problem.

Proof. Suppose we are given (G,H,H), where H ⊆ G and H is an embedding of
H . Let H ′ be an extension of H to a triangulation of the plane (the sphere, to
be more precise—we require the outer face to be a triangle as well). We create
the triangulation so that E(H ′)∩E(G) = E(H), that is, H ′ and G do not have
any edges in common, except the edges of H . This may require adding vertices.
We can also ensure that |V (H ′)| ≥ 4. Then H ′, as a maximal planar graph on
at least 4 vertices, is 3-connected (e.g. [54, Lemma 2.3.3]) and thus has a unique
embedding up to (topological) equivalence by Whitney’s theorem [21, Theorem
4.3.2]. Now H can be extended to an embedding of G if and only if H ′ and G
have a simultaneous embedding with fixed edges (at this point we use that H ′

shares only edges in H with G).

In Theorem 6.38 we will see that this allows us to test for partially embedded
planarity via an SEFE2 algorithm.
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Remark 6.3. Jeĺınek, Kratochv́ıl and Rutter [46] point out that their obstructions
to partially embedded planarity are obstructions for a simultaneous embedding of
(G1, G2) because if H is an embedding of H := G1 ∩G2, then both of (Gi,H,H) need
to be planar.

6.1.2 Book Embeddings

We do not know whether the general 2-page book embedding can be encoded as
a simultaneous planarity problem, even allowing an arbitrary number of graphs,
not to mention k-page book embeddings. However, some special cases can be
treated. In the partitioned book embedding problem every edge is assigned to
a specific page in which it must be drawn. Given a tree T whose leaves are the
vertices of graph G, in a T -coherent book embedding the order of the vertices
along the spine must be a possible ordering of the leaves of T in a facial walk of
a planar embedding of T . The standard book embedding problem is the special
case in which T is a star.

We call a graph H in G1∪G2 spanning if V (H) = V (G1)∪V (G2). Typically,
H will be a connected subgraph of G1 ∩G2 which forces V (G1) = V (G2).

Lemma 6.4 (Angelini, Di Battista, Frati, Patrignani, Rutter [4]). Simultaneous
planarity of two graphs on the same vertex set whose intersection is a connected,
spanning graph is equivalent to the partitioned T -coherent 2-page book embedding
problem.

This is pretty easy to see if the intersection is a spanning tree: the partitioned
T -coherent 2-page book embedding problem is easily seen to be a special case of
this simultaneous planarity problem (with T as the spanning tree, and the two
partitions corresponding to the G1 and G2-only edges). Given the simultaneous
planarity problem, one first ensures that all G1 and G2-only edges occur between
leaves of the tree (by inserting edges into T ). At this point the problem can be
viewed as a 2-page book embedding problem, with T being the tree and edges
partitioned as (E(G1)− E(G2), E(G2)− E(G1)).

Hong and Nagamochi [43] had shown earlier, that the partitioned T -coherent
2-page book embedding problem is solvable in linear time if T is a (spanning)
star, so using Lemma 6.4 yields the following result.

Theorem 6.5 (Angelini, Di Battista, Frati, Patrignani, Rutter [4]; Hong, Nag-
amochi [43]). Simultaneous planarity of two graphs on the same vertex set whose
intersection is a spanning star can be solved in linear time.

As far as we know, it is open whether the result remains true if we drop the
condition that the star be spanning. Hong and Nagamochi [43] also show that
the partitioned T -coherent 2-page book embedding problem is (linear time)
equivalent to c-planarity for a flat clustering with two internal cluster (that
is, one root cluster containing all vertices with two children partitioning the
vertices).21

21A solution to the c-planarity problem for two clusters is also implicit in the work of Biedl,
Kaufmann, and Mutzel [8].
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More recently, Bläsius and Rutter [11] proved that simultaneous planarity of
two 2-connected graphs (not necessarily on the same vertex set) whose intersec-
tion is connected can be tested in quadratic time. Lemma 6.4 now immediately
implies the following corollary, which can also be proved directly using PQ-
trees [45, Theorem 4.2]

Corollary 6.6. The partitioned T -coherent 2-page book embedding problem can
be solved in quadratic time if the graphs assigned to each page are connected.

A Hanani-Tutte style characterization of the partitioned T -coherent 2-page
book embedding problem would be implied by Conjecture 6.33. For the special
case that T is a binary tree, and thus subcubic, Theorem 6.32 can be used to
get a Hanani-Tutte style characterization (and a polynomial-time algorithm),
even if the partitions are not connected. Polynomial-time solvability in general
remains open if at least one of the partitions is not connected.

Can we say anything about T -coherent k-page book embeddings, where k >
2? Returning to the proof sketch of Lemma 6.4 we see that it easily extends
to the case of arbitrarily many graphs: partitioned T -coherent k-page book
embeddability is equivalent to the sunflower case of SEFEk, where the common
graph is a spanning tree. It has been conjectured that the general sunflower case
is in polynomial time—see Remark 6.25—but it turns out that a much more
restricted problem is sufficient to capture T -coherent book embeddings.

Lemma 6.7. The partitioned T -coherent (k-page) book embedding problem re-
duces to the sunflower case of the SEFE3 problem where the common graph is
a (maximal) spanning forest.

To simplify the construction in the following proof we will use the color
model of simultaneous planarity to describe multiple graphs: We construct a
single graph G in which every edge can have multiple colors (corresponding to
the graphs Gi it belongs to). In this model a simultaneous drawing of G is a
drawing of G in which no two edges that cross have a color in common.

Proof of Lemma 6.7. Take two copies T1 and T2 of T , and connect each vertex
in T1 to its corresponding vertex in T2 by an edge. In any embedding of the
resulting graph, the embeddings of T1 and T2 are mirrors of each other: if T1

has rotation ρ at vertex v, then the rotation at T2’s copy of v is the same as
ρ, just flipped. Using this observation, we can construct an SEFE problem on
three graphs; we will think of the three graphs as the red, green, and blue graph.
Edges that share a color may not cross in a simultaneous embedding. Take four
copies T1, T2, T3, T4 of T , all edges of these graphs are simultaneously red,
green, and blue. Connect T1 to T2 as described above using red edges, and
T1 to T3 using green edges, and T1 to T4 using blue edges. Let the resulting
graph be G. In any simultaneous embedding of G, T2, T3 and T4 are embedded
the same way. Now take k copies G1, . . . , Gk of G and identify T4 in Gi with
T2 in Gi+1, 1 ≤ i < k. We can find an embedding of the resulting graph
F , since edges leaving T4 are blue, while edges leaving T2 are red. All T3 are
embedded the same way, and all edges leaving a copy of T3 are green. Since
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the book embedding is partitioned, we can assign one copy of T3 to each page,
coloring the edges in each page red (blue would also work). This final graph
has an SEFE3 embedding if and only if the original book embedding problem
is solvable.

Can the construction be improved to yield an SEFE2 problem? If there were
such a reduction which depends polynomially on the number of pages k (like
the reduction in Lemma 6.7), then SEFE2 would be NP-complete, since the
partitioned book embedding problem is NP-complete [45].

6.1.3 Level and Radial Level Planarity

We claimed earlier that there is a Hanani-Tutte theorem for level planarity
implicit in [34]. For the sake of completeness, we include a proof.

Theorem 6.8 (Fulek, Pelsmajer, Schaefer, Štefankovič [34]). Let G be a leveled
graph with leveling ℓ. Then (G, ℓ) is level planar if and only if there is an iocr-0,
leveled drawing of (G, ℓ).

Proof. Let D be an iocr-0, leveled drawing of (G, ℓ). We use the reduction
from [34]: “Perturb all vertices slightly, so that no two vertices are at the same
level. If there is a vertex whose left or right rotation is empty, insert a new
edge and vertex on its empty side so that the edges extend slightly beyond all
the perturbed vertices from the same level.” Call the resulting graph G′ and
its drawing D′. Then D′ is an iocr-0 drawing of G′, and it is x-monotone, since
no two vertices lie on the same vertical line. By the Hanani-Tutte theorem for
x-monotone drawings [Theorem 3.1][34], G′ has an x-monotone embedding with
the same vertex locations. Because of the edges we added to G, we can undo the
perturbations of the vertices at the same level to obtain a leveled embedding of
(G, ℓ).

The proof of the Hanani-Tutte theorem for x-monotone drawings is direct,
that is, it does not use obstruction sets; the problem of determining the ob-
struction set for level planarity is still open. The theorem makes it tempting
to conjecture that there is a Hanani-Tutte theorem for radial level planarity as
well. We have to leave that question open.

Theorem 6.9. Level planarity reduces to the SEFE2 problem.

