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Abstract

A RAC drawing of a graph is a polyline drawing in which every pair
of crossing edges intersects at right angle. In this paper, we focus on
straight-line RAC drawings and demonstrate an infinite class of graphs
with unique RAC combinatorial embedding. We employ members of this
class in order to show that it is NP-hard to decide whether a graph admits
a straight-line RAC drawing.
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1 Introduction

In the graph drawing literature, the problem of finding aesthetically pleasant
drawings of graphs has been extensively studied. The graph drawing community
has introduced and studied several criteria that judge the quality of a graph
drawing, such as the number of crossings among pairs of edges, the number of
edge bends, the maximum edge length, the total area occupied by the drawing
and so on (see [5, 18]).

Motivated by the fact that edge crossings have negative impact on the hu-
man understanding of a graph drawing [21, 22, 24], a great amount of research
effort has been devoted on the problem of finding drawings with minimum num-
ber of edge crossings. Ideally, a graph would be desirable to be drawn without
edge crossings. Graphs that admit such drawings are called planar graphs. Un-
fortunately, not all graphs are planar. It is known that any planar graph with
n vertices has at most 3n − 6 edges. Therefore, dealing with edge crossings is
quite common when drawing graphs. Besides, the edge crossing minimization
problem is NP-complete in general [12]. Fortunately, recent eye-tracking ex-
periments by Huang et al. [16, 17] indicate that the negative impact of an edge
crossing is eliminated in the case where the crossing angle is greater than 70
degrees. These results motivated the study of a new class of drawings, called
right-angle drawings or RAC drawings for short [1, 6, 7, 8]. A RAC drawing of
a graph is a polyline drawing in which every pair of crossing edges intersects at
right angle.

Didimo, Eades and Liotta [7] proved that it is always feasible to construct
a RAC drawing of a given graph with at most three bends per edge. In this
paper, we prove that the problem of determining whether an input graph admits
a straight-line RAC drawing is NP-hard. To do so, we first demonstrate a class
of graphs with unique RAC combinatorial embedding (i.e., the cyclic order of
edges incident to each vertex).

1.1 Related Work

Didimo, Eades and Liotta [7] initiated the study of RAC drawings and showed
that any straight-line RAC drawing with n vertices has at most 4n− 10 edges.
They also demonstrated a class of n-vertices graphs with exactly 4n− 10 edges
and proved that any graph admits a RAC drawing with at most three bends per
edge. Eades and Liotta [10] showed that every RAC graph with n vertices and
4n−10 edges (such graphs are called maximally dense) is 1-planar, i.e, it admits
a drawing in which every edge is crossed by at most one other edge. A slightly
weaker bound on the number of edges of an n-vertices RAC drawing was given
by Arikushi et al. [3], who proved that any straight-line RAC drawing with n
vertices may have 4n− 8 edges. Angelini et al. [1] showed that the problem of
determining whether an acyclic planar digraph admits a straight-line upward
RAC drawing is NP-hard. Furthermore, they constructed digraphs admitting
straight-line upward RAC drawings that require exponential area. Di Giacomo
et al. [6] studied the interplay between the crossing resolution, the maximum
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number of bends per edges and the required area. Didimo et al. [8] presented
a characterization of complete bipartite graphs that admit a straight-line RAC
drawing. Arikushi et al. [3] studied polyline RAC drawings in which each edge
has at most one or two bends and proved that the number of edges is at most
O(n) and O(n log2 n), respectively. Dujmovic et al. [9] studied α-Angle Crossing
(or αAC for short) drawings, i.e., drawings in which the smallest angle formed
by an edge crossing is at least α. In their work, they presented upper and lower
bounds on the number of edges. Van Kreveld [23] studied how much better (in
terms of required area, edge-length and angular resolution) a RAC drawing of
a planar graph can be than any planar drawing of the same graph.

Closely related to the RAC drawing problem, is the angular resolution max-
imization problem, i.e., the problem of maximizing the smallest angle formed by
any two adjacent edges incident to a common vertex. Note that both problems
correlate the resolution of a graph with the visual distinctiveness of the edges
in a graph drawing. Formann et al. [11] introduced the notion of the angular
resolution of straight-line drawings. In their work, they proved that determining
whether a graph of maximum degree d admits a drawing of angular resolution
2π
d

(i.e., the obvious upper bound) is NP-hard. They also presented upper and
lower bounds on the angular resolution for several types of graphs of maximum
degree d. Malitz and Papakostas [20] proved that for any planar graph of max-
imum degree d, it is possible to construct a planar straight-line drawing with
angular resolution Ω( 1

7d
). Garg and Tamassia [14] presented a continuous trade-

off between the area and the angular resolution of planar straight-line drawings.
For the case of connected planar graphs with n vertices and maximum degree
d, Gutwenger and Mutzel [15] presented a linear time algorithm that constructs
planar polyline grid drawings on a (2n−5)× (3

2
n− 7

2
) grid with at most 5n−15

bends and minimum angle greater than 2

d
. Bodlaender and Tel [4] showed that

planar graphs with angular resolution at least π
2
are rectilinear. Lin and Yen

[19] presented a force-directed algorithm based on edge-edge repulsion that con-
structs drawings with high angular resolution. Argyriou et al. [2] studied a
generalization of the crossing and angular resolution maximization problems,
in which the minimum of these quantities is maximized and presented opti-
mal algorithms for complete and complete bipartite graphs and a force-directed
algorithm for general graphs.

The rest of this paper is structured as follows: In Section 2, we introduce
preliminary properties and notation. In Section 3, we present a class of RAC
graphs with unique RAC combinatorial embedding. In Section 4, we show that
the straight-line RAC drawing problem is NP-hard. We conclude in Section 5
with open problems.

2 Preliminaries

Let G = (V,E) be a simple, undirected graph drawn in the plane. We denote
by Γ(G) the drawing of G. Each drawing uniquely defines cyclic orders of edges
incident to the same vertex and, therefore, specifies a combinatorial embedding.
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Given a drawing Γ(G) of a graph G, we denote by ℓu,v the line passing through
vertices u and v. By ℓ′u,v, we refer to the semi-line that emanates from vertex u,
towards vertex v. Similarly, we denote by ℓu,v,w (ℓ′u,v,w) the line (semi-line) that
passes through (emanates from) vertex u and is perpendicular to edge (v, w).
Let (u, v) and (u, v′) be a pair of non-overlapping edges incident to the same
vertex. We say that (u, v) and (u, v′) form a fan anchored at u. The following
properties are used in the rest of this paper.

Property 1 (Didimo, Eades and Liotta [7]) In a straight-line RAC draw-
ing there do not exist three mutually crossing edges.

Property 2 (Angelini et al. [1]) In a straight-line RAC drawing no edge can
cross a fan.

Property 3 (Didimo, Eades and Liotta [7]) In a straight-line RAC draw-
ing there does not exist a triangle T formed by edges of the graph and two edges
(a, b) and (a, b′), such that a lies outside T and b, b′ lie inside T .

