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Abstract

In this paper we consider a natural generalization of the well-known
Max Leaf Spanning Tree problem. In the generalized Weighted Max
Leaf problem we get as input an undirected connected graph G, a rational
number k not smaller than 1 and a weight function w : V 7→ Q≥1 on the
vertices, and are asked whether a spanning tree T forG exists such that the
combined weight of the leaves of T is at least k. We show that it is possible
to transform an instance 〈G,w, k〉 of Weighted Max Leaf in polynomial
time into an equivalent instance 〈G′, w′, k′〉 such that |V (G′)| ≤ 5.5k and
k′ ≤ k. In the context of parameterized complexity this means that
Weighted Max Leaf admits a kernel with 5.5k vertices. The analysis
of the kernel size is based on a new extremal result which shows that
every graph G = (V,E) that excludes some simple substructures always
contains a spanning tree with at least |V |/5.5 leaves. We also prove that

Weighted Max Leaf does not admit a polynomial-time factor O(n
1
2
−ε)

or O(opt
1
3
−ε) approximation algorithm for any ε > 0 unless P = NP.

Submitted:
September 2011

Reviewed:
May 2012

Revised:
July 2012

Accepted:
October 2012

Final:
October 2012

Published:
October 2012

Article type:
Regular Paper

Communicated by:
G. Woeginger

This work was supported by the Netherlands Organization for Scientific Research (NWO),

project “KERNELS: Combinatorial Analysis of Data Reduction”. A preliminary version ap-

peared at the 7th International Conference on Algorithms and Complexity (CIAC 2010).

E-mail address: bart@cs.uu.nl (Bart M. P. Jansen)

http://dx.doi.org/10.7155/jgaa.00279
mailto:bart@cs.uu.nl


812 Bart M. P. Jansen Kernelization for Weighted Max Leaf

1 Introduction

The area of parameterized complexity theory was pioneered by Downey and
Fellows [10] to cope with the “rock of intractability” of NP-complete problems.
Much of the complexity theoretic work of the past decades has been spent
proving that there is an abundance of natural and important problems that
are NP-complete, and for which the existence of a polynomial-time algorithm
therefore seems unlikely. Parameterized complexity is an approach to deal with
the intractability of such problems; rather than trying to find a polynomial-time
algorithm for some decision problem L ⊆ Σ∗, we look more carefully at problem
instances and associate every instance with a parameter value k that describes
the structure of the instance. We then try to confine the seemingly unavoidable
exponential factor in the running time of an algorithm to some function that de-
pends only on k. This leads to the natural definition of a parameterized problem
as a set Q ⊆ Σ∗×N. For an instance (x, k) ∈ Q of a parameterized problem we
can think of x as the “classical” problem, whereas k is the new parameter that
expresses some (structural) property of x. A natural choice of the parameter
value is the desired solution size. Taking the Vertex Cover problem as an
example, where we are asked whether a given graph has a vertex cover of a cer-
tain size, we could take the desired size k of the vertex cover as the parameter.
Through a long series of successive improvements it was shown that the vertex
cover problem can be decided in O(1.2738k + kn) time [6]. This shows that if
the vertex cover we are looking for is small, then the problem can be solved effi-
ciently — even on very large graphs! One possible formalization of this concept
is the notion of the complexity class (strongly uniform) FPT (for Fixed Param-
eter Tractable), that consists of all parameterized problems Q for which there is
an algorithm that decides whether (x, k) ∈ Q running in time f(k)p(|x|), where
f is a computable function and p a polynomial. Parameterized complexity the-
ory thus serves as a tool to deal with the intractability of NP-complete problems
by exploiting the structure that lots of real-world problems have. This brings
about a shift in perspective from negative results (NP-completeness) to positive
results (FPT algorithms). We argue that this also calls for a shift in the type
of problems that should be considered.

When a problem is intractable it is interesting to study the restrictions un-
der which it remains intractable; this yields fundamental information about the
structure of the problem, and it might also lead to the conclusion that there are
restricted yet practically relevant versions of the problem which are tractable.
When dealing with problems that are tractable we can ask ourselves a similar
question: which generalizations of the problem are still tractable? Since prac-
tical problems are highly complex, being able solve more general problems will
often allow real-world problems to be modeled (and hence solved) more accu-
rately. This style of research is popular in the community of polynomial-time
approximation algorithms; many studies [8, 14, 17, 27] have been undertaken
to see which generalizations of well-known problems are still “tractable” to ap-
proximate, i.e. can be approximated efficiently with good bounds on the error
ratio. One important type of generalization that is often relevant for combina-
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torial graph problems is to introduce weights for each vertex: instead of finding
a subset of vertices of minimum (or maximum) cardinality that satisfies some
criteria, we instead look for a subset of minimum (maximum) weight that sat-
isfies the criteria. These weights can then be used to model costs or benefits
in real-world applications. We suggest applying the practical techniques from
parameterized complexity theory to such generalized problems.

A powerful technique in parameterized complexity theory is that of polyno-
mial-time kernelization. The goal is to preprocess an instance (x, k) in time
p(|x|+ k) for some polynomial p to obtain a reduced instance (x′, k′) that pre-
serves the answer to the decision problem, such that |x′|, k′ ≤ f(k) for a com-
putable function f . A procedure that performs such preprocessing is called a
kernelization algorithm (or kernel), and the function f is the size of the kernel.
Thus kernelization can be seen as a form of preprocessing with a performance
guarantee on the compression that is obtained with respect to the parameter
value k. Kernelization algorithms are often valuable in practice because they
can be combined with any other type of algorithm (either heuristic or exact in
nature); since the kernelization step does not change the answer to the prob-
lem, it “never hurts” to start by first kernelizing the instance, and then using a
heuristic approach or exact exponential-time algorithm on the reduced instance.

Given the practical importance of weighted problems and the practical rel-
evance of kernelization algorithms, it is surprising to note that only few ker-
nelization algorithms exist for weighted problems. The classic Vertex Cover
kernelization by Buss can also be applied for Weighted Vertex Cover if
all weights are at least 1, and generalizes to Weighted d-Hitting Set for
fixed d. Chleb́ık and Chleb́ıková showed how the concept of crown reductions
for Vertex Cover can be lifted to a weighted setting [7]. The Weighted
Cluster Editing problem where each edge is given an integral weight has a
O(k2)-vertex kernel as shown by Böcker et al. [2], which was recently improved
to a kernel with 2k vertices by Cao and Chen [5]. Aside from these examples,
no kernelization algorithms for weighted problems are known to us.

In this work we will study the fixed-parameter tractability of a generaliza-
tion of the well-known Maximum Leaf Spanning Tree problem (abbrevi-
ated as Max Leaf from now on). In the Max Leaf problem we are given
an undirected, connected graph G and an integer k, and are asked whether G
has a spanning tree with at least k leaves. The problem was originally proven
NP-complete by Garey and Johnson, even when restricted to planar graphs of
maximum degree 4. Peter Lemke [23] showed several years later that the prob-
lem remains NP-complete when restricted to d-regular graphs for any d ≥ 3.
Max Leaf is APX-complete which means it has a polynomial-time constant-
factor approximation algorithm [25], but no PTAS unless P = NP [15] — not
even on cubic graphs [3]. The problem of finding a spanning tree with k leaves
is equivalent to finding a connected dominating set with |V | − k vertices, and
these problems have many applications in circuit layout [26] and network design.
The Max Leaf problem has been a popular topic of research from the param-
eterized complexity standpoint. When parameterized by the requested number
of leaves k, it has been shown that the problem has a kernel with 3.75k ver-
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tices [11] and that there is an algorithm to solve the problem in O(4kk2 +nO(1))
time [22], which was later improved to O(3.4575k ·nO(1)) [24]. Using a different
type of analysis this line of research also lead to a O∗(1.8966n) algorithm for
the classical (non-parameterized) problem [13]. Max Leaf has also been stud-
ied from the perspective of extremal graph theory [26, 16, 21, 4]. The related
problem on directed graphs is called Maximum Leaf Out-Branching [22],
and is also very interesting from a kernelization point of view because it has
been shown that the rooted variant admits a kernel with O(k2) edges and ver-
tices [9], but the unrooted variant does not admit a polynomial kernel unless
NP ⊆ coNP/poly [12]. This paper focuses on the following natural generaliza-
tion of the classical problem:

Weighted Max Leaf
Instance: An undirected connected graph G = (V,E); a weight
function w : V 7→ Q≥1 on the vertices; a rational number k ≥ 1.
Parameter: The value k.
Question: Does G have a spanning tree with leaf set L such that∑
v∈L w(v) ≥ k?

Observe that this definition requires vertex weights to be rational numbers not
smaller than 1. There is a good motivation for this restriction; when vertex
weights are allowed to be arbitrarily small fractions then the problem is NP-
complete for k = 1, since an unweighted graph G has a spanning tree with k
leaves if and only if that same graph has a spanning tree with leaf weight 1 if
we set all vertex weights to 1/k. If the weight 0 is allowed then it was shown
in the author’s Master’s thesis [19] that the resulting problem is hard for W [1],
through a reduction from Independent Set. Therefore we focus on weights
that are at least 1. This may still lead to small (and hence practical) values for
the parameter value k since the relative weight differences between vertices may
be small, thus yielding a small parameter value for the overall target weight.
For technical reasons we assume that each value of the weight function can be
encoded as an integer plus a fractional part consisting of a constant number of
decimal places. The reason for this assumption will be made clear in Section 4.4.

Our Contribution

The main result of this paper is that the Weighted Max Leaf problem has
a kernel with 5.5k vertices when every weight is a rational number not smaller
than 1. The kernelization is achieved by a small set of simple reduction rules.The
reduction rules make non-trivial use of the vertex weights, thus giving an ex-
ample of how kernelization can be applied to weighted problems. The existing
3.75k kernelization by Estivill-Castro et al. [11] does not work in the weighted
case, because it relies on the fact that two adjacent degree-2 vertices can always
be leaves in an optimal spanning tree if the edge between them is not a bridge.
Since this no longer holds in the weighted variant of the problem, we have to
devise new reduction rules.
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We also show that the multiplicative constant of 5.5 in the kernel size is
best-possible with respect to the given set of reduction rules, which means that
our analysis of the size of the reduced instances is tight. This analysis relies on
a new result in the style of extremal graph theory: we give a constructive proof
that every connected undirected graph G = (V,E) that avoids some simple
subgraphs (see Definition 1) has a spanning tree with at least |V |/5.5 leaves.
To prove this result we extend the technique of “amortized analysis by keeping
track of dead leaves”, which was originally used by Griggs et al. [16] to show
that every connected cubic graph G has a spanning tree with at least d|V |/4+2e
leaves.