For the proof we will make use of a gadget that allows us to make sure
edges pass a particular level only once and cannot double-back. We call it
the gate gadget, Γk; it is shown in Figure 8(a). Assume that all the ui and
vi, 1 ≤ i ≤ k, lie within the outer dashed circle (we have to enforce that in
upcoming constructions). The vertices u1, . . . uk may attach to u in any order,
but that order is the same (from left to right) in which v1, . . . , vk attach to v: the
reason is that we have k parallel paths uuiviv (enclosed by the dashed circle).
Figure 8(b) shows one way of using the gadget: the three edges entering the
gadget from the left are in the same order as the corresponding edges leaving it
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to the right. If we restrict the drawing to the solid edges, and move u and v to
the center of the middle solid edge (Figure 8(c)), delete u/v and separate the
edges from the left and right into three separate edges, this gives us a drawing
in which those edges cross the middle edge exactly once (Figure 8(d)).

v

u

u1 u2 uk

v1 v2 vk

· · ·

· · ·

(a) (b)

(c) (d)

Figure 8: (a) The gate gadget Γk for k vertices. Edges of G1 are solid, edges of
G2 dashed. (b) Using Γ3 to align three edges. (c) Redrawing example from (b)
by moving u and v together. (d) Separating edges.

A leveled graph (G, ℓ) is proper if edges occur between neighboring levels
only; (G, ℓ) is also called a proper level graph. For a given leveled graph (G, ℓ)
we can easily construct a proper level graph (G′, ℓ) so that (G, ℓ) is level planar
if and only if (G′, ℓ) is: simply introduce dummy vertices into edges that pass a
level (this may make the number of vertices of the graph increase quadratically).
Note that for proper level graph the requirement that edges are x-monotone is
unnecessary, since edges cannot change order between levels, so they can be
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straightened out (e.g. by connecting the endpoints of the edge directly). This
is not generally true for leveled graphs, where edges could double-back if they
were not required to be monotone.

Proof of Theorem 6.9. As we explained, we can assume that (G, ℓ) is proper.
Let Vi be the vertices at level i. Create a gate gadget Γ|Vi| for the vertices at
level i, call it Γi. We chain the gadgets as follows: Identify the right G2-edge
(and its endvertices) on the outer face of Γi with the left G2-edge on the outer
face of Γi+1. Make the left edge of the left-most gadget, and the right edge of
the right-most gadget belong to G1 ∩G2; this creates a cycle of G1 ∩ G2-edges
surrounding the gadget; to ensure that all edges lie on the same side of the
cycle, add a new vertex z and connect it by G1 ∩ G2-edges to every vertex on
the cycle. For every edge xy with ℓ(x) = i and ℓ(y) = i+1 add an edge between
vix, associated with x in Γi and ui+1

y , associated with y in Γi+1.
It is easy to see that if (G, ℓ) is level planar, then (G1, G2) is simultaneously

planar. For the reverse direction, observe that G “nearly” occurs as a subdi-
vision of the simultaneous drawing of (G1, G2). There is only one problem: as
we go from the left copy of a vertex to the right copy of a vertex within the
gate gadget (along the solid edges, not the dashed edges), all these paths pass
through the same common path (connecting the u and v vertices within the
gadget). However, since the gadget was built so that the vertices on the left
occur in the same order as the vertices on the right, we can replace the common
path by parallel (non-crossing paths) as we saw in Figure 8(b)–(d).

For an example of the reduction described in the proof, see the leveled graph
(G, ℓ) in Figure 9. Figure 10 shows the result of applying the reduction.

Figure 9: A proper level graph (with three levels).

We saw that level planarity of a leveled graph (G, ℓ) can be generalized by
restricting the ordering of the vertices at each level by a family T of trees Ti so
that the leaves of Ti are exactly the vertices at level i in (G, ℓ). In a T -coherent
embedding, the ordering of the vertices at each level must correspond to an
ordering of the leaves of Ti. We called (G, ℓ, T ) a generalized k-ary tanglegram
and said it is embeddable if (G, ℓ) has a T -coherent embedding.

Level planarity then becomes the special case where each Ti is a star whose
leaves are the vertices v with ℓ(v) = i. What happens in the reduction of
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Figure 10: The graph from Figure 9 after applying the reduction in Theorem 6.9
(without the vertex z).

Theorem 6.9 if we replace the star with center u and leaves u1, . . . , uk in a gate
gadget Γk with a tree Ti by choosing u to be an arbitrary vertex of Ti and
identifying the u1, . . . , uk with the leaves of Ti? Then the ordering of the ui

(and thus the vi) will be forced to be consistent with a facial walk of Ti. (Note
that it does not matter which vertex we choose as u, since every vertex in a
tree is on the outer face.) This means that we can modify the reduction in
Theorem 6.9 to establish the following result:

Corollary 6.10. Let (G, ℓ, T ) a generalized k-ary tanglegram. Deciding T -
coherent level planarity reduces to the SEFE2 problem.

The complexity of deciding the embeddability of a generalized k-ary tangle-
gram is open, but it is known to be solvable in quadratic time if the number of
vertices at each level is bounded by a fixed k [75]. We can deal with another
special case: if T consists of rooted binary trees only, the reduction in Corol-
lary 6.10 yields two graphs (G1, G2) for which G1 ∩G2 is nearly subcubic: only
the vertices wO of the region gadget have degree higher than 3. We can easily
remedy this by creating two new vertices connected to wO, one connected to
the two edges leading to the top of the gadget, and the other to the two edges
leading to the bottom corners of the gadget, making G1 ∩ G2 subcubic. By
Corollary 6.34, this SEFE2 problem can be solved in polynomial time.

Corollary 6.11. Let (G, ℓ, T ) a generalized k-ary tanglegram so that all trees
in T are rooted binary trees. Then we can test T -coherent level planarity of
(G, ℓ) in polynomial time.

Level planarity is a special case of radial level planarity.

Lemma 6.12. Level planarity reduces to radial level planarity.
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Proof. Let (G, ℓ) be a leveled graphs with levels in the range 1, . . . , n. Extend
to a new leveled graph (G′, ℓ′) by adding an edge between two new vertices, one
at level 0 and the other at level n+ 1. Then (G, ℓ) is level planar if and only if
(G′, ℓ′) is radial level planar.

The construction from Theorem 6.9 can be modified to capture radial level
planarity. The difference is that in radial level planarity edges between levels lie
in an annulus, not in a disk. Figure 11 shows how to connect (parts of) two gate
gadgets so the edges between levels can lie in an annulus. This modification
is sufficient to show Corollary 6.13. In Section 6.1.6 we will see that radial
level planarity (and thus level planarity, by Lemma 6.12) can be reduced to
c-planarity. That is a stronger result, since c-planarity reduces to the SEFE2

problem (Theorem 6.17).

v

u

u1 u2 u3

v1 v2 v3

Figure 11: Adding an annulus between two gate gadgets.

Corollary 6.13. Radial level planarity reduces to the SEFE2 problem.

Proof. Given a proper level graph (G, ℓ) construct (G1, G2) just as in Theo-
rem 6.9 with two differences: do not create the vertex z and instead of iden-
tifying the right G2-edge of Γi with the left G2-edge of Γi+1 insert a tunnel
with sides consisting of G1 ∩G2-edges and ends made of G2-edges, as shown in
Figure 11. The tunnels realizing the annuli can all be realized in parallel, so it
is easy to see that if (G, ℓ) is radial level planar, then (G1, G2) is simultaneously
planar.

If (G1, G2) is simultaneously planar, we proceed similarly as in Theorem 6.9
to build a drawing of (G, ℓ) in which vertices lie on concentric circles around
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a common center. The edges between levels need not be radially monotone,
but since (G, ℓ) is proper we can redraw them so that they are (applying Dehn
twists to the annulus if necessary22, we can assume that at least one edge does
not wind around the inner circle it attaches to; we can then make it radially
monotone; at this point the remaining edges lie in a plane, and we can redraw
them so they become radially monotone). This gives us a radial planar drawing
of (G, ℓ).

6.1.4 Upward Planarity

In upward planarity, we are given a directed acyclic graph (dag) G and are
asked whether there is an x-monotone drawing of G (every edge crosses every
vertical line at most once) that respects the implicit ordering of G, that is, for
uv ∈ E(G) we require that x(u) < x(v) in an upward planar drawing of G,
where x(u) is the x-coordinate of the vertex u in the drawing.

To the extent that we believe that SEFE2 is polynomial-time solvable (as
would be implied by Conjecture 6.20, for example), it is unlikely that upward
planarity reduces to the SEFE2 problem since upward planarity testing is NP-
complete. However, upward planarity does reduce to the SEFE problem. To
simplify the language in the following proof, we switch to the color model for
simultaneous graphs.

Theorem 6.14. Upward planarity reduces to the SEFE problem.

