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On the Complexity of
Partitioning Graphs for Arc-Flags

Reinhard Bauer Moritz Baum Ignaz Rutter Dorothea Wagner
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Abstract

Precomputation of auxiliary data in an additional off-line step is a
common approach towards improving the performance of shortest-path
queries in large-scale networks. One such technique is the arc-flags al-
gorithm, where the preprocessing involves computing a partition of the
input graph. The quality of this partition significantly affects the speed-up
observed in the query phase. It is evaluated by considering the search-space
size of subsequent shortest-path queries, in particular its maximum or
its average over all queries. In this paper, we substantially strengthen
existing hardness results of Bauer et al. and show that optimally filling this
degree of freedom is NP-hard for trees with unit-length edges, even if we
bound the height or the degree. On the other hand, we show that optimal
partitions for paths can be computed efficiently and give approximation
algorithms for cycles and trees.
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1 Introduction

In recent years, route planning has become a widely known application of
algorithm engineering. Although Dijkstra’s algorithm [8] is of polynomial-time
complexity on arbitrary graphs, its performance on large realistic graphs is not
acceptable for practical applications. Speed-up techniques that yield improved
query times split the work into two parts. In the off-line phase a precomputation
step is executed on the input graph to gain additional information about the
underlying network. The retrieved data is then used during the on-line phase
to improve the performance of shortest-path queries. For a survey of recent
approaches exploiting this pattern we refer to Delling et al. [7]. There is a
comparatively small number of works that consider theoretical aspects of these
techniques [1, 2, 3]. Here, we focus on one particular technique. The idea of arc-
flags was first introduced by Lauther [11]. The basic approach was exhaustively
evaluated in experimental studies, see for example Köhler et al. [10] and Möhring
et al. [13]. Moreover, it was combined with other techniques in order to gain
additional speed-up [4, 5].

We use the following definition of arc-flags. Given a directed graph G = (V,E)
and a partition C = {C1, . . . , Ck} of V into cells, the arc-flags for a directed
edge e ∈ E consist of k binary flags, where the i-th flag is set if and only if
e is part of some shortest path to a target node belonging to the cell Ci. In
a query to a node t lying in cell Cj , all edges whose j-th flag is not set may
safely be ignored, as no shortest path to any node in cell Cj contains e. The
preprocessing of the arc-flags algorithm computes a partition C of the input
graph into k cells and determines the corresponding arc-flags. Observe that the
flags are uniquely specified by the partition. In particular, the i-th flag of an
edge only depends on the nodes contained in cell Ci. Thus, the only degree of
freedom in the preprocessing is the choice of C.

Although the outstanding performance of the arc-flags algorithm has been
substantiated in many experimental studies, little is known about its theoretical
backgrounds. Yet, theoretical analysis is a vital aspect of algorithm engineering.
The choice of the partition C has a large impact on query times in the on-line
phase. Bauer et al. prove that it is is NP-hard to compute a partition that
minimizes the average search-space size (sss) of on-line queries [2]. However, the
graph used in their reduction has a number of properties unlikely to be shared
by realistic instances.

1. The graph includes a huge cycle that is an inherent part of the reduction.
Since the graph is not acyclic, it does not apply to time-expanded graphs
typically used in time-table queries [14].

2. The graph contains substantially differing edge weights.

3. The graph is not strongly connected, and for undirected graphs the com-
plexity is still open.

4. The graph is unusually dense; it contains a quadratic number of edges.
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Table 1: Complexity of the two examined problems on different graph classes.

Worst Case Average Case
Graph Class directed undirected directed undirected

Stars O(|V |) O(|V |) O(|V |) O(|V |)
Trees (h ≤ 2) NPC NPC NPC NPC
Paths O(|V |) O(|V |) O(|V |) O(|V |)
Trees (∆ ≤ 3) NPC NPC ? ?
Cycles O(|V |) OPT + 1 O(|V |) P 1

Contributions and Outline. We substantially strengthen known results
about the complexity of preprocessing arc-flags. We examine several restricted
classes of graphs and establish a border of tractability for this problem. Besides
the previously used average sss as a quality measure we also consider the worst-
case sss for assessing the quality of partitions. Moreover, we consider directed as
well as undirected graphs.

We present preliminaries in Section 2. In Section 3, we show that computing
a partition that minimizes the worst-case sss is NP-hard, both for directed and
for undirected unit-weight trees. These results hold for binary trees as well as
trees with limited height of at most 2. On the other hand, we present a constant-
factor approximation algorithm for general trees with arbitrary edge weights.
For cycles the number of cells k necessary to bound the sss by a given value W
can be approximated within an additive constant of 1. For the average sss, we
show that it is NP-hard to compute an optimal partition both for directed and
undirected trees in Section 4. These results hold for the case of unit-weight edges
and restricted height. For paths an optimal partition can be computed efficiently,
and the same holds for cycles if we require cells to be connected. Table 1 shows
an overview of our results. We conclude our work and discuss open questions in
Section 5.

2 Preliminaries

We assume familiarity with basic concepts from graph theory and shortest-path
search; see the book by Cormen et al. [6] for foundations in this area. We consider
directed weighted graphs, denoted by a triple G = (V,E, ω), where ω : E → R+

is a weight function. If the weight function ω of a graph is not the matter of
concern, we omit it from the notation. Our treatment of undirected graphs is
somewhat non-standard, as depending on the direction of traversal, an undirected
edge may have different arc-flags set. Thus, we model undirected edges as a
pair of two separate, oppositely oriented edges of the same weight between the
endpoints. The size |P | of a path P = 〈v1, . . . , vk〉 is the number k of nodes it

contains. The length of P is ω(P ) =
∑k−1
i=1 ω(vi, vi+1) and the distance between

1We present a polynomial-time algorithm that computes optimal connected cells.
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two nodes s and t is denoted by d(s, t). We say that a cell C ⊆ V is (strongly)
connected if the subgraph induced by C is (strongly) connected. A directed
tree with root node r is a tree in which all edges point away from r towards the
leaves.

Dijkstra’s Algorithm, Arc-Flags, and Search Spaces. Dijkstra’s algo-
rithm [8] solves the single-source shortest path problem on directed graphs with
non-negative edge weights. It manages a priority queue, which initially contains
only the source node. In each step, it extracts the node u from the queue with
smallest distance label. We say that the node u is settled at this time. We
assume that each node has a unique index in {1, . . . , |V |} that determines the
extracted node if there are two or more nodes with minimum key. Next, any
edge (u, v) outgoing from u is relaxed, that is, the distance label of v is updated
if this edge yields a shorter path from the source node to v via u. In an s-t-query,
the algorithm may stop once the target node t is settled (at this point the
correct distance as well as a shortest path is known). The query of the arc-flags
algorithm modifies this procedure slightly; it relaxes only edges whose flag for
the target cell is set, while all other edges are ignored.

Given a graph G and a partition C, the search space of an s-t-query is
the set of all nodes settled by the query algorithm and its cardinality is
denoted by S(G, C, s, t). As long as the considered graph is sparse (which
holds for realistic instances of street networks), the query time is propor-
tional to S(G, C, s, t). Therefore, the sss provides a machine-independent ef-
ficiency measure which is also commonly used in experimental studies (see, e.g.,
Delling et al. [7]). To assess the quality of C we use either the worst-case
efficiency, i.e., Smax(G, C) := maxs,t∈V S(G, C, s, t) or the average sss over all
queries Savg(G, C) :=

∑
s,t∈V S(G, C, s, t). To obtain the actual average sss we

would need to divide Savg(G, C) by |V |2. Since the corresponding measure only
differs by the fixed factor |V |2, we omit this. If G and C are clear from the
context, we may omit both from the notation.

Algorithmic Problems. All reductions in this work are made from the
strongly NP-hard problem 3-Partition [9]. An instance of 3-Partition
is a tuple (S,B), where B is a positive integer and S = {s1, . . . , s3m} is a set
of 3m elements, such that each element si is associated with an integer weight
B/4 < ωi < B/2 and

∑3m
i=1 ωi = mB. The instance (S,B) is a Yes-instance

if and only if there exists a partition of S into m subsets Sj , j ∈ {1, . . . ,m},
such that for all j it is |Sj | = 3 and the weight of each subset equals B, i.e.,∑
si∈Sj

ωi = B. Since the problem is strongly NP-hard, we may use unary
encodings of the element weights in our reductions. The task considered in this
work is to find a partition of a graph that yields low sss. More precisely, given
a graph G and a positive integer k, the problems MinWorstCasePartition
and MinAvgCasePartition are to find a partition C with at most k cells that
minimizes Smax or Savg, respectively.
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3 Minimizing the Worst-Case Search-Space Size

In the following, we examine the problem MinWorstCasePartition on certain
restricted classes of graphs. We present efficient (approximation) algorithms for
paths, stars, and cycles and show NP-hardness for trees with bounded height
or out-degrees, respectively. Moreover, we distinguish directed and undirected
graphs for all graph classes.

3.1 Trees with Bounded Height

In this section, we examine both directed and undirected trees of limited height.
To begin with, consider rooted, directed trees T = (V,E, ω) with height at
most 1, i.e., the class of directed stars. The sss of a query starting at an arbitrary
leaf is always 1, because a leaf has no outgoing edges. Hence, the task reduces to
minimization of the worst-case sss of all queries from the root node r. Clearly, a
query from the root node settles only leaves that are assigned to the target cell.
Since these leaves are visited in a deterministic order, each cell Ci of a partition
C = {C1, . . . , Ck} contains a distinct target node ti such that all nodes of Ci are
settled in an r-ti-query. Additionally, r itself is always settled in a query starting
at r, which yields a worst-case sss of Smax = 1 + maxCi∈C |Ci \ {r}|. Obviously,
we minimize this number if and only if the cell sizes are balanced.

In what follows, we prove that MinWorstCasePartition becomes NP-
hard already if we allow trees of height two. Theorem 1 given below shows
NP-hardness even under severe restrictions to the graph structure. Moreover, we
obtain a tight border of tractability for the problem MinWorstCasePartition
on directed trees.

Theorem 1 MinWorstCasePartition is NP-hard for rooted directed trees
of height 2, even in the case of uniform edge weights.

Proof: We reduce from 3-Partition. Given an instance (S,B) of 3-Partition,
we construct (in polynomial time) an instance (T,m) of MinWorstCaseP-
artition as follows. For each element sp ∈ S, we create a limb `p consisting
of one element node sp, ωp − 1 weight nodes, and directed edges from sp to all
its weight nodes. We add a root node r along with directed edges connecting
r to all element nodes sp; see Figure 1 for an example. We claim that (T,m)
admits a partition with worst-case sss at most B + 1 if and only if (S,B) is a
Yes-instance.

Assume (S,B) is a Yes-instance and S1, . . . , Sm a corresponding solution.
Let C = {C1, . . . , Cm} be the partition where Ci consists of all nodes of limbs
corresponding to elements of Si, and additionally r ∈ C1. We have |C1| = B + 1
and |Ci| = B for i ≥ 2. The sss S(s, t) of an arbitrary s-t-query with s 6= r is
bounded by dB/2− 1e, the maximum size of a limb. Consider queries starting
at r. Clearly, a query to an arbitrary target node t never settles nodes outside
the cell of t except for r itself. Hence, for queries into any cell Ci, i ≥ 2, the sss
cannot exceed B + 1, and the same holds for C1, as it already contains r.
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r
s1

Figure 1: The reduction of an instance with m = 2, B = 11 and weights
3, 3, 3, 4, 4, 5.