In a brief excursion to approximation theory we exploit the relationship be-
tween the optimization version of Weighted Max Leaf and Independent
Set to prove that even when the weights are bounded polynomially in the
size of the input graph, Weighted Max Leaf does not have a polynomial-
time multiplicative factor O(n

1
2−ε)-approximation algorithm or O(opt

1
3−ε)-

approximation algorithm for any ε > 0 unless P = NP.

Organization

We give some preliminaries in Section 2. In Section 3 we obtain a structural
result on the existence of spanning trees with many leaves in graphs that avoid
some simple subgraphs. Section 4 uses this structural result to present the ker-
nelization algorithm. We consider the optimization version of Weighted Max
Leaf in Section 5, and prove that the problem is very hard to approximate.

2 Preliminaries

An undirected graph G is a pair (V,E) where V is the set of vertices and the
edge set E is a collection of 2-element subsets of V . We also use V (G) and
E(G) to denote the vertex and edge sets of G, respectively. We only consider
simple, undirected, connected graphs. An edge between vertices u and v is
denoted as uv. As all graphs are undirected, this is the same object as the
edge vu. For v ∈ V we denote the open neighborhood of v by NG(v) and the
closed neighborhood by NG[v] := NG(v) ∪ {v}. Throughout this work we omit
subscripts if this does not lead to confusion. The neighborhood of a set S ⊆ V
is NG(S) := ∪v∈SNG(v) \ S. The degree of a vertex v in graph G is denoted
by degG(v). We write G′ ⊆ G if G′ is a subgraph of G. For X ⊆ V we denote
by G[X] the subgraph of G that is induced by the vertices in X. Noting that
V is the vertex set of G we abbreviate the construction G[V \X] by G−X. A
cutset for a connected graph G is a set S ⊆ V such that G−S is not connected.
Vertex v is a cut vertex if {v} is a cutset.

If T is a tree subgraph of G and e is an edge with e ∈ E(G) and e 6∈ E(T ),
then we say that T avoids edge e. If e ∈ E(G) and e ∈ E(T ) then tree T uses
edge e. If T ⊆ G is a tree with V (T ) = V (G) then T is a spanning tree for G. A
vertex of degree at most 1 is called a leaf. If v is a vertex in a tree and v is not
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a leaf, then it is an internal node of the tree. The leaf set of a graph G = (V,E)
is the set of vertices with degree at most 1, denoted as Leaves(G) := {v ∈ V |
degG(v) ≤ 1}. If we have a weight function w : V 7→ Q≥1 for graph G then we
can define its leaf weight as lww(G) :=

∑
v∈Leaves(G) w(v).

A path component in a graph G is a path P on vertices 〈u, s1, s2, . . . , sq, v〉
such that successive vertices are connected by an edge, all the vertices si are
distinct and have degree 2, and such that deg(u),deg(v) 6= 2. Note that we
explicitly allow u and v to be the same vertex. The vertices u, v are called the
endpoints of the path component. The vertices si are the inner vertices of the
path component. We define the size of a path component to be equal to the
number q of inner vertices.

To simplify the exposition we use Kn to refer to the complete graph on n
vertices. The class of d-degenerate graphs consists of all graphs for which every
vertex-induced subgraph has a vertex of degree at most d. The set of rational
numbers not smaller than 1 is denoted by Q≥1. We use a simple folklore lemma
regarding spanning trees that will simplify the proofs that follow later. We omit
the straight-forward proof, which can be found in the technical report [20].

Lemma 1 If S ⊆ V forms a cutset for graph G = (V,E) then there is no
spanning tree T ⊆ G in which all vertices in S are leaves.

3 Spanning Trees with Many Leaves in Graphs
Without Long Path Components

In this section we prove a lower bound on the number of leaves that can be
obtained in spanning trees for graphs that do not contain long path components
and which avoid some simple subgraphs.

Definition 1 Let C be the class of graphs G = (V,E) that satisfy the following
properties:

(i) Graph G is simple and connected.
(ii) The graph is not isomorphic to a simple cycle.

(iii) The maximum size of a path component in G is at most 3.
(iv) Every vertex v ∈ V with degG(v) = 1 is adjacent to a vertex of degree at

least 3.
(v) If G contains a triangle on three vertices x, y, z as a subgraph ({xy, xz, yz}
⊆ E), then at least one of the vertices x, y, z has a degree in G of at least 4.

(vi) If x, y are two distinct degree-2 vertices then NG(x) 6= NG(y).

Theorem 1 Every graph G = (V,E) ∈ C has a spanning tree with at least
|V |/5.5 leaves.

The remainder of Section 3 is devoted to the proof of Theorem 1. Consider
G = (V,E) ∈ C. As the theorem obviously holds for K1, and since connected
graphs different from K1 with fewer than 3 vertices do not satisfy Property (iv),
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we may assume in the remainder that |V | ≥ 3. Our proof uses the method of
“amortized analysis by keeping track of dead leaves”, as introduced by Griggs
et al. [16]. The proof is constructive and consists of a series of operations that
can be used to initialize a tree subgraph T ⊆ G, and to grow T into a spanning
tree step by step. We will prove that the resulting tree T has sufficiently many
leaves by showing for every augmentation step that the increase in the total
size of the tree is balanced against the increase in the number of leaves of the
tree. To analyze the number of leaves in the resulting spanning tree we use the
notion of dead leaves. A leaf v ∈ Leaves(T ) is called dead if all its neighbors
in G are also in T . More formally, leaf v is dead if NG(v) ⊆ V (T ). Every leaf
vertex that is not dead, is alive. We define the following abbreviation for the
set of live leaves:

LiveLeaves
G

(T ) := {v ∈ Leaves(T ) | NG(v) \ V (T ) 6= ∅}. (1)

If vertex v ∈ V has a neighbor u ∈ NG(v) but the vertex u is not in T , then
we say that v has a neighbor u outside the tree. If u ∈ NG(v) and u ∈ V (T )
then vertex v has a neighbor u inside the tree. A vertex x ∈ NG(V (T )) is said
to be adjacent to the tree T . When referring to the degree of a vertex v in
the tree T ⊆ G under construction — as will be done in the next definition
— we always mean its degree degG(v) in the graph G, not its degree in the
subgraph T . The following concept will be used in our amortized analysis.

Definition 2 For a tree T ⊆ G, we say that a vertex v is a split vertex if v
is a live leaf of degree 2 (i.e. degG(v) = 2), and NG(v) \ V (T ) = {u} for some
vertex u with degG(u) = 2. We denote the set of all split vertices of T with
respect to G by SplitG(T ).

Our analysis uses the following properties of the tree T that is under construc-
tion:

• L, the number of leaves of T ,
• D, number of dead leaves of T ,
• S, the number of split vertices of T ,
• N , the total number of vertices of T .

We will give a series of augmentation operations that satisfy the following in-
cremental inequality :

4∆L + 1.5∆D + ∆S ≥ ∆N. (2)

The ∆ values in this inequality represent the changes in the respective quantities
in the new tree compared to the old tree. For example, if the tree had 5 leaves
before the augmentation operation and it has 7 leaves after the operation then
∆L = 7 − 5 = 2. The following proposition shows how this inequality will be
useful in proving the theorem.

Proposition 1 If T is a spanning tree of G = (V,E) that is built from an
empty tree by successive augmentation operations that respect the incremental
inequality, then |Leaves(T )| ≥ |V |/5.5.
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Proof: Observe that in a spanning tree there can be no live leaves: all neighbors
to all vertices must be in the tree. This means that all leaves must be dead and
hence L = D. Since there are no live leaves in a spanning tree we also have
S = 0 for such trees. It follows that if we grow a spanning tree such that every
augmentation step satisfies the incremental inequality, then by summing the
inequalities over the individual augmentation steps we find that the final tree
satisfies 4L + 1.5D + S ≥ N ; using the fact that L = D and S = 0 on spanning
trees we can then conclude that |Leaves(T )| ≥ |V |/5.5 for a tree T that is
grown by operations that respect the incremental inequality. �

So to prove Theorem 1 all that remains is to show that there exists a set
of augmentation operations that can grow a spanning tree while respecting the
incremental inequality.

Tree Initialization The initialization of the tree T is simple: we just pick
a vertex v of maximum degree in G as the root of the tree, and we add edges
to all neighbors of v to the tree. So after initialization we have a tree with
one internal vertex v and leaf set Leaves(T ) = NG(v). For this operation we
have ∆N = 1 + |NG(v)| since the tree is a star rooted at v, and ∆L = |NG(v)|
because all neighbors of v have become leaves. The values ∆D and ∆S cannot
be negative because there were no leaves before the tree was initialized, so no
dead leaves or split vertices can be lost. With this information it can easily be
seen that the initialization of the tree satisfies the incremental inequality.

Extending the Tree We need the following definition to describe the oper-
ations that augment the tree.

Definition 3 (Vertex Expansion) Let T ⊆ G be a tree. The expansion of
a vertex v ∈ V (T ) yields an augmented tree T ′ ⊆ G, where T ′ is obtained by
adding all edges vu ∈ E(G) with u ∈ NG(v) \ V (T ) to the tree T .

