
Journal of Graph Algorithms and Applications
http://jgaa.info/ vol. 16, no. 2, pp. 543–567 (2012)
DOI: 10.7155/jgaa.00273

The h-Index of a Graph and its Application to
Dynamic Subgraph Statistics

David Eppstein 1 Emma S. Spiro 2

1Computer Science Department, University of California, Irvine
2Department of Sociology, University of California, Irvine

Abstract

We describe a data structure that maintains the number of triangles in
a dynamic undirected graph, subject to insertions and deletions of edges
and of degree-zero vertices. More generally it can be used to maintain
the number of copies of each possible three-vertex subgraph in time O(h)
per update, where h is the h-index of the graph, the maximum number
such that the graph contains h vertices of degree at least h. We also
show how to maintain the h-index itself, and a collection of h high-degree
vertices in the graph, in constant time per update. Our data structure
has applications in social network analysis using the exponential random
graph model (ERGM); its bound of O(h) time per edge is never worse than
the Θ(

√
m) time per edge necessary to list all triangles in a static graph,

and is strictly better for graphs obeying a power law degree distribution.
In order to better understand the behavior of the h-index statistic and
its implications for the performance of our algorithms, we also study the
behavior of the h-index on a set of 136 real-world networks.

Submitted:
December 2011

Accepted:
August 2012

Final:
August 2012

Published:
August 2012

Article type:
Regular paper

Communicated by:
S. Albers

This work was supported in part by NSF grants 0830403 and 1217322 and by the Office of

Naval Research under grant N00014-08-1-1015. A preliminary version of these results was

presented at the Algorithms and Data Structures Symposium (WADS), 2009.

E-mail addresses: eppstein@uci.edu (David Eppstein) espiro@uci.edu (Emma S. Spiro)

http://dx.doi.org/10.7155/jgaa.00273
mailto:eppstein@uci.edu
mailto:espiro@uci.edu

544

1 Introduction

In this paper we study problems of counting the number of copies of a small
subgraph that are present in a larger graph undergoing a dynamic sequence of
edge addition and edge deletion operations. Although this dynamic subgraph
isomorphism problem can be motivated by several different applications, our
primary motivation is in the statistical modeling of social networks.

The exponential random graph model (ERGM, or p∗ model) [19, 33, 38] is a
technique for assigning probabilities to graphs that can be used both to generate
simulated data for social network analysis and to perform probabilistic reasoning
on real-world data. In this model, one fixes the vertex set of a graph, identifies
certain features fi in graphs on that vertex set, determines a weight wi for each
feature, and defines the probability of each graph G to be proportional to an
exponential function of the sum of its features’ weights:

Pr(G) =
1

Z
exp

∑
fi∈G

wi.

The constant of proportionality Z is found by summing over all graphs on the
same vertex set:

Z =
∑
G

exp
∑
fi∈G

wi.

For example, if each potential edge is considered to be a feature and all edges
have weight ln p

1−p , the result is the familiar Erdős–Rényi–Gilbert G(n, p) model

of random graphs [21]. However, the ERGM model is much more general: any
probability distribution on graphs with a fixed vertex set can be modeled as an
ERGM with an appropriate set of features. Because of its generality, the ERGM
model is difficult to analyze analytically. Instead, in order to generate graphs in
an ERGM model or to perform other forms of probabilistic reasoning with the
model such as fitting feature weights to real-world data, one typically uses the
Metropolis–Hastings algorithm [34], a version of Markov Chain Monte Carlo
sampling that performs a large sequence of small updates to sample graphs,
recalculates after each update the sum of feature weights, and uses the updated
weight sums to determine whether to accept or reject each update. Because this
method must evaluate large numbers of graphs, it is important to develop very
efficient algorithms for identifying the features that change after each update.
And because only the small set of changed features between two very similar
graphs is relevant for determining whether to accept or reject an update, it is
important that these algorithms be exact and not approximate.