Proof. Let G be a dag. Create a wheel W4 with center xc and four vertices
xw, xn, xe, xs on all colors needed for the construction. For each v ∈ V (G)
add a black path xnvxs. Give each edge uv ∈ E(G) its own color cuv, and add
that color cuv to both paths xnuxs and xnvxs. Moreover, add a path xwuvxe

in color cuv. See Figure 12 for an example. Suppose the resulting graph has
a simultaneous embedding. We can assume that xc lies on the outside of the
wheel cycle. Since the paths xnvxs are all black, they force a linear ordering of
the vertices v ∈ V (G) inside the wheel. Moreover, the paths xwuvxe force u to
occur before v in that linear ordering, since the edges of this path cannot cross
xnuxs or xnvxs. The xnvxs paths have the same order at xn and yn, so we can
separate their endpoints turning them into |V (G)| parallel paths xv

nvx
v
s , each

drawn as a line segment. An edge uv occurs between xu
nux

u
s and xv

nvx
v
s (since

it cannot cross either), and u is to the left of v. This gives us a drawing of G
in which every edge is x-bounded: x(u) < x(p) < x(v) for every point p on uv.
By Corollary 2.7 in [34], the graph has an x-monotone embedding, which is an
upward planar embedding of G.

The proof uses |E(G)|+1 colors to encode a dagG. Are three colors sufficient
to encode upward planarity?

22To perform a Dehn twist, take an essential curve in the annulus (a circle around the hole),
cut the annulus at the circle, and give one of the parts a full twist close to the circle, so that
after the twist, curves reconnect. This changes, for each curve, the number of times it winds
around the inner hole of the annulus. See [70] for a more rigorous definition.
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xw

xe

xn

xs

xcu v w

Figure 12: Construction for Theorem 6.14 if G is a directed path uvw. The
color cuv is represented by dotted lines, cvw by dashed lines, and black by thin
black lines. Thick black lines are edges having all colors.

6.1.5 Constrained Planarity

We already discussed various models of constrained planarity earlier, here we
will follow the embedding constraint model suggested by Gutwenger, Klein, and
Mutzel [40], since it seems to be the most general one. A partial embedding
constraint at a vertex v is a rooted and ordered tree Tv whose inner nodes are
of three types: gc-nodes, whose children may have arbitrary order, oc-nodes,
whose children have a fixed (clockwise) order, and mc-nodes whose children
either have the given order, or the reverse (mirror) of that order. The leaves of
the tree are a subset of the edges incident to v. A partial embedding constraint
describes admissible orderings at v by the possible orderings of leaves of the
tree T around its root. If the subset of edges ordered by a partial embedding
constraint includes all edges incident to v, we speak of a (total) embedding
constraint. A graph with a collection of partial embedding constraints is ec-
planar with free edges or pec-planar if it has an embedding in which the rotation
at each vertex satisfies the partial embedding constraint. If all embeddings
constraints are total, we simply say the graph is ec-planar.23 The following
result follows from work in Gutwenger, Klein, and Mutzel [40], but predates the
formal notion of partially embedded planarity.

Theorem 6.15. ec-planarity reduces to partially embedded planarity.

Gutwenger, Klein, and Mutzel [40] showed that ec-planarity can be solved in

23Gutwenger, Klein, and Mutzel [40] only mention the possibility of partial embedding
constraints in passing, speaking of allowing “free edges”.
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linear time, Theorem 6.15 combined with the linear-time algorithm for partially
embedded planarity [3] gives a new proof of this result.

The theorem follows from a construction described in [40]. We will only
review that construction very cursorily, assuming that the reader is familiar
with the ec-expansion as described in that paper.

Theorem 6.15. Suppose we are given a graph G together with a collection of
embedding constraints Tv, v ∈ V (G) (we can model the absence of an em-
bedding constraint using a gc-node). For each tree Tv construct a gadget Sv

in [40] roughly as follows: gc-nodes remain nodes, oc-nodes and mc-nodes with
k children turn into a wheel W2k with a cycle on 2k vertices, with alternating
vertices becoming endpoints of the edges incident to the original node. The
last level of the gadget consists of leaves representing the edges incident to v.
From G and the embedding constraint, we construct a new graph G′, the ec-
expansion, by taking all gadgets Sv and identifying leaves representing the same
edge (there will be at most two such leaves of course). Then G is ec-planar if
and only if G′ has a planar embedding in which the wheels corresponding to
oc-nodes are embedded with the right orientation. The reason is that we can
find an ec-planar embedding of G as a subdivision of G′: v is the root of Sv, and
edges correspond to paths through Sv. The condition on oc-nodes ensures that
their children occur on the right order, and for mc-nodes the children are either
in the correct or in the reverse order, based on whether the wheel flips (and
whether the inner node of the wheel is inside or outside its cycle).24 We can
easily enforce the condition on the wheels corresponding to oc-nodes by using
partially embedded planarity: let H be the subgraph of G′ consisting of all the
wheels corresponding to og-nodes, and fix an embedding H of H in which all
wheels have the right orientation. Then G is ec-planar if and only if (G′, H,H)
is planar.

This construction does not easily seem to accommodate the presence of free
edges, however, this can be done if we relax partially embedded planarity to
SEFE.

Theorem 6.16. ec-planarity with free edges reduces to the SEFE2 problem.

Proof. We are given a graphG and a collection of partial embedding constraints,
Tw, w ∈ V (G). We need to construct a pair of graphs (G1, G2) such that G is
ec-planar (with free edges) if and only if (G1, G2) is simultaneously planar. We
start with G1 and G2 being the empty graph. Construct the gadget Sw from
Tw as in the proof of Theorem 6.15 and make it part of G1. As in the proof
of Theorem 6.15, each leaf of Sw corresponds to an edge incident to w. If the
embedding constraint at w is total, we are done with Sw. If there are free edges
at w, we proceed as follows: take a copy of the gate gadget Γk, as shown in
Figure 8, where k is the number of edges at w whose rotation is constrained

24Gutwenger, Klein, and Mutzel [40, Section 4.2] impose additional restrictions on the
embedding of the ec-expansion, but those are not actually necessary to extract an ec-planar
drawing of G.
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by Tw. Modify the gadget by making the top two G1 ∩ G2-edges part of a C3,
and do the same for the bottom two G1 ∩G2 edges. Add G1-edges between the
leaves of Sw and the ui vertices of Γk. Create a new vertex we for each edge e
incident to w. If e is free, then connect we to v via a G1-edge. If e is constrained,
then connect it to the vi corresponding to the ui that was connected with the
vertex belonging to e in Sw, using a G1-edge. This new gadget, call it Sw

again, now has vertices we associated with edge e incident to w. After we have
created gadgets Sw for all w ∈ V (G), we identify the two vertices in Sw and Sw′

corresponding to edge ww′ ∈ E(G). Finally, make all wheels belonging to oc-
nodes part of G1 ∩G2. To ensure that all wheels have the same orientation, we
connect them by 3-connected pieces, two at a time, until they are all connected.
This completes the construction of (G1, G2). We claim that G is ec-planar with
free edges if and only if (G1, G2) is simultaneously planar.

An ec-planar embedding of G easily leads to a simultaneously planar em-
bedding of (G1, G2), the 3-connected G2 pieces connecting the oc-nodes do not
hinder the G1 edges. In the other direction, observe that for each gate gadget,
the uui and vvi edges lie in the same G2 face formed by the C8 of G2 surround-
ing the gadget (that is why we added the two C3s). This forces the rotation of
the uui at u to be a mirror of the vvi at v which means that the gate gadget
orders the constrained edges correctly, and allows the free edges to occur at any
point in the rotation.

We do not know the complexity of testing ec-planarity with free edges;
Bläsius and Rutter [11] showed that the special case in which G is 2-connected
and there are no oc-nodes, can be solved in linear time (they call this problem
partially constrained PQ-planarity, their approach can probably be extended
to also allow oc-nodes). Corollary 5.10 showed that the problem reduces to
partially embedded planarity if each embedding constraint consists of a single
oc-node, but allows free edges, and Corollary 6.43 shows that the problem can be
solved in polynomial time if we allow partial embedding constraints consisting
of single oc-nodes or single mc-nodes.

6.1.6 Clustered Planarity

Planarity of clustered graphs entered the graph drawing literature in papers by
Feng, Cohen and Eades [29, 28] under the name c-planarity.25 We base the
following definition on the one given by Cortese and Di Battista in their very
readable survey paper [18].

