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Abstract

In this paper we study connectivity augmentation problems. Given a
connected graph G with some desirable property, we want to make G
2-vertex connected (or 2-edge connected) by adding edges such that the
resulting graph keeps the property. The aim is to add as few edges as
possible. The property that we consider is planarity, both in an abstract
graph-theoretic and in a geometric setting, where vertices correspond to
points in the plane and edges to straight-line segments.

We show that it is NP-hard to find a minimum-cardinality augmenta-
tion that makes a planar graph 2-edge connected. For making a planar
graph 2-vertex connected this was known. We further show that both
problems are hard in the geometric setting, even when restricted to trees.
The problems remain hard for higher degrees of connectivity. On the other
hand we give polynomial-time algorithms for the special case of convex
geometric graphs.

We also study the following related problem. Given a planar (plane
geometric) graph G, two vertices s and t of G, and an integer c, how many
edges have to be added to G such that G is still planar (plane geometric)
and contains c edge- (or vertex-) disjoint s–t paths? For the planar case
we give a linear-time algorithm for c = 2. For the plane geometric case
we give optimal worst-case bounds for c = 2; for c = 3 we characterize
the cases that have a solution.
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1 Introduction

Augmenting a given graph to increase its connectivity is important, for example,
for making communication networks resistant against node and link failures.
The planar version of the problem, where the augmentation has to preserve
planarity, also has applications in graph drawing [12]. Many graph-drawing
algorithms guarantee nice properties (such as convex faces) for graphs with
high connectivity. To apply such an algorithm to a less highly connected graph,
one adds edges until one reaches the required level of connectivity, uses the
algorithm to produce the drawing, and finally removes edges that were added
before. With each removal of an edge, however, one might loose some of the
nice properties (such as the convexity of a face). Hence, it is natural to look
for an augmentation that uses as few edges as possible. Recall that a graph is
c-vertex connected (or simply c-connected) if the removal of any subset of c− 1
vertices does not disconnect the graph. Analogously, a graph is c-edge connected
if the removal of any subset of c − 1 edges does not disconnect the graph. It
is common to use the term biconnected for 2-vertex connected and the term
bridge-connected for 2-edge connected.

In this paper, we consider the following two problems.

Planar 2-Vertex Connectivity Augmentation (PVCA):

Given a connected planar graph G = (V,E), find a smallest set E′

of vertex pairs such that the graph G′ = (V,E ∪ E′) is planar and
biconnected.

Planar 2-Edge Connectivity Augmentation (PECA)

is defined as PVCA, but with biconnected replaced by bridge-connected.

The corresponding problems without the planarity constraints have a long
history, both for directed and undirected graphs. Eswaran and Tarjan [6]
showed that the unweighted cases can be solved in polynomial time, whereas
the weighted versions are hard. Frederickson and Ja’Ja’ [8] gave O(n2)-time
factor-2 approximations and showed that augmenting a directed acyclic graph
to be strongly connected, and augmenting a tree to be bridge- or biconnected,
is NP-complete—even if weights are restricted to the set {1, 2}. Hsu [9] gave
an O(m + n)-time sequential algorithm for (unit-weight) 2-vertex connectivity
augmentation that can be parallelized well.

Kant and Bodlaender [12] showed that PVCA is NP-complete and gave 2-
approximations for both PVCA and PECA that run in O(n log n) time. Their
1.5-approximation for PVCA turned out to be wrong [7]. Fialko and Mutzel [7]
gave a 5/3-approximation for PVCA. Kant [11] showed that PVCA and PECA
can be solved in linear time for outerplanar graphs.

Provan and Burk [17] considered related problems. Given a planar graph
G = (V,EG) and a planar biconnected (bridge-connected) graph H = (V,EH)
with EG ⊆ EH , find a smallest set E′ ⊆ EH such that G′ = (V,EG ∪ E′) is
planar and biconnected (bridge-connected). They show that both problems are
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NP-hard if G is not necessarily connected and give O(n4)-time algorithms for
the connected cases.

We also consider a geometric version of the above problems. Recall that a ge-
ometric graph is a graph where each vertex v corresponds to a point µ(v) in the
plane and where each edge uv corresponds to the straight-line segment µ(u)µ(v)
connecting u and v. We are exclusively interested in plane geometric graphs,
that is, geometric graphs whose edges neither cross each other nor contain ver-
tices other than their endpoints. Therefore, in this paper by geometric graph
we always mean a plane geometric graph. Given a geometric graph G we again
want to find a (small) set of vertex pairs such that adding the corresponding
edges to G leaves G plane and augments its connectivity.

In this context, Rappaport [18] showed that it is NP-complete to decide
whether a set of line segments can be connected to a simple polygon, that
is, geometric PVCA and PECA are NP-complete. Abellanas et al. [1] gave
worst-case bounds for geometric PVCA and PECA. For geometric PVCA,
they showed that n − 2 edges are sometimes needed and are always sufficient.
For geometric PECA, they proved that 2n/3 edges are sometimes needed and
6n/7 edges are always sufficient for graphs with n vertices. In the special case of
plane geometric trees (with n vertices) they show that n/2 edges are sometimes
needed and that 2n/3 edges are always sufficient for PECA. Tóth [19] lowered
the upper bounds to bn/2c for n-vertex trees and 2n/3 +O(1) for arbitrary n-
vertex plane geometric graphs. Al-Jubeh et al. [2] characterized plane geometric
graph that can be augmented to be 3-vertex or 3-edge connected. They showed
that if a plane geometric graph with n vertices can be augmented to a 3-edge-
connectivity, then at most 2n−2 new edges are always sufficient and sometimes
necessary. Their augmentation algorithm runs in O(n log2 n) time. They further
prove that, if the input graph is already 2-edge-connected, then n−2 new edges
are always sufficient and sometimes necessary for the augmentation to 3-edge-
connectivity. In this case, their algorithm runs in O(nα(n)) time, where α(n)
is the inverse of the Ackermann function.

Our results. First we show that PECA is NP-complete, too. This answers
an open question posed by Kant [10].

Second, we sharpen the result of Rappaport [18] by showing that geometric
PVCA and PECA are NP-complete even if restricted to trees. Not unexpect-
edly, the problems remain hard for higher degrees of connectivity: finding a
minimum-cardinality augmentation that makes a plane geometric (c−1)-vertex
connected graph c-vertex connected is also NP-hard for c = 3, . . . , 5. The gad-
gets in our construction are such that they establish hardness for both vertex
and edge connectivity. Recall that any planar graph has a vertex of degree at
most 5 and hence is at most 5-connected.

Third, we give algorithms that solve geometric PVCA and PECA in poly-
nomial time for convex geometric graphs, that is, graphs whose vertex sets
correspond to point sets in convex position.

Table 1 gives an overview about what is currently known about the com-



602 I. Rutter, A. Wolff Augmentation of Planar and Geometric Graphs

problem planar outerplanar geometric convex

PVCA NPC [12] O(n) [11] NPC [Thm. 2] O(n) [Obs. 2]
PECA NPC [Thm. 1] O(n) [11] NPC [Thm. 2] O(n) [Thm. 4]

w-PVCA open O(n) [Obs. 2]
w-PECA

see above
open

see above
O(n2) [Thm. 5]

Table 1: Complexity of various versions of PVCA and PECA. NPC stands for
NP-complete; the prefix “w” indicates the weighted versions of the problems.

plexity of the problems PVCA and PECA and their geometric variants.
Fourth, we consider a related problem, the geometric s–t path augmentation

problem. Given a plane geometric graph G, two vertices s and t of G, and an
integer c > 0, is it possible to augment G such that it contains c edge-disjoint
(c vertex-disjoint) s–t paths? We restrict ourselves to c ∈ {2, 3}. For c = 2 we
show that edge-disjoint s–t path augmentation can always be done and needs
at most n/2 edges, where n is the number of vertices in the graph G. We give
an algorithm that computes such an augmentation in linear time. The tree that
yields the above-mentioned lower-bound of Abellanas et al. [1] also shows that
our bound is tight. For c = 3 we show that edge-disjoint s–t path augmentation
is always possible, and we give an O(n2)-time algorithm that decides whether a
given graph has a vertex-disjoint s–t path augmentation.