Typical features used in social network modeling applications of the ERGM
framework take the form of small subgraphs. Features in the form of stars of
several edges with a common vertex may be used to model constraints on the de-
gree distribution of the resulting graphs. Triangles, complete three-vertex sub-
graphs, model the sociological phenomenon that two people who have a friend
in common have an increased likelihood of being friends with each other [20].
Other subgraph features may also be used to control the tendencies of simpler

JGAA, 16(2) 543–567 (2012) 545

models to generate unrealistically extremal graphs [35]. ERGM simulation with
this type of feature leads naturally to algorithmic problems of subgraph iso-
morphism, listing or counting all copies of a given small subgraph in a larger
graph.

There has been much past algorithmic work on subgraph isomorphism prob-
lems. It is known, for instance, that an n-vertex graph with m edges may have
Θ(m3/2) triangles and four-cycles, and all triangles and four-cycles can be found
in time O(m3/2) [7, 24]. All cycles of length up to seven can be counted rather
than listed in time of O(nω) [3] where ω ≈ 2.376 is the exponent from the asymp-
totically fastest known matrix multiplication algorithms [8]; this improves on
the previous O(m3/2) bounds for dense graphs. Fast matrix multiplication has
also been used for more general problems of finding and counting small cliques
in graphs and hypergraphs [11,26,29,37,39]. In planar graphs, or more generally
graphs of bounded local treewidth, the number of copies of any fixed subgraph
may be found in linear time [14, 15], even though this number may be a large
polynomial of the graph size [12]. Approximation algorithms for subgraph iso-
morphism counting problems based on random sampling have also been studied,
with motivating applications in bioinformatics [10,25,32]. However, much of this
subgraph isomorphism research makes overly restrictive assumptions about the
graphs that are allowed as input, runs too slowly for the ERGM application,
depends on impractically complicated matrix multiplication algorithms, or ap-
proximates the subgraph counts rather than calculating them precisely as is
needed to accurately perform the Metropolis–Hastings algorithm.

Markov Chain Monte Carlo methods for ERGM-based reasoning process a
sequence of graphs each differing by a small change from a previous graph,
so it is natural to seek additional efficiency by applying dynamic graph algo-
rithms [16, 18, 36], data structures to efficiently maintain properties of a graph
subject to vertex and edge insertions and deletions. However, past research on
dynamic graph algorithms has focused on problems of connectivity, planarity,
and shortest paths, and not on finding the features needed in ERGM calcula-
tions. In this paper, we apply dynamic graph algorithms to subgraph isomor-
phism problems important in ERGM feature identification. To our knowledge,
this is the first work on dynamic algorithms for subgraph isomorphism.

A key ingredient in our algorithms is the h-index, a number introduced
by Hirsch [23] as a way of balancing prolixity and impact in measuring the
academic achievements of individual researchers. Although problematic in this
application [1], the h-index can be defined and studied mathematically, in graph-
theoretic terms, and provides a convenient measure of the uniformity of distri-
bution of edges in a graph. Specifically, for a researcher, one may define a
bipartite graph in which the vertices on one side of the bipartition represent the
researcher’s own papers, the vertices on the other side represent papers by other
people, and edges correspond to citations by others of the researcher’s papers.
The h-index of the researcher is the maximum number h such that at least h
vertices on the researcher’s side of the bipartition each have degree at least h.
We generalize this to arbitrary graphs, and define the h-index of any graph to
be the maximum h such that the graph contains h vertices of degree at least

546

h. Intuitively, an algorithm whose running time is bounded by a function of h
is capable of tolerating arbitrarily many low-degree vertices without slowdown,
and is only mildly affected by the presence of a small number of very high degree
vertices; its running time depends primarily on the numbers of intermediate-
degree vertices. As we describe in more detail in Section 8, the h-index of any
graph with m edges and n vertices is sandwiched between m/n and

√
2m, so

it is sublinear whenever the graph is not dense, and the worst-case graphs for
these bounds have an unusual degree distribution that is unlikely to arise in
practice.