3 A Class of Graphs with Unique RAC Combi-

natorial Embedding

The main result of this paper, i.e., the NP-hardness of the straight line RAC
drawing problem, employs a reduction from the well-known 3-SAT problem
[13]. However, before we proceed with the reduction details, we first provide
a graph, referred to as augmented square antiprism graph (or ASA graph for
short), which has the following property: “The straight-line RAC drawings of
the ASA graph define exactly two combinatorial embeddings”. Fig. 1 shows the
ASA graph and its two combinatorial embeddings (the fact that these are the
only two RAC combinatorial embeddings will be proved later in this section).
Observe that the ASA graph consists of a “central” vertex v0, which is incident
to all vertices of the graph, and two quadrilaterals (refer to the dashed and bold
drawn squares in Fig. 1a), that are denoted by Q1 and Q2 in the remainder of
this paper. Removing the central vertex, the remaining graph corresponds to
the skeleton of a square antiprism, and, it is commonly referred to as square
antiprism graph.

If, in the ASA graph, we replace the two quadrilaterals with two triangles,
then the resulting graph is the augmented triangular antiprism graph. Didimo,
Eades and Liotta [7], who showed that any n-vertex graph which admits a RAC-
drawing can have at most 4n−10 edges, used the augmented triangular antiprism
graph, as an example of a graph that achieves the bound of 4n − 10 edges
(see Fig. 1.c in [7]). In contrast to the augmented triangular antiprism graph,
the augmented square antiprism graph does not achieve this upper bound. In
general, the class of the augmented k-gon antiprism graphs, k ≥ 3, is a class
of non-planar graphs, that all admit RAC drawings. Recall that any planar n-
vertex graph has at most 3n−6 edges, and since an augmented k-gon antiprism
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Figure 1: (a),(b) Two different RAC drawings of the ASA graph with different com-
binatorial embeddings. (a),(c) Two different RAC drawings of the ASA
graph with the same combinatorial embedding.

graph has 2k + 1 vertices and 6k edges, it is not planar for the entire class of
these graphs.

Lemma 1 There does not exist a RAC drawing of the ASA graph in which
i) the central vertex v0 lies on the exterior of quadrilateral Qi and ii) an edge
connecting v0 to a vertex of Qi crosses another edge of Qi, i = 1, 2.

Proof: Let Q be one of quadrilaterals Qi, i = 1, 2 and let va, vb, vc and vd
be its vertices, consecutive along quadrilateral Q (refer to Fig. 2). Assume, to
the contrary, that vertex v0 lies on the exterior of quadrilateral Q and there
exists an edge, say (v0, va), that emanates from vertex v0 towards vertex va of
quadrilateral Q, such that it crosses an edge, say (vb, vc)

1, of Q (see Fig. 2). On
the ASA graph, vertices vb and vc have the following properties: (a) they are
both connected to vertex v0, and, (b) they have a common neighbor vbc, which
is incident to vertex v0 and vbc /∈ Q (see Fig. 1).

Observe that if vertex vbc lies in the non-shaded regions of Fig. 2, then at
least one of the edges incident to vbc crosses either (v0, va) or (vb, vc), which are
already involved in a right-angle crossing. This leads to a situation where three
edges mutually cross, which, by Property 1 is not permitted. Hence, vertex vbc
should lie in the interior of the gray-shaded regions R1, R2 or R3 in Fig. 2. In
the following, we consider each of these cases separately. Note that, depending
on the position of va, vb, vc, and, v0, R2 or R3 or R2 ∪R3 may be empty.

Case i: Vertex vbc lies in the interior of R1. This case is depicted in Fig. 3. Let
Tvbc be the region formed by vertices vbc, vb and vc (i.e., the dark-gray shaded
region of Fig. 3). Vertex vd, which has to be connected to vertices va and vc,
and, the central vertex v0, cannot lie within Tvbc , since (va, v0) and (va, vd)
form a fan anchored at va and crossed by (vb, vc), which by Property 2 is not
permitted. Since vertex vd has to be connected to vertex v0, it has to lie either
on semi-line ℓ′v0,vc,vbc or on semi-line ℓ′v0,vb,vbc . We consider only the former case.

1The case where it crosses edge (vc, vd) is symmetric.
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ℓ′vc,va

va

v0

R1

R2 R3

vbc

vb vc

ℓ′vb,va

ℓ′vc,v0 ℓ′vb,v0

Figure 2: Configuration used in proof of Lemma 1: Vertex vbc should lie in the
interior of one of the regions R1, R2 and R3.

The latter one is handled symmetrically. However, under this restriction, the
common neighbor vcd of vertices vc and vd cannot be connected to vertex v0,
since edge (v0, vcd) should be perpendicular to one of the edges of Tvbc . To see
this, observe that if edge (v0, vcd) is perpendicular to (vc, vbc), then (v0, vcd) and
(v0, vd) form a fan anchored at v0 and crossed by (vc, vbc), which by Property 2
is not permitted (see Fig. 3a). Consider now the case where edge (v0, vcd) is
perpendicular to edge (vb, vbc) (and lies on ℓ′v0,vb,vbc ; see Fig. 3b). Since angle

v̂cvbvbc is acute, edge (vb, vbc) should be crossed by both edges (v0, vcd) and
(vc, vcd), which form a fan anchored at vcd. This leads to a contradiction due
to Property 2.

v0

vbc

va

Tvbc

vb
vc

vd

ℓ′v0,vc,vbc

This crossing is
not right-angle.

vcd
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ℓ′v0,vb,vbc

(a)

v0
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vb
vc
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ℓ′v0,vc,vbc

This crossing is
not right-angle.

vcd

Q

ℓ′vc,v0 ℓ′vb,v0
R1ℓ′v0,vb,vbc

(b)

Figure 3: Configurations used in proof of Lemma 1: Vertex vbc lies in the interior of
R1.

Case ii: Vertex vbc lies in the interior of either R2 or R3. Assume, without loss
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of generality, that vertex vbc lies in the interior of R3. This case is depicted in
Fig. 4. Let u be a vertex of the ASA graph (distinct from va, vb, vc and v0) and
assume that u lies in the interior of the triangle Tvbc formed by vertices vb, vc and
vbc. Vertex u has to be connected to the central vertex v0. Edge (v0, u) should
not be involved in crossings with neither edge (vb, vc), since (v0, u) and (v0, va)
would form a fan anchored at v0 and crossed by (vb, vc), nor edge (vc, vbc), since
angle v̂bvcvbc is smaller that 180o. Therefore, triangle Tvbc cannot accommodate
any other vertex (except va). Now observe that each vertex of quadrilateral
Q has degree five and there do not exist three vertices of quadrilateral Q, that
have a common neighbor (see Fig. 1). These properties trivially hold for vertex
va, since va ∈ Q. Based on the above properties, each neighbor of vertex va can
lie either in the interior of the dark-gray region of Fig. 4, or, on the external
face of the already constructed drawing (along the dashed semi-lines ℓ′va,vc,vbc
and ℓ′va,vb,vbc of Fig. 4, respectively). This implies that we can place only four
vertices out of those incident to vertex va, i.e., one of them should lie in the
interior of Tvbc and thus, it cannot be connected to vertex v0.

v0

vbc

be connected to v0

This vertex cannot

va

vb vc

ℓ′va,vb,vbc

ℓ′va,vc,vbc

R3

ℓ′vb,vb,a

ℓ′vc,va

u
Tvbc

Figure 4: Configuration used in proof of Lemma 1: Vertex vbc lies in the interior of
R3.