Figure 1 shows an example of vertex expansions. It follows from the defini-
tion that the expansion of a vertex can never decrease the number of leaves in
the tree. If v has a neighbor u ∈ NG(v) \ V (T ), then expansion of v will cause
v to become internal (decreasing the number of leaves), but it will also cause u
to become a new leaf. If v has no neighbors in G that are outside T , then the
expansion has no effect. The operations that we will present to augment the
tree consist of series of vertex expansions. This means that ∆L ≥ 0 for every
augmentation step. Since the expansion of a vertex cannot change the fact that
a leaf is dead, we also have ∆D ≥ 0 for all our augmentation operations. By
growing the tree through expansion operations we will also maintain the invari-
ant that for every internal vertex of T , all its neighbors in G are also in T . In
other words, we will grow an inner-maximal spanning tree. This implies that
whenever a vertex v ∈ V (G) \ V (T ) is adjacent to some u ∈ V (T ), then u must
be a leaf of T . We will use this invariant of the tree construction process in the
correctness proofs of the augmentation operations. To simplify the bookkeeping
we introduce the following concept.
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(a) (b) (4, 2, 0, 5) (c) (1, 1, 1, 2)

(d) (0, 0, 1, 1) (e) (0, 2,−2, 1)

Figure 1: This sequence shows the effect of successive vertex expansions.
Dotted lines indicate edges in E(G) \ E(T ), and solid lines represent edges
in E(G) ∩ E(T ). Each expansion is labeled with the corresponding vector
(∆L,∆D,∆S,∆N) of changes in the measured quantities. 1(a): the graph G
without a tree subgraph. 1(b): initialized T as the star around vertex d, causing
a, f to become dead leaves and b, g to become live leaves. 1(c): expanded g,
adding i, h to T . Vertex h is now a split vertex. 1(d): expanded b, causing c
to become a split vertex as well. 1(e): expanded c, which causes vertex h to
transform from a split vertex into a dead leaf. CT→T ′ = {h} for this step.

Definition 4 Let T ⊆ G be a tree subgraph of G, and let T ′ ⊆ G be the tree
that is obtained from T by a sequence of vertex expansions. We define the set
CT→T ′ of converted split vertices as the set of vertices that are split vertices
in T , but dead leaves in T ′:

CT→T ′ :=
{
v ∈ V (G) | v ∈ Split

G
(T ) ∧ v ∈ Leaves

G
(T ′) ∧NG(v) \ V (T ′) = ∅

}
.

Lemma 2 Let T ⊆ G be a tree subgraph of G, and let T ′ be the tree that results
after the successive expansion of vertices x1, . . . , xk. Let c := |SplitG(T ) ∩
{x1, . . . , xk}|. For this operation it holds that ∆S ≥ −|CT→T ′ | − c. All vertices
in CT→T ′ are live leaves in T and dead leaves in T ′, implying ∆D ≥ |CT→T ′ |.

Proof: Assume the conditions stated in the lemma hold. By definition, all
vertices in CT→T ′ are split vertices of T and therefore live leaves. The expansion
of a vertex cannot change the status of a dead leaf, since all its neighbors were
already in the tree before the expansion. Therefore all the vertices that are
dead leaves in T , must still be dead leaves in T ′. Additionally we have by the
definition of CT→T ′ that all vertices in CT→T ′ were not dead leaves in T , but
have become dead leaves in T ′ which proves ∆D ≥ |CT→T ′ |.

Now we will prove the lower bound on ∆S. Consider some split vertex
v ∈ SplitG(T ) that is not expanded, i.e. v 6∈ {x1, . . . , xk}. We will argue that
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if v 6∈ SplitG(T ′) then v is a dead leaf in T ′. So assume that v 6∈ SplitG(T ′).
By the definition of a split vertex we have NG(v) \ V (T ) = {x} for some vertex
x with degG(x) = 2. Every split vertex is a live leaf, and a leaf of the tree can
only become internal by expanding that leaf. Since v 6∈ {x1, . . . , xk} we did not
expand v when building T ′. Therefore the vertex v must still be a leaf in T ′.
From the definition of a split vertex we can now deduce that the only way for v
to cease being a split vertex is if it has in fact become a dead leaf, because its
neighbor x was added to T ′ by the expansion of x1, . . . , xk. This shows that all
split vertices of T that are not expanded and which are no longer split vertices
in T ′, must have become dead leaves and are therefore in the set CT→T ′ of
converted split vertices. Since we expand c vertices that are split vertices in T ,
we lose at most |CT→T ′ | + c split vertices by the expansions from which the
bound ∆S ≥ −|CT→T ′ | − c follows. �

Order of Augmentation Operations We are now ready to present the
augmentation operations. When describing an augmentation, we will always
assume that no earlier augmentation is applicable. This is important because
for some rules their correctness depends on the fact that certain situations are
reduced by earlier augmentations. In our description of the operations we use T
and T ′ to denote the tree before and after the augmentation, respectively.

Augmentation Operation 1 If there is a live leaf v ∈ LiveLeavesG(T ) with
at least 2 neighbors outside of T , then expand v.

Lemma 3 Augmentation operation 1 satisfies the incremental inequality.

Proof: Assume the preconditions for the augmentation hold for a tree T ⊆ G,
and let T ′ be the tree after the augmentation. Any tree T is initialized to contain
at least two vertices, hence every vertex in T has at least one neighbor inside T .
This implies that if v has at least 2 neighbors outside T , then the degree of v
is at least three and therefore it is not a split vertex. All neighbors of v that
are not in T will have become leaves in T ′. The vertex v itself is internal in T ′.
We now find ∆L = |NG(v) \ V (T )| − 1 ≥ 1 and ∆N = |NG(v) \ V (T )|. Since
we do not expand any split vertices in this operation, we find by Lemma 2 that
∆D ≥ |CT→T ′ | and ∆S ≥ −|CT→T ′ |, which implies that this operation satisfies
the incremental inequality. �

Observation 1 If augmentation operation 1 is not applicable, every live leaf
v ∈ LiveLeavesG(T ) has exactly one neighbor outside T .

Augmentation Operation 2 If there is a simple path P = 〈x, y〉 in G such
that {x, y}∩V (T ) = {x} and |NG(y) \V (T )| ≥ 2 then expand x and afterwards
expand y.

Lemma 4 Augmentation operation 2 satisfies the incremental inequality.



JGAA, 16(4) 811–846 (2012) 821

Proof: Assume the preconditions for the augmentation hold for a tree T ⊆ G,
and let T ′ be the tree after the augmentation. By Observation 1 we may assume
that x has y as its unique neighbor outside T . We find that ∆N = |NG(y) \
V (T )|+1 and ∆L = |NG(y)\V (T )|−1. Since y must have a degree of at least 3
we find that x and y cannot be split vertices in T , and therefore ∆D ≥ |CT→T ′ |
and ∆S ≥ −|CT→T ′ | by Lemma 2. This combination satisfies the incremental
inequality since |NG(y) \ V (T )| ≥ 2. �

Augmentation Operation 3 If there is a vertex v ∈ NG(V (T )) with at least 2
neighbors x, y inside T , then expand the neighbor x.

Lemma 5 Augmentation operation 3 satisfies the incremental inequality.

Proof: Assume the preconditions for the augmentation hold for a tree T ⊆ G,
and let T ′ be the tree after the augmentation. As the constructed tree T is inner-
maximal, the neighbors x and y of v 6∈ V (T ) are leaves of T , and must therefore
be live leaves. By Observation 1 both x and y have v as their unique neighbor
outside T . Expansion of x causes x to become internal in T ′ (decreasing the
number of leaves by one), but this is compensated by v becoming a leaf in T ′

which implies that ∆L = 0 and ∆N = 1. As y’s unique neighbor outside T is
added to T by the expansion of x, the expansion turns y into a dead leaf. To
determine the values of ∆D and ∆S, we consider the local situation.

1. If degG(v) ≥ 3 then none of v’s neighbors can be split vertices by Defini-
tion 2, and hence no split vertices can be involved in the expansion; we
have ∆S = 0 and ∆D ≥ 1, which implies that this operation satisfies the
incremental inequality.

2. If degG(v) = 2 then x and y can be split vertices, but since no other split
vertices are lost we have ∆S ≥ −2. Observe that v only has the vertices
x, y as its neighbors, which are both in T and hence in T ′. Therefore v is
a dead leaf in T ′. Using the fact that y is also a dead leaf in T ′ we find
∆D ≥ 2; this also satisfies the incremental inequality.

Since we assumed that v has at least 2 neighbors inside T we know that
degG(v) ≥ 2 and hence the case analysis above is exhaustive. �

Observation 2 If Operations 2 and 3 are not applicable, then no vertex v 6∈
V (T ) with degG(v) ≥ 3 is adjacent to T (since such a vertex would have two
neighbors inside T , two neighbors outside T , or both), and all vertices outside T
have at most one neighbor in T .

Augmentation Operation 4 If there is a vertex v ∈ LiveLeavesG(T ) that
has a degree-1 neighbor u outside of T , then expand v.

Lemma 6 Augmentation operation 4 satisfies the incremental inequality.

Proof: Assume the preconditions for the augmentation hold for a tree T ⊆ G,
and let T ′ be the tree after the augmentation. Since v has a degree-1 neighbor
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outside of T , it is not a split vertex. By Observation 1 we may assume that
NG(v) \ V (T ) = {u}. Since u has a degree of 1 it will be a dead leaf in T ′.
Therefore we find that ∆L = ∆S = 0 and ∆D = ∆N = 1 which satisfies the
incremental inequality. �

Augmentation Operation 5 If there is a simple path P = 〈x, y, z〉 in G such
that {x, y, z} ∩ V (T ) = {x}, degG(x) ≥ 3 and degG(y) = degG(z) = 2, then
expand vertex x.

Lemma 7 Augmentation operation 5 satisfies the incremental inequality.

Proof: Assume the preconditions for the augmentation hold for a tree T ⊆ G,
and let T ′ be the tree after the augmentation. By Observation 1 the vertex x
has y as its unique neighbor outside T . Vertex y is a leaf in T ′, and in fact
must be a split vertex in T ′ since it has a single neighbor z outside of T ′ and
degG(y) = degG(z) = 2. Since vertex x has a degree of at least 3, it is not a
split vertex by definition. We find that ∆L = ∆D = 0 and ∆S = ∆N = 1. �

Augmentation Operation 6 If there is a simple path P = 〈x, y, z〉 in G such
that {x, y, z}∩V (T ) = {x}, vertex x is not a split vertex and degG(z) ≥ 3, then
expand vertices x, y and then z.

Lemma 8 Augmentation operation 6 satisfies the incremental inequality.

Proof: Assume the preconditions for the augmentation hold for a tree T ⊆ G,
and let T ′ be the tree after the augmentation. By Observation 2 the vertex z is
not adjacent to T , and the degree of vertex y must be 2. Therefore all neighbors
of z except y will be leaves in T ′, resulting in |NG(z) \ {y}| = |NG[z]| − 2 new
leaves. As vertex x is lost as a leaf, the net change is ∆L = |NG[z]| − 3. Since
x is no split vertex by assumption, we find by Lemma 2 that ∆D ≥ |CT→T ′ |
and ∆S ≥ −|CT→T ′ |. For the remaining variable we have ∆N = |NG[z]| which
satisfies the incremental inequality since |NG[z]| ≥ 4. �

Lemma 9 If augmentation operations 1-6 cannot be applied, then every live
leaf v ∈ LiveLeavesG(T ) is a split vertex.