Our main result is that we may maintain a dynamic graph, subject to edge
insertions, edge deletions, and insertions or deletions of isolated vertices, and
maintain the number of triangles in the graph, in time O(h) per update where h
is the h-index of the graph at the time of the update. This compares favorably
with the time bound of Θ(m3/2) necessary to list all triangles in a static graph.
In the same O(h) time bound per update, we may more generally maintain
the numbers of three-vertex induced subgraphs of each possible type, and in
constant time per update we may maintain the h-index itself. Our algorithms
are randomized, and our analysis of them uses amortized analysis to bound
their expected times on worst-case input sequences. Our use of randomization
is limited, however, to the use of hash tables to store and retrieve data associated
with keys in O(1) expected time per access. By using either direct addressing or
deterministic integer searching data structures instead of hash tables, we may
avoid the use of randomness at an expense of either increased space complexity
or an additional factor of O(log log n) in time complexity; we omit the details.

We also study the behavior of the h-index, both on scale-free graph models
and on a set of real-world graphs used in social network analysis. We show that
for scale-free graphs, the h-index scales as a power of n, less than its square
root, while in the real-world graphs we studied the scaling exponent appears to
have a bimodal distribution.

The rest of this paper is organized as follows. In Section 2 we describe a
data structure for maintaining dynamically the h-index of a graph, or more
generally of any integer function on a set. As well as the index itself, this data
structure maintains a partition of the graph’s vertices into a small set of high-
degree vertices and a larger set of low-degree vertices. In Section 3 we modify
this data structure so that changes to the partition are very infrequent. Our
main result, in Section 4, is a data structure for counting the triangles in a
dynamic graph; it uses the slowly-changing degree partition of Section 3 as a
subroutine. In Section 5 we describe how to use this result to maintain statistics
about all three-vertex subgraphs or induced subgraphs in a dynamic graph, in
Section 6 we discuss algorithms for maintaining counts of certain subgraphs with
more than three vertices, and in Section 7 we discuss variants of these counting
problems with weighted edges and colored vertices. In Section 8 we describe
the behavior of the h-index on a corpus of over 100 real-world graphs, and we
conclude with a section discussing our results.

JGAA, 16(2) 543–567 (2012) 547

2 Dynamic h-Indexes of Integer Functions

We begin by describing a data structure for the following problem, which gen-
eralizes the problem of maintaining h-indexes of dynamic graphs.

Suppose that we are given a set S, and a function f from S to the non-
negative integers; then we define the h-index of S and f to be the maximum
number h such that there exists a subset H ⊂ S, with |H| = h, and which
f(x) ≥ h for every member of h. We call the partition of S into the two subsets
(H,S \H) an h-partition of S and f .

Now, suppose that S and f changes by a sequence of discrete updates. We
allow three types of updates: insertions that add one new member x to S, with
an arbitrary value of f(x), deletions that remove an arbitrary member from S,
and changes to the value f(x) of an existing member of S. As S and f undergo
a sequence of updates of these types, we wish to maintain both the h-index of
S and f and a valid h-partition realizing this h-index.

To keep track of the h-index and h-partition, we maintain the following data
structures:

• A dictionary F mapping each x ∈ S to its value under f : F [x] = f(x).

• The set H (stored as a dictionary in which the keys in each (key,value)
pair are the members of H and the values are not used).

• The number h of elements in H.

• The set B = {x ∈ H | f(x) = |H|}. Intuitively, we think of these elements
as being “on the bubble”: if the h-index is to be reduced by one, each of
these elements must be removed from H.

• A dictionary C mapping each non-negative integer i to the set {x ∈ (S \
B) | f(x) = i} of the elements that f maps to i (excluding the elements
already included in B). We only store these sets when they are non-empty,
so the situation that there is no x with f(x) = i can be detected by the
absense of i among the keys of C.

These structures allow us to insert an element x into our structure, with
f -value f(x), by performing the following sequence of steps:

1. Set F [x] = f(x)

2. If f(x) is one of the existing keys of C, add x to the existing set C[f(x)];
otherwise, set C[f(x)] to point to the new singleton set {x}.

3. Test whether f(x) > |H|. If not, the h-index does not change, and the
insertion operation is complete.

4. If f(x) > |H|:

548

• If B is nonempty, the h-index does not change; however, x must be
included in H. To do so, we choose an arbitrary y ∈ B, and remove
y from B and from H. If h is one of the keys of C, we add y to the
existing set C[h]; otherwise, we set C[h] to point to the new singleton
set {y}.