From the above case analysis, it follows that the central vertex v0 cannot lie
on the exterior of quadrilateral Q, so that an edge connecting v0 to a vertex of
Q crosses another edge of Q. 2

Lemma 2 In any RAC drawing of the ASA graph, quadrilateral Qi is drawn
planar, for each i = 1, 2.

Proof: Let Q be one of quadrilateralsQi, i = 1, 2, and let, as in the proof of the
previous lemma, va, vb, vc and vd be its vertices, consecutive along quadrilateral
Q. Note that it is not feasible a non-planar, straight-line RAC drawing of
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a quadrilateral to contain more than one right-angle crossing (the drawing of
Q forms two orthogonal triangles). Assume to the contrary that in a RAC
drawing of the ASA graph, quadrilateral Q is not drawn planar, and say that
edges (va, vb) and (vc, vd) form a right-angle crossing. This case is illustrated
in Fig. 5a. In the following, we will consider the cases where the central vertex
v0 lies either in one of the orthogonal triangles or in the area outside them. In
both cases, we will reach a contradiction.

Case i: Vertex v0 lies in the interior of one of the two triangles. Assume
without loss of generality that vertex v0 (which is incident to all vertices of
quadrilateral Q) lies in the interior of the triangle formed by vertices vb, vc and
the intersection point, say w, of edges (va, vb) and (vc, vd), as in Fig. 5a. In this
case, edges (va, v0) and (va, vb) form a fan anchored at va, which is crossed by
(vc, vd). This is not possible due to Property 2.

va

vd

v0

w

vc vb

(a)

va

vd

v0 w

vc vb

Rva,vb,vc

(b)

va

vd

v0 w

vc vb

(c)

Figure 5: Configurations used in proof of Lemma 2: Quadrilateral Q is not drawn
planar. (a) v0 cannot lie within one of the two triangles, (b) v0 cannot lie
within Rva,vb,vc , and, (c) v0 cannot lie within the light-gray open areas.

Case ii: Vertex v0 lies outside the two triangles. Without loss of generality, we
assume that edge (vb, vc) is horizontal and that edge (va, vd) is drawn above it.
See Fig. 5a. The two triangles are drawn dark-shaded.

Let Rva,vb,vc denote the light-gray shaded open area defined by angle v̂avbvc
which excludes the area of triangle △wvbvc. See Fig. 5b. We first show that
vertex v0 cannot lie in area Rva,vb,vc . To see that, simply observe that if v0 lied
within area Rva,vb,vc , then edges (v0, vb) and (v0, vd) would form a fan anchored
at v0 and crossed by (vc, vd), which is not possible due to Property 2. In the
same way, we can define the open areas Rvb,vc,vd , Rvc,vd,va and Rvd,va,vb and
show that vertex v0 cannot lie in any of them. Thus, it remains to examine
the case where vertex v0 lies either in the white area below edge (vb, vc) or in
the white area above edge (va, vd). See Fig. 5c. We only consider the former
case since the later can be similarly handled by assuming that (va, vd) is the
horizontal edge.

So, assume that vertex v0 lies in the white area of Fig. 5c below edge (vb, vc).
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Given this assumption, we can state the following propositions regarding the
placement of the remaining vertices in a RAC drawing of the ASA graph.

Proposition 1 Edge (vb, vc) should be inside triangle △vav0vd.

Proof: Refer to Fig. 6a. For the sake of contradiction assume that edge
(vb, vc) is not inside triangle △vav0vd. Then, one of the triangle’s edges
incident at v0 would cross a fan formed by edges of Q anchored either at
vb or vc, which is a contradiction due to Property 2. 2

Proposition 2 Vertex vbc lies inside triangle △vav0vd.

Proof: Refer to Fig. 6b. Vertex vbc is connected to both vb and vc, which
by Proposition 1 are inside triangle △vav0vd. By Property 3, it follows
that vertex vbc must also lie inside triangle △vav0vd. 2

Proposition 3 Vertex vab lies inside triangle △v0vcx, where x is the in-
tersection point of line ℓvb,vc with edge (v0, va).

Proof: Refer to Fig. 6c. In order to prove this proposition, we will prove
that vertex vab (a) cannot lie outside triangle △vav0vd, (b) must lie below
line ℓvb,vc , and, cannot lie in either (d) triangle △v0vby, or, (e) triangle
△v0vbvc.

(a) Vertex vab lies inside triangle △vav0vd: Vertex vab is connected to
vb and vbc, which by Propositions 1 and 2, respectively, lie within
△vav0vd. This ensures that vab lies inside triangle △vav0vd, as well;
otherwise Property 3 is violated.

(b) Vertex vab must lie below line ℓvb,vc : Let y be the intersection point
of line ℓvb,vc with edge (v0, vd). For the sake of contradiction assume
that vab lies above line ℓvb,vc . We consider the following cases. First
assume that vab lies within quadrilateral vaxvcvd. Then, edges (va, vb)
and (vb, vab) form a fan anchored at vb which is crossed by (vc, vd). In
the case where vab lies within triangle △vcyvd then edges (va, vb) and
(va, vab) form a fan anchored at va which is crossed by (vc, vd). Since
both cases lead to a contradiction Property 2, we conclude that vab
must lie below line ℓvb,vc .

(c) Vertex vab cannot lie in triangle △v0vby: This is due to the fact that
vab is connected with va. If edge (vab, va) passes from the “left” of vb it
must enter and exit triangle △v0vbvc, forming three mutually crossing
edges. If edge (vab, va) passes from the “right” of vb, then (va, vab) and
(va, vb) form a fan anchored at va and crossed by (vc, vd). Since both
cases lead to a contradiction (due to Properties 1 and 2, respectively),
we conclude that vab cannot lie in triangle △v0vby.

(d) Vertex vab cannot lie in triangle △v0vbvc: This is, again, due to the
fact that vab is connected with va. If edge (va, vab) passes from the
“right” of vc, then it must enter and exit triangle △vbvcw, forming
three mutually crossing edges. However, this is not permitted due
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Figure 6: Configurations used in proof of Lemma 2 (Propositions 1-5): (a) Edge
(vb, vc) does not lie inside triangle △vav0vd. (b) Vertex vbc does not lie in-
side triangle △vav0vd, (c) Potential placements of vertex vab, (d) Potential
placements of vertex vbc

.

to Property 1. If edge (va, vab) passes from the “left” of vc, then
it must cross at right angle edge (vc, v0). But, since edge (va, vb) is
also perpendicular to edge (vc, vd) then quadrilateral vavdvcv0 must be
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convex, and thus, v0 must be above line ℓvb,vc , a clear contradiction.