Proof: Proof by contradiction. Assume there is a live leaf v ∈ LiveLeavesG(T )
that is not a split vertex, and that none of the presented augmentation opera-
tions can be applied. By Observation 1 we know that v has a unique neighbor u
outside T , and by Observation 2 we know that u has exactly one neighbor in T
and degG(u) ≤ 2. If degG(u) = 1 then Operation 4 is applicable; since this
contradicts our assumptions, we find that degG(u) = 2. Let {w} = NG(u)\{v},
and observe that w 6∈ V (T ) by Observation 2. Using the assumption that v
is not a split vertex we can conclude (by the definition of a split vertex) that
degG(v) 6= 2. Since v must have at least one neighbor inside T and one neighbor
outside of T (because trees are always initialized to contain at least two vertices,
and v is a live leaf) we know that the degree of v must be at least 3. We now
consider the situation of w.
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1. If degG(w) = 2 then Operation 5 is applicable to the path 〈v, u, w〉.
2. If degG(w) ≥ 3 then by Observation 2 the vertex w is not adjacent to T .

Since v is not a split vertex by assumption, we now find that Operation 6
is applicable to the path 〈v, u, w〉.

All possibilities lead to the conclusion that an augmentation operation is appli-
cable, which contradicts our assumptions and finishes the proof. �

When none of the earlier operations are applicable, the boundary of the tree
has a very specific structure. We will use the following lemma to capture this
structure before introducing the remaining augmentation operations.

Lemma 10 Assume none of the earlier operations are applicable and consider
a live leaf v1 ∈ LiveLeavesG(T ), which must be a split vertex by Lemma 9.
Let NG(v1) \ V (T ) = {v2}. By the definition of a split vertex we know that
degG(v2) = 2. Consider the maximal path in G formed by P = 〈v1, v2, . . . ,
vq〉 where degG(vi) = 2 for all 1 ≤ i ≤ q. Let {u} = NG(vq) \ {vq−1}. The
following must hold:

1. q ≤ 3,
2. vq 6∈ V (T ),
3. degG(u) ≥ 3,
4. u 6∈ V (T ).

Proof: Assume the conditions in the lemma hold. The size of a path component
in G is bounded by 3 by Property (iii) of Definition 1; this establishes (1) since
the vi form a path component. If q = 2 then vq 6∈ V (T ) follows from the
definition of v2. If q = 3 and vq = v3 ∈ V (T ) then the vertex v2 has two
neighbors v1, v3 ∈ V (T ) which implies that Operation 3 must be applicable — a
contradiction. Together these statements prove (2). Since the degree of u must
be unequal to 2 (by definition of the vertices vi as a maximal path of degree-
2 vertices) and since no degree-2 vertex is adjacent to a degree-1 vertex (by
Property (iv) of Definition 1) we obtain (3). Because u has degree at least 3 we
have by Definition 1 that u cannot be a split vertex and therefore by Lemma 9
it is not a leaf of T . Since vq 6∈ V (T ) the vertex u cannot be an internal vertex
of T since a vertex can only become internal by expanding it, and the expansion
of u would have added vq to T . Because u is not a leaf of T and not internal
to T , it cannot be in T at all; this establishes (4). �

Augmentation Operations 7-26 We resume the description of the augmen-
tation operations using the structural information of Lemma 10. The augmen-
tation that we perform depends on the local situation of the vertex u. Since the
various structural possibilities give rise to a multitude of different augmentation
operations, we will not describe each of these operations individually in text;
rather we will present these operations graphically to keep the proof as intuitive
as possible. The remaining 20 augmentations are described by the illustrations
in Figures2–5: each subfigure corresponds to an augmentation operation. For
these augmentations we do not give explicit proofs that they satisfy the incre-
mental inequality, but instead we give bounds on the ∆ values in the tables
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(a) (b)

Case ∆N = ∆L = ∆S ≥ ∆D ≥
2(a) degG(u) + 2 degG(u)− 2 −|CT→T ′ | − 1 |CT→T ′ |
2(b) 5 1 −|CT→T ′ | − 1 |CT→T ′ |+ 1 ≥ 2

Figure 2: This figure gives graphical representations of the augmentation oper-
ations after number 6. Each subfigure represents the structure of the boundary
of the tree to which its augmentation is applicable, i.e. each subfigure shows a
substructure of G and the tree T near that substructure. All augmentations
start from the structure described in Lemma 10. Vertices of G that are also
in T are drawn to the inside of an arc; the remaining vertices are in G, but not
yet in T . Vertices incident to a dotted edge may have an arbitrary number of
neighbors besides the vertices that are shown in the structure. The degrees of
vertices without incident dotted edges should match their degree in the image
exactly. The augmentation operation is visualized by drawing all edges that are
added to T by the augmentation as thick lines. Edges of the graph that are not
added to the tree by the augmentation are drawn as thin lines. This implies that
all vertices that are incident to at least two thick edges were expanded during
the tree augmentation. The table gives bounds on the ∆ values for the relevant
variables. The ∆N and ∆L values follow directly from the structure represented
in the image. The bounds on ∆S and ∆D often rely on Lemma 2 for the split
vertices in T that are transformed into dead leaves by the expansions, noting
that each augmentation expands exactly one split vertex (v1).

below the figures; these bounds imply that the operations satisfy the inequality.
In the presentation of these operations we will assume that q = 3. The case
q = 2 can be handled in the same structural way, except that the increase in
N is not as high as for q = 3. Therefore the situations of q = 2 satisfy the
incremental inequality whenever the q = 3 case does. In the case analysis of
the remaining situations we start from the structure of the boundary that is
described in Lemma 10 and refine this structure step by step. We first deal
with some easy cases.

• By the previous Lemma we have u 6∈ V (T ) and degG(u) ≥ 3, which
implies u 6∈ NG(V (T )) by Observation 2. If degG(u) ≥ 4 then expand
as in Figure 2(a). Otherwise we can assume that degG(u) = 3 in the
remainder of the situations.

• Assuming degG(u) = 3, let {x, y} = NG(u)\{vq}. If one of x, y is adjacent
to T then assume w.l.o.g. that this is x, and expand as in Figure 2(b); in
the remainder we assume that x, y are not adjacent to T , and we may also
assume that degG(x) ≥ degG(y).
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(a) (b)

(c) (d)

(e)

Case ∆N = ∆L = ∆S ≥ ∆D ≥
3(a) degG(x) + 3 degG(x)− 2 −|CT→T ′ | − 1 |CT→T ′ |
3(b) degG(x) + 4 degG(x)− 1 −|CT→T ′ | − 1 |CT→T ′ |
3(c) 5 1 −1 2
3(d) 5 1 0 1
3(e) degG(p) + 5 degG(p)− 1 −|CT→T ′ | − 1 |CT→T ′ |+ 1

Figure 3: Tree augmentations. Refer to Figure 2 for the semantics of the images.

We now proceed with a more careful case analysis.

1. If degG(x) ≥ 3:

(a) If edge xy ∈ E(G) then the vertices u, x, y form a triangle in G. By
Property (v) of Definition 1, one of the vertices u, x, y must have a
degree of at least 4. Since degG(u) = 3 by the case distinctions made
so far, and because of our assumption that degG(x) ≥ degG(y) we
find that degG(x) ≥ 4. We proceed as in Figure 3(a).

(b) If edge xy 6∈ E(G) then proceed as in Figure 3(b).

2. If degG(y) = 1, then we look at the degree of x. By the existence of the
above case we may assume degG(x) ≤ 2.

(a) If degG(x) = 1 then proceed as in Figure 3(c).
(b) If degG(x) = 2 then let NG(x) \ {u} = {p}. We consider the status

of p. Observe that degG(p) > 1 by Property (iv) of Definition 1.

i. If degG(p) = 2 then proceed as in Figure 3(d); note that vertex x
is a split vertex after the augmentation.

ii. If degG(p) ≥ 3 then vertex p is not adjacent to T by Observa-
tion 2. Proceed as in Figure 3(e).

Since we assumed degG(x) ≥ degG(y) and we handled all cases with degG(y) = 1
and degG(x) ≥ 3, we may assume in the remainder that degG(x) = degG(y) = 2.
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(a) (b)

(c) (d)

Case ∆N = ∆L = ∆S ≥ ∆D ≥
4(a) degG(p) + 5 degG(p)− 1 −|CT→T ′ | − 1 |CT→T ′ |+ 1
4(b) degG(p) + 5 degG(p)− 1 −|CT→T ′ | − 1 |CT→T ′ |
4(c) 5 1 1 0
4(d) 8 2 −|CT→T ′ | |CT→T ′ |

Figure 4: Tree augmentations. Refer to Figure 2 for the semantics of the images.

By Property (vi) we know that NG(x) 6= NG(y) and hence that x must have
some neighbor p 6= u, and y must have some neighbor q 6= u, such that p 6= q.
Assume without loss of generality that degG(p) ≥ degG(q). We will find that
the case degG(p) = degG(q) = 3 is the most complex; therefore we will first deal
with the remaining cases, finishing with degG(p) = degG(q) = 3 at the end of
the proof. Note that degG(p) ≥ degG(q) ≥ 2, since no degree-1 vertex can be
adjacent to a degree-2 vertex by Property (iv).

1. If pq ∈ E(G) then the degree of p must be at least 3. To see this, assume
that p and q both have a degree of 2. Since they are connected to x and y
respectively, which also have a degree of 2, it follows that x, p, q, y is then a
path component of length at least 4. Since the length of path components
in G is bounded by 3 by Property (iii) of Definition 1, this is not possible.
Therefore at least one of p, q must have a degree unequal to 2. Note that p
and q cannot have a degree of 1 by Property (iv), since they are adjacent
to degree-2 vertices. Therefore at least one of p, q must have degree at
least 3. Since we assumed degG(p) ≥ degG(q), we may conclude that
degG(p) ≥ 3. We expand the tree as illustrated in Figure 4(a).