Conversely, assume that C = {C1, . . . , Cm} is a partition of T inducing a
worst-case sss of at most B + 1. Without loss of generality, assume that r ∈ C1.
We call C balanced if |C1| = B + 1 and |Ci| = B for i ≥ 2. A limb `j is
monochromatic if all its nodes belong to the same cell. A balanced partition
containing only monochromatic limbs is called perfect. Clearly, a perfect partition
corresponds to a solution of 3-Partition and it suffices to show that C is perfect.

We know that each cell Ci contains a distinct target node ti such that all
nodes of Ci are settled in an r-ti-query. Together with the fact that r is settled
in every such query, this implies that |C1| ≤ B + 1 and |Ci| ≤ B for i ≥ 2. Since
the total number of nodes is mB + 1, these conditions must be satisfied with
equality, and thus C is balanced. Now, assume for a contradiction that there
is a limb `p that is not monochromatic, and let sp be the element node of `p.
Then there exists a weight node of `p that is assigned to a cell Ci different from
the cell of sp. Now, the query from r to ti ∈ Ci settles r, all nodes in Ci and
additionally sp, resulting in a sss of at least B + 2; a contradiction. Hence, all
limbs are monochromatic and the claim follows. The theorem holds since the
reduction can clearly be performed in polynomial time. �

Next, we consider undirected trees. In an undirected star, starting from a
leaf, the second node that is settled is always the root node. Hence, it again
suffices to minimize the worst-case sss of queries from the root node, which was
shown to be achieved if the cell sizes are balanced. Using a very similar approach
compared to the proof of Theorem 1, we obtain the following hardness result for
undirected trees.

Theorem 2 MinWorstCasePartition is NP-hard for undirected trees with
height 2, even in case of uniform edge weights.

Proof: To simplify notation, we denote the worst-case sss of all queries starting
at a fixed node v ∈ V by Smax(v) = maxt∈V S(v, t). We use exactly the same
reduction as in Theorem 1, except for edges now being undirected. Given an
instance (S,B) of 3-Partition, we create a limb `p for each element sp ∈ S
consisting of an element node sp together with ωp−1 weight nodes and undirected
edges from sp to all its weight nodes. Finally, we add a root node r along with
undirected edges connecting r to all element nodes sp. We claim that (T,m)
admits a partition with worst-case sss at most B + 3 if and only if (S,B) is a
Yes-instance of 3-Partition.
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Assume that (S,B) is a Yes-instance and let S1, . . . , Sm be a corresponding
solution. Let C = {C1, . . . , Cm} be the partition of T where Ci consists of all
nodes of limbs corresponding to elements of Si and additionally r ∈ C1, yielding
|C1| = B + 1 and |Ci| = B for i ≥ 2. Consider an arbitrary query from a source
node s ∈ V to a target node t ∈ V . The only nodes outside the target cell of t
that are possibly settled in this query are sp if s ∈ `p, r and s itself. This yields
a worst-case sss of at most maxCi∈C |Ci ∪ {s, sp, r}| = B + 3.

For the other direction, assume that C = {C1, . . . , Cm} is a partition of T
with a worst-case sss of at most B + 3. Without loss of generality, assume that
r ∈ C1. Along the lines of Theorem 1, we call C balanced if |C1| = B + 1 and
|Ci| = B for i ≥ 2. A limb `p is monochromatic if all its nodes belong to the
same set Ci, and C is perfect if it is balanced and all limbs are monochromatic.
Since a perfect partition corresponds to a solution of 3-Partition, it again
suffices to show that C is perfect.

Consider an arbitrary s-t-query in T given the partition C. If s and t belong
to the same limb `p, the sss of an s-t query cannot exceed B/2, because at most
all nodes in `p and r are settled. Thus, we focus on queries where the s-t-path
contains r. Observe that in this case, the query must settle at least all nodes
that are settled in an r-t-query. Moreover, the situation for queries that start
from the root node r has not changed compared to the directed case treated
in Theorem 1, because only edges pointing away from r may lead to unsettled
nodes. Hence, we know that in the worst case, a query from r to a certain target
node ti settles all nodes of the target cell Ci, and Smax(r) equals B + 1 if and
only if C is perfect. For now, assume that there exists at least one limb `p such
that none of its nodes are in Ci. Then the sss of a query from an arbitrary leaf
wp,q of this limb to ti is 2 + Smax(r). Thus, we have a worst-case sss of at most
B + 3 if and only if C is perfect. To complete the proof, we show that if such a
limb `p does not exist, the worst-case sss must be at least B + 4.

Assume there is a cell Ci that contains nodes from each limb `p in T . Observe
that in this case, every edge (r, sp) has the flag for Ci set. We claim that this
implies that Smax(r) ≥ B + 3 and Smax ≥ B + 4. There is a query starting
at r that settles r, all element nodes in T and all leaves in Ci. This yields
Smax(r) ≥ 1 + 3m + |{wp,q ∈ Ci}|. For the worst-case sss of r to be less than
B + 3, the number of leaves in Ci is at most B − 3m + 2. The total number
of leaves in T is exactly m(B − 3), so there are at least m(B − 1) − 2 leaves
distributed among the m−1 remaining cells. Hence, by the pigeon-hole principle,
for m ≥ 4 there is a cell Cj that contains at least B − 1 leaves. Furthermore,
we know by construction of T , that a limb contains less than (B − 1)/2 leaves.
Thus, Cj holds nodes of at least three different limbs. Then there is a query
from r to a target t ∈ Cj that settles r itself, at least three element nodes, and
B − 1 leaves, which yields Smax(r) ≥ B + 3. Furthermore, if Smax(r) = B + 3,
there must be a leaf wp,q not included in the search space of the corresponding
r-t-query, such that the wp,q-t-path contains r, and hence Smax(wp,q) = B + 4.
Observe that such a node wp,q outside of Cj must exist, because otherwise Cj
would contain all leaves of at least 3m− 1 limbs, which immediately implies a
worst-case sss greater than B + 4. �
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r

r1Tr

z1 z2 z3 z1056
· · ·

s1,1 s1,2 s1,3
s1,72· · ·
s2,72· · ·
s3,72· · ·

s4,96· · · · · ·
s5,96· · · · · ·

s6,120· · · · · · · · ·

Figure 2: The reduction of an instance with m = 2, B = 11 and weights
3, 3, 3, 4, 4, 5.

3.2 Trees with Bounded Degree

Instead of the height of a tree, we may also bound its maximum degree. If we
bound the maximum degree by 2, we obtain the simple class of graphs consisting
of a single path. Observe that on a path, the worst-case sss always occurs in a
query between its endpoints, regardless of the underlying partition. Hence, the
worst-case sss on a path is |V | in both the directed and undirected case. Next, we
show that MinWorstCasePartition becomes NP-hard if we consider binary
trees. This result again provides a tight border of tractability with respect to
maximum node degree.

Theorem 3 MinWorstCasePartition is NP-hard for rooted directed trees
with a maximum degree of 3, even in case of uniform edge weights.

Proof: To simplify notation, we denote the worst-case sss of all queries starting
at a fixed node v ∈ V by Smax(v) = maxt∈V S(v, t). Given an instance (S,B) of
3-Partition, the instance (T,m) with a binary tree T = (V,E) is constructed
as follows. We replace the limbs occuring in the previous reduction of Theorem 1
by more complex binary structures. The former root node r is now represented
by a full binary tree Tr with m′ leaves r1, . . . , rm′ , where m′ = 2dlog2 3me. From
now on, let r denote the root of Tr, and all edges point away from r. A limb `p
corresponding to an element sp ∈ S now consists of a chain of 12mωp element
nodes sp,1, . . . , sp,12mωp

with edges (sp,q, sp,q+1) for q = 1, . . . , 12mωp − 1. We
connect each chain to Tr by adding the edge (rp, sp,1) to the tree. Moreover,
we add a chain Z of 24m2B nodes z1, . . . , z24m2B with edges (zj , zj+1) for
j = 1, . . . , 24m2B − 1 and connect it to r by adding an edge (z24m2B , r). An
example of a resulting tree is shown in Figure 2. We claim that (T,m) admits a
partition with worst-case sss at most 24m2B+ 12mB+ 12m if and only if (S,B)
is a Yes-instance of 3-Partition.

First, assume that (S,B) is a Yes-instance and let S1, . . . , Sm be a corre-
sponding solution. Let C = {C1, . . . , Cm} be the partition where Ci consists
of all nodes of limbs corresponding to elements of Si. All remaining nodes zj
on the chain Z and the binary tree Tr are assigned to arbitrary cells. Clearly,
the sss of an arbitrary query originating at r or any node reachable from r is
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bounded by the size of the corresponding subtree rooted at that node. The size
of Tr is bounded by 2m′ < 12m, and the total number of element nodes sp,q
is mB · 12m. Thus, Smax(s) is bounded by 12m2B + 12m for any such node.
For a node zj ∈ Z, the invariant Smax(zj) = Smax(zj+1) + 1 holds. In particular,
we have Smax(z1) > 24m2B > 12m2B + 12m, and therefore Smax(z1) > Smax(v)
holds for all v ∈ V \ {z1}. Thus, the overall worst-case sss equals Smax(z1).
Observe that due to the described cell assignment, any cell contains exactly
12mB element nodes, and no other element nodes are settled in a query into this
cell. Hence, the number of nodes corresponding to elements of (S,B) settled in
a query from z1 is bounded by 12mB. In addition to that, there are at most
24m2B settled nodes in Z and at most 12m settled nodes in Tr. We obtain
Smax(z1) ≤ 24m2B + 12mB + 12m.

Conversely, assume that C = {C1, . . . , Cm} is a partition of T with a worst-
case sss of at most 24m2B + 12mB + 12m. Again, we know that the overall
worst-case sss is always equal to Smax(z1), regardless of the underlying partition.
To show that C corresponds to a Yes-instance of 3-Partition, we examine
queries between z1 and the leaves of T , as one such query must induce the worst-
case sss (note that we do not explicity prove that limbs are monochromatic).
Consider the leaves sp,12mωp

, p = 1, . . . , 3m of the 3m limbs that correspond to
elements of S. For every cell Ci in C, there is one query starting at z1 that
settles all nodes sp,12mωp

∈ Ci. The sss of such a query is at least 24m2B + 1 +
12m

∑
sp,12mωp∈Ci

ωi, because all nodes in the chain Z, at least the root node

r in Tr, and all chains for which sp,12mωp
is in Ci are settled. For this term to

fall below the bound 12m2B + 12m(B + 1), the condition
∑
sp,12mωp∈Ci

ωp ≤ B
must be fulfilled for every cell Ci. But then we can derive a Yes-instance of
3-Partition with Si = {sp | sp,12mωp

∈ Ci} and the claim follows. Since the
reduction can be performed in polynomial time, the proof is complete. �

Again, this proof carries over to the case of undirected trees with a degree
that is restricted to 3. Restricting both the degree and the height of the tree
restricts its size, and thus renders the problem MinWorstCasePartition
efficiently solvable.

Theorem 4 MinWorstCasePartition is NP-hard for undirected trees with
a maximum degree of 3, even in case of uniform edge weights.