2

Proposition 4 Vertex vcd lies inside triangle △v0vby.

Proof: Following symmetric arguments as in the proof of Proposition 3.
2

Proposition 5 Vertex vbc lies within triangle △v0yvc.

Proof: Recall that by Proposition 2 vbc lies within triangle △v0vavd. In
order to establish that vertex vbc lies within triangle △v0yvc, we will lead
to a contradiction the cases where vertex vbc lies within quadrilaterals
(a) vawvcx and (b) vdwvby, and within triangles (c) △vawvd, (d) △vbwvc
and (e) △xvcv0. Refer to Fig. 6d.

(a) Vertex vbc does not lie within quadrilateral vawvcx: If it does, then
edges (va, vb) and (vb, vbc) form a fan anchored at vb which is crossed
by (vc, vd).

(b) Vertex vbc does not lie within quadrilateral vdwvby: If it does, then
edges (vc, vd) and (vc, vbc) form a fan anchored at vc which is crossed
by (va, vb).

(c) Vertex vbc does not lie within triangle △vawvd: If it does, then edges
(vc, vd) and (vc, vbc) form a fan anchored at vc which is crossed by
(va, vb).

(d) Vertex vbc does not lie within triangle △vbwvc: If it does, then it
has three neighbors, namely v0, vab and vcd, outside triangle △vbwvc.
Thus, it must be connected to them by edges that exit different sides
of the triangle. Given that v0 lies below line ℓvb,vc , then at least one
of vab and vcd must be above line ℓvb,vc . A clear contradiction.

(e) Vertex vbc does not lie within triangle △xvcv0: Recall that by Propo-
sition 4 vertex vcd lies inside triangle △v0vby. However, vertex vbc
is connected to vertex vcd. This implies that if vertex vbc lies within
triangle △xvcv0, then (vbc, vcd) must enter end exit triangle △v0vbvc,
forming three mutually crossing edges.

2

Since vertex vab lies inside triangle △v0vcx (Proposition 3), and, vertex vbc
lies within triangle △v0yvc (Proposition 5), edges (vab, vbc) and (vab, vb) form
a fan anchored at vab which is crossed by (v0, vc). This is impossible due to
Property 2. Thus, by assuming a legal RAC drawing of the ASA graph where
vertex v0 is outside the two triangles, we concluded that it is not possible to
find a legal placement for vbc; a clear contradiction. This completes the proof
of Case ii of this lemma.

2
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Lemma 3 In any RAC drawing of the ASA graph, the central vertex v0 lies in
the interior of quadrilateral Qi, i = 1, 2.

Proof:
From Lemma 2, it follows that quadrilateral Qi should be drawn planar,

for each i = 1, 2. In order to prove this lemma, we assume to the contrary
that central vertex v0 lies on the exterior of one of the two quadrilaterals, say
w.l.o.g., on the exterior of quadrilateral Q1. Let va, vb, vc and vd be Q1’s
vertices, consecutive along quadrilateral Q1. Then, by Lemma 1, vertex v0
cannot contribute additional crossings on quadrilateral Q1. This suggests that
the drawing of the graph induced by quadrilateral Q1 and vertex v0 will be
planar and resemble the ones depicted in Fig. 7. We denote by TQ1

the triangle
formed by vertex v0 and the two vertices, which are on the convex hall of
Q1∪v0 (refer to the gray-shaded triangles of Fig. 7).

v0

va vb

Q1

vcvd

(a) Q1 is drawn convex

v0

va vb

Q1

vd

vc

(b) Q1 is drawn concave

Figure 7: Configurations used in proof of Lemma 3: Different drawings of the graph
induced by quadrilateral Q1 and vertex v0.

Proposition 6 No vertex of Q2 lies outside TQ1
.

Proof: Refer to Fig. 7 and assume w.l.o.g that TQ1
is defined by vertices

v0, va and vb, i.e., va and vb are on the convex hall of Q1∪v0. In the
following, we prove that each of the vertices of Q2 should lie inside TQ1

.

(a) Vertex vcd lies within triangle TQ1
: If not, Property 3 is violated (see

Fig. 8a); vcd is connected to vc and vd, which both lie inside TQ1
.

(b) Vertex vbc lies within triangle TQ1
: If not, Property 3 is violated (see

Fig. 8b); vbc is connected to vc and vcd, which both lie inside TQ1
.

(c) Vertex vad lies within triangle TQ1
: If not, Property 3 is violated (see

Fig. 8c); vad is connected to vd and vcd, which both lie inside TQ1
.

(d) Vertex vab lies within triangle TQ1
: If not, Property 3 is violated (see

Fig. 8d); vab is connected to vad and vbc, which both lie inside TQ1
.

2
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v0

va vb
Q1

vcvd

vcd

(a)

v0

va vb
Q1

vcvd

vbc

vcd

(b)

v0

va vb
Q1

vcvd

vad

vcd

(c)

v0

va vb
Q1

vcvd

vab

vad

vbc

(d)

Figure 8: Configurations used in proof of Lemma 3 (Proposition 6): All vertices of
Q2 should lie inside TQ1

.

Since Q2 lies inside TQ1
, vertex v0 is external to Q2 as well. Therefore, in a

way similar to that of Proposition 6, one can also prove that Q1 lies inside TQ2
,

where TQ2
is defined by vertex v0 and the two vertices, which are on the convex

hall of Q2∪v0. However, this leads to a contradiction, since two triangles (i.e.,
TQ1

and TQ2
) cannot be nested to each other without being identical, and thus

introducing vertex and edge overlaps. 2

Lemma 4 In any RAC drawing of the ASA graph, all edges from the central
vertex v0 to quadrilateral Qi are fully contained into Qi, i = 1, 2.

Proof: By Lemma 3, vertex v0 should lie in the interior of quadrilateral Qi,
i = 1, 2, which is drawn planar due to Lemma 2. If both Q1 and Q2 are drawn
convex, then the lemma trivially holds. For the sake of contradiction, assume
that Q1 is drawn concave and an edge emanating from vertex v0 towards a
vertex of quadrilateral Q1, say va, crosses an edge, say (vc, vd), of quadrilateral
Q1 (see Fig. 9).

Proposition 7 The sum of the three acute internal angles of Q1 is less
than π

2

Proof: Since Q1 is concave at vd, the internal angle at vd is greater than
3π/2. Hence the sum of the remaining internal angles is less than π/2. 2
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v0

va

vb

vc

vcd

vd

ℓ
′
vd,va,vd

ℓ
′
v0,vb,vc

ℓ
′
vd,vb,vc

ℓv0,vc

vcd

w

vcd

Q1

ℓ
′
vd,va

vcd ℓ
′
v0,va,vd

ℓ
′
vd,v0

Figure 9: Configuration used in proof of Lemma 4 (Proposition 8): Potential place-
ments of vcd.