A clustered graph is a graph G = (V,E) together with a rooted tree T whose
leaves are the vertices of G. Every internal vertex ν of T corresponds to the
cluster V (ν), the set of vertices of G occurring as leaves in the subtree of T
rooted at ν. Let G(ν) be the subgraph of G induced on V (ν) (not necessarily
connected). A drawing of a clustered graph (G, T ) is a drawing of G together
with a simple closed region R(ν) for each internal vertex ν or T so that: G(ν)

25Feng’s thesis [27] makes it clear that c-planarity was meant to abbreviate compound
planarity, but it has generally been taken to mean clustered planarity.
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is drawn inside R(ν) and R(ν) ⊆ R(µ) if and only if ν is a descendant of µ in T .
Regions which are not contained within each other are required to be disjoint.
We say an edge e is incident to ν if e has one endpoint in V (ν) and the other
in V − V (ν). An edge-region crossing occurs if an edge e that is not incident to
ν crosses the boundary of R(ν) or if an edge e that is incident to ν crosses the
boundary of R(ν) more than once. A drawing of a clustered graph is c-planar
if it contains no edge crossings and no edge-region crossings.

Theorem 6.17. c-planarity reduces to the SEFE2 problem.

Proof. Suppose we are given a clustered graph (G, T ); without loss of generality,
we can assume that for every v ∈ V (G) there is a vertex ν of T so that V (ν) =
{v} (each vertex is contained in its own cluster). We have to create two graphs
G1 andG2 so that (G, T ) is c-planar if and only if G1 andG2 have a simultaneous
embedding with fixed edges. We will use G1 to ensure a planar drawing of G
and both G1 and G2 to enforce the clustering constraints. We start by letting
G1 = G (this will change during the construction).

For every cluster V (ν), where ν is an interior vertex of T , we split all edges of
G1 incident to ν into two halves. We then add the region gadget Cν as shown in
Figure 13 and connect the severed ends to corresponding vertices in the gadget
(if one end is connected to ui, the other end is connected to vi). Note that Cν

contributes edges to both G1 and G2. If µ is a direct descendant (child) of ν in
T we add a G2-edge from the inner hook in Cν to the outer hook in Cµ. If µ is
a leaf of T , so V (ν) consists of a single vertex, we add a G2-edge from u1 to wI .

wO wI

v

u

⊗

⊗

⊗
u1 u2 uk

v1 v2 vk
⊗

⊗

⊗

· · ·

· · ·

...
...

ℓ rm

Figure 13: The region gadget Cν drawn in the case that ν is incident to k edges.
G1-edges are solid, G2-edges are dashed. The connector half-edges terminate in
a ⊗. The inner hook is wI , the outer hook wO. The drawings of any gadgets
Cµ belonging to a descendant µ of ν are forced to lie in the triangle in the gray
region. We will define Rν to be the gray area of Cν .
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If (G, T ) is c-planar, then G1 and G2 have a simultaneous embedding with
fixed edges, indeed, we can construct such an embedding in parallel to how we
constructed G1 and G2 from (G, T ). For the reverse direction, we let Rν be the
gray area of Cν ; let Sν be the triangular (gray) subarea of Rν . First note that
every vertex of V (ν) lies in Sν ⊂ Rν : since every vertex was enclosed in its own
region, there is a path from each vertex u ∈ V (ν) to wI consisting of G2 and
G1 ∩G2-edges only (since we hooked up the region gadgets via G2-edges). But
a path of G2-edges cannot cross the boundaries of Sν , so v has to lie inside that
triangle. From G1 we can recover an embedding of G as we did with the gate
gadget (Figure 8(b)–(d)): we move u and v together into the center of the black
G1-edge between them and split the vertices into parallel edges, reconnecting
the original ends. This is possible, since the gate gadget as part of the region
gadget enforces that the ordering of the ui is the same as of the vi.

We return briefly to radial level planarity; we saw earlier that it is a special
case of the SEFE2 problem, but we already mentioned that something stronger
is true.

Lemma 6.18. Radial level planarity reduces to c-planarity.

Proof. Let (G, ℓ) be a leveled graph. We can assume that at every level there
is either a single vertex, or all vertices at the level are adjacent to vertices at
both lower and higher levels: Suppose there is a vertex u at some level n which
is not adjacent to any vertex at a lower (or higher) level. Insert a new level
between n− 1 (or n+ 1) and n, and add a new vertex v to that level together
with the edge uv. Clearly, the new graph is radial level planar if and only
if the original graph is. Repeating this construction shows that we can make
the claimed assumption on (G, ℓ). We can now go further and remove levels
with multiple vertices; suppose some level n contains more than one vertex. By
assumption all these vertices are adjacent to vertices at both lower and higher
levels. Perturb all vertices at that level slightly, creating a new level for each,
close to n. The resulting graph is radial level planar if and only if the original
graph is; to see that we can go from a radial level embedding of the new graph
to a radial level embedding of the original graph observe that we can undo the
perturbations: we can move a vertex to the same level as another vertex from
the same original level by moving it along one of the edges incident to it (this
is why we made these vertices adjacent to vertices at higher and lower levels).

We now have a leveled graph (G, ℓ) with exactly one vertex at each of the
levels 1, . . . , n = |V (G)|. We create a clustering of the vertices of G so that the
regions satisfy Ri−1 ⊆ Ri and Ri − Ri−1 contains the unique vertex at level i,
where i = 1, . . . , n− 1. Then (G, ℓ) is radial level planar if and only if G with
this clustering is c-planar. The forward direction is immediate, for the reverse
direction we use the fact that there is at most one vertex per level; this ensures
that we can make the drawings of edges radial monotone.

Remark 6.19. Given a graph G equipped with both a leveling ℓ : V (G) → N and
a clustering T , Forster and Bachmaier [30, 31] asked whether the graph is clustered
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level planar (cl-planar): is there a level planar drawing of the graph which is also c-
planar, and in which every region corresponding to a cluster intersects every horizontal
line corresponding to a level in an interval (regions cannot have gaps at any level).
The cl-planarity problem reduces to the SEFE2 problem as long as (G,T ) is level-
connected, that is, every cluster contains an edge between any two consecutive levels
at which the cluster is present. We do not include the details here, but the construction
is a reasonably straightforward modification of gadgets we have already seen. Level-
connectedness can be simulated using an additional color, so cl-planarity reduces to the
SEFE3 problem via a natural reduction (again the details are straightforward). This
leaves open the question whether cl-planarity reduces to the SEFE2 problem without
the assumption of level-connectedness. Or may cl-planarity be NP-complete?

6.2 Simultaneous Planarity and Hanani-Tutte

For a simultaneous drawing D of (G1, G2), we let D[Gi] be the drawing D
restricted to the vertices and edges in Gi. The simultaneous crossing number,
scr(G1, G2), as the minimum of cr(D[G1]) + cr(D[G2]) over all simultaneous
drawings D of G1 and G2 as introduced by Chimani, Jünger and Schulz [14].
So scr(G1, G2) = 0 if and only if (G1, G2) is simultaneously planar.

Similarly, we define socr(G1, G2), the simultaneous odd crossing number as
the minimum of ocr(D[G1])+ocr(D[G2]) over all simultaneous drawingsD of G1

and G2 and siocr(G1, G2), the simultaneous independent odd crossing number
as the minimum of iocr(D[G1])+ iocr(D[G2]) over all simultaneous drawings D
of G1 and G2. We say a simultaneous drawing D of G1 and G2 is siocr-0 if
iocr(D[G1]) + iocr(D[G2]) = 0. In that case we will speak of an siocr-0 drawing
(dropping “simultaneous”).

We start with Section 6.2.1 conjecturing a strong Hanani-Tutte theorem
for simultaneous planarity, following by the short Section 6.2.2 establishing the
weak Hanani-Tutte theorem for simultaneous planarity. Both sections require
some specialized redrawing tools for simultaneous drawings, which are collected
in Section 6.2.3.

6.2.1 Strong Hanani-Tutte for Simultaneous Planarity?

We conjecture that a strong Hanani-Tutte result for simultaneous embeddability
of two graphs holds.

Conjecture 6.20. If siocr(G1, G2) = 0, then scr(G1, G2) = 0.

Remark 6.21. We have stated the conjecture in its most striking form, but some
of the redrawing results we will see in Section 6.2.3 show that we can weaken the
conjecture. By Lemma 6.30 below we can assume that G1 and G2 are connected, and
by Lemma 6.29 it is sufficient to find an siocr-0 drawing in which edges of the the
common graph G1 ∩G2 cross each other evenly.

If the conjecture were true, then simultaneous planarity could be tested in
polynomial time, since siocr(G1, G2) can be encoded as a linear system as fol-
lows: Given a simultaneous drawingD of (G1, G2) consider the system SEFE(D)
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of equations over GF(2). As usual, let iD(e, f) denote the number of times e and
f cross in D. We have variables xe,v for every e ∈ E(G1 ∪ G2) and v ∈ V (G).
For every pair (e, f) of independent edges so that e, f ∈ E(G1) or e, f ∈ E(G2)
we require that iD(e, f) + xe,h(f) + xe,t(f) + xf,h(e) + xf,t(e) = 0 mod 2.

Lemma 6.22. Let D be a simultaneous drawing of (G1, G2). Then SEFE(D)
is solvable if and only if siocr(G1, G2) = 0.