In this paper we use the term leaf for a degree-1 vertex in any graph, not
only in a tree.

2 Complexity

In this section, we show that PECA is NP-complete. This settles an open prob-
lem posed by Kant [12]. Kant proved that the minimum biconnectivity augmen-
tation problem is NP-complete and gave 2-approximations for both problems
[12]. We also strengthen the result of Rappaport [18] and show that geomet-
ric PECA and geometric PVCA are NP-complete even in the case of trees.
We also show hardness for the corresponding problems with higher degrees of
connectivity.

2.1 Complexity of PECA

We start by settling the complexity of PECA. For our proof, recall that an
embedding of a planar graph is given by a circular ordering of the incident edges
around each vertex.

Theorem 1 PECA is NP-complete.

Proof: PECA is in NP since, given a planar graph G and an integer k > 0, we
can guess a set E′ ⊆ V ×V of at most k non-edges of G and then test efficiently
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whether G+ E′ is planar.

We prove the NP-hardness of PECA by reducing from the problem Pla-
nar3SAT, which is known to be NP-hard [15]. An instance of Planar3SAT is
a 3SAT formula ϕ whose variable–clause graph is planar. Such a graph can be
laid out (in polynomial time) such that variables correspond to pairwise disjoint
axis-parallel rectangles intersecting a horizontal line and clauses correspond to
non-crossing three-legged “combs” above or below that line [13], see Figure 1.

x1 x2 x3 x4 x6x5

c1
c2

c3

c4

c5
c6

c7

Figure 1: Layout of the variable–clause graph corresponding to a planar 3-SAT
formula with variables x1, . . . , x6 and clauses c1, . . . , c7.

Note that if a graph G has k leaves, at least k/2 edges need to be added
to bridge-connect the graph. In case k/2 edges suffice, each of these edges con-
nects two leaves and no two edges are incident to the same leaf. In other words,
the edges form a perfect matching of the leaves. We now construct a planar
graph Gϕ that can be augmented with a perfect leaf matching if and only if ϕ
is satisfiable. The graph Gϕ consists of so-called gadgets, that is, subgraphs
that represent the variables, literals, and clauses of ϕ, see Figures 2. The rough
structure of Gϕ follows the layout of the variable-clause graph depicted in Fig-
ure 1. For each gadget, we will argue that there are only a few ways to embed
and augment it with a perfect leaf matching. Note that our construction con-
nects variable gadgets corresponding to neighboring variables in the layout of
the variable–clause graph of ϕ. Hence Gϕ is always connected. Additionally,
we identify the left boundary of the leftmost variable gadget with the right
boundary of the rightmost variable gadget.

In the figure, leaves are highlighted by small black disks. All bends and
junctions of line segments represent vertices of degree greater than 1. The
(black and dark gray) solid line segments between adjacent vertices represent
the edges of Gϕ; the thick dotted line segments represent non-edges of Gϕ that
are candidates for an augmentation of Gϕ. The set of black solid edges forms
a subgraph of Gϕ that we call the frame. The dark gray solid edges form what
we call I-shapes and Y-shapes, which connect singles leaves and pairs of leaves
to the frame, respectively. In Figure 2, we marked examples of I- and Y-shapes.

Consider the graph G′ϕ that we obtain from the frame by contracting all
vertices of degree 2. We claim that G′ϕ is 3-vertex connected. This is true
since (a) the subgraph of G′ϕ induced by the variable gadgets is 3-connected
and (b) each subgraph induced by a clause gadget and the three corresponding
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Figure 2: Part of the graph Gϕ for a 3SAT formula ϕ that contains the clause
(x ∧ ¬y ∧ z). The augmentation (dotted edges) corresponds to the assignment
x = y = false and z = true.

literal gadgets is also 3-connected and is attached to the former (variable gadget)
subgraph in six vertices.

Recall a classical result of Whitney’s [20], which says that a 3-connected pla-
nar graph has a unique planar embedding. Hence, by the arguments above, G′ϕ
has a unique embedding. The same holds for the frame of Gϕ as it is a subdivi-
sion of G′ϕ. In other words, the embedding of Gϕ is fixed up to the embedding
of the I- and Y-shapes.

We say that an augmentation of a gadget or of Gϕ is tight if the new edges
form a leaf matching and the resulting graph G′ is bridge-connected. It is easy
to see that if Gϕ has a tight augmentation, then Gϕ has an embedding such
that the following two properties hold.

(P1) Each face contains an even number of leaves.

(P2) Each face that contains a Y-shape contains at least four leaves.

Note that in a tight augmentation, the two leaves of a Y-shape cannot be
matched to each other since the edge of the Y-shape that is not incident to
a leaf would be a bridge.

Our variable gadget consists of two rows of square faces where the horizontal
edge between the two leftmost faces and the horizontal edge between the two
rightmost faces is missing. Effectively, the faces of a variable gadget form a
cycle. Starting from the leftmost (rectangular) face, we call the faces odd and
even. To every interior vertical edge an I-shape is attached. Due to (P1), the
I-shapes can be matched in exactly two ways; either in the odd or in the even
faces. If the matching is in the even faces, then the corresponding variable is
true, and vice versa.



JGAA, 16(2) 599–628 (2012) 605

A literal gadget consists of a square face that lies immediately above or
below the variable gadget. A positive literal (such as the ones labeled with x in
Figure 2) is attached to an even face, a negated literal (such as the one labeled
with ¬y in Figure 2) is attached to an odd face. A literal gadget contains two
Y-shapes, one attached to each of its two horizontal edges. Due to (P2) these
Y-shapes are embedded either both inside or both outside the literal gadget.
Again due to (P2) the Y-shapes must be embedded inside the literal gadget
if no I-shapes are embedded into the adjacent face of the variable gadget. In
this case, the literal has the value false. If two I-shapes are embedded into the
adjacent face of the variable gadget, the Y-shapes of the literal gadget can (but
don’t have to) be embedded to the outside (see the literal ¬y).

Finally, each clause gadget consists of a single rectangular face that contains
a Y-shape. If Gϕ has a tight augmentation, then, due to (P2), at least two other
leaves are embedded into every clause gadget face. This means that for each
clause gadget, the Y-shapes of at least one adjacent literal gadget are embedded
to the outside. In other words, at least one of the literals that make the clause
is true. Hence, ϕ has a satisfying truth assignment.

Conversely, it is easy to see that if ϕ has a satisfying truth assignment, then
all gadgets have a tight augmentation and hence, so does Gϕ.

We use a constant number of vertices and edges for each literal and clause
gadget, thus our reduction—including the computation of the embedding of the
variable–clause graph—is polynomial. �

Note that the graph constructed in the proof is 2-edge connected if and only
if it is biconnected. Hence, our proof also shows that PVCA is NP-complete.

2.2 Geometric PVCA and Geometric PECA

Next we show that geometric PVCA and geometric PECA are NP-complete
as well. With a simple modification, it follows that the problems are even NP-
complete if the input is restricted to plane geometric trees. With another mod-
ification, we show hardness for the corresponding problems for higher degrees
of connectivity.