Proposition 8 Vertex vcd should lie in the interior of Q1.

Proof: Recall that vcd is connected to vc, vd and v0 and assume, to the
contrary, that vertex vcd is not in the interior of Q1. Then, the following
hold (refer to Fig. 9):

i) Edge (v0, vcd) is not entering Q1 from (vc, vd): If it did, edges (v0, vcd)
and (v0, va) form a fan anchored at v0 and crossed by (vc, vd), which
is not permitted due to Property 2.

ii) Edge (v0, vcd) is not entering Q1 from (va, vd): If it did, then it is
implied that it is possible to draw from v0 perpendicular line segments
(i.e., (v0, va) and (v0, vcd)) to two edges forming the concave angle of
Q1. However, this is not possible, since v0 is internal to Q1.

iii) Edge (v0, vcd) is entering Q1 either from (va, vb) or (vb, vc): Trivially
follows from (i) and (ii).

iv) Vertex vcd is not in region formed by ℓ′vd,va and ℓ′vd,v0 and contains
vc: In Fig. 9, this region is shaded in light-gray. It follows from the
fact that (vd, vcd) cannot cross (v0, va), since otherwise edges (vd, vcd)
and (vc, vd) form a fan anchored at vd and crossed by (v0, va), which
is not permitted due to Property 2.

v) Edge (vd, vcd) is entering Q1 either from (va, vb) or (vb, vc): Trivially
follows from (iv).

From (iii) and (v), it follows that vcd should be at the intersection of two
semi-lines (refer to the dotted semi-lines of Fig. 9) which are perpendicular
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to (va, vb) and/or (vb, vc). However, this is a contradiction since these
lines do not intersect due to Proposition 7; they are perpendicular on two
consecutive edges of Q1 that form an acute angle. 2

Proposition 9 Vertex vcd lies in the interior of △v0vbvc.

Proof: By Proposition 8, it is enough to prove that vcd lies “below” ℓv0,vc
and not in △v0vbw (refer to the dark-gray shaded triangle of Fig. 9), where
w is the intersection point of ℓv0,vc and (va, vb). The former property
is obvious, since vcd is connected to both vc and vd. Hence, if vcd was
“above” ℓv0,vc , then (vc, vd) and either (vc, vcd) or (vd, vcd) would form a
fan anchored at either vc or vd, respectively, that is crossed by (v0, va). If
vcd is in the interior of △v0vbw, then (vc, vcd) should cross (v0, vb) at right
angle. However, this is not possible since the perpendicular line from vc to
(v0, vb) is external to △v0vbw due to Proposition 7. Hence, vcd is in the
interior of △v0vbvc (and along ℓ′vd,v0,vb ; see Fig. 10), as desired. 2

v0

va

vb

vc

vcd

vdvad

vad

vad

ℓ
′
vd,v0,vb

vad

Q1

Figure 10: Configuration used in proof of Lemma 4 (Propositions 10-12): Potential
placements of vad.

Proposition 10 Vertex vad lies outside △vcvdvcd.

Proof: In Fig. 10, triangle △vcvdvcd is shaded in gray. Assume, to the
contrary, that vad lies in the interior of △vcvdvcd. Then, since v0 is internal
as well, vertex va, which is outside △vcvdvcd, should be connected to v0
and vad, that both lie in the interior of △vcvdvcd. This is a contradiction
due to Property 3. 2

Proposition 11 Edge (v0, vad) cannot enter triangle △vcvdvcd neither
from (vc, vd) nor from (vd, vcd).
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Proof: Follows from the fact that edges (vc, vd) and (vd, vcd) are already
crossed at right angle by edges (v0, va) and (v0, vb), respectively, which are
incident to v0, as is edge (v0, vad). 2

Proposition 12 Vertex vad lies in the interior of △v0vbvc.

Proof: By Proposition 11, edge (v0, vad) enters triangle △vcvdvcd from
(vc, vcd). If vad was external to △v0vbvc, edges (vc, vcd) and (vb, vc) should
form a fan anchored at vc and crossed by (v0, vad), which is not permitted
due to Property 2. 2

Propositions 9 and 12 suggest that both vcd and vad lie in the interior of
△v0vbvc. Based on this and following a similar reasoning scheme as in the proof
of Proposition 6, we can prove that all vertices of Q2 should lie in the interior
of △v0vbvc. However, this is a contradiction since vertex v0 should lie in the
interior of Q2, due to Lemma 3. 2

Lemma 5 There does not exist a RAC drawing of the ASA graph, in which
quadrilaterals Q1 and Q2 intersect.

Proof: For the sake of contradiction, assume that Q1 and Q2 intersect. With
slight abuse of notation, let via, v

i
b, v

i
c and vid be Qi’s vertices consecutive along

quadrilateralQi, i = 1, 2, i.e., {va, vb, vc, vd} = {v1a, v
1
b , v

1
c , v

1
d} and {vab, vbc, vcd, vad} =

{v2a, v
2
b , v

2
c , v

2
d}. Let w.l.o.g., (v

1
a, v

1
b ) ∈Q1 and (v2a, v

2
b ) ∈Q2 be a pair of vertices

that are involved in the crossing of Q1 and Q2 and let w be their intersection
point. Consider a RAC drawing of the ASA graph in which (v2a, v

2
b ) is drawn

horizontal (and, hence, (v1a, v
1
b ) is drawn vertical) and assume that v2b is to the

left of v2a, whereas v
1
b is above v1a (see Fig. 11).

v
1

b

R2

v
2

b
v
2

a

R1

v
1

a

w

v0

(a) |v2
b
w| < |wv2a|

R4

R3

v
1

b

v
2

b v
2

a

v
1

a

w

(b) |v2
b
w| > |wv2a|

Figure 11: Configurations used in proof of Lemma 5: Vertex v0 should lie in the
interior of one of the regions R1, R2, R3 and R4.

Edges (v0, v
1
a) and (v0, v

1
b ) should not cross (v2a, v

2
b ) since that would form

a fan anchored at v1a and v1b , respectively, crossed by (v2a, v
2
b ), which is not
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permitted due to Property 2. Similarly, edges (v0, v
2
a) and (v0, v

2
b ) should not

cross (v1a, v
1
b ). This suggests that vertex v0 should lie in one of the dark-gray

shaded unbounded regions of Fig. 11. Assume w.l.o.g that v0 lies in R1 (the
remaining cases are treated symmetrically). Due to Lemma 3, v0 is internal to
Q1. However, as we will show, there does not exist a legal placement of the
vertices of Q2, such that Q1 encloses v0. In the following, we first prove that v1c
should lie outside the light-gray shaded quadrilateral of Fig. 11a.