Proof. Fix D. Assume SEFE(D) is solvable. For each xe,v = 1 perform an
(e, v)-move. Let the resulting drawing be D′. For any pair of edges (e, f) we
have iD′(e, f) = iD(e, f) + xe,h(f) + xe,t(f) + xf,h(e) + xf,t(e). If (e, f) is a pair
of independent edges with e, f ∈ E(G1) or e, f ∈ E(G2), then the last term is
0, so we have iD′(e, f) = 0 for these edges, proving that siocr(G1, G2) = 0. The
other direction is a straightforward adaptation of the proof of Lemma 3.3.

Corollary 6.23. If Conjecture 6.20 is true, then simultaneous planarity of two
graphs can be decided in polynomial time.

Conjecture 6.20 is specifically about simultaneous drawings, but one can
bring the problem back to drawings of single graphs. Recall that Conjecture 1.2
requires that if G has a subgraph H which is not involved in independent odd
crossings with edges of G, then G can be redrawn so that edges of H do not
cross each other, and no new pairs of independent edges crossing oddly are
introduced.

Lemma 6.24. If Conjecture 1.2 is true, then so is Conjecture 6.20.

The proof uses Lemma 6.28 from Section 6.2.3 below.

Proof. Suppose siocr(G1, G2) = 0 and let H = G1∩G2 and G = G1∪G2. Then
G and H fulfill the assumptions of Conjecture 1.2, so if that conjecture is true,
we can find a drawing of G in which edges of H no longer cross each other,
and there are no new pairs of edges crossing oddly. In other words, an siocr-0
drawing of G1 and G2 containing an embedding of H (if considered by itself).
By Lemma 6.28 there is a simultaneous embedding of G1 and G2, establishing
the (conditional) truth of Conjecture 6.20.

Remark 6.25 (Multiple Graphs). We already know that a näıve generalization of
Conjecture 6.20 to more than 2 graphs fails, recall the example in Figure 1. Can we
identify special cases where the multiple graph version is true? One candidate is the
sunflower scenario in which k graphs G1, . . . , Gk all share the same common graph H ,
that is H = Gi∩Gj for all 1 ≤ i < j ≤ k (we do not require that V (Gi) = V (H)). Hae-
upler, Jampani, and Lubiw [41] conjecture that this case is polynomial-time solvable.
This would be implied by Conjecture 1.2, using an argument similar to the one made
in Lemma 6.24; it is not clear that Conjecture 6.20 would be strong enough to settle
the sunflower case. By Lemma 6.7 polynomial-time solvability of the sunflower case
for three graphs implies polynomial-time solvability of the partitioned (T -coherent)
k-page book embedding problem for any k. Theorem 6.32 and Corollary 6.34 below
can easily be extended to the sunflower case.
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The truth of Conjecture 6.20 would establish SEFE2 as a benevolent in-
carnation of the weak realizability problem, and an important one, since, just
like weak realizability it is powerful enough to encode many other graph draw-
ing problems. The conjecture is open, but we settle some special cases in the
following sections.

6.2.2 Weak Hanani-Tutte for Simultaneous Planarity

Establishing a weak Hanani-Tutte theorem for simultaneous drawings is quite
easy; unfortunately, it does not give us any algorithmic handle on the SEFE2

problem. We first deal with the trivial case that G1 and G2 have no edges in
common.

Lemma 6.26. If socr(G1, G2) = 0 and E(G1)∩E(G2) = ∅, then scr(G1, G2) =
0 and this can be realized without changing the rotation system of the drawing.

Proof. Fix a drawing D realizing socr(G1, G2) = 0. This drawing also witnesses
ocr(G1) = 0 and ocr(G2) = 0, so by Lemma 4.2 both G1 and G2 have embed-
dings with their original rotation systems. If we choose embeddings for which
the vertex locations and the ends of edges in G1 and G2 are as in the original
drawing D, then we obtain a drawing witnessing scr(G1, G2) = 0.

The following result is the weak Hanani-Tutte theorem for simultaneous
planarity. We do not know whether it is true for arbitrary surfaces, since it
relies on Lemma 4.2 which fails for surfaces of higher genus [64, Example 5.3].

Theorem 6.27. If socr(G1, G2) = 0, then scr(G1, G2) = 0.

Proof. Fix a simultaneous drawing of G1 and G2 realizing socr(G1, G2) = 0.
Then all edges in E(G1) ∩ E(G2) are even, so we can apply Lemma 4.2 to
redraw G1 ∪G2 so that no edge in E(G1) ∩E(G2) is involved in any crossings,
and any two edges that cross oddly in the new drawing already crossed oddly
in the original drawing (so there must be one edge from each of G1 and G2).
Take a maximal spanning forest F of E(G1) ∩ E(G2) and contract the edges
in F (keeping track of the rotation system by merging the rotations of the
vertices that are identified). If the resulting graph still contains edges of E(G1)∩
E(G2), they must be loops; pick such a loop and split the drawing into two
parts: the drawing within the loop and the drawing outside the loop; recursively
redraw each part without changing the rotation system and so that each part
is simultaneously planar, then recombine the two embeddings and add back
the loop. In the base case, there are no edges of E(G1) ∩ E(G2) left, and
we can apply Lemma 6.26 to find a simultaneous embedding of the graphs
without changing the rotation system. We can then uncontract the edges of F
without introducing crossings (since we kept the rotation system), obtaining a
simultaneous embedding of G1 and G2.

The gap between Theorem 6.27 about socr and Conjecture 6.20 seems quite
formidable; we start exploring some of that ground in the next few sections.
Before we do so, we create some tools for that exploration.
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6.2.3 Redrawing Tools for Simultaneous Drawings

We first establish two simple redrawing results for the cases that the common
graph G1 ∩G2 of two graphs G1, G2 is drawn so that no two of its edges cross
each other, Lemma 6.28, or every two of its edges cross evenly, Lemma 6.29.
The final redrawing tool, Lemma 6.30 explains why we can assume that G1 and
G2 are connected when asking whether siocr(G1, G2) = 0.

Lemma 6.28. If there is an siocr-0 drawing of G1 and G2 in which no two
edges belonging to G1 ∩ G2 cross each other, then scr(G1, G2) = 0 and there is
a simultaneous embedding of (G1, G2) in which the drawing of G1 ∩ G2 is the
same as in the original drawing.

Proof. Fix D as in the statement of the theorem and let H = G1 ∩ G2. From
G1, G2, and H construct G′

1, G
′
2 and H ′ by adding all vertices of G = G1 ∪G2.

Let H′ be the drawing of H ′ as part of D. The current siocr-0 drawing D of
(G1, G2) can be restricted to an iocr-0 drawing of PEG (G′

1, H
′,H′) and an

iocr-0 drawing of PEG (G′
2, H

′,H′). By Theorem 5.6 there are planar drawings
of G′

1 and G′
2 that extend H′. Since H′ contains all the vertices of G1 and

G2, the two drawings together are a simultaneous planar drawing of G1 and G2

showing that scr(G1, G2) = 0. Moreover, the drawing of H is the same as in
the original drawing D.

Lemma 6.29. If there is an siocr-0 drawing of G1 and G2 in which every two
edges of H = G1 ∩ G2 cross each other evenly, then scr(G1, G2) = 0 and there
is a simultaneous embedding of (G1, G2) in which the drawing of G1 ∩ G2 has
the same rotation system as in the original drawing.

Proof. We can apply Lemma 4.4 with G = G1 ∪ G2 and H = G1 ∩ G2 since
every two edges in H cross evenly, and the given drawing is siocr-0. Since we
do not introduce new pairs of independent edges crossing oddly, we obtain a
new siocr-0 drawing D of (G1, G2) in which no two edges of H cross each other.
At this point, we apply Lemma 6.28 to obtain the conclusion. Note that the
rotation system stays the same.

Note that we do not generally assume that G1 and G2 are connected. Bläsius
and Rutter [10] showed that given (G1, G2) one can find a pair of connected
graphs (G′

1, G
′
2) in linear time so that (G1, G2) is simultaneously planar if and

only if (G′
1, G

′
2) is. This means that one can assume that G1 and G2 are con-

nected for simultaneous planarity problems (at the price of some linear time
preprocessing).

We prove a similar result for siocr. Say (G′
1, G

′
2) extends (G1, G2) if V (Gi) =

V (G′
i) and E(Gi) ⊆ E(G′

i), for i ∈ {1, 2}.

Lemma 6.30. If siocr(G1, G2) = 0, then we can build in linear time a pair of
connected graphs (G′

1, G
′
2) extending (G1, G2) with siocr(G′

1, G
′
2) = 0.