Proof: Let (S,B) be an instance of 3-Partition as described in Section 2.
We construct an instance (T,m) of the problem MinWorstCasePartition
for a reduction. First, we create an undirected binary tree Tr with m′ leaves
s1,1, . . . , sm′,1, where m′ = 2dlog2 3me. Let r be the root of this tree. For each
element sp ∈ S, we add a limb that is constructed as follows. We create a chain
of x nodes sp,2, . . . , sp,x−1 connected by undirected edges, where the value of x
is specified later. We connect the first node sp,2 of each chain to a respective
leaf sp,1 of Tr. To the last node sp,x−1 of every chain, we attach another binary
tree with B′ = 2dlog2bB/2ce leaves and root node sp,x. Finally, we add ωp chains
of 12m nodes and connect each chain to a distinct leaf of the p-th tree (recall
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that ωp < B/2 for all p ∈ {1, . . . , 3m}). We call the subgraph containing all
descendants of sp,x including sp,x the element tree Tp for a p ∈ {1, . . . , 3m}.
An example is shown in Figure 3. Since we can safely assume that B′ < B
and m′ < 6m, this construction is polynomial in the input size as long as x is
polynomial in m and B. We claim that (T,m) admits a partition with worst-case
sss at most c := 2m′ + 4x+ 6B′ + log2B

′ + 12m(B + 1) if and only if (S,B) is a
Yes-instance of 3-Partition.

r

s1,1
Tr

s1,2
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·

s1,x

· · ·
· · ·
· · ·

T1

Figure 3: The reduction of an instance with m = 2, B = 11 and weights
3, 3, 3, 4, 4, 5.

First, assume that (S,B) is a Yes-instance and let S1, . . . , Sm be a corre-
sponding solution. Let C = {C1, . . . , Cm} be the partition where Ci consists
of all nodes of limbs corresponding to the elements in Si (a limb is a subtree
rooted at a node sp,1). The nodes of Tr are assigned to arbitrary cells. Thus,
the size of each cell is bounded by the size of Tr, which has 2m′ − 1 nodes,
plus the size of three entire limbs with B attached chains in total. This yields
|Ci| < 2m′ + 3(x + 2B′) + 12mB for i = 1, . . . ,m. First, note that a query
where s and t are contained in the same cell settles no nodes outside the target
cell except for nodes in Tr. Thus, the sss of an intra-cell query is bounded by
|Ci ∪ Tr| < 2m′ + 3x + 6B′ + 12mB ≤ c. Similarly, an inter-cell query (i.e.,
where s and t belong to different cells) that starts inside Tr settles at most the
nodes in Tr and all nodes in the target cell, yielding a sss bounded by c. An
inter-cell query that starts at a node s in an arbitrary limb of the tree settles
the path from s to Tr, and afterwards at most all nodes inside Tr and the
complete target cell. Since the size of the longest path from a node inside a
limb to Tr is x + log2B

′ + 12m, the sss of an inter-cell query is bounded by
2m′ + 4x+ 6B′ + log2B

′ + 12m(B + 1) = c.
Conversely, assume that C = {C1, . . . , Cm} is a partition of T with a worst-

case sss of at most c. We show that each cell Ci of C contains nodes in at
most three different element trees Tp. Assume for a contradiction that Ci
includes nodes of z element trees Tp1 , . . . , Tpz , z ≥ 4. As long as z < 3m,
there is a query that starts at a node sq,x, q /∈ {p1, . . . , pz} and settles all
nodes in Ci, that is, at least z + 1 ≥ 5 complete chains of size x. Setting
x > 2m′+6B′+log2B

′+12m(B+1), this value exceeds the bound c introduced
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above. A similar argument holds for the case where z = 3m, and thus we may
safely assume that any cell contains nodes of at most three different element trees.
Since there are 3m element trees and m cells in total, this immediately implies
that all element trees are monochromatic. But then we know that there exists
a query from a source node s, where s is a leaf of an element tree, that passes
all nodes on the path from s to the root tree Tr, and then settles at least three
entire limbs with their element trees assigned to a target cell Ci 63 s. The path
from s to the first node of the root tree has size x+ log2B

′ + 12m. The three
entire limbs contain 3(x+ 2B′ − 1) + 12mBi nodes in total, where Bi is the sum
of the weights ωp of the elements sp corresponding to the three element trees Tp.
Moreover, at least three internal nodes from Tr must be settled to connect four
limbs. In total, we get a worst-case sss of at least 4x+6B′+log2B

′+12m(Bi+1).
For this value to fall below c, we have to ensure that Bi ≤ B for each cell Ci. But
then each cell corresponds to a set Si of total weight B, and hence C corresponds
to a solution of 3-Partition. �

3.3 Cycles

Since the search space on a directed cycle always consists of exactly the unique
s-t-path, the worst-case sss is |V | and does not depend on the underlying
partition. Therefore, we may focus on undirected cycles. We consider the
following problem that is strongly related to MinWorstCasePartition. We
are given as input an undirected cycle G = (V,E, ω) and a desired worst-case
sss W , and the task is to compute a partition of minimum cardinality such that
the induced worst-case sss is at most W . Observe that solving this problem
efficiently would immediately imply the existence a polynomial-time algorithm
for MinWorstCasePartition, as we can use binary search to obtain the
minimum bound W that allows a partition with at most k cells. In what follows,
let kopt(G,W ) denote the minimum number of cells that is necessary to achieve
a worst-case sss of at most W on G. Clearly, the shortest path of maximum
size yields a lower bound L on the worst-case sss. For W ≥ L, we show how to
approximate kopt(G,W ).

Theorem 5 Given an undirected cycle G and a positive integer W ≥ L, a
partition C with kopt(G,W ) + 1 cells and Smax(G, C) ≤ W can be computed in
polynomial time.

Proof: For the sake of simplicity, assume that all shortest paths in G = (V,E, ω)
are unique. Consider the shortest-path tree Ts rooted at an arbitrary node s.
Since G is a cycle, there is exactly one undirected edge es that is not in Ts,
called the cut edge of s. We assign to each node t the sss of a Dijkstra search
from s to t. Note that each target node t gets a distinct number in {1, . . . , |V |},
its Dijkstra rank with respect to s. Obviously, nodes on the two branches of Ts
originating at s have ascending ranks. Consider a pair s and t of nodes such
that the Dijkstra rank of t with respect to s is in {W + 1, . . . , |V |} and let Ct be
the cell containing t. Recall that the nodes assigned to Ct completely determine
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the sss of all arc-flags queries to t. To make sure that the sss of an s-t-query is
at most W , we have to ensure that the arc-flags query prunes the search at the
branch of Ts that does not contain t. This is achieved by assigning nodes that
cause a large sss to cells distinct from Ct. More precisely, we determine the set
Xt of nodes such that maxs∈V S(s, t) ≤W if and only if Ct ∩Xt = ∅.

Assume we traverse the cycle starting at t in both directions. Let eu and ev
be the first edges in the respective direction that are cut edges for some nodes
u, v ∈ V . Consider the backward shortest-path tree of t, i.e., the shortest-path
tree of t obtained if edges are traversed in reverse direction. Edges in this tree
have the flag for Ct set. If we omit edge directions, this tree coincides with Tt.
Let et be its cut edge. Removing eu, ev, and et from G yields three connected
components Gu,v, Gu,t and Gv,t with t in V (Gu,v), see Figure 4.

Gv,t

Gu,t

Gu,v ev

t

eu

et

Figure 4: The three subgraphs Gu,v, Gu,t, and Gv,t with respect to a certain
node t.

Claim. The set Xt is determined as follows.

(1) V (Gu,t) ⊆ Xt if S(s, t) > W for a node s ∈ V (Gv,t), and V (Gu,t) ∩Xt = ∅
otherwise.

(2) V (Gv,t) ⊆ Xt if S(s, t) > W for a node s ∈ V (Gu,t), and V (Gv,t) ∩Xt = ∅
otherwise.

(3) V (Gu,v) ∩Xt = ∅.
To see this, consider the fixed target node t, and assume that there exists a

node s ∈ V such that the sss of Dijkstra’s algorithm in an s-t-query exceeds W .
First, consider the case where s is in V (Gu,t). We show that the arc-flags
enhanced query from s to t settles at most W nodes if and only if no node in
Gv,t is assigned to the cell Ct that contains t.

Assume that there is a node w in V (Gv,t) ∩ Ct. We show that then the flag
for the cell of t must be set on all edges of Ts that are relaxed by Dijkstra’s
algorithm until t is reached, resulting in a worst-case sss greater than W in
the s-t-query (because then the arc-flags algorithm settles the same nodes as
Dijkstra’s algorithm). To see this, let e be an arbitrary edge of Ts. If e is
part of the shortest path from s to t or from s to w, its flag is clearly set. If
e is in the subtree of Ts rooted at t, it is not relaxed by Dijkstra’s algorithm
in an s-t-query and therefore its flag setting is irrelevant. Otherwise, e is in
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the subtree of Ts rooted at w, and this subtree contains only nodes in Gv,t
because w ∈ V (Gv,t) and for the cut edge es it is either es = ev or es ∈ E(Gv,t).
Otherwise, es ∈ E(Gu,t)∪{eu} would hold (since Gu,v contains no cut edges and
es = et implies that the s-t query settles at most all nodes on the shortest path
from the endnode of et that lies in Gu,t to t, yielding a sss of at most L ≤ W ,
which contradicts our assumption). Therefore, the shortest path from t to s, and
thus also from s to t, would include es, contradicting the definition of es. But
then e is contained in the backward shortest-path tree Tt of t and its flag must
be set as well.

Conversely, assume that V (Gv,t) ∩ Ct = ∅. First of all, we show that all
nodes in V (Gu,v) share the same cut edge et. Assume to the contrary that there
is a node t′ in V (Gu,v) with a cut edge et′ 6= et. Removing et and et′ yields two
non-empty connected subgraphs of G. Let z be a node that is in the unique
component that does not contain the nodes V (Gu,v). Then the shortest z-t-path
and the shortest z-t′-path lie on different branches of Tz (due to the position of
z between the respective cut edges and symmetry of shortest paths), and hence
ez must lie in E(Gu,v). Since by construction Gu,v contains no cut edges, this is
a contradiction. Thus, all nodes in V (Gu,v) have the cut edge et. Let x1 and
x2 be the endpoints of et with x1 ∈ V (Gu,t). The flag from x1 to x2 for Ct is
not set, as we have Ct ⊆ V (Gu,t) ∪ V (Gu,v), and a set flag from x1 to x2 would
imply that there is a shortest path from a node in Gu,t to a node in Gu,v via et,
contradicting the definition of et. Thus, a query from s to t settles at most all
nodes in Gu,t ∪Gu,v. But those are exactly the nodes on the shortest path from
x1 to the endpoint of ev that lies in Gu,v, and hence S(s, t) ≤ L ≤W .

Analogously, for the case of s not in V (Gv,t), a query from s to t settles
at most W nodes if and only if no node in Gu,t is assigned to the cell Ct that
contains t. Finally, if s ∈ V (Gu,v), an s-t-query settles at most all nodes on
the shortest s-t-path plus all nodes on the remaining branch of Ts. Since the
cut edge of s is et, this branch ends either at x1 or at x2. Hence, the query
settles only nodes on the shortest path from t to x1 or x2, respectively. This
implies that S(s, t) ≤ L, regardless of the underlying partition C. Summarily,
it is Xt = ∅ if no source node s induces a sss greater than W in a query with
target t, and otherwise Xt consists of either V (Gu,t), V (Gv,t) or the union of
both sets.

Next, consider the sets Ut = {w ∈ V (Gu,v) | Xw ⊇ V (Gv,t)} and U ′t = {w ∈
V (Gu,v) | Xw ⊇ V (Gu,t)} of nodes in Gu,v whose sets Xw share a subgraph
of G.
Claim. If Ut 6= ∅, it contains an endpoint of ev. If U ′t 6= ∅, it contains an endpoint
of eu. Both Ut and U ′t induce connected subgraphs of G.