Note that we cannot recycle our proof of Theorem 1 to show hardness for the
geometric variants of the problems: there, we exploited that certain parts of the
graph (the I- and Y-shapes) could be embedded in different (but adjacent) faces.
Here, we are given embedded graphs; we cannot even move vertices or edges.
To show hardness, we exploit this rigidity. Our proof is again by reduction
from Planar3SAT. Although the graph that we are about to construct looks
very different from the one we constructed in the proof of Theorem 1, similar
functional units (as the I- and Y-shapes) will play a role.

Theorem 2 Let G be a connected plane geometric graph with k leaves. It is
NP-complete to decide whether it is possible to augment G with k/2 edges such
that G becomes bridge- or biconnected.
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(a) (b) (c)

Figure 3: Various variants of loopholes.

Proof: For membership in NP we argue as in the proof of Theorem 1. To
show the NP-hardness of the two problems, we again reduce from Planar3SAT
and construct a connected plane geometric graph G consisting of gadgets that
represent the variables, literals, and clauses of the given planar 3SAT formula.
Recall once more that we need to add at least k/2 edges in order to make G
bridge- or biconnected since every leaf must lie on a cycle afterwards and must
hence be incident to one of the added edges.

The basic building block of our gadgets is what we call a loophole. The
default loophole, depicted in Figure 3a, consists of an E-shaped cycle and two
attached I-shapes that are placed such that their leaves cannot see each other.
(Recall that an I-shape is a leaf with its incident edge.) In contrast, in a self-
connecting loophole (see Figure 3b), the two leaves do see each other. A skewed
loophole is a loophole that misses one of the boundaries (Figure 3c). In the
terminology of the proof of Theorem 1, a default loophole corresponds to a Y-
shape, and a self-connecting loophole corresponds to a pair of I-shapes in the
same face. Skewed loopholes are similar to default loopholes; their shape differs
to allow for certain connections without crossings.

Again, all our gadgets are surrounded by walls, that is, by biconnected sub-
graphs that ensure that the whole construction without the leaves is bicon-
nected. In the figures, walls are indicated by gray rectilinear polygons.

We are now ready to describe our variable gadget, see Figure 4. It consists of
two parallel rows of evenly spaced loopholes with the upper loopholes pointing
downwards and the lower ones pointing upwards. The lower row contains one
loophole more than the upper one and its two outermost loopholes are self-
connecting. The rows are aligned so that every loophole (except the first and
last of the lower row) lies horizontally between two opposing loopholes—which
we call its partners—on the other row. The distances between the loopholes
and the two rows are chosen such that the I-shapes of each loophole can only be
connected to the leaves of its two partners on the other row without producing a
crossing. As in the proof of Theorem 1, we connect neighboring variable gadgets
to ensure that the resulting graph is connected.

For any minimum augmentation, the two I-shapes of a loophole on the upper
row must be connected to the two I-shapes of its left or right partner on the other
row and the edges in the augmentation have slope 1 or −1. By construction
this choice has to be the same for each loophole on the upper row, otherwise
crossings would occur. On the lower row, depending on the choice either the first
or last loophole does not receive new edges and its I-shapes must be connected.
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(a) true

(b) false

Figure 4: Variable gadget without any adjacent literal gadgets; the two mini-
mum augmentations correspond to the values of the variable.

Hence, a variable has exactly two different minimum augmentations. The two
possible states are shown in Figure 4. We say that the variable is in state true
if the edges connecting loophole partners have slope 1 and false if they have
slope −1.

Next we show how the state of a variable is transmitted to the gadgets that
represent the clauses in which the variable occurs. This is the job of the literal
gadgets. Roughly speaking, for each literal gadget we remove two wall pieces
of the variable gadget, and attach a self-connecting loophole on one side and a
skewed loophole on the other side, see Figure 5.

If the literal is positive (as in the case of the upper left literal gadget in
Figure 5), a leaf in one of the two loopholes can be connected to a leaf in
the other loophole if and only if the new edges in the variable gadget all have
slope 1. If the literal is negated (as in the case of the lower right literal gadget
in Figure 5), leaves of the two loopholes can only be interconnected if the new
edges in the variable gadget all have slope −1.

In this way, the leaves of the skewed loophole can be matched to the leaves of
the corresponding self-connecting loophole if and only if the value of the variable
satisfies the corresponding literal. Otherwise, leaves of the skewed loophole have
to be connected to a vertex inside the clause gadget, which we present next.

The clause gadget consists of a square that contains a loophole and two L-
shaped wall parts that occupy the corners opposite of the loophole, see Figure 6.
On three sides, the square is connected via literal gadgets to the gadgets of
the three variables that form the clause in the given planar 3SAT formula.
Each literal gadget contains two I-shapes that are positioned such that they see
(a) each other, (b) the two I-shapes inside the square, and (c) the two I-shapes
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true

false

(a) state true

true

false

(b) state false

Figure 5: Variable gadget (middle gray) with two adjacent literal gadgets (light
gray). The upper left literal gadget transmits the logical value of the variable,
whereas the lower right literal gadget transmits the negation of that value.
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(a) state false (b) state true

Figure 6: Clause gadget (middle gray) with the three adjacent literal gadgets
(light gray). If all literals are false, the leaves in the clause gadget (or some other
leaves) must be matched to non-leaves, or a leaf receives more than one new
edge (a). If at least one literal is true, there is an augmentation that matches
all leaves to other leaves. The right figure (b) depicts the situation where the
literals corresponding to the left and the right gadget are true and the literal
corresponding to the middle gadget is false.

of the skewed loophole where the literal gadget is attached to a variable. It is
not hard to see that if any of the skewed loopholes is matched to leaves in the
variable gadget, then the two I-shapes in the literal gadget are free to connect to
the two I-shapes in the square. Only if all three skewed loopholes are matched
to I-shapes in their literal gadget, then the two I-shapes in the center square
require an additional edge.

As in the proof of Theorem 1 we use a constant number of vertices and edges
for each literal and clause gadget, thus our reduction—including the computa-
tion of the embedding of the variable–clause graph—is polynomial. �

By a simple trick we can slightly strengthen the result of Theorem 2.

Corollary 1 It is NP-complete to decide whether a plane geometric tree with k
leaves can be augmented to be bridge- or biconnected with k/2 edges.

Proof: The proof is by reduction from the previous case. Let G be a connected
plane geometric graph with kG leaves. We now show how to remove cycles
from G. Since the construction leaves G connected, the resulting graph is a
tree.

To reduce the number of cycles we replace an arbitrary edge that lies on a
cycle by the construction shown in Figure 7. Note that we can make the spiral in
the center of the construction so small that is does not prevent any connections
in the remainder of the graph. We iterate this construction until there are no
cycles left. The resulting graph is a tree T . Let kT be the number of leaves
of T . It is clear that for each of the new leaves (in the spiral centers) there is
only one way to connect to another leaf, namely to the one that restores the
cycle we removed before. Hence, T can be augmented with kT /2 edges if and
only if G can be augmented with kG/2 edges.
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. . . . . .
u v

Figure 7: Construction that removes a cycle, locally leaves only one possibility
to augment, and does not interfere with the remainder of the graph with respect
to augmentation.

The reduction can be performed in polynomial time since we introduce at
most one spiral per edge of G, each consisting of a constant number of edges.
The length of the shortest new edge of T is roughly proportional to the smallest
distance among the vertices of G. �

We now generalize the proof of Theorem 2 to show that for any 2 ≤ c ≤ 5,
it is NP-hard to augment a plane geometric graph to be c-connected by adding
a given number of edges. Note that any planar graph has a vertex of degree at
most 5, so planar graphs are at most 5-connected. To show that our construction
has the desired properties, let us make some simple observations.