2. If pq 6∈ E(G), we consider the local situation.

(a) If degG(p) ≥ 4 then we proceed as in Figure 4(b).
(b) If degG(q) = 2 then we consider the degree of p. By the existence of

the previous case, we may assume that degG(p) ≤ 3. Since p is adja-
cent to a degree-2 vertex, we know by Property (iv) that degG(p) ≥ 2.

i. If degG(p) = 2 then proceed as in Figure 4(c). (Note that the
un-marked vertices adjacent to p and q might actually represent
the same vertex, but this does not affect the augmentation.)

ii. If degG(p) = 3 then proceed as in Figure 4(d). By Observation 2
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the vertex p is not adjacent to T in this case, and hence all but
one of its neighbors will become leaves. The vertex y will be a
split vertex after the augmentation.

Since we assumed degG(p) ≥ degG(q), the only remaining situation is when pq 6∈
E(G) and degG(p) = degG(q) = 3, which implies by Observation 2 that p and q
are not adjacent to T . Note that degG(q) = 1 is not possible by Property (iv).
We now conclude with an analysis of this final case. For the analysis we consider
the set NG(p) ∩ NG(q), which can be seen to have cardinality at most two by
the structure of the local situation.

1. If NG(p) ∩NG(q) = ∅ then expand as in Figure 5(a).
2. If NG(p) ∩ NG(q) = {f, h} for some vertices f, h then expand as in Fig-

ure 5(b). Vertices f, h cannot be adjacent to T : if (for example) f had
some neighbor in T then degG(f) ≥ 3 since f also has p, q as neighbors
(which are not in T by the earlier observations), which would imply by
Observation 2 that f is not adjacent to T .

3. If NG(p)∩NG(q) = {g} for a vertex g then we make a further distinction on
the situation of g. Let {f} = NG(p) \ {x, g} and let {h} = NG(q) \ {y, g}.
(a) If degG(g) ≥ 3:

i. If NG(g) ∩ {f, h} = ∅ then expand as in Figure 5(c).
ii. Otherwise assume by symmetry that f ∈ NG(g) and expand as

in Figure 5(d).

(b) Otherwise we must have degG(g) = 2, since pg, qg ∈ E(G).

i. If one of f, h is adjacent to T then assume w.l.o.g. that this is f
and expand as in Figure 5(e).

ii. If f, h are not adjacent to T , then assume without loss of gener-
ality (by symmetry) that degG(f) ≥ degG(h).

• If degG(h) = 1 then expand as in Figure 5(f).
• If degG(f) ≥ 3 then expand as in Figure 5(g).
• Otherwise we must have degG(h) = degG(f) = 2, since we

assumed that degG(f) ≥ degG(h). Let r be the neighbor of
f that is not p, and let s be the neighbor of h that is not q.
Assume w.l.o.g. that degG(r) ≥ degG(s).

– If degG(s) = 2 then expand as in Figure 5(h).
– Otherwise degG(r) ≥ degG(s) ≥ 3; expand as in Fig-

ure 5(i). Once again we know that r is not adjacent to T
by Observation 2.

Since this case analysis is exhaustive it shows that in every possible situation
where T is not a spanning tree for G, there is some operation to augment T that
satisfies the incremental inequality. By Proposition 1 this concludes the proof
of Theorem 1.

Strengthening of Theorem 1 We briefly comment on the possibility of
strengthening Theorem 1. It is not hard to see that the maximum degree of
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(a) (b)

(c) (d)

(e) (f)

(g)

(h)

(i)

Case ∆N = ∆L = ∆S ≥ ∆D ≥
5(a) 11 3 −|CT→T ′ | − 1 |CT→T ′ |
5(b) |NG(f) \ {p, h}|+ 8 |NG(f) \ {p, h}|+ 1 −|CT→T ′ | − 1 |CT→T ′ |+ 2
5(c) degG(g) + 7 degG(g) −|CT→T ′ | − 1 |CT→T ′ |+ 1
5(d) |NG(g) \ {h}|+ 7 |NG(g) \ {h}| −|CT→T ′ | − 1 |CT→T ′ |+ 2
5(e) 8 2 −2 2
5(f) 8 2 −1 1
5(g) degG(f) + 7 degG(f) −|CT→T ′ | − 1 |CT→T ′ |
5(h) 8 2 0 0
5(i) degG(r) + 8 degG(r) −|CT→T ′ | − 1 |CT→T ′ |

Figure 5: Tree augmentations. Refer to Figure 2 for the semantics of the images.
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(a) Rule 1. (b) Rule 2.

(c) Rule 3. (d) Rule 4. (k′ := k − 3)

Figure 6: Examples of the reduction rules. The reduced structure is shown
below the original structure. The numbers represent vertex weights.

any nontrivial graph in C is at least 3. This results in an excess of at least 8
on the right hand side of the incremental inequality during the initialization of
the tree. By keeping track of this excess when summing over the incremental
steps, the argumentation given in Proposition 1 shows that the number of leaves
that can be obtained on a graph G = (V,E) contained in C with |V | ≥ 3 is at

least d |V |+8
5.5 e. The additive constant gained does not improve the kernelization

bound, however.

4 Kernelization

In this section we describe the kernelization for Weighted Max Leaf. We first
specify a set of reduction rules, then show that these can be applied efficiently
and finally we analyze the resulting reduced instances.

4.1 Reduction Rules

We present reduction rules in a structured, 3-stage format. The reduction rules
presented here transform an instance 〈G,w, k〉 into an instance 〈G′, w′, k′〉 such
that G has a spanning tree with leaf weight at least k if and only if G′ has
a spanning tree with leaf weight at least k′. Any reduction rule that satisfies
these properties is called safe. The reduction rules are illustrated by examples
in Figure 6.
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Reduction Rule 1 Shrink large path components

Structure: A path component P = 〈u, s1, s2, . . . , sq, v〉 of size q ≥ 4
with endpoints u, v of degree at least 3, such that w(s1) ≥ w(sq).
Operation: Remove s2, . . . , sq−1 and their incident edges from G.
Add a new vertex s′ with NG′(s′) := {s1, sq}, and set w′(s′) :=

maxq−1
i=1 (w(si) + w(si+1)− w(s1)).

Justification: If a spanning tree avoids an edge with both endpoints
inside the path component, it is always optimal to avoid an edge that
maximizes the combined weight of its endpoints. The reduced graph
offers the same connection and weighting possibilities as the original.

Lemma 11 Rule 1 is safe: 〈G,w, k〉 yes-instance ⇔ 〈G′, w′, k′〉 yes-instance.

Proof: The reduction rule replaces the path component P by a shorter one.
Observe that a spanning tree avoids at most one edge inside a path component,
otherwise it is disconnected. Spanning trees in G avoiding an edge incident on
an endpoint of the path component can trivially be transformed to spanning
trees in G′ of the same leaf weight, and vice versa. The only interesting case is
if a spanning tree in G avoids an interior edge of the path component. In this
case it is optimal to avoid an edge whose endpoints have maximum weight, and
avoiding the edge between s′ and a maximum-weight neighbor yields the same
net value. The other direction is similar. �

Let us remark on why Rule 1 shrinks path components to size 3, and not
less. Intuitively, there are four distinct possibilities that we have to encode: an
optimal spanning tree can avoid the leftmost or rightmost edge on the path com-
ponent, it can avoid an interior edge whose endpoints have maximum combined
weight, or it can use all edges on the path component. These four choices are
potentially all interesting if the endpoints of the path component have higher
weight than what can be obtained in the interior. Since making a high-weight
endpoint a leaf contributes much weight, but limits which vertices in the re-
mainder of the graph can be made leaves, it is a priori unclear what the optimal
decision is. To allow the resulting weight contributions to be stored for all
options, we need three interior vertices. For example, it seems impossible to
encode the path component with successive weights (10, 2, 4, 3, 8) with fewer
interior vertices.

Reduction Rule 2 Shrink paths leading to a degree-1 vertex

Structure: Path component P = 〈u, s1, s2, . . . , sq, v〉 of length q ≥
1 where degG(v) = 1.
Operation: Replace s1, . . . , sq and their incident edges by a direct
edge uv.
Justification: Every vertex si is a cut vertex and will never be a
leaf in a spanning tree.

Correctness of the previous rule is easy to see, so we do not give a formal proof.



JGAA, 16(4) 811–846 (2012) 831

Reduction Rule 3 Reduce triangles with simple neighborhoods

Structure: Triangle on three vertices x, y, z such that every vertex
of the triangle has at most one neighbor not in the triangle, and
the graph is not isomorphic to K3. Let x have minimum weight
among {x, y, z}.
Operation: Remove all the edges between vertices x, y, z. Add a
new vertex m with NG′(m) := {x, y, z} and set w′(m) = w(x).
Justification: Any spanning tree must avoid at least one edge on
the triangle; the decision can be encoded using fewer high-degree
vertices by adding the vertex m to represent the connectivity.

Although Rule 3 increases the number of vertices, it still effectively simplifies
the instance. If the vertex v is in a triangle that is reduced by this rule then
the neighborhood of v is simplified by the reduction: if v had degree 3 then its
degree is reduced to 2, and if it had degree 2 then its degree is reduced to 1.

Lemma 12 Rule 3 is safe: 〈G,w, k〉 yes-instance ⇔ 〈G′, w′, k′〉 yes-instance.

Proof: (⇒) Suppose G has a spanning tree T with lw(T ) ≥ k. We make a
distinction based on the status of the vertices in the triangle.

• If all vertices x, y, z are leaves in T , we build a spanning tree for G′ by
adding the isolated vertex m to T . We connect to m from the vertex x of
minimum weight. The resulting tree T ′ is a spanning tree for G′ with the
same leaf weight as T , since the new leaf m has the same weight as x that
became internal to connect to m.

• If there is at least one vertex on the triangle that is internal, then denote
this vertex by v. We build a spanning tree T ′ ⊆ G′ by removing the edges
from v to the other vertices on the triangle, adding the vertex m and edge
vm and finally adding edges um for every u ∈ NT (v)∩{x, y, z}. Note that
this construction does not change the degrees of vertices that are leaves
in T ; hence Leaves(T ′) ⊇ Leaves(T ) and the claim follows.

(⇐) Suppose G′ has a spanning tree T ′ with lw(T ′) ≥ k′. By our assumption
that G is not isomorphic to K3 we find that the set {x, y, z} is a cutset for G′

since it separates m from the vertices outside the triangle. Hence by Lemma 1
there must be at least one vertex among {x, y, z} that is internal in T ; let v be
such a vertex. To build the spanning tree T ⊆ G we make a distinction based
on the status of m in T ′.