• Otherwise, if B is empty, the insertion causes the h-index (|H|) to
increase by one. In this case, we increment h by setting h := h + 1.
Additionally, we test whether the new value of h is one of the keys
in C. If it is, we set B to equal the identity of the set in C[h] and
delete the entry for key h in C; otherwise, we set B to the empty set.

To delete x from our structure, we perform a similar sequence of operations
that reverses the effect of an insertion:

1. Remove the entry for x from F .

2. If x belongs to B, remove it from B; otherwise remove it from the set
C[f(x)], and remove the entry for f(x) in C if the removal of x causes
C[f(x)] to become empty.

3. If x did not belong to H, the h-index does not change, and the deletion
operation is complete.

4. If x belonged to H, remove it from H, and test whether C[h] is nonempty.

• If C[h] is nonempty, we move an arbitrary element y from C[h] to B,
and if this causes C[h] to become empty, we remove the entry for h
from C. Because we have replaced x with y in H, the h-index does
not change.

• If C[h] is empty, the deletion causes the h-index to decrease by one, so
we decrement h by setting h := h− 1. Additionally, if the remaining
set B is nonempty, we store its identity into C[h+ 1]. We replace B
by the empty set: there may be additional elements y with f(y) = h,
but none of them belong to the set H in the current h-partition.

Changing the value of f(x) may be accomplished by deleting x and then
reinserting it, with some care so that we do not update H if x was already in
H and both the old and new values of f(x) are at least equal to |H|:

1. If x is in H and the new value of f(x) is greater than or equal to h, or x
is not in H and the new value of f(x) is less than or equal to h, then set
F [x] to the new value and return.

2. Otherwise, delete x and then reinsert it with its new value.

Theorem 1 The data structure described above maintains the h-index of S and
f , and an h-partition of S and f , in constant time plus a constant number of
dictionary operations per update.

JGAA, 16(2) 543–567 (2012) 549

Proof: The time analysis follows immediately from the description of the data
structure update operations: each operation consists of a bounded number of
updates to dictionary structures, with no looping or recursion. Additionally,
these updates maintain invariant the desired properties of the set B and the
dictionary of sets C[i], namely that they partition S properly by their values of
f(x), that B consists exactly of those elements of H with f(x) = |H|, and that
H consists of B together with those elements of S with f(x) > |H|.

Thus, h = |H| has the property that there exists a set (namely H) with h
elements, all of which have function value at least h. There can be no larger h′

with the same property, because all of the elements with value greater than h
belong to H already so there can be no larger set of elements with larger values.
It follows that h is the correct h-index of S and f , and that (H,S \ H) is a
correct h-partition. �

As observed in the introduction, classical hash table data structures allow
the dictionary operations to be implemented in constant expected time per
operation. Alternatively, the dictionaries may be implemented using slower
deterministic data structures such as van Emde Boaz trees.

Corollary 1 If G is a graph, undergoing a sequence of edge insertions and
deletions, we may maintain the h-index of G, and an h-partition of the vertices
of G, in constant time per update.

Proof: Each update to G is reflected in a pair of change operations to the vector
of vertex degrees of G, so the result follows immediately from Theorem 1. �

3 Gradual Approximate h-Partitions

Although the vector h-index data structure of the previous section allows us to
maintain the h-index of a dynamic graph very efficiently, it has a property that
would be undesirable were we to use it directly as part of our later dynamic graph
data structures: the h-partition (H,S \H) changes too frequently. Changes to
the set H will turn out to be such an expensive operation that we only wish
them to happen, on average, O(1/h) times per update.