Assume that there is a w ∈ Ut such that the set Xw contains V (Gv,t). This
implies that there is a node s ∈ V (Gu,t) such that the sss of Dijkstra’s algorithm
in an s-w-query exceeds W . Since es is in E(Gv,t) ∪ {ev}, all nodes in Gu,v are
in the same branch of Ts. In particular, starting from the endpoint of eu that
lies in Gu,v, these nodes have ascending Dijkstra ranks. Hence, if w induces
a sss of S(s, w) ≥ W + 1, all nodes x 6= w in the subtree of Ts rooted at w
(and especially the endpoint of ev in E(Gu,v)) induce an even greater sss in a
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query from s. Thus, all corresponding sets Xx contain the set Gv,t as well. An
analogous argument follows for nodes w′ ∈ U ′ V (Gu,t) ⊆ Xw′ .

Because all nodes in Ut lie between two consecutive cut edges, it follows from
Claim our first claim that it is either Ut ⊆ Xw or Ut ∩Xw = ∅ for all nodes w
of the graph. Thus, restricting to partitions where all nodes in the set Ut are
assigned to the same cell neither causes the sss to exceed W nor does it increase
the number of necessary cells. The same holds for the set U ′t .

Summarizing the sets of nodes x, y where Ux = Uy or Ux = U ′y, we obtain a
number of distinct connected subsets Ui ⊆ V (connectivity holds by our second
Claim). Each set Ui corresponds to a set Xi 6= ∅, such that nodes in Xi must
not be assigned to the cell that contains Ui. It is easy to see that at most two
sets Ui, Uj with Xi, Xj 6= ∅ can be put into the same cell (roughly speaking, this
is due to the fact that each set Xi blocks one of two branches of a corresponding
shortest-path tree). We can find a minimum number of cells for the sets Ui if we
find a maximum matching of them, where two sets Ui and Uj can be matched if
and only if Ui∩Xj = Uj ∩Xi = ∅. This can be done in polynomial time [12] and
yields a lower bound k ≤ kopt(G,W ) on the necessary number of cells. Finally,
we have to assign all remaining nodes u with Xu = ∅. A sophisticated matching
may possibly allow for an exhaustive assignment of these nodes to cells that
are already used. However, this appears to be difficult to guarantee in general.
Instead, we use an extra cell and assign all nodes u with Xu = ∅ to this cell,
and therefore we use at most one more cell than necessary. In summary, given a
bound W on the worst-case sss we can compute a partition that needs at most
k + 1 ≤ kopt(G,W ) + 1 cells. �

3.4 Approximation Algorithms

We present an algorithm that approximates the optimal worst-case sss with a
given number of cells within a factor of 5/2 and 3 for undirected and directed
trees, respectively. The essential task concerning the instances constructed in
the proof of Theorem 1 is to find balanced cells that are almost connected. We
exploit this observation to derive an approximation algorithm. We say that a
cell C of a partition C in a graph T = (V,E, ω) is 1-disconnected if there is a
node v ∈ V such that C ∪ {v} induces a connected subgraph of T .

We describe the algorithm TreeApprox that, given an undirected tree T
(if T is directed, we simply ignore edge directions) and a parameter k, computes
at most k 1-disconnected cells of size at most 2d|V |/ke. Starting from the leaves
of the tree, we traverse it in a bottom-up fashion and keep track of the size of the
subtree induced by each node. Once a node v is reached whose subtree contains
at least sv ≥ d|V |/ke nodes, we assign all nodes in this subtree including v to
c = max{a ∈ N | a · d|V |/ke ≤ sv} newly introduced cells. For each descendant
w of v, we add the subtree rooted at w to one of the c new cells such that the
cell size does not exceed 2d|V |/ke. The subtree rooted at v is removed and the
algorithm continues recursively until T contains less than d|V |/ke nodes. All
remaining nodes are put into a final new cell, which is added to C as well. The
partition C generated by the algorithm fulfills the following desired conditions.
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Lemma 1 Given input parameters T = (V,E, ω) and k, the algorithm TreeAp-
prox terminates and computes a partition C = {C1, . . . , Ck′} satisfying the
following properties.
(a) All cells Ci ∈ C are 1-disconnected.
(b) For all Ci ∈ C it is |Ci| ≤ 2d|V |/ke.
(c) The number of cells k′ in the computed partition C is at most k.

Proof: Since the algorithm traverses the tree in a bottom-up fashion, it termi-
nates if and only if there always exists a cell with enough room left for the next
subtree during cell assignment. We prove that the properties (a), (b), and (c)
are fulfilled. Termination of the algorithm follows immediately.

(a) The assignment of nodes to cells is done in the main loop of the algorithm.
By construction, each newly created cell Ci contains only connected subtrees
rooted at the descendant of a given node v. Clearly, Ci∪{v} induces a connected
subtree of T . By removing Vv (the nodes of the subtree rooted at v) in the main
loop, we ensure that nodes in the subtree rooted at v are never reassigned.

(b) New cells are created whenever the number of unassigned nodes in the
subtree of a node v exceeds the size d|V |/ke. Thus, we may safely assume that
for all descendants w of v, the set Vw contains less than d|V |/ke nodes. There are
c · d|V |/ke ≤ sv < (c+ 1) · d|V |/ke nodes to be assigned to c ≥ 1 cells C1, . . . , Cc.
The sets Vw (and analogously, the set {v}) are consecutively assigned to an
arbitrary available cell Ci with |Ci|+|Vw| ≤ 2d|V |/ke. Assume for a contradiction
that at some point we are forced to exceed the size limit of 2d|V |/ke when trying
to add a set Vx. Let |Vx| = d|V |/ke−ε for an ε ≥ 1 and hence |Ci| > d|V |/ke+ε
for all i ∈ {1, . . . , c}. Then the total number sv of assigned nodes is at least∑c
i=1 |Ci|+|Vx| ≥ c·(d|V |/ke+ε)+d|V |/ke−ε ≥ (c+1)·d|V |/ke, a contradiction.
(c) New cells are introduced whenever a node v is reached with sv ≥ c·d|V |/ke

for some c ≥ 1. At this point, at least c · d|V |/ke nodes have to be assigned
to c cells. If v is the last node visited before the algorithm terminates and
sv < d|V |/ke, the sv remaining nodes are assigned to a final new cell. Let
k′ be the number of cells computed by TreeApprox. By construction of
the algorithm, we know that all cells, except for the last one, contain at least
d|V |/ke nodes. We distinguish two cases. If the last created cell contains
at least d|V |/ke nodes as well, the total number of nodes assigned to cells is
|V | ≥ k′d|V |/ke ≥ k′|V |/k, which implies k′ ≤ k. Otherwise, let x < d|V |/ke be
the size of the last cell created by the algorithm. The number of assigned nodes
is |V | ≥ (k′− 1)d|V |/ke+ x ≥ ((k′− 1)|V |/k) + 1, and hence we have k′− 1 < k.
In both cases the number of cells is bounded by k. �

We prove approximation guarantees for the algorithm TreeApprox. Theo-
rem 6 provides a first bound, which can be improved for undirected trees.

Theorem 6 Algorithm TreeApprox is a 3-approximation for the problem
MinWorstCasePartition on directed and undirected trees.

Proof: Let C = {C1, . . . , Ck′} be the output of algorithm TreeApprox given
the input parameters T = (V,E, ω) and k. Let ALG denote the worst-case sss
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induced by C and OPT the optimal worst-case sss for T and k. Since all cells in C
are 1-disconnected, after entering the target cell, a query settles at most one more
node outside this cell. Moreover, only edges pointing towards the target cell have
the corresponding flag set. Hence, a worst-case query into a given cell Ci settles
the largest possible path outside Ci leading into this cell plus at most all nodes in
Ci plus an additional node,. Let Ps,t denote the unique s-t-path for any s, t ∈ V
and let ∆ = maxs,t∈V |Ps,t| be the diameter of T . Clearly, the worst-case sss is
bounded by ALG ≤ max1≤i≤k′{∆+ |Ci|} ≤ ∆+2d|V |/ke ≤ 3 ·max{∆, d|V |/ke}
(note that the longest path of size ∆ is at least as large as the longest path
outside Ci plus the additional node possibly settled). On the other hand, an
optimal partition contains at least one cell of size at least d|V |/ke and there is a
query that settles all nodes of this cell. Since the diameter is a lower bound on
the worst-case sss, the optimal solution for T must be OPT ≥ max{∆, d|V |/ke}
(this holds for directed trees as well, since there must exist a root node from
which all nodes are reachable). It follows that ALG ≤ 3 ·OPT. �

A more sophisticated analysis leads to an improvement of the lower bound
on the optimal solution for undirected trees and yields the following guarantee.

Theorem 7 Algorithm TreeApprox is a 5/2-approximation for the problem
MinWorstCasePartition on undirected trees.

Proof: Given an undirected tree T = (V,E, ω) with diameter ∆ and a parame-
ter k, let OPT be the minimum worst-case sss for the corresponding instance
of MinWorstCasePartition. Let Copt = {C1, . . . , Ck} be an optimal parti-
tion. Without loss of generality, let |C1| ≥ |C2| ≥ · · · ≥ |Ck|, and in particular
|C1| ≥ d|V |/ke. We show that OPT ≥ d|V |/ke + ∆/4. Let Pmax be a path of
maximal size in T , i.e., |Pmax| = ∆. We consider queries from the endpoints
of Pmax and distinguish two cases depending on the number of nodes on Pmax

assigned to C1.
First, assume that |C1 ∩ Pmax| ≤ ∆/2. From each endpoint of Pmax, there is

a query that settles all nodes in C1. Moreover, every node on Pmax is settled by
at least one of these two queries. To see this, consider an arbitrary target t in C1.
Each of the two unique paths from the endpoints of Pmax to t contains exactly
the subpath of Pmax from the corresponding endpoint to the unique node of Pmax

that roots the subtree containing t. Hence, the two (almost) complementary
subpaths together must cover Pmax. Since t is settled in both of the two queries
(with target nodes t1, t2 possibly distinct from t) that settle all nodes in C1, the
observation follows. As the number of nodes on Pmax not in C1 is at least ∆/2,
one of these two queries must settle at least ∆/4 nodes not in C1. In total, we
obtain a worst-case sss of at least |C1|+ ∆/4.

For the second case, assume that the number of nodes on Pmax assigned to
C1 is ∆/2 + x for some x ≥ 1. There are queries from both endpoints of Pmax

that settle all nodes in C2. Obviously, at least one of these two queries must
settle at least ∆/4 + dx/2e + |C2| nodes. If |C2| ≥ d|V |/ke, the claim follows.
Conversely, let |C2| = d|V |/ke − y for some y ≥ 1. The worst-case sss is at least
∆/4 + dx/2e+ d|V |/ke− y. In addition to that, we know that |C1| ≥ d|V |/ke+ y
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must hold (recall that |C2| ≥ |Ci| for all i ≥ 2). Moreover, there is a query that
settles at least ∆/4− dx/2e nodes of Pmax not in C1 plus all nodes in C1, hence
the worst-case sss is at least ∆/4− dx/2e+ d|V |/ke+ y nodes. Thus, there is
always a query settling ∆/4 + d|V |/ke nodes, independent of whether x/2 ≥ y
or x/2 < y.

Next, we infer the resulting approximation ratio. Let ALG be the worst-
case sss induced by a partition computed by TreeApprox. We know that
ALG ≤ ∆ + 2d|V |/ke and OPT ≥ max{∆,∆/4 + d|V |/ke}. To prove the
theorem, we distinguish two cases. First, let ∆ ≥ 4d|V |/ke/3. In this case
we have ALG/OPT ≤ (∆ + 2d|V |/ke)/∆ ≤ 5/2. If ∆ < 4d|V |/ke/3, it is
ALG/OPT ≤ (∆ + 2d|V |/ke)/(∆/4 + d|V |/ke) = (∆ + 2d|V |/ke)/(4/5 · (5∆/16 +
d|V |/ke/4 + d|V |/ke)) < (∆ + 2d|V |/ke)/(4/5 · (∆/2 + d|V |/ke)) = 5/2. �

4 Minimizing the Average Search-Space Size

Since MinAvgCasePartition is known to be NP-hard in general [2], we
investigate restricted input instances. Along the lines of Section 3, we examine
paths, cycles, stars, and trees.