Observation 1 Let G be a graph with vertices u and v. Then the following
properties hold:

(i) If G− u is c-connected and u has degree at least c, then G is c-connected
as well.

(ii) If G−{u, v} is c-connected and vertices u and v have degree at least c− 1
but no common neighbor, then G+ uv is c-connected.

Proof: For showing property (i), suppose that S is a separator of G with
|S| < k. Since S is no separator in G− v, S splits off only v from G. Hence, S
contains all neighbors of v, and thus |S| ≥ k. Contradiction.

Similarly, for property (ii), suppose that S is a separator of G + uv with
|S| < k. Since S is not a separator of G, S splits off u or v from G+ uv. This,
however, is not possible since both u and v have degree at least c in G+uv and
since their neighborhoods are disjoint. �

To generalize the proof of Theorem 2 to higher degrees of connectivity, we
make the graph Gϕ (c− 1)-connected in two steps.

First, we temporarily remove all I-shapes from Gϕ, subdivide the walls of the
loopholes as in Figure 8 into gray rectangles, and replace each gray rectangle
in Figures 5 and 6 by a copy of the graph depicted in Figure 10a. We stick
two building blocks together by identifying the five vertices on the edge of one
block to the five corresponding vertices on the edge of the other block. Call the
resulting graph G1

ϕ.
Second, we treat the former I-shapes of Gϕ. We connect each leaf of Gϕ by

(c− 2) additional edges to the boundary of G1
ϕ such that no two leaves have a

common neighbor, see Figure 9. We call the resulting graph G2
ϕ. We now show

that G2
ϕ does the job.
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v
(a)

v
(b)

Figure 8: Subdivision of a loop-
hole into rectangular blocks.

Figure 9: Adding edges to leaves in the
second step of the construction of Gϕ

(here with c = 5).

(a) (b) (c)

Figure 10: A building block (a), a 5-connected sub-block with 33 vertices (b),
proof that a building block is 5-vertex connected (c).

Theorem 3 It is NP-hard to decide the following question: given integers 2 ≤
c ≤ 5 and k ≥ 1 and a (c − 1)-connected plane geometric graph G, can G be
augmented to being c-connected by adding at most k edges?

Proof: We again reduce from Planar3SAT, along the lines of the proof of
Theorem 2. We first show that G2

ϕ is (c− 1)-connected.
In order to see this, we claim that G1

ϕ is 5-connected. The walls of G1
ϕ are

made from copies of our basic building blocks. Such a block is 5-connected
for two reasons; (a) it consists of four copies of the smaller 5-connected graph,
a sub-block, depicted in Figure 10b, whose 5-connectivity we have verified by
a computer program and (b) two neighboring sub-blocks lie in the same 5-
connected component. To see (b), consider the five portals that we define on
the boundary of each sub-block, see the black squares in Figure 10c. Each vertex
in a sub-block has five vertex-disjoint paths to its portals, which are connected
to the corresponding portals of the neighboring sub-block via (possibly trivial)
pairwise vertex-disjoint paths. Observations (a) and (b) plus symmetry show
our claim.

Given that G1
ϕ is 5-connected and c ≤ 5, property (i) of Observation 1

yields that G2
ϕ is (c− 1)-connected. Note that the leaves of Gϕ and the degree-

(c−1) vertices of G2
ϕ are in one-to-one correspondence. Let K be their number.

Clearly, in order to make G2
ϕ c-connected, we need at least K/2 new edges.

We claim that the graph G2
ϕ that we have constructed above can be made c-
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connected by adding K/2 edges if and only if Gϕ can be made biconnected by
adding K/2 edges.

If G2
ϕ can be made c-connected by adding K/2 edges, then these edges form

a matching of the vertices of degree c− 1. This matching can also be added (in
a plane fashion) to Gϕ.

Now we turn to the other direction. If Gϕ can be made biconnected by
adding K/2 edges, we add the corresponding edges to G2

ϕ. We have shown
above that G1

ϕ is 5- and thus c-connected. Now property (ii) of Observation 1
yields that each of the remaining vertices lies in the same c-connected component
as G1

ϕ. This finishes the proof of our claim.
Clearly, our reduction is polynomial. �

Using the same graph G2
ϕ in the reduction, we can prove the statement for

edge connectivity, too.

Corollary 2 Given integers 2 ≤ c ≤ 5 and k ≥ 1 and a (c− 1)-edge connected
plane geometric graph G, it is NP-hard to decide whether G can be augmented
to being c-edge connected by adding at most k edges.

3 Convex Geometric Graphs

In this section we show that geometric PVCA and geometric PECA can be
solved in polynomial time for connected convex geometric graphs, that is, for
graphs whose vertices are in convex position. We focus on augmenting a given
connected convex geometric graph to bridge- and biconnectivity. Note that
every convex geometric graph is outerplanar and hence contains a vertex of
degree at most 2, which prevents higher connectivity.

We first consider the very simple problem of biconnecting a convex geometric
graph, see Section 3.1. Then we give an algorithm that computes an edge set
of minimum cardinality that bridge-connects a convex geometric graph, see
Section 3.2. Finally, in Section 3.3 we consider a weighted version of bridge-
connectivity augmentation. We give an algorithm that computes a minimum-
weight augmentation in a connected n-vertex convex geometric graph in O(n2)
time.

We assume that for a geometric graph the edges incident to a vertex are
ordered clockwise. If this information is not provided, we can easily compute it
in O(n log n) time.

3.1 Biconnecting Convex Geometric Graphs

Consider an arbitrary connected convex geometric graph G. Suppose that there
are two consecutive vertices u and v on the convex hull that are not connected
by an edge. Since G is connected, adding the edge uv creates a new face F . It
is not hard to see that every vertex of F − {u, v} disconnects G. Hence, in a
biconnected convex graph all edges of the convex hull must be present.
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On the other hand if all edges of the convex hull are present, then the graph
is biconnected. Hence, it suffices to add all edges of the convex hull that are
not already in G to make G biconnected. This is also the minimum number of
edges that must be added. As the convex hull of the point set can be computed
in linear time if G is connected [16], convex geometric graphs can be augmented
to biconnectivity in linear time. We summarize this brief discussion.

Observation 2 Let S be a set of n points in the plane, and let G = (S,E)
be a connected convex geometric graph. There is an efficient algorithm that
computes a minimum-weight set E′ of edges such that G+E′ is biconnected. If
the embedding of G is given, the algorithm runs in linear time and uses linear
space.

3.2 Bridge-Connecting Convex Geometric Graphs

In this section we consider the problem of bridge-connecting a convex geometric
graph G = (V,E). We start by considering two basic graphs that are especially
easy to bridge-connect, the cycle and the near-cycle shown in Figure 11. While
the cycle is already bridge-connected, the near-cycle is not. It can, however, be
bridge-connected by adding the single missing edge to form a cycle.

Figure 11: A cycle (left) and a near-cycle (right).

The basic idea is to decompose an arbitrary convex geometric graph into
cycles and near-cycles and to use this decomposition to compute in a greedy
fashion an edge set of minimum cardinality that bridge-connects the graph.

We differentiate between two types of edges. If an edge connects two con-
secutive vertices of the convex hull, we call it an outer edge, otherwise an inner
edge. Note that if G is a connected convex geometric graph that does not
contain an inner edge, then G is a cycle or a near-cycle.