Proposition 13 Vertex v1c lies outside quadrilateral wv1av0v
2
a, where w is

the intersection of (v1a, v
1
b ) ∈Q1 and (v2a, v

2
b ) ∈Q2.

Proof: Refer to Fig. 12 and recall that quadrilateral Q1 is formed by
vertices v1a, v

1
b , v

1
c , v

1
d in this order. For the sake of contradiction, assume

that v1c lies inside quadrilateral wv1av0v
2
a. If v1d lies inside quadrilateral

wv1av0v
2
a as well, then Q1 lies entirely within quadrilateral wv1av0v

2
a. Hence,

v0 is not in the interior of Q1, which is a contradiction due to Lemma 3.
Therefore, v1d should be outside quadrilateral wv1av0v

2
a. Since v1c is inside

quadrilateral wv1av0v
2
a and v1d outside, edge (v1c , v

1
d) should be perpendicular

to an edge of wv1av0v
2
a. This suggests that v

1
d should lie within a dark-gray

shaded region of Fig. 12, which implies again that v0 is not in the interior
of Q1, since edge (v1d, v

1
a) forms a quadrilateral which does not enclose v0.

A clear contradiction due to Lemma 3. 2

Proposition 13 and Lemma 3 suggest that quadrilateral Q1 should be drawn
as shown in Fig. 13, i.e., edge (v1b , v

1
c ) should be perpendicular to (v0, v

2
a) whereas

vertex v1d should be to the “left” of v0 such that edges (v1c , v
1
d) and (v1a, v

1
d) do

not cross quadrilateral wv1av0v
2
a and v0 is in the interior of Q1. We proceed to

investigate how Q2 is drawn.

Proposition 14 Vertex v2c lies outside quadrilateral wv1av0v
2
a, where w is

the intersection of (v1a, v
1
b ) ∈Q1 and (v2a, v

2
b ) ∈Q2.

Proof: Similarly to Proposition 13. 2

Proposition 15 Vertex v2c lies in the interior Q1.

Proof: Proposition 14 implies that vertex v2c lies outside quadrilateral
wv1av0v

2
a. If in addition v2c lies outside Q1, then edges (v0, v

1
a) and (v1d, v

1
a)

form a fan at v1a crossed by (v2b , v
2
c ), which is not permitted by Property 2

(see Fig. 13). 2

From the above propositions it follows that vertex v2c should lie outside
quadrilateral wv1av0v

2
a but in the interior of Q1. In the following, we will prove

that v2d can neither lie in the interior of Q1 nor to its exterior, leading thus to a
contradiction our initial hypothesis that Q1 and Q2 intersect. Refer to Fig. 13.
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v
1

b

v
2

b
v
2

a

v
1

a

w

v0

v
1

c

v
1

d

v
1

d v
1

c

v
1

c

v
1

d

Figure 12: Configuration used in proof of Lemma 5 (Proposition 13): Potential place-
ments of v1d assuming that v0 is in the interior of R1 and v1c in the interior
of wv1av0v

2

a.

Proposition 16 Vertex v2d lies in the interior of Q1.

Proof: Assume to the contrary that v2d lies outside Q1. Then, it should
reside within the dark-gray shaded unbounded region of Fig. 13, such that
(v2c , v

2
d) is perpendicular to (v1a, v

1
d). This implies that v0 cannot lie in the

interior of Q2, since edge (v2d, v
2
a) forms a quadrilateral which does not

enclose v0, which leads to a contradiction. Therefore, v2d should lie in the
interior of Q1. 2

By Proposition 16, vertex (v2a, v
2
d) should perpendicularly cross an edge of

Q1, because v2d is inside it whereas v2a outside it. First observe that (v2a, v
2
d)

can be perpendicular to neither (v1c , v
1
d) nor (v

1
a, v

1
d). To see this assume, to the

contrary, that (v2a, v
2
d) is perpendicular to (v1c , v

1
d). Then, angle v̂

1
bv

1
cv

1
d (denoted

by φ in Fig. 13) should be greater that π, which contradicts the fact that v0 is in
the interior of Q1. Similarly, we can prove that (v2a, v

2
d) cannot be perpendicular

to (v1a, v
1
d). Hence, (v

2
d, v

2
a) should be perpendicular to either (v1b , v

1
c ) or (v

1
a, v

1
b ).

In the case where (v2d, v
2
a) crosses (v

1
b , v

1
c ), edges (v

2
d, v

2
a) and (v0, v

2
a) form a fan

anchored at v and crossed by (v1b , v
1
c ), which by Property 2 is not permitted.

Similarly, (v2d, v
2
a) cannot be perpendicular to (v1a, v

1
b ). Therefore, v

2
d cannot lie

in the interior of Q1, contradicting Proposition 16.
2
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v1b
v2b

v2a

v1a

w

v0

v1c

v1d

v1c

Q1

v2c

v2c
v2d

v2d

φ

Figure 13: Configuration used in proof of Lemma 5: Potential placements of v2d
assuming that v0 is in the interior of R1 and v2c lies outside wv1av0v

2

a but
in the interior of Q1.

Theorem 1 The straight-line RAC drawings of the ASA graph define exactly
two combinatorial embeddings.

Proof: So far, we have managed to prove that both quadrilaterals Q1 and
Q2 are drawn planar, do not cross, and have central vertex v0 to their interiors.
This suggests that either quadrilateral Q1 is in the interior of Q2, or quadri-
lateral Q2 is in the interior of Q1. However, in both cases vertex v0, which
has to be connected to the four vertices of the “external” quadrilateral, should
inevitably perpendicularly cross the four edges of the “internal” quadrilateral.
This implies only two feasible combinatorial embeddings. The two combinato-
rial embeddings are shown in Fig. 1a and 1b. 2

We extend the ASA graph by appropriately glueing multiple instances of
it, the one next to the other. Fig. 14a demonstrates how this operation is
realized on two instances, say G and G′, of the ASA graph, i.e., by identifying
two “external” vertices, say v and v′, of G with two “external” vertices of G′

(refer to the gray-shaded vertices of Fig. 14a), and by employing an additional
edge (refer to the dashed drawn edge of Fig. 14a), which connects an “internal”
vertex, say u, of G with the corresponding “internal” vertex, say u′, of G′. Let
G⊕G′ be the graph produced by the glueing operation on G and G′. Since the
RAC drawings ofG andG′ define two combinatorial embeddings each, one would
expect that the RAC drawings of G⊕G′ would define four possible combinatorial
embeddings. We will show that this is not true and, more precisely, that there
exists only a single combinatorial embedding.