In order to construct a data structure that changes H so infrequently, it
is necessary to restrict the set of updates that are allowed: allowing arbitrary
changes to a vector of integers, as we did in the previous section, could lead to
a constant rate of change to H. However, we observe that, in Corollary 1, the
vector of vertex degrees does not change arbitrarily. Rather, each update causes
only two vertex degrees to change, and they change only by being incremented
or decremented by a single unit. To model this, we again assume a more general
setup in which we are given a dynamic set S and a dynamic integer function
f , but we allow f to change only by incrementing or decrementing one of its
values, and we allow S to change only by inserting or deleting an element x for
which f(x) = 0. As we now describe, a modification of the H-partition data

550

structure has the desired property of changing more gradually for this restricted
class of updates.

Specifically, along with all of the structures of the H-partition, we maintain
a set P ⊂ H describing a partition (P, S \P). When an element of x is removed
from H, we remove it from P as well, to maintain the invariant that P ⊂ H.
However, we only add an element x to P when an update (an increment of f(x)
or decrement of f(y) for some other element y) causes f(x) to become greater
than or equal to 2|H|. The elements to be added to P on each update may be
found by maintaining a dictionary, parallel to C, that maps each integer i to
the set {x ∈ H \ P | f(x) = i}.

As an accounting technique for the analysis of the algorithm (not something
actually stored within our data structure) we associate a (fractional) number
of “credits” with each member of P , that is zero when that element is added
to P . Each increment operation adds 1/|H|2 credit to each current member of
P , and each decrement operation on a member of P adds 1/|H| credits to that
member.

Lemma 1 Any sequence of operations during which |H| changes from h to
h′ > h includes at least (h′ − h)2 increment operations.

Proof: There exist at least h′−h members of the set H after the sequence that
were not members prior to the sequence. Each of these elements has f(x) ≤ h
prior to the sequence (else it would belong to H) and f(x) ≥ h′ after the
sequence, so the number of increments for these elements alone must have been
at least (h′ − h)2. �

Lemma 2 Any element x that is removed from P must have accumulated Ω(1)
credits.

Proof: Let h be the value of |H| at the time x was added to P , and h′ be the
value of max(h, |H|) at the time it is removed. We consider two cases:

• Suppose first that, between the times x was added to P and the time
it was removed, the value of |H| remained always at most 2h. Then by
Lemma 1, x must have accumulated at least (h′ − h)2/(2h)2 credits from
increment operations. Additionally, when x was added to P , it must have
been the case that f(x) ≥ 2h, and when it was removed it must have been
the case that f(x) ≤ h′, so in between those two times it must have been
the argument of at least 2h − h′ decrement operations. Therefore, using
the assumption that |H| remains small throughout this sequence, it must
also have received Ω((2h−h′)/h) credits from decrement operations. But
for any h′ ≥ h, (h′ − h)2/h2 + (2h− h′)/h = Ω(1).

• Suppose on the other hand that, at some time between the addition and
the removal of x, the value of |H| reached 2h. Then, using Lemma 1 alone,
x must have accumulated (2h−h)2/(2h)2 = Ω(1) credits within this time
period.

JGAA, 16(2) 543–567 (2012) 551

Thus, in either case, x must have accumulated Ω(1) credits, as the lemma states.
�

Theorem 2 Let σ denote a sequence of operations to the data structure de-
scribed above, starting from an empty data structure. Let ht denote the value
of h after t operations, and let q =

∑
i 1/hi. Then the data structure undergoes

O(q) additions and removals of an element to or from P .

Proof: The number of additions to P is equal to the number of removals from
P , plus the number of items that remain in P at the end of the sequence. But
by Lemma 1 we can find a subsequence I of increase operations such that the
final value of |H| (and therefore also the number of remaining items in P) is
O(
∑
i∈I 1/hi). Thus, we need count only the number of times elements are

removed from P . By Lemma 2, this number of removals is proportional to the
total number of credits that have been accumulated by all elements over the
course of σ. But, since each operation assigned at most 1/hi credits, this total
is at most q. �

For our later application of this technique as a subroutine in our triangle-
finding data structure, we will need a more local analysis. We may divide
a sequence of updates into epochs, as follows: each epoch begins when the h-
index reaches a value that differs from the value at the beginning of the previous
epoch by a factor of two or more. Then, by Lemma 1, an epoch with h as its
initial h-index lasts for at least Ω(h2) steps. Due to this length, we may assign
a full unit of credit to each member of P at the start of each epoch, without
changing the asymptotic behavior of the total number of credits assigned over
the course of the algorithm. With this modification, it follows from the same
analysis as above that, within an epoch of s steps, with an h-index of h at the
start of the epoch, there are O(s/h) changes to P .