Proof. Fix an siocr-0-drawing of (G1, G2) and let V = V (G1) ∪ V (G2). We
can assume that G1 ∪ G2 is connected: let u and v be vertices belonging to
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different components of G1∪G2. Imagine the siocr-0-drawing of the component
containing v on a sphere and project it on the plane so that v lies on the outer
face. Now re-insert that drawing into the original drawing so that u and v lie in
the same face. We can then connect them with a G1 ∩G2-edge. The resulting
drawing is still an siocr-0-drawing.

Let uv ∈ E(G1) − E(G2) so that u and v belong to different connected
components of G2. Let U ⊆ V be the set of vertices of the connected component
of G2 containing u. Any edges between U and V − U must belong to E(G1)−
E(G2). Our goal is to make uv even with respect to all edges while keeping
the drawing siocr-0. By wrapping edges adjacent to uv around their common
endpoint with uv, we can make all edges adjacent to uv even with respect to it
(see beginning of Section 6.5 for a definition of edge wrapping). Since the overall
drawing is siocr-0, this means that uv crosses all G1-edges evenly. So if there is
an edge f that crosses uv oddly, we must have f ∈ E(G2) − E(G1). Perform
(f, u′)-moves for all vertices u′ ∈ U . Now f crosses uv evenly. Moreover, the
drawing remains siocr-0: by construction, f can only change parity with edges
that have one endpoint in U and the other in V −U . But all those edges belong
to E(G1)−E(G2). Since f ∈ E(G2)−E(G1), changing these parities does not
affect siocr-0 of the drawing.

At this point uv is an even edge, and we can apply Lemma 4.1 to remove
all crossings with uv; we reconnect closed components avoiding uv, the drawing
remains siocr-0. We now have an siocr-0-drawing of (G1, G2) in which uv is free
of crossings. For (G′

1, G
′
2) = (G1, G2∪{uv}) we have shown that siocr(G′

1, G
′
2) =

0.
This process works similarly for uv ∈ E(G2)−E(G1), so we can repeatedly

apply it until G′
1 and G′

2 are both connected. By construction (G′
1, G

′
2) extends

(G1, G2), and siocr(G′
1, G

′
2) = 0. Finally, the construction (though not the

redrawings) can be performed in linear time.

6.3 Simultaneous Partially Embedded Planarity

Suppose we are given an embedding H of the common graph H = G1 ∩ G2,
and we ask whether there is a simultaneous embedding of (G1, G2) in which the
common graph is embedded as H. This is easily seen to be equivalent to testing
whether PEGs (Gi, H,H) are planar for i = 1, 2 (Jünger and Schulz prove a
similar result [49, Theorem 4]). Using the linear-time algorithm for partially
embedded planarity due to Angelini, Di Battista, Frati, Jeĺınek, Kratochv́ıl, Pa-
trignani and Rutter [3], the simultaneous partially embedded planarity problem
can be solved in linear time.

Our main goal in this section is to relax the embedding condition to allow
different connected components of G1 ∩G2 to move with respect to each other,
that is, we do not restrict their relative location. Suppose, for example, G1∩G2

consists of a K2,n and a K2,m, n,m ≥ 3. If we assume the embeddings of K2,n

and K2,m are fixed up to orientation-preserving topological equivalence, then
there are still (n+m− 1) different ways the two graphs can (in the absence of
other restrictions) be located relative to each other. Specifying an embedding
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of all of H restricts this to a single choice, so instead we now want to investigate
what happens if instead we specify the embedding of each connected component
of the common graph, or as Bläsius and Rutter [10] put it, the SEFE problem in
which the embedding of each connected component of the common graph is fixed.
There is one more subtlety here. We may not want to restrict the embedding of
each connected component in the plane, but rather in the sphere. In other words,
we may only want to restrict the rotation system of a connected component (we
discussed this difference earlier in Remark 5.1). ThenK2,n by itself, for example,
has n different embeddings in the plane, depending on which face we choose to
be the outer face. If we have two graphs, say K2,n and K2,m then we have nm
choices for a particular relative embedding of K2,n and K2,m so (n+m− 1)nm
different embeddings overall. This is the model investigated by Bläsius and
Rutter [10, 66].

We study the hybrid problem, where for each connected component of the
common graph we either specify an embedding in the sphere (a rotation system)
or an embedding in the plane. We say “embedding in the sphere” rather than
rotation system, since they are equivalent for connected graphs and it allows us
to still call this problem the “SEFE problem in which the embedding of each
connected component of the common graph is fixed”.

The characterization work has already been done in Lemma 6.29, so we are
left with rephrasing the characterization as an algebraic system. Let (G1, G2)
be given together with an embedding (plane or sphere) for each connected com-
ponent of G1 ∩ G2. Let D be a simultaneous drawing of (G1, G2) in which all
connected components of G1 ∩G2 are drawn so they satisfy the embedding and
constraints. Consider the following system SPEP(D) of equations over GF(2).
We have variables xe,v for every e ∈ E(G1 ∪G2) and v ∈ V (G). For every pair
(e, f) of independent edges so that e, f ∈ E(G1) or e, f ∈ E(G2) we require
that iD(e, f)+xe,h(f)+xe,t(f)+xf,h(e)+xf,t(e) = 0 mod 2. Moreover, if H ′ is a
connected component of H = G1∩G2 for which an embedding on the sphere has
been fixed, we require that iD(e, f)+xe,h(f)+xe,t(f)+xf,h(e)+xf,t(e) = 0 mod 2
for every pair of edges e, f ∈ E(H ′). If H ′ is a connected component of
H for which an embedding in the plane has been specified, we require that
xe,v = 0 mod 2 for every e ∈ E(H ′) and v ∈ V (H ′).

Corollary 6.31. Suppose we are given (G1, G2) and an embedding (plane or
sphere) for each connected component Hi of H = G1 ∩G2. Let D be a simulta-
neous drawing of (G1, G2) in which the embedding of Hi satisfies the embedding
constraint specified for Hi. Then (G1, G2) has a simultaneous embedding satis-
fying the embedding constraint of each connected component of G1 ∩ G2 if and
only if SPEP(D) is solvable.

It may be easiest to think of the two extreme cases: specifying a rotation
system of the common graph (an embedding on the sphere for each component),
or specifying a planar embedding of each connected component of the common
graph. The corollary implies that these and the more general hybrid SEFE
problem can be tested in polynomial time. Bläsius and Rutter [10] showed that
the problem can be solved in quadratic time for the rotation system variant, and
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their algorithm can probably be adapted to deal both with the planar embedding
variant and the hybrid variant [66].

Proof of Corollary 6.31. Fix D and suppose SPEP(D) is solvable. For each
(e, v) for which xe,v = 1 perform an (e, v)-move. LetD′ be the resulting drawing.
The conditions for SPEP(D) imply that D′ is an siocr-0 drawing of (G1, G2). If
H ′ is a connected component of H for which an embedding on the sphere was
given, we required that iD′(e, f) = iD(e, f)+xe,h(f)+xe,t(f)+xf,h(e)+xf,t(e) =
0 mod 2 for every pair e, f ∈ E(H ′) (independent or not), so again every two
edges in E(H ′) cross evenly. We conclude that any two edges in H cross each
other evenly: if they belong to different components of G1 ∩ G2 because they
are independent and the drawing is siocr-0, and if they belong to the same
component, by the argument we just made. We can now apply Lemma 6.29
to obtain a simultaneous embedding of (G1, G2). The rotation system of no
connected component of H changes in the application of Lemma 6.29. So we
know that each connected component of H has the same rotation system in
D and D′. This means that the simultaneous embedding already satisfies all
the embedding constrains for connected components for which an embedding
on the sphere was given. Consider a component H ′ for which an embedding
in the plane was specified. At least in principle, an application of Lemma 6.29
could have changed the outer face of the embedding of H ′, but we want to argue
that this did not happen in the redrawings we performed. Let H′ be the given
planar embedding of H ′. Imagine a curve γ from a point at infinity to a vertex
v on the outer face of H′ in D so that γ does not cross edges of H′. During the
redrawing in Lemma 6.29 we cut edges, create closed components, drop closed
components or reattach closed components. None of those operations changes
the crossing parity of any edge of H ′ with γ. The only operations that could
would be (e, v)-moves, where e ∈ E(H ′) and v is the vertex in H ′ to which γ
attaches, but we required that xe,v = 0 mod 2, since e and v both belong to H ′.
Hence, after the redrawing, γ still attaches to the same location in the rotation
at v, and the point at infinity is still in the same outer face of H′ which means
that the new drawing of H ′ is (orientation-preserving) topologically equivalent
to H′ in the plane.