• If m is internal in T ′, we obtain T by removing m and its incident edges
from T ′ and adding edges vu for every u ∈ NT ′(m) \ {v}. The resulting
tree is a spanning tree for G with the same set of leaves.

• If m is a leaf in T ′ then we obtain T from T ′ by simply deleting m and its
single incident edge. We now claim that the vertex denoted by v (which
was internal in T ′) has become a leaf in T . To see this, observe that v
must have had a degree of 2 in T ′. By the precondition to the reduction
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rule vertex v has at most one neighbor in G that is not contained in
the triangle {x, y, z}, so in graph G′ vertex v has at most one neighbor
besides m. Therefore v has degree at most 2 in G′. Since v is internal in T ′

(by assumption) it must have a degree of at least 2 in T ′. Hence the degree
of v in T ′ is indeed 2. By deleting m and its incident edge the degree of v
becomes 1 in T , and hence it is a leaf. Since w(v) = w′(v) ≥ w′(m) by
definition of w′(m) we find that lw(T ) ≥ lw(T ′).

Hence we conclude that the reduction rule is safe. �

Reduction Rule 4 Reduce degree-2 vertices with identical neighborhoods

Structure: Two vertices u, v with w(u) ≥ w(v) and NG(u) =
NG(v) = {x, y} such that V \ {u, v, x, y} 6= ∅.
Operation: Remove u and its incident edges, set k′ := k − w(u).
Justification: There is always an optimal spanning tree in which
u is a leaf.

Lemma 13 Rule 4 is safe: 〈G,w, k〉 yes-instance ⇔ 〈G′, w′, k′〉 yes-instance.

Proof: (⇒) Suppose G has a spanning tree T with lw(T ) ≥ k. We first show
that there is always an optimal spanning tree for G in which u is a leaf. Observe
that u and v cannot both be internal in T , as this would imply T contains a
cycle. If u is internal and v is a leaf, then we can also make v internal and u a
leaf; since the weight of u is at least as much as that of v, this does not decrease
the leaf weight of the spanning tree. This shows that there is always an optimal
spanning tree in which u is a leaf. From such a spanning tree, we obtain a
spanning tree for G′ with leaf weight at least k′ = k −w(u) by removing u and
its incident edges.

(⇐) Suppose G′ has a spanning tree T ′ with lw(T ′) ≥ k′. The vertices x, y
from a cutset for G′ since they separate v from the remainder of the graph. By
Lemma 1 we know that one of the vertices x, y is internal in T ′. We create a
spanning tree T ⊆ G by copying T ′, adding the vertex u and connecting to it
from a vertex of x, y that is internal. Since u becomes a leaf in T we know that
lw(T ) = lw(T ′) + w(u), which proves the claim. �

Since a kernelization is a self-reduction of a problem, it is important that
the output instance of a kernelization algorithm satisfies the same restriction on
the allowed weight range as the input problem. The following lemma will turn
out to be useful to prove this.

Lemma 14 Let 〈G,w, k〉 be an instance of Weighted Max Leaf such that
Rule 1 can be applied, and let 〈G′, w′, k′〉 be the resulting instance after applica-
tion of Rule 1. Then min{w′(v) | v ∈ V (G′)} ≥ min{w(v) | v ∈ V (G)}.

Proof: All vertices in G′ that also exist in G have the same weight under w
as under w′. The only vertex in G′ that does not exist in G is the new vertex
s′ that is created by application of the reduction rule; we will show that its
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weight under w′ is not less than the minimum weight of a vertex in G under
w. The weight of s′ is defined as w′(s′) := maxq−1

i=1 (w(si) + w(si+1) − w(s1)).
Since the edge s1s2 is considered in the maximum, it follows that w′(s′) ≥
w(s1) + w(s2) − w(s1) ≥ w(s2) ≥ min{w(v) | v ∈ V (G)}, which proves the
claim. �

4.2 Structure of a Reduced Instance

If no reduction rules are applicable to an instance, then such an instance is
called reduced. The structure of reduced instances is captured by the class C
(see Definition 1), which is proven in the following theorem.

Theorem 2 If 〈G′, w′, k′〉 is a reduced instance of Weighted Max Leaf that
is not isomorphic to a simple cycle and |V (G′)| ≥ 3, then G′ ∈ C.

Proof: Suppose 〈G′, w′, k′〉 is a reduced instance with |V (G′)| ≥ 3 that is not
isomorphic to a simple cycle. We will prove that G′ satisfies all properties of
Definition 1, in the order in which the properties are listed in the definition.

(i) The input graph is simple and connected by definition. It is easy to verify
that the reduction rules preserve these properties.

(ii) By assumption the reduced graph G′ is not isomorphic to a simple cycle.
(iii) By Rule 1 the reduced graph G′ does not have path components of length

larger than 3.
(iv) By Rule 2 the reduced graph G′ does not have degree-1 vertices that are

adjacent to degree-2 vertices. If the neighbor of a degree-1 vertex also
has degree-1 then the graph is isomorphic to K2 and hence |V (G′)| < 3;
otherwise every degree-1 vertex must be adjacent to a vertex of degree at
least 3.

(v) Suppose the reduced graph has a triangle x, y, z such that each vertex
on the triangle has degree at most 3. If G′ is isomorphic to K3 then it
is isomorphic to a simple cycle, which contradicts the assumption in the
theorem. But if G′ is not isomorphic to K3 then Rule 3 is applicable,
which is also a contradiction. So the reduced graph cannot have a triangle
on vertices of degree at most 3.

(vi) Suppose there are two degree-2 vertices u, v such that NG(u) = NG(v) =
{x, y}. If V \ {u, v, x, y} 6= ∅ then Rule 4 is applicable; on the other hand
if V = {u, v, x, y} then either G′ is a simple cycle on 4 vertices (which
contradicts our assumption) or G′ is isomorphic to K4 minus one edge,
which must contain a triangle to which Rule 3 is applicable.

Since G′ satisfies all the required properties we may conclude that G′ ∈ C. �

4.3 Reduction Procedure

In this section we consider how the reduction rules can be realized by an al-
gorithm. It is easy to verify that we can test in polynomial time whether a
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reduction rule is applicable to the graph, and to apply the reduction if neces-
sary. All reduction rules except Rule 3 reduce the number of vertices. Rule 3
strictly decreases the number of triangles in the input graph. Since the other re-
duction rules do not create new triangles, Rule 3 can be applied at most

(|V (G)|
3

)
times. The other reduction rules can be applied at most a polynomial number
of times, since they decrease the number of vertices. Hence after applying a
polynomial number of reduction rules, we must arrive at a reduced instance.
These easy observations show that we can obtain a reduced instance in poly-
nomial time. By an elementary but tedious argument, it can be shown that it
is possible to compute a reduced instance in O(|V | + |E|) time, assuming that
arithmetic on the weights takes constant-time. We have chosen to omit the
argument here due to its length; interested readers are referred to the technical
report [20, Theorem 3].

4.4 Kernelization Algorithm

We now combine the ingredients obtained earlier to prove the existence of a
kernelization algorithm for Weighted Max Leaf. We start by presenting a
small lemma which shows that the reduction rules do not change a valid instance
of the problem into an invalid one.

Lemma 15 Let 〈G′, w′, k′〉 be obtained by applying reduction rules to an in-
stance 〈G,w, k〉 of Weighted Max Leaf. If k′ ≥ 1 then 〈G′, w′, k′〉 is also a
valid instance of Weighted Max Leaf: the graph G′ is simple and connected,
the weight of a vertex is not smaller than 1, and the precision needed to store
the weights under w′ is not greater than the precision needed for w.

Proof: By the specification of Weighted Max Leaf the input graph G must
be simple and connected in a valid instance. It is easy to verify that the reduc-
tion rules preserve these properties. Let us argue that the weights assigned to
vertices by the new weight function w′ are all at least 1. The only reduction
rule that changes vertex weights is Rule 1. Lemma 14 proves that the minimum
vertex weight is not decreased by an application of that rule, which shows that
the vertex weights under w′ are not smaller than the vertex weights under w.
Since 〈G,w, k〉 is a valid instance with weights not smaller than 1, this proves
the second part of the claim. For the final part, observe that a vertex weight
under w′ is either equal to a weight under w, or the weight under w′ is obtained
from three weights under w by addition and subtraction through Rule 1. Since
subtraction and addition do not change the number of digits after the decimal
point which are needed to represent the number, the lemma follows. �

Finally we can state the kernelization theorem and obtain the main result of
this paper.

Theorem 3 Weighted Max Leaf has a kernel with at most 5.5k vertices:
there is an algorithm that takes an instance 〈G,w, k〉 of Weighted Max Leaf
as input, and computes an equivalent instance 〈G′, w′, k′〉 of bitsize polynomial
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in k such that |V (G′)| ≤ 5.5k, k′ ≤ k and maxv∈V (G′) w
′(v) ≤ k′ in polynomial

time.

Proof: We sketch the kernelization procedure. When supplied with an input
〈G,w, k〉 the algorithm first computes a reduced instance 〈G′, w′, k′〉 in poly-
nomial time using the approach sketched in Section 4.3. The safety of the
reduction rules ensures that 〈G,w, k〉 is a yes-instance if and only if 〈G′, w′, k′〉
is a yes-instance. By the definitions of the reduction rules we know that k′ ≤ k.
If the graph G′ is isomorphic to a simple cycle then the problem can be decided
in linear time: the maximum leaf weight that can be obtained by a spanning
tree in a simple cycle is equal to maxuv∈E(G′) w

′(u) + w′(v). So when G′ is
isomorphic to a simple cycle we can decide the problem and output a trivial
1-vertex instance that yields the same answer.