Otherwise, an inner edge e = uv can be used to split G into two subgraphs
that can be augmented almost independently. The line defined by e splits the
vertex set of G into two convex point sets P1 and P2. We then define, for i = 1, 2,
the graph Gi as the subgraph of G induced by Pi∪{u, v}. The interplay between
augmentations of these two graphs is very limited since adding any edge between
two vertices that are distinct from u and v and that do not belong to the same
subgraph would introduce a crossing with e and is hence forbidden. On the
other hand, the two augmentations are not completely independent as it suffices
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for e to be in one cycle. Hence, we store, for each edge e of G, a flag indicating
whether e is already part of a cycle in the current partial augmentation. Initially
all these flags are set to false.

Splitting G recursively along all inner edges defines a tree T whose nodes
correspond to subgraphs of G. Two nodes of T are adjacent if and only if the
corresponding subgraphs share an edge of G. The leaves of this tree correspond
to components that are cycles or near-cycles. Starting from E′ = ∅, we compute
a minimum augmentation E′ ofG by iteratively augmenting a component C that
corresponds to a leaf of T . We do this as follows.

Let e = uv be the edge that is shared by C and its parent in T , and let
C ′ = C \ {u, v}. We distinguish three different types of components. If C is a
cycle, we mark all edges of C and remove C ′ from G. If C is a near-cycle that
contains at least one edge except e that is not yet marked, we add to E′ the
unique edge that completes the cycle, mark e as lying on a cycle and remove C ′

from G. Finally, if C is a near-cycle and each edge except possibly e has been
marked, we do not add any edge to E′ and remove all vertices of C ′ from G.
See Figure 12 for an example. Note that component 5 does not require an edge
although it is not a cycle.

1

2 3

4

5
6

Figure 12: A convex geometric graph (left) and its decomposition along interior
edges (right). The dashed edges form a bridge-connectivity augmentation of
minimal size, the numbers indicate the processing order of the components.

Once we have processed the last component of G, the set E′ is an augmenta-
tion of G since we only remove edges from G that are marked as lying on cycles
in G+ E′. The minimality of E′ follows from the fact that in each component
we need to add at most one edge and we only add an edge to a component if it
is strictly required.

The algorithm can be implemented to run in linear time. The initial compu-
tation of T takes linear time, maintaining a list of leaves of the decomposition
tree can be done in constant time per step and processing a component C takes
time linear in the size of C.

We summarize our result.

Theorem 4 Let S be a set of n points in the plane, and let G = (S,E) be a
connected convex geometric graph. There is an efficient algorithm that computes
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a minimum-cardinality set E′ of edges such that G+E′ is bridge-connected. If
the convex hull of S and the corresponding planar embedding of G is given, the
algorithm runs in linear time and uses linear space.

3.3 Minimum-Weight Augmentation

We now generalize the algorithm from the previous section to the case where
every potentially new edge e is associated with a positive cost c(e). We seek
a minimum-cost augmentation of a given plane graph G such that G becomes
bridge-connected (while remaining plane). For a set of edges E′ we define the
cost of E′ as c(E′) =

∑
e∈E′ c(e). Given a connected convex geometric graph

with n vertices, we can solve the problem in O(n2) time.

f
b

d

a

x

y

e edge a b d f
cost 2 4 5 10

Figure 13: Example of a minimum-weight augmentation.

The basic idea is again to use a decomposition into (near-)cycles. The main
difference from the previous problem is that in a near-cycle it is not always the
best solution to add the unique edge that completes the cycle. Consider the
graph given by the solid edges in Figure 13. The costs of the vertex pairs that
are connected by dashed line segments are given in the table next to the drawing
or will be specified later; all other non-adjacent vertex pairs have a very high
cost. We first focus on the component to the right of and including the bold
split edge e. Adding the unique edge f that completes the cycle would incur
a cost of 10, whereas adding the edge set E1 = {b, d} would incur a cost of
only 9. Adding the edge set E2 = {a, d} would be even cheaper, namely 7. This
solution, however, has the disadvantage that e does not lie on a cycle in the
component to the right of e; hence e is forced to lie on a cycle in the component
to the left of e. Which option yields the better solution globally depends on the
costs of edges x and y. If c(y)− c(x) is greater than c(E1)− c(E2), the optimal
global solution is E1 ∪ {x}, otherwise E2 ∪ {y} is optimal. Hence, we cannot
make the decision between E1 and E2 in advance. Instead, we store both costs
for the component to the right of e, the cost w+(e) of a cheapest augmentation
that puts e on a cycle and the cost w−(e) of a cheapest augmentation that does
not necessarily put e on a cycle. Note that w+(s) ≥ w−(s) for any split edge s.

Initially, we set w+(e) = ∞ and w−(e) = 0 for each outer edge e of G. We
then compute the decomposition tree T ofG and process its components starting
from the leaves as in the algorithm described in the previous section. Other
than there, we need to use dynamic programming to find a global minimum-
cost solution. Let C be a component and let e = uv be the edge that is shared
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by C and its parent in T . We assume that, for all edges e′ of C that are distinct
from e, we already have computed w+(e′) and w−(e′). For any set E′ of vertex
pairs of C, we denote the set of bridges of C + E′ by brC(E′), and we define
the cost of E′ with respect to e as

coste(E
′) =

∑

e′∈brC(E′)\{e}
(w+(e′)− w−(e′)) +

∑

e′∈E′

c(e′).

The first term of the cost function describes the increase of augmentation cost
stemming from the fact that e is not on a cycle in C + E′ and hence must be
part of a cycle in a previously processed component. The second term is the
cost for the edges in E′. We set

w−(e) = min
E′

coste(E
′)

and

w+(e) = min
E′, e/∈brC(E′)

coste(E
′).

We now show how to compute these values efficiently. If C is a cycle, then
w−(e) = w+(e) = cost(∅) = 0. If C is a near-cycle, we can reduce the compu-
tation of w−(e) and w+(e) to a shortest-path problem as follows.

We say that an augmentation E′ of C is (inclusion) minimal if, for any
proper subset E′′ ⊂ E′, we have that brC(E′) is a proper subset of brC(E′′),
that is, any smaller set covers fewer edges. The following lemma shows that any
minimal plane augmentation of C has a certain path structure.

Lemma 1 Let E′ be a minimal plane augmentation of C, and let u1, . . . , uk be
the vertices of C as they occur along C. Then P = E′ ∪ brC(E′) forms a path
from u1 to uk. The subset of vertices that is visited by P occur along P in the
same order as in C.

Proof: We first show that all vertices of P have degree at most 2, except for u1
and uk, which have degree at most 1. Suppose that a vertex ui of P is incident
to two distinct vertices uj , uj′ with i < j < j′. Then edge uiuj is not a bridge
since vertices ui, uj , . . . , uj′ form a cycle containing this edge. Therefore, uiuj
lies in E′. As j′ > j, we have that brC(E′ \ {uiuj}) = brC(E′). Analogously,
ui can have at most one neighbor uj with j < i in P .

Next, we show that P connects u1 and uk. Note that u1 is not a singleton,
as it either is incident to an edge of E′ or u1u2 lies in brC(E′). Let ui be the
vertex with the largest index that belongs to the connected component of u1
in P . Note that i > 1 by the previous observation. Now suppose that i < k.
The choice of ui implies that ui is not adjacent to any vertex uj with j > i in P .
In particular, the edge uiui+1 does not lie in brC(E′), which, in turn, implies
the existence of an edge ujuj′ with j < i < j′, see Figure 14a. Since uj′ is
not in the same connected component as u1 (this would contradict the choice of
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Figure 14: Illustration for the proof of Lemma 1.

ui), we have that uj , too, belongs to another connected component. Hence, the
path from u1 to ui must contain an edge urur′ with r < j and j < r′ ≤ i < j′.
Such an edge would, however, cross the edge ujuj′ , contradicting the planarity
of E′. Therefore, we have that i = k and that P connects u1 and uk as claimed.