4 Counting Triangles

We are now ready to describe our data structure for maintaining the number of
triangles in a dynamic graph. It consists of the following information:

• A count t of the number of triangles in the current graph

• A set E of the edges in the graph, indexed by the pair of endpoints of the
edge, allowing constant-time tests for whether a given pair of endpoints
are linked by an edge.

• A partition of the graph vertices into two sets H and V \H as maintained
by the data structure from Section 3.

• A dictionary P mapping each pair of vertices u, v to a number P [u, v], the
number of two-edge paths from u to v via a vertex of V \ H. We only
maintain nonzero values for this number in P ; if there is no entry in P for
the pair u, v then there exist no two-edge paths via V \H that connect u
to v.

552

To insert a vertex v (with no incident edges), we perform the insertion into
the gradual approximate h-partition structure of Section 3; because v has no
edges, its insertion cannot change H and does not affect any of the other pieces
of information described above. Similarly, to delete a vertex with no incident
edges, we perform the deletion in the gradual approximate h-partition, and do
not change any of our other data structures.

To insert an edge uv, we perform the following steps:

1. We look up the pair (u, v) in P , and if it is one of the keys of P we increase
t by the quantity P [u, v].

2. For each vertex w in H, we test whether edges uw and vw are present,
and if so we increase t by one.

3. If u does not belong to H, then for each neighbor w 6= v of u we increase
P [v, w] by one.

4. If v does not belong to H, then for each neighbor w 6= u of v we increase
P [u,w] by one.

5. We add edge uv to E.

6. We update the degrees of u and v in the graduate approximate h-partition
structure. If this update causes any change to the approximateH-partition,
the change will take the form of the addition of one or more vertices to H.
For each such vertex, x, we find all two-edge paths yxz connecting pairs
of neighbors of x, and for each such path we decrement P [y, z].

Similarly, to delete an edge uv, we perform a corresponding sequence of
steps:

1. We look up the pair (u, v) in P , and if it is one of the keys of P we decrease
t by the quantity P [u, v].

2. For each vertex w in H, we test whether edges uw and vw are present,
and if so we decrease t by one.

3. If u does not belong to H, then for each neighbor w 6= v of u we increase
P [v, w] by one.

4. If v does not belong to H, then for each neighbor w 6= u of v we increase
P [u,w] by one.

5. We remove edge uv from E.

6. We update the degrees of u and v in the graduate approximate h-partition
structure. If this update causes any change to the approximateH-partition,
the change will take the form of the removal of one or more vertices from
H. For each such vertex, x, we find all two-edge paths yxz connecting
pairs of neighbors of x, and for each such path we increment P [y, z].

JGAA, 16(2) 543–567 (2012) 553

Theorem 3 The data structure described above requires space O(mh) and may
be maintained in O(h) randomized amortized time per operation, where h is the
h-index of the graph at the time of the operation.

Proof: Insertion and deletion of vertices with no incident edges requires no
change to most of these data structures, so the time analysis for these operations
follows from Corollary 1 and Theorem 2. In the remainder of the proof we
concentrate on the edge insertion and deletion operations.

To update the count of triangles, we need to know the number of triangles
uvw involving the edge uv that is being deleted or inserted. Triangles in which
the third vertex w belongs to H may be found in time O(h) by testing all
members of H, using the data structure for E to test in constant time per
member whether it forms a triangle. Triangles in which the third vertex w does
not belong to H may be counted in time O(1) by a single lookup in P .