To begin with, we establish preliminary tools in Lemma 2 and Corollary 1,
used in the subsequent proofs of this section. Recall that a function f : R≥0 → R
is convex on R≥0 if and only if the difference quotient (f(x0 +h)− f(x0))/h of f
is non-decreasing in x0 for any fixed h. The following lemma provides a crucial
statement about the sum of several functional values of a convex function. Later
on, such functions will come up as sss induced by a set of cells.

Lemma 2 Let f : R≥0 → R≥0 be a cost function that is convex and increasing
on R≥0. Let x and n be two fixed positive integers. Furthermore, let x1, . . . , xn
be positive integers subject to

∑n
i=1 xi = x. Then the total cost Γ =

∑n
i=1 f(xi)

is non-decreasing if the values xi are modified subject to one of the following
rules while maintaining the constraints

∑n
i=1 xi = x and xi ≥ 0 for all xi, i ∈

{1, . . . , n}.
1. Two arbitrary values xi and xj are swapped.
2. Given two integers xi, xj with xi ≥ xj and a number d ∈ N+, the value xi

is increased by d while xj is decreased by d.

Proof: Clearly, swapping two elements has no influence on the cost Γ. Thus,
we can concentrate on the latter case.

For the second case, assume we are given two values xi, xj such that xi ≥ xj
holds. Obviously, the resulting cost after increasing xi and decreasing xj by the
same value d ∈ N+ is equal to

Γ′ = Γ + f(xi + d)− f(xi) + f(xj − d)− f(xj).

Since f is increasing in R≥0, we know that we have f(xi + d)− f(xi) ≥ 0 and
similarly f(xj − d)− f(xj) ≤ 0. Consequently, all we need to show is that

|f(xi + d)− f(xi)| ≥ |f(xj)− f(xj − d)|
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holds for any xi ≥ xj . This, however, is clear because we demanded that f is
convex and thus the difference quotient

g(x) =
f(x+ h)− f(x)

h

is non-decreasing in x for fixed h. We set h = d and x = xi or x = xj − d,
respectively. Since xi ≥ xj implies g(xi) ≥ g(xj − d) and due to the constraints
of the lemma g(xj − d) ≥ 0 holds, we obtain the following desired result.

|f(xi + d)− f(xi)| = d · g(xi) ≥ d · g(xj − d) = |f(xj)− f(xj − d)|

This completes the proof. �

Assume we are given positive integers {x1, . . . , xn} with xi ∈ {bx/nc , dx/ne}
for all xi such that their sum equals x and a cost function Γ as in Lemma 2.
Using steps 1 and 2 from the lemma, we can create any set of values xi that
fulfills the constraint

∑n
i=1 xi = x. In each of these steps, the overall cost is

non-decreasing. Hence, we minimize a given convex, increasing cost function if
all values xi are as close to bx/nc as possible. Corollary 1 follows directly from
this observation.

Corollary 1 Let f : R≥0 → R≥0 be an increasing, convex function and x and
n two positive integers. For arbitrary positive integers x1, . . . , xn subject to the
constraint

∑n
i=1 xi = x, the cost

∑n
i=1 f(xi) is minimized if xi = dx/ne for

i ≤ x mod n and xi = bx/nc for i > x mod n.

4.1 Paths

In the proofs of Theorems 8 and 9, we use an alternative notion of sss. Given a
directed or undirected path P = (V,E, ω), let Ps,t denote the unique simple s-t-
path between arbitrary nodes s, t ∈ V . We say that the penalty of a corresponding
query is pen(s, t) = S(s, t) − |(Ps,t)| if d(s, t) < ∞ and pen(s, t) = S(s, t) − 1
otherwise. We know that a query must at least settle all nodes on the path
from s to t, and it must at least settle s in the case that t is unreachable.
Consequently, the values |Ps,t| and 1 yield respective tight lower bound on S(s, t).
Thus, pen(s, t) ≥ 0 always holds and since the sum

∑
s,t∈P |Ps,t| of all path sizes

of a graph is constant, minimizing Savg is equal to minimizing
∑
s,t∈P pen(s, t).

The essential step in both of the two following proofs is to show that cell-induced
penalties can be interpreted as convex functions, and by Corollary 1 we thus
minimize the average sss if we balance the cell sizes.

Given a graph consisting of a single directed path P and a parameter k, let
the partition Copt consist of k connected cells C1, . . . , Ck of balanced size, i.e.,
|Ci| ∈ {b|V |/kc , d|V |/ke} for all 1 ≤ i ≤ k.

Theorem 8 Let P = (V,E, ω) be a directed path and k a positive integer. The
partition Copt described above yields an optimal partition if k bounds the number
of cells.
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Proof: Each node of the graph has at most one outgoing edge. Hence, the
next node to be settled in a query is always unique and we can ignore edge
weights. The proof consists of two elementary steps. First, we show that given
an arbitrary partition C, we can always construct a partition C′ that contains
only (weakly) connected cells without increasing the sss. In the second step, we
show how to minimize the sss for strongly connected cells with a uniform weight
function, which proves the theorem.

Given an arbitrary partition C = {C1, . . . , Ck} that contains at least one cell
that is not strongly connected, we construct the partition C′ = {C ′1, . . . , C ′k}
as follows. Starting at the leftmost node v1, we assign subsequent nodes of
the path to ascending cell indices while retaining the cell sizes of C. More
formally, given V = {v1, . . . , v|V |} and E = {(vi, vi+1) | 1 ≤ i ≤ |V | − 1} we set
C ′1 = {v1, . . . , v|C1|}, C ′2 = {v|C1|+1, . . . , v|C1|+|C2|} and so forth. We now show
that

∑
s,t∈P penC′(s, t) ≤

∑
s,t∈P penC(s, t) holds. To this end, we distinguish

the penalties of intra-cell queries (i.e., queries where s and t belong to the same
cell) and inter-cell queries (i.e., queries where s and t are assigned to different
cells) on P . Since all cells in C′ are strongly connected subgraphs, only edges
that actually lead from s towards the target cell have the corresponding flag
set. Hence, inter-cell queries cause a total penalty of 0, because either the
exact s-t-path is settled or no outgoing edge has the target flag set. Intra-cell
query penalties cannot increase in comparison to the original partition, for either
exactly the s-t-path gets settled or the query settles all nodes up to the rightmost
node of the cell (i.e., the unique node v that has no reachable node of the same
cell). The total penalty accounting for the latter case clearly is minimized if cells
are connected. Finally, we know that the size of each cell in C is preserved in the
corresponding cell in C′, i.e., |Ci| = |C ′i| for all i ∈ {1, . . . , k}. Hence, the total
number of inter-cell queries and intra-cell queries is identical for both partitions
and the overall penalty does not increase for C′.

To prove the second claim, we have to minimize the overall penalty given
that all cells are connected. The only positive penalties that occur are those of
intra-cell queries where the target node is unreachable. Imagine the nodes of a
certain cell Ci to be ordered by increasing number of unreachable nodes in Ci,
i.e., the order in which the nodes in Ci are traversed when starting at its front
node. For a node v at position j in this order, there are j − 1 distinct intra-cell
nodes that are unreachable from v. A query from v to any of these nodes then
causes all reachable nodes in Ci to be settled, which induces a penalty of |Ci|− j.
With j taking any value in {1, . . . , |Ci|}, this yields a total penalty as shown
below.

∑
s,t∈V

penC(s, t) =

k∑
i=1

|Ci|−1∑
j=1

(j − 1) · (|Ci| − j)

=

k∑
i=1

(
1

6
|Ci|3 −

1

2
|Ci|2 +

1

3
|Ci|

)
(1)
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This implies that we can assign a penalty p(x) = x3/6− x2/2 + x/3 to a cell of
cardinality x. If we interpret the polynomial p as a continuous function with the
cell size as a parameter, we obtain a cost function that is non-negative, increasing
and convex on R≥0. From Corollary 1 we know that the total penalty of P then
is minimized if we have n mod k cells of size dn/ke and n− (n mod k) cells of
size bn/kc. Together with the demand for strongly connected cells, the partition
C stated in the theorem fulfills this requirement and hence yields a minimum
penalty for P . �

The following Theorem 9 shows that the partition Copt optimizes the average
sss on undirected paths as well. The proof uses similar arguments as in the
directed case.

Theorem 9 Let P be an undirected path and k a positive integer. The partition
Copt described above yields an optimal partition if k bounds the number of cells.

Proof: The proof consists of three elementary steps. Along the lines of Theo-
rem 8, we show that, given an arbitrary partition C, we can construct a partition
C′ containing only strongly connected cells without increasing the sss. In the
second step, we show that we may ignore the weight function of the graph as
long as cells are strongly connected. Finally, we show how to minimize the sss
for strongly connected cells with a uniform weight function.

We use the same procedure as in the first step of the proof of Theorem 8 to
convert an arbitrary partition into one that only has connected cells without
increasing the total sss. Let s and t be nodes of different cells. Since all cells
in C′ are strongly connected subgraphs, only edges that actually lead from s
towards the target cell have the corresponding flag set. Therefore, the query
algorithm starts at s and settles only nodes of Ps,t until the target cell is reached.
The query is then aborted as soon as the target node t is reached. Hence, all
nodes that are settled during the query belong to the unique shortest s-t-path,
yielding a penalty of 0 for inter-cell queries.

As for intra-cell queries, we consider an arbitrary isolated pair of correspond-
ing cells Ci and C ′i of both partitions, and show that the sum of all intra-cell
penalties cannot increase for the cell C ′i. Assume we are given a certain cell
Ci = {r1, . . . , rc} and its transformation C ′i = {r1, . . . , rc} for an i ∈ {1, . . . , k}.
We compare the sum of all penalties of intra-cell queries starting at two nodes rj
and sj at the same relative position in the respective cell (i.e., rj and sj are the
j-th node encountered when traversing P from a certain direction). Since each
cell in C′ is strongly connected, no nodes outside C ′i are settled in an intra-cell
query. For any source node sj , the order in which the nodes in C ′i get extracted
from the queue is independent of t, and we can assign a rank p ranging from 1
to |C ′i| to each node of the cell that represents its position in this order. There
are |C ′i| possible target nodes for an intra-cell query starting at sj and each of
them has a distinct rank in {1, . . . , |C ′i|}. To obtain the corresponding penalties,
we must consider the sizes of all paths Prj ,t from rj to any t ∈ C ′i. Since the cell
is strongly connected, we know that the cell-induced subgraph contains exactly
j− 1 nodes with an index lower than sj and |C ′i| − j nodes with an index greater
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than sj . The penalty thus only depends on the cell size as well as the relative
position of rj .

Conversely, when analyzing all queries that start at the corresponding source
sj of the original cell Ci, we have to take into account that nodes of other cells
may get settled as well. To obtain the penalty induced by intra-cell queries from
sj , let us assume that we temporarily remove all nodes of other cells from the
graph. To preserve correct intra-cell distances, edges between corresponding
pairs of nodes with their original distance as weight are inserted. Clearly, the
penalty caused by sj now is identical to the case of rj . Now, assume that we
reinsert the nodes from other cells into the graph. For each sj-t-query with
t ∈ Ci, if an inserted node u lies on the sj-t path, both the corresponding sss
and the path size are incremented, so the penalty remains unaffected. Otherwise,
the path size remains unchanged and the penalty cannot decrease. In total, the
penalty for sj cannot be lower than the one for rj .