Assume from now on that G′ is not a simple cycle. Observe that for every
vertex with weight larger than k′, we may decrease its weight to k′ without
changing whether there is a spanning tree of leaf weight at least k′. Therefore we
may assume that maxv∈V (G′) w

′(v) ≤ k′. If k′ ≤ 1 then the algorithm outputs
a trivial yes instance. If |V (G′)| ≥ 5.5k′ ≥ 5.5 then the answer to the decision
problem must be yes: since G′ is not isomorphic to a cycle Theorem 2 shows
that G′ ∈ C, which implies by Theorem 1 that there is a spanning tree T ′ ⊆ G′

with at least k′ leaves. Noting that every vertex has a weight not smaller
than 1, the leaf weight of T ′ must be at least k′ which implies that 〈G′, w′, k′〉
is indeed a yes instance. We now output a trivial 1-vertex instance that yields
this answer. If |V (G′)| < 5.5k′ then the size of the output graph is bounded
as required since k′ ≤ k, and we output 〈G′, w′, k′〉. Lemma 15 shows that
a reduced instance is a valid input for Weighted Max Leaf. To see that
the reduced instance has a bitsize polynomial in k, observe that we can easily
encode the graph on at most 5.5k vertices in O(k2) bits using its adjacency
matrix. Recall that the problem definition assumes that the fractional part of
a weight is representable by a constant number of decimals. By Lemma 15 this
holds for w′ if it holds for w, and therefore the number of bits required to encode
the weight function w′ is polynomial in k: the fractional part of each value uses
a constant number of decimal places (and therefore a constant number of bits),
and the integer part of a value is at most k′. This concludes the proof. �

5 Hardness of Approximation

Although the focus of this work is on parameterized complexity, we briefly
change the perspective in this section and consider Weighted Max Leaf as
an optimization problem. In this case an instance consists only of a weighted
graph, and the goal is to find a spanning tree with maximum leaf weight. This
point of view allows us to study the approximability of the problem, and con-
trasts the parameterized view of Weighted Max Leaf which treats it as a
decision problem. It is not hard to see that the optimization problem related to
Weighted Max Leaf is in fact an NP-optimization problem since the value
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of a potential solution can be computed in polynomial time. There is an exten-
sive literature [1] devoted to NP-optimization problems and reductions between
them, with various notions of approximation-preserving reductions. To simplify
the exposition we will not use the rigorous formal framework of NP-optimization
problems, but rather present the results in an informal manner. It is easy to
verify that the claims made here can be formalized in a straight-forward way.

Consider a NP-maximization problem Π, and let f be a function that maps
instances x of Π to non-negative numbers. The function f will often only depend
on the optimum value of x and on the size of x. We say that an algorithm A
is a polynomial-time f -approximation algorithm for Π if algorithm A always
computes a feasible solution in polynomial time, such that value v of the re-
sulting solution satisfies v ≥ opt /f(x), which means that the value that is
found is at most a factor f(x) smaller than the optimum. When f is a con-
stant function then this yields a constant-factor approximation algorithm, but
we may also allow f to be a function that depends on the instance size (such as
a n

logn -approximation), or a function that depends on the optimum value (e.g.

a
√
opt-approximation). If Π has a f -approximation and f ∈ O(g(x)) then we

say that Π has a O(g(x))-approximation.

In this section we will show that Weighted Max Leaf is hard to ap-
proximate, using a reduction from Independent Set. The approximability of
Independent Set has been studied intensively, leading to the following result.

Theorem 4 ([18, 28]) The Independent Set problem on graphs with n ver-
tices does not have a polynomial-time O(n1−ε)-approximation algorithm for any
ε > 0 unless P = NP.

Recall that an NP-optimization problem is polynomially bounded if the op-
timum solution value is bounded by a polynomial in the instance size. In some
settings it is harder to approximate a problem if it is not polynomially bounded.
We will prove that Weighted Max Leaf is hard to approximate, even when
its optimum is polynomially bounded and when the input graphs are required
to be 2-degenerate (see Section 2). For ease of notation we define the problem
Pb-Weighted Max Leaf as the restriction of Weighted Max Leaf where
the graph G is 2-degenerate and the weights are positive integers not exceed-
ing |V (G)|2. It is easy to verify that under this definition, Pb-Weighted Max
Leaf is a polynomially bounded optimization problem.

Theorem 5 We can use an approximation algorithm for Pb-Weighted Max
Leaf to approximate Independent Set.

1. If Pb-Weighted Max Leaf has a polynomial-time O(nc)-approximation
algorithm then Independent Set has a O(n2c) approximation algorithm.

2. If Pb-Weighted Max Leaf has a polynomial-time O(optc)-approxima-
tion algorithm then Independent Set has a O(n3c) approximation algo-
rithm.
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The remainder of this section is devoted to the proof of Theorem 5 and a
corollary. The proof is based on a reduction from Independent Set to Pb-
Weighted Max Leaf that preserves approximation properties. We will show
that using this reduction, we can use the existence of approximation algorithms
for Pb-Weighted Max Leaf to construct approximation algorithms for In-
dependent Set.

Consider an instance G of Independent Set. We will give an approxi-
mation preserving reduction that transforms G into an instance 〈G′, wG′〉 of
Pb-Weighted Max Leaf. For the sake of analysis we will partition the ver-
tices of the resulting graph G′ into two types: heavy vertices that correspond
to vertices in graph G, and light vertices that are added by the reduction. The
reduction proceeds as follows.

1. Initialize G as a copy of G′. All vertices of G′ at this stage are heavy.
2. Replace every edge uv between heavy vertices by a new light vertex x with

edges {ux, vx}.
3. Add a new light root vertex r and give r edges to all heavy vertices.

The graph that results from the above three steps is used as G′. For ease of
notation define n := |V (G)| and n′ := |V (G′)|. The weight function is simple,
and corresponds to the intuition. We set the weight of all heavy vertices to n2,
and we set the weight of all light vertices to 1. Figure 7 shows an example of
this reduction.

From the definition of the graph G′ it follows that n′ = |V (G)|+|E(G)|+1 ≤
n+

(
n
2

)
+ 1 which implies that n′ ≤ n2 for n ≥ 2. Since we may assume without

loss of generality that n ≥ 2 we have n′ ≤ n2. Using the fact that the weight
of a vertex in G′ is at most n2 < (n′)2 it easily follows that the vertex weights
satisfy the restrictions placed on the problem Pb-Weighted Max Leaf. It is
not hard to verify that G′ is a 2-degenerate graph. Any vertex-induced subgraph
that has minimum degree 3 or higher cannot contain any of the light vertices
that were used to subdivide edges. But if all such light subdivider vertices are
excluded from a vertex-induced subgraph, then such a subgraph must in fact be
a star and hence it contains a vertex of degree 1. Therefore all vertex-induced
subgraphs of G′ have minimum degree at most 2 and hence G′ is 2-degenerate.

The following lemma shows the relationship between solutions of the Inde-
pendent Set instance G and the Pb-Weighted Max Leaf instance 〈G′, wG′〉.

Lemma 16 Instance G has an independent set S of size at least k ⇔ instance
〈G′, wG′〉 has a spanning tree T ′ ⊆ G′ with at least k heavy leaves.

Proof: We shall use the fact that the vertex set of G corresponds to the heavy
vertices in G′.

(⇒) Suppose S is an independent set for G of size |S| ≥ k. We will show
that G′ has a spanning tree with at least |S| heavy leaves. We initialize a tree
T ′ ⊆ G′ by taking the light vertex r as the root, and adding edges to every
heavy vertex in G′. Every heavy leaf in T ′ now corresponds to a vertex of G.
The only vertices that this tree does not reach are the light vertices that were
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(a) Graph G. (b) Resulting 〈G′, wG′ 〉. (c) Tree T ′.

Figure 7: Example of the reduction from Independent Set to Pb-Weighted
Max Leaf. (a) An instance G of Independent Set. (b) The corresponding
instance 〈G′, wG′〉 of Pb-Weighted Max Leaf that results from the reduc-
tion. Heavy vertices with weight n2 are drawn in black, and light vertices
with weight 1 are drawn in white. (c) The spanning tree T ′ ⊆ G′ that corre-
sponds to the independent set {b, c, d, g, h} in G. Thick lines represent edges
in E(G′) ∩ E(T ′) and broken lines represent edges in E(G′) \ E(T ′).

added when subdividing edges of G. Since S is an independent set, we know
V (G) \ S forms a vertex cover for G. By the equivalence between the light
subdivider vertices in G′ and edges in G, we can augment tree T to a spanning
tree by connecting to the light subdivider vertices from the vertices in V (G)\S.
If we augment T ′ to a spanning tree in this way, every heavy vertex in G′ that
is a member of the independent set S in G remains a leaf. So the augmented T ′

is a spanning tree for G′ with at least |S| ≥ k heavy leaves.
(⇐) Suppose T ′ ⊆ G′ is a spanning tree for G′ and S are its heavy leaves

with |S| ≥ k. By the correspondence between heavy vertices in G′ and vertices
of G, we can also interpret S as a subset of the vertices of G. We will prove
that S forms an independent set in G, by showing that if there is an edge uv in
G, then u and v are not both heavy leaves in any spanning tree for G′.

So assume G has an edge uv. By the definition of the reduction, this edge
was subdivided by some light vertex x when forming G′. Since NG′(x) = {u, v}
it follows that {u, v} is a cutset for G′ since it separates w from the light root
vertex r. By Lemma 1 we may conclude that at least one of u and v is not a
leaf in a spanning tree for G′.

Using this fact we obtain by contraposition that the set S of heavy leaves is
an independent set in G, and hence this establishes that G has an independent
set of size |S| ≥ k. �

The correspondence between the two instances allows us to use an ap-
proximation algorithm for Pb-Weighted Max Leaf to build an approxi-
mation algorithm for Independent Set. Suppose we have a polynomial-
time O(nc)-approximation (or O(optc) approximation) algorithm A for Pb-
Weighted Max Leaf. We construct a polynomial-timeO(n2c)-approximation
(resp. O(n3c)-approximation) algorithm B for Independent Set by applying
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the reduction from Independent Set to Pb-Weighted Max Leaf and run-
ning algorithm A on the instance 〈G′, wG′〉. Let T ′ ⊆ G′ denote the spanning
tree that is found. By Lemma 16 the heavy leaves of spanning tree T ′ form an
independent set in G; we use this independent set as the output of algorithm B.
Since the reduction can be applied in polynomial time, it follows that B runs in
polynomial time if the algorithm A exists. The vertex weights that are used in
the reduction allow us to easily establish a relationship between the leaf weight
of a spanning tree, and the number of heavy leaves that it contains. The total
weight of the light vertices is less than n2, since each light vertex has weight 1
and there at most

(
n
2

)
+ 1 of such vertices. We can consider the leaf weight of a

spanning tree to consist of two parts: the weight of heavy leaves plus the weight
of light leaves. Consider the spanning tree T ′ ⊆ G′ that is found by running
algorithm A on the instance resulting from the reduction, and let k′ denote the
number of heavy leaves in T ′. Since light leaves contribute at most n2 to the
total leaf weight, and because the weight of a heavy vertex is exactly n2, we
find the following:

k′ ≥ 1

n2
(lw
wG′

(T ′)− n2) ≥ 1

n2
lw
wG′

(T ′)− 1. (3)

It remains to prove the approximation guarantee for algorithm B. The following
observation will be important. Let k be the size of a maximum independent set
in G, and let S ⊆ V (G) be an independent set in G of size k. By the correspon-
dence between G and the instance 〈G′, wG′〉 that was derived in Lemma 16 we
know that the vertices in S correspond to heavy vertices in G′, and that there
is a spanning tree T ′′ ⊆ G′ where all the vertices in S are heavy leaves; hence
such a spanning tree has leaf weight at least |S|n2 = kn2. Let T ∗ ⊆ G′ be a
spanning tree for G′ with maximum leaf weight. Since the leaf weight of T ∗

must be at least as large as the leaf weight of T ′′, we find:

lw
wG′

(T ∗) ≥ kn2. (4)

Using these ingredients we are now ready to prove the approximation guarantees
for the resulting algorithm B.