The data structure for E may be updated in constant time per operation, and
the partition into H and V \H may be maintained as described in the previous
sections in constant time per operation. Thus, it remains to analyze the steps
of the algorithm that update P . If we are inserting an edge uv, and u does not
belong to H, it has at most 2h neighbors; we examine all other neighbors w of
u and for each such neighbor increment the counter in P [v, w] (or create a new
entry in P [v, w] with a count of 1 if no such entry already exists). Similarly if v
does not belong to H we examine all other neighbors w of v and for each such
neighbor increment P [u,w]. If we are deleting an edge, we similarly decrement
the counters or remove the entry for a counter if decrementing it would leave a
zero value. Each update involves incrementing or decrementing O(h) counters
and therefore may be implemented in O(h) time.

Finally, a change to the graph may lead to a change in H, which must be
reflected in P . If a vertex v is moved from H to V \ H, we examine all pairs
u,w of neighbors of v and increment the corresponding counts in P [u,w], and
if a vertex v is moved from V \H to H we examine all pairs u,w of neighbors
of v and decrement the corresponding counts in P [u,w]. This step takes time
O(h2), because v has O(h) neighbors when it is moved in either direction, but
as per the analysis in Section 3 it is performed an average of O(1/h) times per
operation, so the amortized time for updates of this type, per change to the
input graph, is O(h).

The space for the data structure is O(m) for E, O(n) for the data structure
that maintains H, and O(mh) for P because each edge of the graph belongs to
O(h) two-edge paths through low-degree vertices. �

5 Subgraph Multiplicity

Although the data structure of Theorem 3 only counts the number of triangles
in a graph, it is possible to use it to count the number of three-vertex subgraphs
of all types, or the number of induced three-vertex subgraphs of all types. In
what follows we let pi = pi(G) denote the number of paths of length i in G, and
we let ci = ci(G) denote the number of cycles of length i in G.

554

Among any subset of three vertices {u, v, w} of a graph G there are three
possible edges uv, uw, and vw, and the set of these edges that are actually
present in G determines one of four possible induced subgraphs: an independent
set with no edges, a graph with a single edge, a two-star consisting of two edges,
or a triangle. Let g0, g1, g2, and g3 denote the numbers of three-vertex subgraphs
of each of these types, where gi counts the three-vertex induced subgraphs that
have i edges.

If G is a dynamic graph, then it is straightforward to maintain the three
quantities n, m, and p2, where n denotes the number of vertices of the graph,
m denotes the number of edges, and p2 denotes the number of two-edge paths
that can be formed from the edges of the graph. Updating these quantities takes
constant time per operation: each change to the graph increments or decrements
n or m. Additionally, adding an edge uv to a graph where u and v already have
du and dv incident edges respectively increases p2 by du + dv, while removing
an edge uv decreases p2 by du + dv − 2.

Letting c3 denote the number of triangles in the graph as maintained by
Theorem 3, the quantities described above satisfy the matrix equation

1 1 1 1
0 1 2 3
0 0 1 3
0 0 0 1

g0
g1
g2
g3

 =

n(n− 1)(n− 2)/6

m(n− 2)
p2
c3

 .

Each row of the matrix corresponds to a single linear equation in the gi values.
The equation from the first row, g0 + g1 + g2 + g3 =

(
n
3

)
, follows from the fact

that each triple of vertices in G forms exactly one induced subgraph of one of
these four types. The equation from the second row, g1 + 2g2 + 3g3 = m(n− 2),
is a form of double counting: the left hand side of the equation counts the
total number of edges in all three-vertex subgraphs in one way, by multiplying
the number of edges in each type of subgraph by the number of times that
subgraph appears and adding these products, while the right hand side of the
equation counts the same quantity (the total number of edges in all three-vertex
graphs) by multiplying the number of edges (m) by the number of three-vertex
graphs each edge appears in (n − 2). The third row’s equation, g2 + 3g3 = p2,
similarly counts the total number of two-edge paths occurring in all three-vertex
subgraphs: the left hand side again multiplies the number of paths per subgraph
type by the number of subgraphs with that type, and the right hand side is just
the number of two-edge paths, as each path appears in exactly one three-vertex
subgraph. The fourth equation g3 = c3 follows from the fact that each three
vertices that are connected in a triangle cannot form any other induced subgraph
than a triangle itself.