Theorem 2 Let G and G′ be two instances of the ASA graph. Then, the
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⇒

α

β
G G′

v

v′

u

v

v′
G⊕G′

u′u u′

(a)

α

β

The bold drawn edges
cannot be crossed

u
u′

v

v′

G⊕G′

u′

(b)

v

v
′

u

u
′G

′

e

(c)

u

v

v
′

u
′

(d)

Figure 14: (a) Glueing two instances of the ASA graph, (b) The additional (dashed)
edge does not permit the second instance to be drawn in the interior of
the first one. (c) The vertices, which are identified during the glueing
operation (v and v′ in figure), should be on the external face of each
ASA graph. (d) Each glueing operation may introduce a “turn” in the
corresponding RAC drawing.

straight-line RAC drawings of G ⊕ G′ define a single RAC combinatorial em-
bedding.

Proof: Obviously, in any RAC drawing of G ⊕ G′, both G and G′ should be
drawn RAC. Say that in a RAC drawing of G⊕G′, G is drawn such that vertices
v and v′ (that are identified during the glueing operation) are on the external
face of Γ(G).2 Then, the common neighbor of v and v′ in G′ that is not identified
with v0 (i.e., u′) can be either in the interior of Γ(G) or to its external face in
the drawing of G⊕G′.

We first consider the case where vertex u′ is in the interior of Γ(G) in the
drawing of G ⊕ G′ (see Fig. 14b). Vertex u′, which is incident to both v and

2The case where v and v′ are not on the external face of Γ(G) will be examined later.
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v′, cannot reside to the “left” of both edges (u, v) and (u, v′) (refer to the bold
drawn edges of Fig. 14b), since this would lead to a situation where three edges
mutually cross and, subsequently, to a violation of Property 1 (see the gray-
shaded square vertex of Fig. 14b). Therefore, vertex u′ should lie within the
triangular face of G formed by vertices u, v and v′. Similarly, the same holds
for the central vertex of G′, which is also incident to vertices v and v′. By
Property 3, any common neighbor of vertices u′ and v should also lie within the
same triangular face of G, which progressively implies that the entire graph G′

should reside within this face, as in Fig. 14b. Since vertices v and v′ are on the
external face of Γ(G′) in the drawing of G⊕G′ and G′ should be drawn RAC,
vertices α and β in Fig. 14b should be on the external face of Γ(G′) as well (due
to Theorem 1). However, in this case and since u′ is incident to v and v′, edge
(u, u′), which is employed during the glueing operation, crosses the interior of
G′, which is not permitted. This suggests that if vertex u′ is in the interior of
Γ(G) in the drawing of G⊕G′, then there is no feasible embedding.

If one assumes that u′ is on the external face of Γ(G) in the drawing of
G ⊕ G′, then it can be similarly proved that the entire graph G′ should be on
this face, too. Hence, v and v′ are on the external face of Γ(G′), as well. From
the discussion above it follows that v and v′ are on the external face of both
Γ(G) and Γ(G′) in the drawing of G ⊕G′, which implies a feasible embedding
(see Fig. 14d).

We now examine the case where v and v′ are not on the external face of Γ(G)
in a RAC drawing of G⊕G′, i.e., v and v′ are along the internal quadrilateral
of G in the RAC drawing of G ⊕ G′. This is illustrated in Fig. 14c. Let e be
the edge of G, which perpendicularly crosses edge (v, v′) and emanates from
the external quadrilateral towards the central vertex of G (refer to the bold
solid edge of Fig. 14c). Edge e will be involved in crossings with G′. Let u′ be
the common neighbor of v and v′ in G′. Then, e, (v, v′) and either (v, u′) or
(u′, v′) form three mutually crossing edges in the drawing of G ⊕ G′, which is
not permitted due to Property 1.

Therefore, the vertices that are identified during a glueing operation should
always be on the external face of each ASA graph and, subsequently, any drawing
of G⊕G′ has unique combinatorial embedding. 2

Note that the RAC drawing ofG⊕G′ may differ from the drawing of Fig. 14a.
In the general case, each glueing operation may introduce a “turn” in the corre-
sponding RAC drawing, as in Fig. 14d. However, the combinatorial embedding
is still the same.

4 The Straight-Line RAC Drawing Problem is

NP-hard

In this Section, we will reduce the well-known 3-SAT problem [13] to the
straight-line RAC drawing problem. In a 3-SAT instance, we are given a for-
mula φ in conjunctive normal form with variables x1, x2, . . . , xn and clauses
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C1, C2, . . . , Cm, each with three literals. We show how to construct a graph Gφ

that admits a straight-line RAC drawing Γ(Gφ) if and only if formula φ is satisfi-
able. Fig. 17 shows an example of a graph which is build by our reduction based
on a particular input 3-SAT formula. Our proof follows the general approach
of Formann et al. [11] (used to prove that the angular resolution maximization
problem is NP-hard) using different gadgets to encode the variables and the
clauses of the given formula.

4.1 Description of the Construction

Fig. 15 illustrates the gadgets of our construction. Each gray-shaded square
in these drawings corresponds to an ASA graph. Adjacent gray squares corre-
spond to glued ASA graphs (refer, for example, to the topmost gray squares
of Fig. 15a). There also exist gray squares that are not adjacent, but con-
nected through edges. The legend in Fig. 15 describes how these connections
are realized.

The gadget that encodes variable xi of formula φ is given in Fig. 15a. It con-
sists of a combination of ASA graphs, and, “horizontal” and “vertical” edges,
which form a tower, such that the RAC drawings of each tower define a sin-
gle combinatorial embedding. One side of the tower accommodates multiple
vertices that correspond to literal xi, whereas its opposite side accommodates
vertices that correspond to its negation xi (refer to vertices xi,1, . . . , xi,m and
xi,1, . . . , xi,m in Fig. 15a). These vertices are called variable endpoints. Then,
based on whether on the final drawing the negated vertices will appear to the
“left” or to the “right” side of the tower, we will assign a true or a false value
to variable xi, respectively. Pairs of consecutive endpoints xi,j and xi,j+1 are
separated by a corridor (marked by a “tick” in Fig. 15a), which allows perpen-
dicular edges to pass through it (see the bottommost dashed arrow of Fig. 15a).
Note that no edge can pass through a “corridor” formed on a variable endpoint
(marked by a cross in Fig. 15a), since there exist four non-parallel edges that
“block” any other edge passing through them (see the topmost dashed arrow
of Fig. 15a). The corridors can have variable height. In the variable gadget
of variable xi, there are also two vertices (drawn as gray circles in Fig. 15a),
which have degree four. These vertices serve as “connectors” among consecutive
variable gadgets, i.e., these vertices should be connected to their corresponding
vertices on the variable gadgets of variables xi−1 and xi+1. Note that the con-
nector vertices of the variable gadgets associated with variables x1 and xn are
connected to connectors of the variable gadgets that correspond to variables x2

and xn−1, respectively, and to connectors of dummy variable gadgets.
Fig. 15b illustrates a dummy variable gadget, which (similarly to the vari-

able gadget) consists of a combination of ASA graphs, and, “horizontal” and
“vertical” edges, which form a tower. The RAC drawings of this gadget also
define a single combinatorial embedding. A dummy variable gadget does not
support vertices that correspond to literals. However, it contains connector ver-
tices (they are drawn as gray circles in Fig. 15b). In our construction, we use
exactly two dummy variable gadgets. The connector vertices of each dummy
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xi,1 xi,1

Corridor

xi,m xi,m

xi+1xi−1

xi+1xi−1

⇔

⇔

Legend

xk

xj

xl

(a) (b) (c)

Ci

xj,i

xl,i

xk,i

Figure 15: Gadgets of our construction: (a) Variable gadget, (b) Dummy variable
gadget, (c) Clause gadget
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variable gadget should be connected to their corresponding connector vertices
on the variable gadgets associated with variables x1 and xn, respectively.