We have shown that for both the total inter-cell penalty and the total intra-
cell penalty the partition C′ yields a solution that is at least as good as C. In
what follows, we can therefore safely assume that all cells are strongly connected.

Now, consider the weight function ω of the graph P . Again, we distinguish
intra-cell queries and inter-cell queries. Since all cells must be strongly connected,
we know that the inter-cell search spaces cover exactly the shortest paths from
the source node to the target node. Intra-cell search spaces, however, were shown
above to be equal to the search spaces caused by Dijkstra’s algorithm on the
corresponding cell, which only depends on the cell size. So neither the inter-cell
sss nor the intra-cell sss depend on the edge weights.

Our objective is to find a partition that minimizes the total penalty. Provided
that all cells are strongly connected, the overall inter-cell penalty is 0. Thus,
we only have to minimize the intra-cell penalty of all cells given uniform edge
weights. To determine the correct penalty, we enumerate the sizes of all distinct
paths for a given cell Ci. Without loss of generality, let Ci = {v1, . . . , vc} with
c = |Ci|. There are exactly two paths of size c, namely the paths 〈v1, . . . , vc〉
and 〈vc, . . . , v1〉. Analogously, we have exactly the four paths 〈v1, . . . , vc−1〉,
〈v2, . . . , vc〉, 〈vc−1, . . . , v1〉, 〈vc, . . . , v2〉 of size (c− 1) and so forth. Finally, we
have to account for 2(c− 1) paths of size 2 and c paths of size 1 (paths where
the source and target node are identical). Note that the latter case forms an
exception, as we do not have to distinguish two directions. The sum of all these
path sizes is summarized below.

∑
u,v∈Ci

|Pu,v| = c+ 2

c−1∑
j=1

(c− j)(j + 1)

=
1

3
c3 + c2 − 1

3
c
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From the observations made above, we know that the intra-cell sss of all distinct

queries within a given cell Ci is
∑
s,t∈Ci

S(s, t) = |Ci|
∑|Ci|
j=1 j = |Ci|2(|Ci|+ 1)/2.

Hence, we obtain the following total penalty.

∑
s,t∈V

penC(s, t) =

k∑
i=1

 ∑
u,v∈Ci

S(u, v)−
∑

u,v∈Ci

|Pu,v|


=

k∑
i=1

(
1

6
|Ci|3 −

1

2
|Ci|2 +

1

3
|Ci|

)
This is the same result as we obtained in Equation 1. Hence, we get similar
optimal partitions for directed paths. �

4.2 Cycles

Observe that the sss of queries in a directed cycle is independent of the underlying
partition, rendering the problem trivial for these graphs. On the other hand,
we have seen in Section 3.3 that finding optimal cells on undirected cycles is
nontrivial for worst-case optimization. Since the average-case minimization seems
more difficult in general, we make the following simplification. We present an
algorithm that computes optimal connected cells for cycles. Note that in general,
an optimal partition may require disconnected cells, as shown in Figure 5. Here,
x is a large number while all other edge weights are 1. The values of Savg induced
by both partitions were obtained using an ILP solver and the algorithm presented
below, respectively. An optimal partition with at most four cells inherently
contains a disconnected cell. The construction of this counterexample is based
on the following observation. The set flags of a given cell on a cycle depend on
the overlap of the backward shortest-path trees that correspond to the cell. As
a result, it is easy to see that an inter-cell query into this cell will either settle
the same number of nodes as Dijkstra’s algorithm or exactly the nodes on the
shortest path from source to target. In other words, an inter-cell query achieves
either a perfect speed-up or no speed-up at all. Since nodes in the sets A,B, and
C share similar respective backward shortest-path trees, assigning these nodes
to the same cell results in almost minimal sss of inter-cell queries into these
cells. Since the number of cells is bounded by four, this leaves the two remaining
(disconnected) nodes for the last cell.

The algorithm for computing an optimal partition with connected cells is
based on the following observation. After choosing an orientation of the cycle
G = (V,E, ω), a connected cell Cu,v is uniquely described by two border nodes u
and v, such that Cu,v contains all nodes encountered when traversing the cycle
from u to v along the chosen orientation, including u and v. Recall from the
introduction that the flags for the cell Cu,v only depend on Cu,v. Thus, given
Cu,v, the sss SC(u, v) =

∑
s∈V,t∈Cu,v

S(s, t) of all s-t-queries with an arbitrary
source s ∈ V and a target t ∈ Cu,v can be computed efficiently.

Using this observation, we describe a dynamic programming approach to
compute optimal connected cells on undirected cycles. Let V = {v1, . . . , v|V |} be
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(a) An optimal partition of the cy-
cle, inducing Savg = 994.
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x
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x

(b) Optimal partition for connected
cells, inducing Savg = 996.

Figure 5: A cycle with an optimal partition containing a disconnected cell.

indexed along the orientation of G and, without loss of generality, we assume that
v1 is the left boundary of a cell in an optimal partition (to preserve correctness,
we simply consider each node vi as the starting point once). We define a two-
dimensional |V | × k-table T , where T [i, `] is the optimal sss of all s-t-queries
with s ∈ V and t ∈ {v1, . . . , vi} provided that v1, . . . , vi are partitioned into `
distinct cells. We initialize the first row by setting T [i, 1] = SC(v1, vi). Moreover,
T satisfies the following recurrence relation.

T [i, `] = min
1≤j≤i−`+1

T [i− j, `− 1] + SC(vi−j+1, vi), for i ≥ ` ≥ 2.

This follows directly from the fact that the sss of queries into the `-th cell is
independent of the choice of the first ` − 1 cells. Using this recurrence, the
table entries can be filled in polynomial time. By definition, T [n, k] is the sss
of an optimal partition that contains the boundary v1. By keeping track of
the boundary nodes yielding the table entries, a partition with this sss can be
computed in the same running time. We have the following theorem.

Theorem 10 The problem MinAvgCasePartition on cycles can be solved in
polynomial time if partitions are restricted to strongly connected cells.

Clearly, replacing SC(u, v) by the corresponding worst-case sss and taking the
maximum instead of the sum in the recurrence yields an algorithm that computes
connected cells with minimum worst-case sss.

4.3 Hardness Results for Trees

We show that provided P 6= NP , there is no efficient algorithm that guarantees
to find optimal cell assignments on undirected trees. The reductions given below
are similar to those in Section 3.1, but proofs are significantly more involved due
to the consideration of the average-case sss rather than the worst case.
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Theorem 11 MinAvgCasePartition is NP-hard on undirected trees with
uniform edge weights and a maximum height of 2.

Proof: We use the reduction given in the proof of Theorem 2 to construct a tree
T = (V,E, ω) from an instance (S,B) of 3-Partition. Let the root r have the
smallest index in the ordering that is used for tie breaks in the query, that is, in
any s-t-query, r is settled before all other nodes v with distance d(s, v) = d(s, r).
We establish a bound Γ such that (T,m) admits a partition C with Savg ≤ Γ if
and only if (S,B) is a Yes-instance.

Assume (S,B) is a Yes-instance and S1, . . . , Sm a corresponding solution.
Consider the partition C = {C1, . . . , Cm} where Ci contains all nodes of limbs
corresponding to elements in Si, and r ∈ C1 (just as in the reduction we used
to prove Theorem 2). We have |C1| = B + 1 and |Ci| = B for i ≥ 2. We
distinguish queries starting from three different types of nodes, namely the root
node, element nodes and weight nodes.

For a query starting at r, we know that besides r, no nodes outside the target
cell are settled. Also, for every cell Ci and every index 1 ≤ j ≤ |Ci|, there is a
unique node ti,j such that the query from r to ti,j settles exactly j nodes of Ci (this
follows from the fact that nodes are settled in a deterministic order). Therefore,

the total sss of queries from r to nodes in C1 is
∑
t∈C1

S(r, t) =
∑B+1
j=1 j =

(B + 1)(B + 2)/2. For Ci with i ≥ 2, we obtain
∑
t∈Ci

S(r, t) = B +B(B + 1)/2,
because r is additionally settled in each of the B queries. This yields

γ1 :=
∑
t∈V

S(r, t) = |V |+m · B(B + 1)

2
, where |V | = mB + 1.

Next, consider queries starting at an element node sp. The node sp is
settled in every query. Since r has the least index regarding tie breaks and
all flags on all incoming edges of r are set, the second node settled, if any, is
always r. Let S(u, v) denote the set of settled nodes in a u-v-query. Clearly,
we have

∑
t∈V |S(sp, t) ∩ {sp, r}| = 2 |V | − 1 and besides sp and r, no node

outside the target cell is settled in an sp-t-query. For a cell Ci ∈ C, the total
number of nodes in Ci \ {sp, r} settled in the |Ci| distinct queries from sp equals
|Ci \ {sp, r}|(|Ci \ {sp, r}| + 1)/2. Observe that we have |Ci \ {sp, r}| = B if
sp /∈ Ci and |Ci \{sp, r}| = B−1 otherwise. For the sss of all queries originating
at sp, this yields

γ2 :=
∑
t∈V

S(sp, t) = 2|V | − 1 + (m− 1)
B(B + 1)

2
+
B(B − 1)

2
.

Finally, we account for queries from a leaf wp,q of the tree. We know that wp,q
is settled in all |V | distinct queries starting at wp,q. The corresponding element
node sp is the only reachable node from wp,q and is always settled unless we
have s = t = wp,q. As we observed before, the first note settled after sp (if any)
is always r, which leaves us with

∑
t∈V |S(wp,q, t) ∩ {wp,q, sp, r}| = 3 |V | − 3.

Along the lines of the argumentation for the element-node case, we infer a sss
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for the remaining parts of queries from wp,q that equals |Ci \ {wp,qsp, r}|(|Ci \
{wp,q, sp, r}|+ 1)/2 for each cell Ci ∈ C. We obtain the following sss for queries
from an arbitrary leaf wp,q.

γ3 :=
∑
t∈V

S(wp,q, t) = 3|V | − 3 + (m− 1)
B(B + 1)

2
+

(B − 1)(B − 2)

2
.

The tree T consists of one root node, 3m element nodes and mB−3m weight
nodes. Thus, setting Γ = γ1 + 3mγ2 + m(B − 3)γ3, we can assure that the
inequality

∑
s,t∈V S(s, t) ≤ Γ stated above is fulfilled by the partition C.

For the other direction, assume we are given a partition C = {C1, . . . , Cm}
of T such that the resulting sss is at most Γ. We show that T corresponds to a
Yes-instance of 3-Partition. Again, we divide the sss into three components
by distinguishing different types of source nodes. Without loss of generality,
assume that r ∈ C1. Then it suffices to show that C is perfect (cf. Theorem 1).
To this end, we show that Γ in fact yields a tight lower bound on the total sss of
T that is only reached if C is perfect. For every source node s ∈ T we determine
a subset U ⊆ V such that

∑
t∈V |S(s, t) ∩ U | is independent of the underlying

partition C. Observe that we actually did this before in order to obtain the
values of γ1, γ2, and γ3. To account for the remaining parts of the search spaces,
consider the subgraph induced by the nodes in V \ U . For each target cell
Ci ∈ C, there are ci := |Ci ∩ (V \ U)| distinct s-t-queries with t ∈ Ci ∩ (V \ U)
and these ci nodes are settled in a deterministic order. Thus, the overall sss of
queries from s into the cell Ci within the considered subgraph must be at least∑
t∈Ci\U |S(s, t) \ U | ≥ ci(ci + 1)/2. In order to reach this lower bound, one has

to ensure that in no such query, any nodes outside Ci ∪ U are settled. Following
this approach, we can show the claim given below, which immediately implies
the theorem.