For the reverse direction, suppose that there is a simultaneous embedding
D′ of (G1, G2) in which every connected component of H satisfies its embedding
constraint. Let Dt, t ∈ [0, 1] be a continuous and smooth transformation from
D = D0 to D′ = D1. We want to argue that this transformation is equivalent to
a set of (e, v)-moves satisfying xe,v = 0 mod 2 for every e ∈ E(H ′), v ∈ V (H ′) if
H ′ is a connected component ofH for which an embedding in the plane has been
specified. So let us first consider such a component H ′. Since the embedding
of H ′ in D and D′ is the same (though not necessarily in the same location),
we can assume that the transformation simply moves the embedding of H ′

from its original to its new location. This shows that xe,v = 0 mod 2 for every
e ∈ E(H ′), v ∈ V (H ′), since two edges belonging to H ′ need never cross during
the transformation. We are left with the argument that the transformation
from D to D′ is equivalent to a set of (e, v)-moves. This is immediate for
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pairs of independent edges (e, f), since their crossing parity is only affected by
one of them passing over an endpoint of the other. However, we also require
iD′(e, f) = 0 mod 2 for pairs of adjacent edges e, f ∈ H ′ if H ′ is a connected
component for which an embedding in the sphere is given. This means we need
to also track the movement of the ends of H ′-edges at vertices of H ′. Since
the rotation of H ′ in D and D′ is the same, we can assume that the ends of
H ′-edges at a vertex v ∈ V (H ′) are short line segments at the same angles in
both D and D′. This means that as we go from D to D′, an H ′-edge e at v
winds around v a certain number of times. The effect of a single (clockwise
or counterclockwise) turn of e around v on the other H ′-edges is the same as
that of an (e, v)-move. Hence, the effect of the transformation from D to D′ on
iD(e, f) for e, f ∈ G1 ∪G2 is captured by (e, v)-moves.

We can try to take this characterization of partially embedded simultaneous
planarity further: can we restrict which face of a component H ′ another com-
ponent H ′′ ends up in? The answer is, yes, this can be done by not allowing
arbitrary combinations of (e, v)-moves between e ∈ E(H ′) and v ∈ V (H ′′), but
instead introducing complex moves: (E′, v)-moves for E′ ⊆ E, which are equiv-
alent to performing (e, v)-moves for every e ∈ E′, and E′ is the set of edges that
would have to be crossed to move H ′′ into the particular face of H ′. We have
to leave details for a later time.

6.4 Simultaneous Planarity and 2-connectivity

As a small step towards Conjecture 6.20 we deal with the case that the common
graph consists of 2-connected and subcubic components.

Theorem 6.32. If siocr(G1, G2) = 0 and G1 ∩ G2 consists of disjoint 2-
connected components and subcubic components, then scr(G1, G2) = 0.

We would like to prove Theorem 6.32 under the condition that both G1 and
G2 are 2-connected and no conditions on G1 ∩ G2. Recall that Bläsius and
Rutter [11] have a quadratic-time testing algorithm assuming one also knows
that G1 ∩G2 is connected. We think an even stronger result is true: Call a pair
(G1, G2) well-connected if for every two adjacent edges e, f ∈ E(G1) ∩ E(G2),
there are cycles Ci ∈ E(Gi), i ∈ {1, 2} so that e and f lie on both C1 and C2.
Note that (G1, G2) is well-connected if both G1 and G2 are 2-connected, or if
every connected component of G1 ∩G2 is 2-connected (or an isolated vertex or
an isolated edge).

Conjecture 6.33. If siocr(G1, G2) = 0 for a well-connected pair (G1, G2), then
scr(G1, G2) = 0.

This conjecture may be a reasonable next stepping stone on the way from
Theorem 6.32 to Conjecture 6.20.

Proof of Theorem 6.32. Let H1 consist of all 2-connected components in H =
G1 ∩G2, and let H2 contain all remaining components in H . So H = H1∪̇H2,
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H1 is the disjoint union of 2-connected components, and H2 is the disjoint union
of subcubic components. Now apply Lemma 4.5 with H1 and G = G1 ∪ G2.
Note that the assumptions of the lemma on H1 are satisfied, since we start with
an siocr-0 drawing of G. We obtain a drawing of (G1, G2) which is siocr-0,
since no new pair of independent edges crosses oddly, and in which H1 is free of
crossings. Since H2 is subcubic, we can make all its edges even with respect to
each other: pick a vertex v in H2, since it is incident to at most three H2-edges,
we can move the ends of those edges in the rotation at v so they cross each
other evenly; repeating this for all v ∈ V (H2) ensures that all H2 edges cross
each other evenly. This local redrawing does not affect the drawing of H1 at all.
Apply Lemma 4.4 to G = G1 ∪G2 and H = H1 ∪H2. After the redrawing we
have an siocr-0 drawing of G1 and G2 in which H is embedded (though it may
still cross edges in E(G) − E(H)). Lemma 6.28 yields scr(G1, G2) = 0.

As usual, the characterization in Theorem 6.32 gives us a näıve polynomial-
time algorithm for testing whether two graphs whose intersection is the disjoint
union of 2-connected graphs and subcubic graphs, have a simultaneous em-
bedding. A linear-time algorithm for the case that the intersection graph is
2-connected was recently given by Haeupler, Jampani, and Lubiw [41] using
PQ-trees. Angelini, Di Battista, Frati, Patrignani, and Rutter [4] also solved
this problem under the stronger assumption that the intersection graph is span-
ning and 2-connected. Haeuper, Jampani, and Lubiw [41] observe that their
result extends to arbitrarily many graphs that all have the same graph in com-
mon (the sunflower case). Our characterization also extends to the sunflower
case where the common graph is the disjoint union of 2-connected and subcubic
components.

Corollary 6.34. Simultaneous planarity can be tested in polynomial time for
pairs of graphs (G1, G2) for which G1∩G2 consists of disjoint 2-connected com-
ponents and subcubic components only.

Proof. By Theorem 6.32 simultaneous planarity for (G1, G2) can be verified by
testing whether siocr(G1, G2) = 0, which can be done in polynomial time by
Lemma 6.22.

See Corollary 6.11 for an application of this result.

Remark 6.35. Theorem 6.32 seems very close to covering the case of level planarity or
even c-planarity, recall the gate-gadget in Figure 8(a) or the region gadget in Figure 13.
The components of G1 ∩G2 are nearly 2-connected, except for some stars that occur
in pairs (the uui and vvi edges). In spite of some effort, we have not yet been able to
prove Hanani-Tutte style results that cover the gadgets used in the reductions, even
for level planarity.

6.5 Simultaneous Planarity, 3-connectivity, and Partially

Embedded Planarity

An edge wrap is an (e, v)-move in which v is an endpoint of e. We can think of
deforming e close to v and wrapping it once around v before continuing. A v-flip
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means flipping the rotation at v (reversing the cyclic order of edges incident to
v) so that every pair of edges incident to v changes crossing parity. Both moves
are illustrated in Figure 14.

v e e v

e1

e2

e3

e4

v

e1

e2

e3

e4

(a) (b)

Figure 14: (a) An (e, v)-wrap. (b) A v-flip.

By Whitney’s theorem, a subdivision of a planar 3-connected graph has a
unique embedding in the plane (up to topological equivalence) [21, Theorem
4.3.2]. In other words, there are at most two planar rotation systems for such
a graph (in some cases, such as cycles, the two rotation systems cannot be
distinguished). Recall that a drawing is ocr-0 if every two edges cross evenly.

Lemma 6.36. Suppose G is the subdivision of a 3-connected planar graph and
we are given an iocr-0 drawing of G in which the rotation system is the same as
in a planar drawing of G. Then the drawing can be made ocr-0 by a sequence
of edge wraps and vertex flips.

Proof. Start with an iocr-0 drawing of G with the rotation system as described
in the statement of the lemma. Let v be a vertex at which two edges incident to
v cross oddly, and suppose there is no sequence of edge wraps and vertex flips
so that all pairs of edges incident to v cross each other evenly.

We claim that we can then perform a sequence of edge wraps and vertex
flips so that there are four edges e, f , g, and h incident to v such that e, f , and
g cross pairwise evenly, and h crosses exactly one of e, f , and g oddly.

To see that the claim is true, start with two arbitrary edges e and f at v.
Performing an (f, v)-wrap if necessary, we can assume that e and f cross evenly,
so there must be a third edge g incident to v. If g crosses both e and f evenly,
we are fine, if it crosses both oddly, perform a (g, v)-wrap, so again g crosses
both e and f evenly. Otherwise g crosses exactly one of e and f oddly, say e,
and the other, f , evenly. Perform a v-flip. Then among the three pairs only g
and e cross evenly. But then a (f, v)-wrap ensures that e, f , and g cross each
other pairwise evenly. This shows that v must be incident to a fourth edge h. If
every additional edge crosses either all of {e, f, g} evenly, or all of them oddly,
an (h, v)-wrap, if necessary, makes each additional edge even with respect to all
previous edges. Since we assumed that this is not possible, there must be some
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edge h that is even with exactly one or exactly two of {e, f, g}. Performing an
(h, v)-move if necessary, we can assume that h is even with respect to exactly
one of {e, f, g}, say h crosses e oddly, and f and g evenly.