It remains to show that P is connected. Suppose that P contains an edge uiui′

that is not connected to u1. Then, due to the planarity of E′, the path from u1
to uk in P contains an edge ujuj′ with j < i < i′ < j′. But then uiui′ 6∈ brC(E′)
and brC(E′) = brC(E′ \ {uiui′}), see Figure 14b. This contradicts uiui′ lying
in P .

The planarity of E′ implies that P contains its vertices in the same order as
along C. �

Lemma 1 shows that we can compute w+(e) by finding a shortest u1–uk
path in the directed, weighted graph ~C = (VC , ~EC ; `) with vertex set VC =

{u1, . . . , uk}, edge set ~EC = {uiuj | 1 ≤ i < j ≤ k, uiuj 6= e}, and weight

`(uiuj) =

{
w+(uiuj)− w−(uiuj), j = i+ 1
c(uiuj), j > i+ 1

for each edge uiuj in ~EC . Analogously, we can compute w−(e) by adding e to
~C with a weight of 0. Since ~C is a directed acyclic graph, a shortest path can
be computed in time O(|~C|) = O(|C|2) [4]. This yields an overall running time
of O(n2). We have proved the following theorem.

Theorem 5 Let G be a connected convex geometric graph with n vertices. Then
we can find, in O(n2) time, a minimum-weight set E′ of vertex pairs such that
G+ E′ is bridge-connected.

4 Path Augmentation

In this section we consider the following two problems.

Planar k-path augmentation (k-PathAug):

Given a planar graph G, two vertices s and t of G, and an integer
k > 1, find a smallest set E′ of vertex pairs sucht that G + E′ is
planar and contains k edge-disjoint s–t paths.
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Plane geometric k-path augmentation (geometric k-PathAug) is defined
as above with “planar” replaced by “plane geometric”. Note that for k = 2 the
geometric case (geometric 2-PathAug) is a relaxed version of PECA. Both
problems have a variant where the aim is to find vertex-disjoint paths. We refer
to this as the vertex variant of (geometric) k-PathAug.

In the following we give a polynomial-time algorithm for planar 2-PathAug.
We then turn to the geometric version of the problem. We show that in the
worst case n/2 edges are needed for geometric 2-PathAug. For k > 2 geometric
k-PathAug does not always have a solution. We give necessary and sufficient
conditions for geometric 3-PathAug. We do not consider the non-geometric
variant 3-PathAug, because every planar graph with at least four vertices can
be triangulated, and hence, can be augmented to contain three vertex-disjoint
paths between any two vertices [14].

4.1 Planar 2-Path Augmentation

Theorem 6 2-PathAug and its vertex variant can be solved in linear time.

Proof: We only consider the edge variant; the vertex variant can be solved
analogously. Let G = (V,E) be a planar graph, let s and t be two vertices of G,
and let C1, . . . , Cr be the 2-edge connected components of G. We first consider
a special case of the problem. We assume that the 2-edge connected components
of G form a path C1, . . . , Cr and that s ∈ C1 and t ∈ Cr.

For each component Cj with 2 ≤ j ≤ r − 1 consider the two vertices uj
and vj of Cj that are incident to bridges. We say that Cj is a pearl, if Cj +ujvj
is planar. This is the case if and only if Cj has an embedding such that uj and
vj lie on the outer face. If Cj is not a pearl, we say that Cj is a ring.

Let i < k and let wi and wk be vertices of Ci and Ck, respectively, such that
G+wiwk is planar. Now assume there is a component Cj with i < j < k that is
a ring. Then the graph that results from contracting C1 ∪ · · · ∪Cj−1 to uj and
Cj+1 ∪ · · · ∪ Cr to vj is Cj + ujvj . Contractions do not violate planarity, thus
Cj + ujvj is planar. This, however, violates the assumption that Cj is a ring.
Hence no edge in a planar augmentation of G can “bypass” a ring. In other
words, an optimal augmentation contains an edge between C1 and the first ring,
between the first and the second ring, etc., and between the last ring and Cr. If
there are no rings, the optimal augmentation consists of an edge connecting C1

and Cr, for example, between the corresponding cut vertices.
Now we consider the general case, that is, the 2-edge connected components

form a tree T . In T , the components that contain s and t are connected by
a path. This is the special case we have treated above. Obviously, any planar
augmentation of the subgraph induced by the components on the path is also a
planar augmentation of G. Since no ring on the path can be bypassed, there is
no planar augmentation of G that uses fewer edges.

The tree of the 2-edge connected components can be computed in linear
time. Finding the ring components on the path between s and t also takes
linear time. Hence the whole algorithm runs in linear time. �
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s t

Figure 15: Zig-zag path of n vertices that needs n/2 edges (dashed) to aug-
ment [1].

4.2 Geometric 2-Path Augmentation

Although geometric 2-PathAug appears to be a simplification of geometric
PECA, it is not obvious how to take advantage of this. Therefore we consider
the worst-case problem: how many edges are needed for geometric 2-PathAug
in the worst case. For a zig-zag path with end vertices s and t whose vertices are
in convex position n/2 edges are needed in order to establish two edge-disjoint
s–t paths, see Figure 15. Abellanas et al. [1] came up with this example to show
that, for trees, geometric PECA sometimes requires n/2 edges. They conjec-
tured that n/2 edges always suffice to augment a tree to bridge-connectivity.
Recently, Tóth [19] confirmed this. This shows that n/2 edges always suffice for
geometric 2-PathAug in trees.

We show that any plane geometric graph has, for any two vertices s and t,
an s–t 2-path augmentation with at most n/2 edges. We also give a simple
algorithm that finds such an augmentation in linear time. We use the fact that
every geometric graph G = (S,E) has a geometric triangulation, that is, there
is a graph T = (S,E′) with E ⊆ E′ such that all faces of T except perhaps the
outer face are triangles. This follows from the fact that every simple polygon
has a triangulation [5].

Lemma 2 Let S be a finite set of points in the plane, and let s, t ∈ S. Let
G = (S,E) and G′ = (S,E′) be connected plane geometric graphs such that
E ⊆ E′. If G′ contains a path of length L between s and t, then there exists an
s–t 2-path augmentation of G with at most L edges.

Proof: We can assume that G′ is a triangulation of S since this does not
increase the length of a shortest s–t path in G′.

Let π be a path of length L between s and t in G′. We denote its vertices by
s = v0, . . . , vL = t. We use induction on L to show that we can augment G with
L edges. We start with the case L = 1, that is, G′ contains the edge e = {s, t}.
If s and t lie in the same 2-edge connected component of G, G already contains
two edge-disjoint s–t paths and we’re done. Otherwise we consider two cases.

If e is not in G, then s and t lie in the same 2-edge connected component of
G+ e since G is connected. If e is already in G then e is a bridge (otherwise s
and t would be in the same 2-edge connected component). Removing e from G
yields two connected subgraphs G1 and G2 of G. Since G′ is a triangulation of
S that contains all edges of G, there exists an edge e′ = vw in G′ with v ∈ G1
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and w ∈ G2 such that e′ is different from e and G + e′ is plane. In G + e′ the
vertices s and t lie in the same 2-edge connected components.

We now consider L > 1. Given a path π of length L we first apply the
induction hypothesis to the path π′ = v0, . . . , vL−1. Then we use the same
argument as above to show that it suffices to add at most one edge to G to
make sure that vL−1 and vL are in the same 2-edge connected component. The
augmented graph is plane since it is a subgraph of G′. �

For the main result of this section, it remains to show that triangulations
have small diameter. We need the following notation. Given a triangulation
T and vertices s and t in T , we denote by d(s, t) the length of a shortest s–t
path in T . For a vertex v of T we denote by N i(v) = {u ∈ T | d(v, u) ≤ i}
the set of vertices of T at distance at most i from v and by ∂N i(v) = {u ∈
T | d(v, u) = i} the set of all vertices at distance exactly i from v. Note that
N i+1(v) = N i(v) ∪ ∂N i+1(v) for any vertex v in T and any integer i ≥ 0.