Claim 1 The terms γ1, γ2, and γ3 are tight lower bounds on the average sss of
queries from the root node, an element node, and weight node, respectively. To
reach the lower bound γ1, the underlying partition must be perfect.

To prove the claim, we first examine queries starting at the root node r. If we
set U = {r}, the total number of nodes in U settled during all distinct queries
from r equals |V |, regardless of the underlying partition. The argumentation
given above then yields a lower bound on the sss of all queries from r that
equals γ1. Clearly, all limbs need to be monochromatic in order to reach this
bound (otherwise, there exists at least one query in which nodes other than r
outside the target cell are settled). Furthermore, we claim that the bound is
reached only if C is a balanced partition. To see this, we derive a lower bound
on the sss of queries from r in an arbitrary non-balanced partition by adapting
balanced cell sizes using the two steps given in Lemma 2. Starting from the
balanced case with ci = |Ci \ U | = B for all 1 ≤ i ≤ m, we can without loss of
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generality perform our first step by simultaneously increasing one cell size by 1
and decreasing another cell size by 1. This yields an increase of the sss of

(B + 1)(B + 2)

2
+
B(B − 1)

2
−B(B + 1) = 1.

We know from Lemma 2 that the sss is non-decreasing in all remaining steps.
Hence, only a perfect partition enables us to reach the lower bound of γ1.

For queries from element nodes sp ∈ V , we set U = {sp, r}. The source
node sp is settled in every query, so this node accounts for an amount of |V |
in the sss. Furthermore, we know that r is the second node to be settled if
the corresponding flag of the edge (sp, r) is set. Assume that this is the case
for all flags pointing at r. Then r is settled on exactly |V | − 1 queries and we
immediately obtain a lower bound that equals γ2 for all queries starting at sp.
Conversely, assume that there exists a cell Ci such that its flag on the edge (sp, r)
has the value 0 for Ci. We show that the bound γ2 must be exceeded in this
case. Note that the edge (sp, r) is only relevant for the sss of queries starting
inside the limb `p. Moreover, queries from a node in `p to a node outside `p
cannot benefit from the zero flag, because r must be passed in such a query and
thus the target node is not in Ci (otherwise, the flag would be set). For a query
where both the source and the target belong to `p, r is the only node outside
`p that is settled by Dijkstra’s algorithm, and hence we can save at most one
settled node per query compared to any other partition. Since there are less than
B/2 distinct targets inside `p, the gain is bounded by B/2 for a fixed source
node. However, for the corresponding target flag to be 0, no node outside `p is
allowed to be in Ci. Consider the sss of queries from sp that we examined before.
The sss of these queries is minimized if we find cells with balanced partial sizes
cj = |Cj \ {sp, r}|. However, for the corresponding target flag to be 0, the cell
Ci must contain less than B/2 nodes. Given a balanced partition, we can adapt
the cell sizes cj for j ∈ {1, . . . , 3m} using the operations of Lemma 2 to create a
partition where |Ci| < B/2. Without loss of generality, in each step let only one
cell size be decremented by 1, while another one is incremented by 1. Then we
can identify more than B/2 steps in which some size cj is increased by 1 and
simultaneously, the size ci ≤ cj is decreased by 1. Since

(cj + 1)(cj + 2)

2
+
ci(ci − 1)

2
=
cj(cj + 1)

2
+
ci(ci + 1)

2
+ cj − ci + 1

for cj ≥ ci > 0, the total sss of queries from sp increases by at least 1 in each of
these steps. In total, the overall sss must exceed γ2, and we can safely assume
that in an optimal partition, all flags are set on an edge (sp, r).

Finally, consider queries from a leaf wp,q of T . Setting U = {wp,q, sp, r}, we
obtain a partial sss of 3n− 3 along the lines of our previous observations. To
find a lower bound on the remaining parts of queries from a leaf, we have to
even the cell sizes |Ci \ U |. A partition with |Ci \ U | = |Cj \ U | = B − 1 for two
cells Ci, Cj and |Ck \ U | = B for all k 6= i, j yields a lower bound on the sss of
queries from wp,q that equals γ3− 1. Any other combinations leads to a sss of at
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least γ3. Observe that the lower bound of γ3 − 1 for wp,q can only be achieved if
all limbs except for `p are monochromatic. Furthermore, it cannot be fulfilled
by a perfect partition, for which we obtained a sss of γ3. Assume we are given
a partition such that

∑
t∈V S(wp,q, t) = γ3 − 1 for at least one leaf wp,q of the

limb `p. We distinguish two cases and prove that each time, the global sss must
be strictly greater than Γ. In the investigations below, we assume that m ≥ 2
and B ≥ 9, which is fulfilled by any nontrivial instance of 3-Partition.

First, assume that the limb `p itself is monochromatic as well. Let Ci be
the cell that all nodes in `p are assigned to. We have {wp,q, sp} ⊆ Ci and thus
|Ci \ {r}| ≥ B + 1 (because |Ci \U | ≥ B− 1 holds). If we ignore r, the partition
C therefore consists of one cell Ci \ {r} of size B + 1, a cell Cj \ {r} of size B− 1
and m− 2 cells Ck \ {r}, k 6= i, j of size B. Consider the sss of queries starting
at weight a node wx,y in a different limb `x assigned to a cell Cl, l 6= i, j. It is
|Ci\{wx,y, sx, r}| = B+1, |Cj \{wx,y, sx, r}| = B−1, |Cl\{wx,y, sx, r}| = B−2,
and |Ck \ {wx,y, sx, r}| = B for all k 6= i, j, l. This yields a lower bound on the
sss of queries from wx,y of

∑
t∈V S(wx,y, t) ≥ γ3 + 1. Analogously, we obtain∑

t∈V S(wx,y, t) ≥ γ3 + 3 for leaves wx,y of the cell Cj . Summing up, we achieve
a sss of γ3 − 1 for less than B/2 leaves, while all other leaves obtain a sss of at
least γ3 + 1. Since m ≥ 2, there must be at least 3B/2− 3 > B/2 such leaves,
and therefore the sss of all leaves must exceed m(B − 3)γ3.

For the second case, assume that `p is not monochromatic. Let a denote
the number of nodes assigned to a cell different from the cell that contains sp,
and let Ci denote this cell. The sss of an arbitrary weight node wx,y outside `p
then is bounded by

∑
t∈V S(wx,y, t) ≥ γ3 − 1 + a, because in each query to one

of the a mentioned leaves, the element node sp gets settled despite not being
in the target cell. Hence, if a ≥ 2, we have a sss of at least γ3 + 1 for at least
m(B − 1)−B/2 > B/2 leaves of the tree, which outclasses the gain of the less
than B/2 leaves of `p. Thus, we may safely assume that a = 1. Then we have a
unique leaf in `p that is assigned to a certain cell Cj , while all remaining nodes
in `p are assigned to Ci. Due to the fact that |Cj \ {wp,q, sp, r}| ∈ {B − 1, B}
and sp /∈ Cj , we know that |Cj \ {r}| is in {B,B + 1}, depending on the cell
assignment of wp,q. If |Cj \ {r}| = B, it is |Cj \ {wx,y, sxr}| ≤ B − 2 for all
weight nodes wx,y of other limbs `x, x 6= p assigned to Cj (recall that `x is
monochromatic). This yields a lower bound of at least γ3 for all these leaves.
Observe that there are at least B− 4 > B/2 such leaves wx,y outside `p assigned
to Cj . If |Cj \ {r}| = B + 1, we have |Cj \ {wx,y, sx, r}| = B + 1 for all leaves
outside `p ∪Cj . Moreover, there must be more than B/2 nodes in V \ (`p ∪Cj).
Hence, in both cases we obtain a lower bound of γ3 for at least B/2 leaves. In
addition to that, the lower bound of every leaf outside `p must have its lower
bound increased by 1, because sp is now additionally settled during the query to
the unique leaf in `p that is assigned to Cj . In total, we obtain a bound of γ3− 1
for less than B/2 nodes, a bound of γ3 + 1 for more than B/2 nodes and γ3 for
all other nodes. Therefore, the global sss of all leaves must exceed the bound of
m(B − 3)γ3 of a balanced partition with monochromatic limbs. It follows that
m(B − 3)γ3 is indeed a tight lower bound on the sss of all leaves of the tree, and
only a perfect partition reaches this bound. �
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The next theorem shows that the problem MinAvgCasePartition is NP-
hard for directed trees, a subclass of directed acyclic graphs. Since directed
acyclic graphs occur in the form of time-expanded graphs in time-dependent
scenarios [14], this result is of vast importance for practical applications.

The outline of the proof of Theorem 12 is similar to the proof of Theorem 11.
Replacing undirected edges by directed ones in the reduction, we first examine
the sss of a perfect partition. Then we can show that this bound yields a tight
lower bound on the sss that is reached if and only if the partition of the graph is
perfect.

Theorem 12 MinAvgCasePartition is NP-hard on directed trees with uni-
form edge weights and a maximum height of 2.

Proof: Given an instance (S′, B′) with S = {s′1, . . . , s′3m} of 3-Partition,
we first make the following changes. We set B := B′ + 3α, and ωi = ω′i + α
for 1 ≤ i ≤ 3m, with α being specified below. Note that this does not affect
solvability of the resulting instance. The reduction from (S,B) to an instance
(T,m) then works very similar to the undirected case. Starting with a root node
r ∈ V , for each element sp ∈ S, we create a limb `p consisting of one element
node sp, ωp − 1 weight nodes, and directed edges connecting both r to sp and
sp to all its weight nodes. We proceed along the lines of Theorem 11. We
claim that there exists a bound Γ such that (T,m) admits a partition C with∑
s,t∈T S(s, t) ≤ Γ if and only if (S,B) is a Yes-instance of 3-Partition.

Assume that (S,B) is a Yes-instance and let S1, . . . , Sm be a corresponding
solution. Consider the partition C = {C1, . . . , Cm} where Ci contains all nodes
of the limbs corresponding to elements in Si, and additionally r ∈ C1. Again,
we have |C1| = B + 1 and |Ci| = B for i ≥ 2. To analyze the sss induced by
C, we distinguish three types of queries. To begin with, a query starting at r
uses only edges pointing away from r, we face the exact same situation as in the
undirected case. The total sss of queries from r is

γ1 :=
∑
t∈V

S(r, t) = |V |+m · B(B + 1)

2
.

Next, we examine the sss of queries starting at a fixed element node sp that is
assigned to a cell Ci with a target node t 6= r. First, observe that an sp-t-query
settles only the source node sp if t /∈ Ci. This yields a sss of 1 for B(m − 1)
distinct queries from sp. Additionally, we have to consider intra-cell queries
where t ∈ Ci. There are ωp nodes (including sp itself) in cell Ci that are in `p
and thus reachable from sp. If the target node is part of the same limb, the
number of settled nodes depends on the target node index used for tie-breaks
and ranges from 1 to ωp. As a main difference to the undirected case, however,
all queries from sp to target nodes t ∈ Ci outside `p cause all ωp reachable nodes
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to be settled. Since |Ci \ {r}| = B, we obtain the following total sss of queries
starting at sp to all targets except r.

γ2 :=
∑

t∈V \{r}

S(sp, t) =
ωp(ωp + 1)

2
+ (B − ωp)ωp +B(m− 1)

We also have to account for the query from sp to r. The number of settled nodes
in this query is ωp if p = 1 (i.e., the sp-r-query is an intra-cell query), and 1
otherwise. Summing up for all element nodes sp ∈ V , this yields B + 3(m− 1)
in total (recall that the weights ωp sum up to B for each cell and in particular
for C1). Together with γ2, we get the following sss for queries from all element
nodes to all distinct targets of the tree.