Size-based Approximation

We will first prove that B is a O(n2c)-approximation algorithm if A is a O(nc)-
approximation algorithm. By the definition of a O(nc)-approximation algorithm
we know that there are constants n1 and c1 such that for all instances of Pb-
Weighted Max Leaf with size n′ ≥ n1 the value found by the approximation
algorithm is at least opt /c1(n′)c. We may assume without loss of generality
that n′ ≥ n1 for the instance of Pb-Weighted Max Leaf that results from the
reduction, because for all instances smaller than n1 we can solve the problem
optimally in polynomial time since n1 is a constant. Recall that T ′ is the
spanning tree found by running algorithm A on the instance resulting from the
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reduction. By the assumption on the approximation quality of A we find that:

lw
wG′

(T ′) ≥ lw
wG′

(T ∗)/(c1(n′)c) ≥ lw
wG′

(T ∗)/(c1n
2c), (5)

where the last step follows from the fact that n′ ≤ n2 for n ≥ 2 by definition of
the reduction. Combining (5) with (4) we find:

lw
wG′

(T ′) ≥ kn2/(c1n
2c). (6)

Combining (6) with (3) we find that:

k′ ≥ 1

n2
kn2/(c1n

2c)− 1 = k/(c1n
2c)− 1. (7)

So the number k′ of heavy leaves in the approximate solution T ′ is at least
k/(c1n

2c) − 1, where k is the optimum of the Independent Set instance.
Since the heavy leaves in T ′ correspond to the independent set that is output
by algorithm B, we may conclude from (7) that algorithm B is indeed a O(n2c)-
approximation for Independent Set since k/(c1n

2c)− 1 ≥ k/O(n2c).

Value-based Approximation

We now prove that B is a O(n3c)-approximation algorithm if A is a O(optc)-
approximation algorithm. By definition of this type of approximation guarantee
we find that there are constants c2, n2 such that for all sufficiently large instances
with n′ ≥ n2 it holds that:

lw
wG′

(T ′) ≥ lw
wG′

(T ∗)/(c2(lw
wG′

(T ∗))c) =
1

c2
(lw
wG′

(T ∗))1−c. (8)

Combining (8) with (4) yields:

lw
wG′

(T ′) ≥ 1

c2
(kn2)1−c. (9)

Combining (9) with (3) we find that:

k′ ≥ 1

n2

1

c2
(kn2)1−c − 1 =

k

c2kcn2c
− 1 ≥ k

c2ncn2c
− 1 =

k

c2n3c
− 1, (10)

where the last transformation step follows from the fact that k ≤ n since the
optimum k of the Independent Set instance is at most the size n of the
graph G. Hence B is a polynomial-time O(n3c)-approximation algorithm for
Independent Set. This concludes the proof of Theorem 5. Using Theorem 4
we obtain the following corollary.

Corollary 1 Pb-Weighted Max Leaf, the polynomially-bounded optimiza-
tion version of Weighted Max Leaf restricted to 2-degenerate graphs on n
vertices, does not admit a polynomial-time O(n

1
2−ε)-approximation algorithm

or O(opt
1
3−ε)-approximation algorithm for any ε > 0 unless P = NP.
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Figure 8: Component which shows that the factor 5.5 in Theorem 1 is best-
possible: the graph obtained by replacing every vertex of a simple cycle of
length n by this subgraph is a member of C. It has 11n vertices and at most
2n + 2 leaves in any spanning tree.

The corollary shows that the introduction of vertex weights makes Max Leaf
much harder to approximate: the unweighted Max Leaf problem has a con-
stant factor 2-approximation [25] and is in fact APX-complete [15], but even the
restriction Pb-Weighted Max Leaf of the weighted version is not in APX un-
less P = NP. It is uncommon for optimization problems to exhibit structural
differences in hardness of approximation when comparing unweighted versions
to polynomially-bounded weighted versions. Crescenzi et al. [8] investigated
weighted and unweighted variants of optimization problems with respect to their
approximation properties, and found that weights do not structurally alter the
hardness of approximation for Minimum Vertex Cover, Minimum Satisfia-
bility, Maximum Cut, Maximum DiCut, Maximum 2-Satisfiability and
Maximum Exact k-Satisfiability.

6 Conclusion

We have presented a simple problem kernel with 5.5k vertices for Weighted
Max Leaf, using new weight-based reduction rules. This serves as an example
of how to obtain effective and efficient data reduction on problems with vertex
weights. These weights can be used to model real-world problems more accu-
rately. A large part of this work was devoted to the proof of a combinatorial
result that graphs excluding some simple substructures always have spanning
trees with many leaves; using this result the kernelization effort reduces to elimi-
nating those substructures in the input graph without blowing up the parameter
value.

The use of this kernelization algorithm is not restricted to solving the de-
cision variant of Weighted Max Leaf, but it can also be used to construct
a spanning tree with the desired leaf weight if one exists. This stems from the
fact that all the reduction rules can be reversed to lift a spanning tree for the
reduced graph back to the original graph, and from the fact that the combi-
natorial proof of the extremal result is constructive. When Theorem 1 assures
there is a spanning tree with at least k leaves (and hence leaf weight at least k),
then such a spanning tree can be found in polynomial time by executing the
augmentation operations.

The size of the resulting problem kernel directly corresponds to the extremal



842 Bart M. P. Jansen Kernelization for Weighted Max Leaf

bound from Theorem 1. The factor 5.5 in this theorem is best-possible as shown
by the construction in Figure 8, which implies that the analysis of the kernel
size is tight. It can be shown that Rule 1 and Rule 2 are sufficient to obtain
a kernel of 7.5k vertices, and that successively adding Rule 3 and Rule 4 leads
to kernels with 7k and 5.5k vertices, respectively. We found a reduction rule to
eliminate the structure shown in Figure 8, but we chose not to incorporate this
rule in the presentation since it does not lead to a kernel with less than 5.25k
vertices while it significantly complicates the proof of the required strengthening
of Theorem 1.

The proof of the extremal result of Theorem 1 uses an extension of the
method of amortized analysis by keeping track of dead leaves; we extended the
method by incorporating a new term ∆S in the incremental inequality, which
allows us to exploit the fact that the considered graphs do not have long path
components. We believe that this technique may be of independent interest
since it can be used to prove similar results about leafy spanning trees in graph
classes that avoid other subgraphs.

The kernelization procedure for Weighted Max Leaf raises the question
whether the existing FPT algorithms for Max Leaf can be converted to the
weighted setting. We have verified that this is indeed the case for the O(6.75k ·
nO(1)) algorithm by Bonsma and Zickfeld [4]; their algorithm uses reduction
rules to eliminate “diamonds” and “blossoms” in the input graph, and then
guesses the leaf status of the vertices of degree at least 3 in the remaining graph.
Given the status of the high-degree vertices the optimal number of leaves can be
computed by finding a minimum edge weighted spanning tree. This approach
carries over to the weighted setting by building weight-aware reduction rules
that eliminate the diamonds and blossoms. It is an open question whether the
O(4knO(1)) FPT algorithm of Kneis et al. [22] can be adapted to solve the
weighted problem. Two obstacles have to be overcome in order to generalize
their algorithm. First of all, the bounded-depth search tree algorithm crucially
relies on the fact that it can stop once a subtree with k leaves has been found,
as such a tree can always be extended to a spanning tree without decreasing
the number of leaves. As this does not generalize to the weighted setting —
the extension to a spanning tree might increase the number of leaves while
decreasing the total leaf weight — one needs to be careful with the stopping
criterion. And even more importantly, the algorithm of Kneis et al. crucially
exploits the fact that the branching algorithm may “follow paths” outside a
partial solution without loss of optimality. When attempting in the unweighted
setting to extend a given subtree T ⊆ G to a k-leaf tree, in the presence of a
vertex v ∈ Leaves(T ) with exactly one neighbor outside the tree, the following
holds: either there is a k-leaf tree in which v remains a leaf, or one may assume
without loss of optimality that v, along with all vertices on the path that is
traced when starting at v, visiting its unique neighbor outside T , and repeatedly
moving to unvisited neighbors outside T as long as these are unique, are internal
to the extending tree. This observation makes it possible to limit the number
of branching steps needed to exhaustively analyze such paths. In the weighted
setting, however, it may be needed to build a tree with fewer leaves to allow



JGAA, 16(4) 811–846 (2012) 843

leaves of higher weight to be obtained. Their structural observation therefore
fails in the weighted setting, and new insights are needed to reduce the branching
factor.

Finally, we have shown that Weighted Max Leaf is hard to approximate:
there is no polynomial-time O(n

1
2−ε)-approximation algorithm or O(opt

1
3−ε)-

approximation algorithm for any ε > 0 unless P = NP. Hence Weighted Max
Leaf is an example of a problem for which the natural parameterization ad-
mits a linear-vertex kernel, but where the associated optimization problem does
not have a constant-factor approximation algorithm unless P = NP. To our
knowledge this is the first problem that shows this kind of behavior; we often
find that problems that have a linear-vertex kernel also admit constant-factor
approximation algorithms, with Vertex Cover being a notable example. We
expect that further study into the parameterized complexity of weighted graph
problems will shed more light on the connection between approximation algo-
rithms and kernels. The effects of different parameterizations and weights of 0
on the parameterized complexity of Weighted Max Leaf have been studied
in the author’s Master’s thesis [19].
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