Lemma 3 Let S be a set of n points in the plane, and let T = (S,E) be a
triangulation of S. Then T contains a path of length at most n/2 between any
pair of points in S.

Proof: We first show that for any vertex v of T and for any integer i ≥ 0 it
holds that |N i(v)| ≥ 2i+ 1 or N i(v) = S. For i = 0 the statement clearly holds.
For i > 0, we show that either |∂N i(v)| ≥ 2 or N i(v) = S. Clearly, ∂N i(v) = ∅
implies N i(v) = S since T is connected. If ∂N i(v) = {x} and N i(v) 6= S, then
there exists a vertex y in S \ N i(v). In this case, however, the fact that every
path from s to y must contain x implies that x is a cut vertex, which contradicts
the fact that T is biconnected. This proves our lower bound on |N i(v)|.

Now consider any pair of vertices s and t in S and set k = bn/2c. By the
previous inequality we have that Nk(s) ≥ 2 bn/2c+1 ≥ n and hence Nk(s) = S.
Hence, t lies in Nk(s) and, by the definition of Nk(s), there exists a path of
length at most n/2 from s to t. �

Together, Lemmas 2 and 3 yield the following theorem.

Theorem 7 Let S be a set of n points in the plane, let G = (S,E) be a plane
geometric graph, and let s and t be two vertices of G. Then there is an s–t
2-path augmentation of G that uses at most n/2 edges.

We now improve this bound for the case that the convex hull CH(S) of S
does not contain too many points. The basic idea is to simultaneously grow
neighborhoods around s and t; once N i(s) and N i(t) both contain vertices of
CH(S) for some i ≥ 0, there is a relatively short path connecting them.

Lemma 4 Given a set S of n points in the plane, a geometric triangulation of
S has diameter at most 2(n+ 3)/5 + h/2, where h = |CH(S)|.

Proof: Let T be a triangulation of S and let v be a vertex of T . We claim the
following. If N i(v) ∩ CH(S) = ∅ then |N i(v)| ≥ 3i+ 1.
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We show this by induction on i. Clearly, the claim holds for i = 0. Now let
i ≥ 1. We apply the induction hypothesis to N i−1(v) and show that |∂N i(v)| ≥
3 if N i(v)∩CH(S) = ∅. Assume, for the sake of contradiction, that |∂N i(v)| ≤ 2.
That means that all paths going from N i−1(v) to S \N i(v) must pass through
one of the two vertices in ∂N i(v). Hence, ∂N i(v) is a separator of cardinality 2.
Let T ′ be the plane graph that results from T by triangulating the outer face
of T (using non-straight-line edges). Since all edges in T ′ − T connect points
on the convex hull of S, which is disjoint from N i(v), it holds that ∂N i(v) is a
separator of cardinality 2 of T ′. This is a contradiction to the fact that every
fully triangulated graph is 3-connected. Hence, our assumption is wrong, and
the case |∂N i(v)| ≤ 2 is ruled out. In other words, |∂N i(v)| ≥ 3 for all i ≥ 1
with N i(v) ∩ CH(S) = ∅. This proves our claim.

Now let

k = min{i | N i(s)∩N i(t) 6= ∅ or both N i(s)∩CH(S) 6= ∅ and N i(t)∩CH(S) 6= ∅}.

be the first iteration where the iterated neighborhoods either meet or both have
reached the convex hull of S.

Clearly there exists a path of length 2k + h/2 between s and t. The neigh-
borhoods give a path from s to the convex hull and from t to the convex hull
and any two points on the convex hull are connect by a path of length at most
h/2.

We now bound k in a similar fashion as before. We have |Nk−1(s) ∪
Nk−1(t)| ≥ 5(k− 1) + 2 = 5k− 3 since the neighborhoods of s and t grow by at
least two vertices as shown in the proof of Lemma 3 and one of them grows by at
least three vertices by the claim above. On the other hand |Nk−1(s)∪Nk−1(t)| ≤
n. From this we get k ≤ (n+ 3)/5.

Hence there exists a path from s to t with length at most 2k + h/2 ≤
2(n+ 3)/5 + h/2. �

Note that the bound in Lemma 4 is strictly better than the bound in
Lemma 3 if h < (n− 12)/5.

We now turn to the corresponding algorithmic problem. In the remainder
of this subsection we show how to compute a solution to geometric 2-PathAug
of size at most n/2 in linear time. Given a graph G, our algorithm consists of
the following three steps.

1. Find any triangulation T of G.

2. Compute a shortest path π from s to t in T .

3. Construct an s–t 2-augmentation from π (whose existence follows from
Lemma 2).

Concerning step 1, note that the boundary of the outer face of a plane
geometric graph is, in general, not a simple polygon. It is however weakly
simple in the sense that segments that have a common point in the interior
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(a) A geometric graphG (solid gray, solid black
and dashed black edges) with an s–t path π′

(black; bridges are dashed). The s–t path π
(dotted gray straight line) belongs to the tri-
angulation T , which is not shown.
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(b) The same graph G (gray edges) and
the augmentation (black edges) computed
by our algorithm.

Figure 16: Example for the linear-time 2-path-augmentation algorithm.

are actually the same segment. Algorithmically, weakly simple polygons can be
handled just like simple polygons [1].

Therefore, we can apply Melkman’s linear-time algorithm [16] for computing
the convex hull of a polygonal chain to compute the convex hull of our geometric
graph. We then add edges between neighboring points on the convex hull. Now
all interior faces of our graph are weakly simple polygons and can hence be
triangulated in linear time [3]. Let T be the resulting triangulation of G.

Concerning step 2, a shortest s–t path π in T can be found in linear time
using breadth-first search.

Finally, concerning step 3, we want to show how to find an augmentation of G
in linear time. We first compute a data structure that allows us to measure how
we proceed along the path π by adding edges. Let π′ be a simple s–t path in G.
We remove all bridges of G that are used by π′. We call the resulting graph G′.
We number the connected components of G′ in the order in which they occur
along π′ and label the vertices of each component accordingly, starting with 1.
Note that, by construction, all vertices on π′ that have the same label lie in the
same 2-edge connected component (with respect to the graph G). We denote
the label of a vertex u by `(u). See Figure 16a for an example.

As in the proof of Lemma 2, we go through the edges of π in order, starting
from the edge leaving s. We consider the edges of π directed towards t. Ini-
tially, we set j = 1. Throughout the algorithm we maintain the following two
invariants.

(I1) It holds that j ≥ `(v) for each vertex v of π whose incoming edge has
already been processed.

(I2) All vertices of π′ with label up to j lie in the same 2-edge connected com-
ponent of G.

Both invariants clearly hold for j = 1. Together, the invariants yield the
correctness of the algorithm since π ends in t and hence, according to invari-



JGAA, 16(2) 599–628 (2012) 623

ant (I1), we have j = `(t) after the last step and thus, by invariant (I2), s and t
belong to the same 2-edge connected component.

We now describe the algorithm and show that it preserves the two invariants.
We distinguish two main cases based on the values of j and of the label `(v) of
the endpoint of the current edge e = uv of π.

If `(v) ≤ j (as for e = v5v6 in Fig. 16a), we simply advance to the next edge
of π. Clearly, this preserves both invariants.