Now let C be a cycle containing e and f . We can make all edges of C even
(with respect to all edges) by modifying rotations at vertices of C. For v we
need to change the rotation to do so: the end of h has to be moved past e, so
h and e cross evenly, but not past f , since h and f already cross evenly. So the
new rotation at v differs (as a cyclic order) from the original rotation at v since
the cyclic order of e, h, and f has changed. Moreover, since g does not have to
move in the rotation to make the cycle even, the rotation at v differs from the
flip of the rotation at v as well.

Once C is even, we can apply Lemma 4.2 to find an iocr-0 drawing of G in
which C is free of crossings. Now let H = (V (G), E(C)), the subgraph of H
which has all vertices of G and the edges of C. By Theorem 5.6 we conclude
that there is a planar drawing of G extending H . This is not possible: the
embedding of C and the vertex locations are the same as in H , so the rotation
at v does not agree with either of the two possible rotation systems of G when
embedded in the plane.

Remark 6.37. Instead of invoking Theorem 5.6 in the proof of Lemma 6.36, we could
have also reproduced a proof of the Hanani-Tutte theorem.

We are now in a position to resolve Conjecture 6.20 in case one of the graphs
consists of subdivisions of 3-connected graphs.

Theorem 6.38. If siocr(G1, G2) = 0 and at least one of G1 or G2 is the disjoint
union of subdivisions of 3-connected graphs, then scr(G1, G2) = 0.

In the main case of interest one of G1 or G2 is 3-connected, but the proof
has enough flexibility to establish the stronger result.

Proof. Begin with an siocr-0 drawing of G1 and G2, assume G2 is the disjoint
union of subdivisions of 3-connected graphs. Change the rotation of edges of
each connected component of G2 so that its rotation corresponds to the rotation
system of a planar embedding of that component of G2 (the drawing remains
siocr-0). By Lemma 6.36 we can perform a sequence of G2-edge wraps and
vertex flips for each connected component of G2 that turn the drawing of G2

into an ocr-0 drawing (while keeping the overall drawing siocr-0).

Let H = (V (G1)∪V (G2), E(G1)∩E(G2)), so H is the intersection graph of
G1 and G2 with all vertices of G1 and G2 added to it. Lemma 4.4 allows us to
redraw G1 and G2 so that no two edges of H cross each other, and the drawing
remains siocr-0. If we restrict the drawing to G2, we have an iocr-0 drawing of
(G2, H,H), where H is the planar embedding of H . By Theorem 5.6 there is
a planar drawing of G2 extending H. Combining this planar drawing with the
current drawing of G1 (which we can do, since H fixed all vertex positions), we
obtain an siocr-0 drawing of (G1, G2) in which G2 is planar, although edges of
G2 may be crossed by edges in E(G1)− E(G2).
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Consider the PEG (G1, H,H). The current drawing shows that this PEG
has an iocr-0 drawing, and thus, by Theorem 5.6 a planar drawing. However,
that drawing, together with the drawing of G2 shows that scr(G1, G2) = 0.

Corollary 6.39. Simultaneous planarity can be tested in polynomial time for
pairs of graphs (G1, G2) at least one of which is the disjoint union of subdivisions
of 3-connected graphs.

Proof. This immediately follows from Theorem 6.38 together with Lemma 6.22.

Theorem 6.2 showed that partially embedded planarity is a special case of
the SEFE2 problem. Since G2 in that reduction is 3-connected, Corollary 6.39
implies that we can test for partially embedded planarity in polynomial time
by asking whether siocr(G1, G2) = 0. In the reverse direction, Corollary 6.39
implies that if we are given (G1, G2) and an embedding G2 of G2, we can test
in polynomial time whether (G1, G2) has an SEFE embedding in which G2 is
embedded as G2: add edges and vertices to G2 turning G2 into a 3-connected
graph (and without adding edges that belong to G1, that may require adding
new vertices). There is a faster solution due to Angelini, Di Battista, Frati,
Jeĺınek, Kratochv́ıl, Patrignani and Rutter [3, Theorem 5.1] who showed that
this variant of SEFE reduces to partially embedded planarity.

Theorem 6.40 (Angelini, Di Battista, Frati, Jeĺınek, Kratochv́ıl, Patrignani
and Rutter [3]). Suppose we are given (G1, G2) an an embedding G2 of G2. Let
G1,2 be the embedding of G1∩G2 in G2. Then (G1, G2) has an SEFE embedding
where G2 is embedded as G2 if and only if the PEG (G1, G1∩G2,G1,2) is planar.

6.6 Simultaneous Planarity and Rotation Systems

In Section 5.3 we considered graphs G with a partial rotation system ρ. In this
section we want to add one small twist: we allow rotations at certain vertices to
flip, that is, we specify a set U ⊆ V (G) so that for each vertex v ∈ U the cyclic
order of edges Eρ

u at u is either as specified by ρ or reversed. This corresponds
to the special case of ec-planarity with free edges in which all embedding con-
straints are single oc-nodes or mc-nodes. Partially embedded planarity is not
flexible enough to capture this variant, but simultaneous planarity is.

Lemma 6.41. Given a graph G with partial rotation system ρ and a set of
vertices U ⊆ V (G), the problem of whether G can be embedded so that the
rotation at all vertices is as specified by ρ, with flips allowed for vertices in U ,
can be rephrased as a simultaneous planarity problem, where one of the graphs
is the disjoint union of 3-connected components.

Proof. Let G1 be G after each edge has been subdivided twice; in particular,
V (G) ⊆ V (G′). With each edge vu in Eρ

v we can uniquely associate an edge in
G′: pick the first edge on the path of length three from v to u in G′. Turn the
star of edges with center v whose rotation is determined by ρ into a wheel, so



432 Schaefer, Marcus Toward a Theory of Planarity

that the additional cycle respects the rotation at v. Add all these wheels to a
new graph G2. A simultaneous embedding of (G1, G2) contains a subdivision
of G which realizes ρ except that the rotation at every vertex may be flipped.
Take all the wheels in G2 associated with vertices belonging to V (G)− U , and
add edges to that subgraph until it is triangulated; subdivide each of the new
edges once (so we do not create common edges with G1); add all the new edges
and vertices to G2. Now in a simultaneous embedding of (G1, G2) either all
rotations of vertices in V (G)−U are flipped compared to ρ or none of them are.
Vertices associated with vertices in U , however, can still flip independently.

Remark 6.42. One can extend the construction in Lemma 6.41 to force groups of
vertices to flip simultaneously or not at all.

Corollary 6.43. Suppose we are given a graph G with partial rotation system
ρ and a set of vertices U ⊆ V (G). We can test in polynomial time whether G
can be embedded so that the rotation at all vertices is as specified by ρ, except
for vertices of U where rotations are also allowed to flip.

Proof. The result follows immediately from Lemma 6.41 and Corollary 6.39.

7 Questions on Crossing Numbers

While planarity and its variants are important parts of graph drawing, in prac-
tice many visualization tasks will have to allow crossings of some type, both
to make visualizations possible and to improve other aesthetic criteria. This is
already built into some of the drawing models: simultaneous planarity pointedly
ignores certain types of crossings in the drawing, and weak realizability gives
full flexibility (at the expense of NP-completeness).

In a next step, we should consider crossing number variants. We already
saw that the Hanani-Tutte theorem can be stated as saying that iocr(G) = 0
implies cr(G) = 0. Indeed, iocr(G) = cr(G) as long as iocr(G) ≤ 2 and cr(G) ≤
(

2 iocr(G)
2

)

[65], and there are graphs for which iocr(G) < cr(G).

Question 7.1. Is there a function f for which scr(G1, G2) ≤ f(siocr(G1, G2))?

For leveled graphs we saw that iocr(G, ℓ) = 0 implies that cr(G, ℓ) = 0 [34]
(see Theorem 6.8). Examples from [35] show that there is no function f with
cr(G, ℓ) ≤ f(iocr(G, ℓ)). What happens for upward planarity? Let us use cr�
and iocr� for the variants of crossing number and independent crossing number
in which drawings of a directed graph have to be x-monotone (each edge crosses
every vertical line at most once) and all edges point in the same direction. By
definition, cr�(G) = 0 if and only if G is upward planar. As we mentioned in
Example 2.2, iocr�(G) = 0 implies cr�(G) = 0.

Question 7.2. Is there a function f so that cr�(G) ≤ f(iocr�(G)) for every
directed graph G?
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If we remove the leveling (ordering) from the graph and only require that
the drawing of the graph be x-monotone, there is such a result due to Pach and
Tóth [58], mon-cr(G) ≤

(

2mon-iocr(G)
2

)

, where mon-cr is the monotone crossing
number, and mon-iocr is the monotone independent crossing number.
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