The gadget that encodes the clauses of formula φ is illustrated in Fig. 15c
and resembles to a valve. Let Ci = (xj ∨xk ∨xl) be a clause of φ. As illustrated
in Fig. 15c, the gadget which corresponds to clause Ci contains three vertices3,
say xj , xk, and xl, such that: xj has to be connected to xj,i, xk to xk,i and xl to
xl,i by paths of length two. These vertices, referred to as the clause endpoints,
encode the literals of each clause. Obviously, if a clause contains a negated
literal, it should be connected to the negated endpoint of the corresponding
variable gadget. The clause endpoints are incident to a vertex “trapped” within
two parallel edges (refer to the bold drawn edges of Fig. 15c). Therefore, in a
RAC drawing of Gφ, only two of them can perpendicularly cross these edges,
one from top (top endpoint) and one from bottom (bottom endpoint). The other
one (right endpoint) should remain in the interior of the two parallel edges. The
one that will remain “trapped” on the final drawing will correspond to the true
literal of this clause.

The gadgets, which correspond to variables and clauses of φ, are connected
together by the skeleton of graph Gφ, which is depicted in Fig. 16a. The skele-
ton consists of two main parts, i.e., one “horizontal” and one “vertical”. The
vertical part accommodates the clause gadgets (see Fig. 16a). The horizontal
part will be used in order to “plug” the variable gadgets. The long edges that
perpendicularly cross (refer to the crossing edges slightly above the horizontal
part in Fig. 16a), imply that the vertical part should be perpendicular to the
horizontal part. The horizontal part of the skeleton is separately illustrated in
Fig. 16b. Observe that it contains one set of horizontal lines, which in conjunc-
tion with the vertical edges of the variable and clause gadgets do not allow it
to bend.

Fig. 17 shows how the variable gadgets are attached to the skeleton. More
precisely, this is accomplished by a single edge, which should perpendicularly
cross the set of the horizontal edges of the horizontal part. Therefore, each
variable gadget is perpendicularly attached to the skeleton, as in Fig. 17. Note
that each variable gadget should be drawn completely above these horizontal
edges, since otherwise the connections among variable endpoints and clause
endpoints would not be feasible. The connector vertices of the dummy variable
gadgets, the variable gadgets and the vertical part of the construction, ensure
that the variable gadgets will be parallel to each other (i.e., they are not allowed
to bend) and parallel to the vertical part of the construction.

4.2 Properties of the Construction

We now proceed to investigate some properties of our construction. Any path
of length two that emanates from a top- or bottom-clause endpoint can reach a
variable endpoint either on the left or on the right side of its associated variable

3With slight abuse of notation, the same term is used to denote variables of φ and vertices
of Gφ.
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C1

C2

Cm

Horizontal Part

Vertical Part

(a) (b)

Variable Gadgets

Figure 16: Illustration of the skeleton of the construction.



594 Argyriou et al. The Straight-Line RAC Drawing Problem is NP-Hard

C3 = x1 ∨ x2 ∨ x3

C2 = x1 ∨ x2 ∨ x3

C1 = x1 ∨ x2 ∨ x3

x1,1

x1,3

x1,1

x1,3

x2,1x2,1

x3,1 x3,1

x3,2 x3,2

x2,3x2,3

x3,3 x3,3

x1,2 x1,2

x2,2x2,2

Figure 17: The reduction from 3-SAT to the straight-line RAC drawing problem.
The input formula is φ = (x1 ∨ x2 ∨ x3)∧ (x1 ∨ x2 ∨ x3)∧ (x1 ∨ x2 ∨ x3).
The drawing corresponds to the truth assignment x1=x3=true, x2=false.
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gadget. The first edge of this path should perpendicularly cross the vertical
edges of the vertical part of the construction and pass through some corridors4,
whereas the second edge will be used to realize the “final” connection with the
variable gadget endpoint (see Fig. 17).

The same doesn’t hold for the paths that emanate from a right-clause end-
point. These paths can only reach variable endpoints on the right side of their
associated variable gadgets. More precisely, the first edge of the 2-length path
should cross one of the two parallel edges (refer to the bold drawn edges of
Fig. 15c) that “trap” it, whereas the other one should be used to reach (passing
through variable corridors) its variable endpoint (see Fig. 17).

Our construction ensures that up to translations, rotations and stretchings
any RAC drawing of Gφ looks like the one of Fig. 17.

4.3 Reduction from 3-SAT

Theorem 3 It is NP-hard to decide whether an input graph admits a straight-
line RAC drawing.

Proof: It is clear that the construction can be completed in O(nm) time.
Assume now that there is a RAC drawing Γ(Gφ) of Gφ. If the negated vertices
of the variable gadget that corresponds to xi, i = 1, 2, . . . , n, lie to the “left” side
in Γ(Gφ), then variable xi is set to true, otherwise xi is set to false. We argue
that this assignment satisfies φ. To realize this, observe that there exist three
paths that emanate from each clause gadget. The one that emanates from the
right endpoint of each clause gadget can never reach a false value. Therefore,
each clause of φ must contain at least one true literal, and thus φ is satisfiable.

Conversely, suppose that there is a truth assignment that satisfies φ. We
proceed to construct a RAC drawing Γ(Gφ) of Gφ, as follows: In the case where,
in the truth assignment, variable xi, i = 1, 2, . . . , n is set to true, we place the
negated vertices of the variable gadget that corresponds to xi, to its left side
in Γ(Gφ), otherwise to its right side. Since each clause of φ contains at least
one true literal, we choose this as the right endpoint of its corresponding clause
gadget. As mentioned above, it is always feasible to be connected to its variable
gadgets by paths of length two. This completes our proof. 2

5 Conclusions

In this paper, we proved that it is NP-hard to decide whether a graph admits a
straight-line RAC drawing. Didimo et al. [7] proved that it is always feasible to
construct a RAC drawing of a given graph with at most three bends per edge.
If we permit one or two bends per edge, does the problem remain NP-hard?
The same question arises if the input graph has n vertices and exactly 4n− 10
edges, i.e., whether the problem of recognizing the class of maximally dense
RAC graphs is also NP-hard.

4In Fig. 17, the corridors are the gray-shaded regions that reside at each variable gadget.
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