If `(v) > j, we add a suitable edge to G as follows. If e is not in G (as
for e = v3v4 in Fig. 16a), we simply add e to G and set j to `(v). Otherwise
(as for e = v4v5 in Fig. 16a), e is a bridge of G lying on the path π′ and we
have `(v) = `(u) + 1. In the triangulation T , the edge e = uv bounds at least
one triangle. Let uwv be such a triangle. Hence, there are two possibilities for
adding an edge to G; either uw or wv. If `(w) > `(u) (as for u = v4 and v = v5
in Fig. 16a), we add the edge uw (edge v4w in Fig. 16a) and set j to `(w) (to 5
in Fig. 16a). Otherwise, we add the edge wv and set j to `(v).

Clearly, the number of edges we add is bounded by the length of the path π.
See Fig. 16b for the edges that are added in the case of the graph from Fig. 16a.

We now argue that the algorithm preserves our invariants. By our choice
of j, it is clear that invariant (I1) holds. To prove (I2), let a and b be the two
endpoints of the newly added edge. Let a′ be a vertex of π′ closest to a in G′

(in terms of graph distance) and let πa be a shortest a–a′ path. Let b′ and πb
be defined analogously. Since πa and πb lie in G′, `(a) = `(a′) and `(b) = `(b′).
As `(a) 6= `(b), πa and πb are disjoint; they “live” in different 2-edge-connected
components of G. The newly added edge ab together with πa and πb and the
subpath of π′ that connects a′ and b′ form a simple cycle. This shows that, after
adding the new edge ab, vertices a′ and b′ belong to the same 2-edge connected
component of G. By invariant (I2) we have that a′ lies in the same 2-edge
connected component as s. Now we use transitivity and the fact that, after the
addition of ab, variable j is set to `(b) = `(b′). This yields that indeed, after
adding ab, all vertices of π′ with label at most j lie in the same 2-edge connected
component. In summary, we have proved the following theorem.

Theorem 8 Let S be a set of n points in the plane, let G = (S,E) be a plane
geometric graph, and let s and t be vertices of G. Then there exists a set E′

of at most n/2 vertex pairs such that G + E′ is a plane geometric graph that
contains two edge-disjoint s–t paths. Such a set of vertex pairs can be computed
in O(n) time.

4.3 Geometric 3-Path Augmentation

In this section we consider the problem of augmenting geometric graphs to
contain more than two disjoint s–t paths while staying plane. The planar case
obviously always has a solution, because every planar graph can be triangulated
and a planar triangulation is always 3-connected. Hence we focus on the plane
geometric cases in this section. In the following we give necessary and sufficient
conditions for when plane geometric s–t 3-augmentation has a solution.
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We first consider the vertex version of the problem, that is, given a geometric
graph G = (S,E) and two vertices s and t of G, add edges to G such that G
contains three vertex-disjoint s–t paths.

4.3.1 The Vertex-Disjoint Case

Let T = (S,E) be any plane geometric triangulation, and let s and t be any
two vertices of T . An edge between two vertices of the convex hull that does
not belong to the convex hull itself is called a chord. A chord e = {u, v} is s–t
separating if s and t lie in different connected components of T \ {u, v}.

Obviously there exist three vertex-disjoint s–t paths in T if and only if T
does not contain an s–t separating chord. Hence we can rephrase our original
question in the following form: Let G be any plane geometric graph. Can we
triangulate G such that the resulting triangulation TG contains no s–t separating
chord? The following theorem states that this question can be answered in the
affirmative.

Theorem 9 Let S be a finite set of points in the plane, let G = (S,E) be a
plane geometric graph, and let s and t be any two vertices of G. If G contains
no s–t separating chord, we can compute a triangulation TG that contains three
vertex-disjoint s–t paths.

Proof: In the first step we add all edges of the convex hull toG and compute any
triangulation of the interior. We can give an total ordering to the s–t separating
chords of the triangulation by their facial distance from s. Let uv be the chord
that is closest to s. Let uvw be the triangle that is on the same side as s with
respect to uv and let uvw′ be the other triangle bounded by uv. As u and v lie
on the convex hull, we can flip the chord uv, that is, replace uv by the edge ww′

without destroying planarity. If the new edge ww′ was an s–t separating chord,
then one of the edges uw and vw would have to be an s–t separating chord as
well, contradicting the choice of uv, see Figure 17. Hence we have removed an
s–t separating chord without introducing a new one. Inductively we obtain the
desired triangulation TG. �

s t

u

v

w w′

Figure 17: Removing an s–t separating chord uv by flipping.

4.3.2 The Edge-Disjoint Case

In this section we consider the problem of adding edges to a given plane geo-
metric graph G such that for two fixed vertices s and t of G there exist three
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edge disjoint s–t paths. Since every plane geometric graph can be triangulated,
we characterize the triangulations that contain three edge-disjoint s–t paths.

Theorem 10 Let S be a finite set of points in the plane, let T = (S,E) be a
geometric triangulation of S, and let s and t be any two vertices of T . Then T
contains three edge-disjoint s–t paths if and only if s and t have degree at least 3.

Proof: Clearly the degree conditions are necessary for the existence of three
edge-disjoint paths in T . We show that they are also sufficient. We use Menger’s
Theorem, which says that a graph is k-connected if and only if it contains k
vertex-disjoint paths between any pair of vertices. Hence, since T is biconnected,
there exist two vertex-disjoint s–t paths π1 and π2. We now show that we can
find a third s–t path π3 that is edge-disjoint from π1 and π2.

We start our construction of π3 by constructing a path to a vertex s∗ on
(π1∪π2)\{s}. Let e1 and e2 be the first edges of π1 and π2, respectively. Since s
has degree at least 3 and T is triangulated, there exists a triangle incident to s
whose boundary contains exactly one of the edges e1 and e2. Let s, s1, and s2 be
the vertices of this triangle. We assume without loss of generality that ss1 = e1.
We start π3 with the edge ss2, which neither belongs to π1 nor to π2. If s2 lies
on π1 (see Figure 18a), we let s∗ = s2. Otherwise (see Figure 18b) we append
the edge s2s1 to π3 and let s∗ = s1. Note that s2s1 neither belongs to π1 nor
to π2.

We now show that given the vertex s∗ on π1, we can continue the construction
of π3 by using π1 as a “hand rail”. Let u be a vertex on π1 (initially u = s∗),
and let v be the vertex next to u on π1 in the direction of t. Then the edge uv
bounds a triangle on at least one side. If v = t then, due to deg(t) ≥ 3, there
exists a triangle whose boundary contains ut and two other edges that do not
belong to π1 and π2. Hence, we can use these to connect π3 to t. If v 6= t, we
consider the triangle {u, v, w} whose boundary contains uv. If w is incident to v
on π1 in the direction of t, then we append the edge uw to π3, see Figure 18a.
Otherwise we append edges uw and wv to π3, see Figure 18b. In neither of the
two cases do we use edges that belong to π1 or π2.

Note that the path we construct in this way is not necessarily simple. This
can be corrected by removing cycles. �

s t
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Figure 18: Hand rail construction along path π1.
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5 Conclusions

We have studied the complexity of several connectivity augmentation problems.
We have showed that PECA, PVCA, and their geometric variants are all NP-
hard. On the positive side, we have given efficient algorithms for 2-PathAug
and its vertex variant on planar graphs. Further, we have studied worst-case
bounds for geometric 2-PathAug, and we have fully characterized geometric
graphs that can be augmented to contain three (vertex-)disjoint s–t paths.

We conclude with two open questions. Does geometric PECA admit a
constant-factor approximation? Can geometric 2-PathAug be solved efficiently?
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