3m∑
i=1

∑
t∈V

S(sp, t) =

3m∑
p=1

(
ω2
p + ωp

2
+Bωp − ω2

p

)
+ 3m(mB −B + 1) +B − 3

= m

(
B2 +

B

2

)
︸ ︷︷ ︸

λ∗1

−
3m∑
p=1

ω2
p

2︸ ︷︷ ︸
λ∗2

+ 3m(mB −B + 1) +B − 3︸ ︷︷ ︸
λ∗3

(2)

Finally, there are no reachable nodes from an arbitrary weight node wp,q
of the tree, so the sss of a query from wp,q is always 1 and the total sss of all
queries where the source node is a leaf of the directed tree is constant.

γ3 :=
∑
t∈V

S(wp,q, t) = mB + 1

All in all, the value Γ stated below makes sure that the partition C satisfies the
inequality

∑
s,t∈V S(s, t) ≤ Γ.

Γ = γ1 +m

(
B2 +

B

2

)
−

3m∑
i=1

ω2
i

2
+ 3m(mB −B + 1) +B − 3 +m(B − 3)γ3

For the other direction, assume we are given a partition C = {C1, . . . , Cm}
of T such that the resulting sss is at most Γ. We show that T corresponds to a
Yes-instance of 3-Partition. Without loss of generality, assume that r ∈ C1.
We show that

∑
s,t∈V S(s, t) ≤ Γ if and only if C is perfect, i.e., C is balanced

and contains only monochromatic limbs.
Recall that the situation for queries from r is similar to the undirected

case. Following the arguments in the proof of Theorem 11, we thus know that∑
t∈V S(r, t) ≤ γ1 if and only if C is a perfect partition. Moreover, the sss of

an arbitrary query that starts at a leaf is 1, independent of the underlying
partition. Therefore, the total sss of queries starting at leaves of the tree is
always m(B − 3)γ3.

What is left to take into consideration is the sss of queries from element
nodes. We examine the sss of queries starting at a fixed element node sp ∈ Ci.
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First, consider intra-cell queries where s and t belong to the same cell Ci. Let
ρp,i denote the number of nodes in cell Ci that are reachable from sp. If the
target node is part of the same limb, the number of settled nodes depends on
the target node index and is at most ρp,i . Otherwise, all ρp,i reachable nodes of
the target cell are settled. We obtain the following total sss of intra-cell queries
starting at sp into its own cell Ci.

∑
t∈Ci

S(sp, t) = (|Ci| − ρp,i) ρp,i +

ρp,i∑
z=1

z

= |Ci| ρp,i +
1

2
ρp,i −

1

2
ρp,i

2 (3)

As for an inter-cell query, the only difference is that we have to account for the
fact that the source node sp gets settled in every query, although it is not a
member of the target cell. This yields the following sss of all queries from sp
into a cell Cj 6= Ci.

∑
t∈Cj

S(sp, t) = (|Cj | − ρp,j ) (ρp,j +1) +

ρp,i +1∑
z=2

z

= |Cj | ρp,j +
1

2
ρp,j −

1

2
ρp,j

2 + |Cj | (4)

Let si = |{sp | sp /∈ Ci}| denote the number of element nodes in V that are not
assigned to Ci. Using Equations 3 and 4, we obtain the following sss summed
up for all queries from element nodes. Note that for all element nodes assigned
to the cell Ci, the values ρp,i sum up to |Ci| if r /∈ Ci and |Ci| − 1 otherwise.

λ :=

3m∑
p=1

m∑
i=1

∑
t∈Ci

S(sp, t)

=

m∑
i=1

(
si |Ci|+

3m∑
p=1

(
|Ci| ρp,i +

1

2
ρp,i −

1

2
ρp,i

2

))

=

m∑
i=1

(
|Ci|2 +

|Ci|
2

)
− |C1| −

1

2︸ ︷︷ ︸
λ1

−
m∑
i=1

3m∑
p=1

ρp,i
2

2︸ ︷︷ ︸
λ2

+

m∑
i=1

si |Ci|︸ ︷︷ ︸
λ3

(5)

We examine the partial terms λ1, λ2, λ3 separately and compare each term to a
respective term λ∗1, λ

∗
2, λ
∗
3 of the sss of a perfect partition given in Equation 2.

First, we show that λ∗1 is in fact a lower bound on the term λ1. The minimization
of the sum

∑m
i=1(|Ci|2 + |Ci|/2) by a balanced partition follows directly from

Corollary 1. Choosing C1 to be the largest cell clearly is beneficial as the value
|C1| is subtracted in λ1. Moreover, we can use Lemma 2 to show that increasing
the size of the cell C1 to a value greater than B + 1 implies that the bound λ1 is
exceeded. Starting from a balanced partition, we construct any partition with
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|C1| > B + 1 in small steps, during which the size |C1| is increased by 1, while
another cell size |Ci| ≤ |C1| is decreased by 1. For the sum of the quadratic
terms |Ci|2, this yields a difference of at least 2, because

|C1 + 1|2 + |Ci − 1|2 = |C1 + 1|2 + |Ci − 1|2 + 2|C1| − 2|Ci|+ 2.

The sss is increasing in any possible remaining steps. Hence, the sss increases
whenever C1 is increased, and we reach the lower bound λ∗1 only if the partition
C is balanced and additionally |C1| = B + 1.

In order to minimize the sss, the terms λ2 in Equation 5 should be maximized.
Therefore, the values of ρp,i need to be as great as possible. Obviously, this is
the case if and only if all limbs are monochromatic, as was the case for λ∗2. Up
to now, we have shown that γ1, γ3, λ∗1, and λ∗2 are indeed tight lower bounds on
the sss, and the partition C has to be perfect to reach all these bounds. Finally,
we have to consider the terms λ3 =

∑m
i=1 si |Ci|. For the first time, we may

actually come below the value λ∗3 of a perfect partition. For example, assigning
all nodes of the graph to the same cell yields

∑m
i=1 si |Ci| = 0 (recall that si

denotes the number of element nodes not in Ci). Globally, this clearly is not
beneficial. In what follows, we show that any partition other than a perfect one
that yields a value λ3 < λ∗3 inherently leads to a global sss greater than Γ.

Recall that in a perfect partition it is λ3 = λ∗3. An arbitrary partition with
λ3 < λ∗3 can be constructed by modifying a given perfect partition. In order
to decrease λ3 starting from a perfect partition, one has to change the sizes of
some cells. In particular, one needs to assign many element nodes to large cells.
We can construct any value for λ3 that corresponds to a valid partition C by
reassigning c ≥ 0 nodes of a given perfect partition in total, while reassigning
e ≥ 0 element nodes. Clearly, in order to reach a small sss, larger cells should
have smaller corresponding values si and vice versa. Hence, we may restrict
ourselves to modifications that create such cells. Then we can construct a
combination of values si and |Ci| that induce an arbitrary sss λ3 ≤ λ∗3 as follows.
Given a perfect partition with |Ci| ∈ {B,B + 1} and si = 3(m− 1) for all i, we
increase some values si by ei ≥ 0 while decreasing |Ci| by ci ≤ 0, and decrease
some other values si by ei ≤ 0 while increasing |Ci| by ci ≥ 0. This yields the
following partial sss.

λ3 = λ∗3 −

(
m∑
i=1

((si + ei)(|Ci|+ ci)− si|Ci|)

)
= λ∗3 −

m∑
i=1

eici − e1 (6)

In what follows, we derive bounds on the increase of the sss induced by its
remaining terms, to show that we cannot achieve a global improvement. For the
term λ1, we now have to pay the following penalty.

λ1 ≥ λ∗1 +

m∑
i=1

(
(B + ci)

2 −B2
)
− c1 =

m∑
i=1

c2i − c1 (7)

Next, we consider the sss induced by the root node in comparison to γ1. Com-
pared to a perfect partition, we reassign

∑
|ei|/2 element nodes in total. Consider
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a cell Ci for which we then have si = 3(m−1)−ei for an ei < 0, i.e., Ci contains
3 + |ei| > 3 element nodes. Let Wi be the set of leaves reachable from these
3 + |ei| element nodes. Observe that by construction of the graph T , the set Wi

contains at least (3 + |ei|)α+B′ nodes. Let wi be the number of leaves in Wi

not assigned to Ci, i.e., wi = |Wi \ Ci|. We distinguish two different cases.

First, assume that wi ≥ |ei|α/2. There must be at least |ei|α/2 distinct
r-t-queries in which an element node that lies outside the target cell additionally
gets settled. Therefore, the lower bound γ1 is exceeded by at least |ei|α/2.
Conversely, let wi < eiα/2. Analogously to Equation 7, the increased cell size of
Ci makes the sss induced by the root node γ1 grow by

∑m
j=1 |c2j |/2. Since we

have wi < |ei|α/2, the cell Ci has a size of at least 3α+B′ + |ei|α/2 and thus
ci ≥ |ei|α/2. This yields c2i /2 ≥ (|ei|α)2/2 ≥ |ei|α/2. In total, we obtain the
following bound that sums up the penalties for all cells.

γ1 = γ∗1 +

m∑
i=1

|ei|α/4 (8)

To prove the claim that a partial sss of λ3 < λ∗3 is not globally optimal, we
consider a fixed cell Ci. The gain that we can assign to this cell is at most
eici + ei as in Equation 6. If ci ≥ 6m, the gain for this cell is thus bounded
by c2i /2 + ci/2, because ei is at most 3m ≤ ci/2. On the other hand, we know
from Equation 7 that the sss increases by at least c2i − ci, which exceeds the gain
for ci ≥ 6m. If ci < 6m, the gain is below 6mei + ei = (6m + 1)ei compared
to a penalty of eiα/4 given by Equation 8. Setting α > 24m + 4, the penalty
outweighs the gain. Observe that we can apply these arguments to all cells
independently, which proves the claim.

It follows that we minimize the overall sss if and only if we balance the
limbs to cells of equal size each, corresponding to triples of total weight B.
Furthermore, the reduction can be performed in polynomial time. �

Finally, we mention that MinAvgCasePartition on stars can be solved
efficiently. Using arguments similar to the worst-case analysis at the end of
Section 3.1, it is easy to see that balanced cell sizes yield optimal partitions.
Thus, we have established a border between hard instances and those solvable in
polynomial time for the average case as well.

5 Conclusion

We investigated the complexity of two computational problems concerning graph
partitioning for arc-flags on several classes of graphs. It turned out that in both
cases, solving even very restricted classes of trees is NP-hard. This yields a
substantial improvement of the known general hardness result. Together with
the efficiently computable partitions on paths and stars, our results also provide
a tight border of tractability for both problems. In addition to that, it seems
that the introduction of cycles, and thus ambiguity of shortest paths, vastly
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increases the difficulty of the problems. In fact, the complexity of both problems
remains unknown on cycles.

As an insight from the analysis of trees, a major difficulty seems to be the
computation of connected cells of balanced size. Both the reductions used and
the approximation algorithms presented support this hypothesis. One may take
this as a theoretical approval of practical heuristics, which essentially aim at
finding such cells. Obtained hardness results were similar for both problems
on all examined graph classes. Since the worst-case sss seems to allow for a
much simpler examination, the investigation of the problem MinWorstCaseP-
artition provides a reasonable alternative to gain further insights into the
complexity of preprocessing arc-flags or speed-up techniques in general.

Besides the complexity of cycles, the primary open question would be whether
there exist better approximation algorithms or inapproximability results for trees
as well as more general classes of graphs. For example, is it possible to generalize
the approximation algorithms for trees to graphs of bounded treewidth? More-
over, the complexity of MinWorstCasePartition or MinAvgCasePartition
is unclear if the input parameter k is replaced by a fixed constant.
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