JGAA, 16(2) 543–567 (2012) 555

By inverting the matrix we may reconstruct the g values:

g3 = c3

g2 = p2 − 3g3

g1 = m(n− 2)− (2g2 + 3g3)

g0 =

(
n

3

)
− (g1 + g2 + g3).

Thus, we may maintain each number of induced subgraphs gi in the same asymp-
totic time per update as we maintain the number of triangles in our dynamic
graph. The numbers of subgraphs of different types that are not necessarily
induced are even easier to recover: the number of three-vertex subgraphs with i
edges is given by the ith entry of the vector on the right hand side of the matrix
equation.

As we detail in the next section, it is also possible to maintain efficiently the
numbers of star subgraphs of a dynamic graph, and the number of four-vertex
paths in a dynamic graph.

6 Subgraphs with more than three vertices

If si = si(G) denote the number of star subgraphs K1,i in G, we may maintain
si, for any constant i, in constant time per update, as it is a sum of polynomials
of the vertex degrees: si =

∑
v dv(dv − 1) · · · (dv − i − 1)/i!. For instance, the

number of claws (three-leaf stars) in G is s3 =
∑
v dv(dv − 1)(dv − 2)/6. In

at least one other nontrivial case we may maintain the number of four-vertex
subgraphs of a certain type as efficiently as the number of triangles.

Theorem 4 We may maintain a dynamic graph subject to edge insertions and
deletions and to insertions and deletions of isolated vertices, and keep track of
the number p3 of four-vertex paths in the graph, in amortized time O(h) per
update where h is the h-index of the graph at the time of an update.

Proof: Let q denote the number of sequences of three edges that form either
a path or a cycle in G. Let dv denote the degree of v (that is, its number of
incident edges), and let Pv denote the number of two-edge paths having v as an
endpoint (that is,

∑
(dw − 1) where the sum is over all neighbors of v in G).

Inserting an edge uv into the graph G increases q by dudv+Pu+Pv: the term
dudv counts the paths with uv as middle edge, and the other two terms count
the paths having v or u as endpoint. Similarly, removing edge uv decreases q
by (du − 1)(dv − 1) + (Pu − dv + 1) + (Pv − du + 1). Thus, if we can calculate
Pu and Pv, we can correctly update q.

Our data structure stores the numbers dv for each vertex v, and the numbers
Pu only for those vertices u that belong to the set H maintained by the gradual
partition of Section 3. When a vertex is added to H, the value Pu stored for
it may be computed in time O(h). When we insert or delete an edge uv, the

556

numbers Pu and Pv that we need to use to update q may be found either by
looking them up in this data structure (if the endpoints u or v of the updated
edge belong to H) or in time O(h) by looking at all neighbors of the endpoints
if they do not belong to H. Finally, whenever we insert or delete an edge uv,
we must update the numbers Pw for all vertices w belonging to H, where either
w is one of the two endpoints u and v or it is adjacent to one or both of these
endpoints; this update may be performed in constant time per member of H,
or O(h) time total.

The number of four-vertex paths that we maintain is then p3 = q − 3c3
where c3 denotes the number of triangles in the graph as maintained by our
other structures. �

The counts of larger subgraphs in G obey additional linear relations: for
instance,

∑
v P

2
v = p4 + 2p2 + 3s3 + 4c4. Based on this principle, in work

subsequent to the original presentation of the results in this paper, we extended
our algorithms to count all possible four-vertex subgraphs [17]. However, the
time per update for these four-vertex subgraph counting algorithms is O(h2),
higher than the time for the data structures in this paper.

7 Weighted Edges and Colored Vertices

It is possible to generalize our triangle counting method to problems of weighted
triangle counting: we assign each edge uv of the graph a weight wuv, define the
weight of a triangle to be the product of the weights of its edges, and maintain
the total weight of all triangles. For instance, if 0 ≤ wuv ≤ 1 and each edge
is present in a subgraph with probability wuv, then the total weight gives the
expected number of triangles in that subgraph.

Theorem 5 The total weight of all triangles in a weighted dynamic graph, as
described above, may be maintained in time O(h) per update.

Proof: We modify the structure P [u, v] maintained by our triangle-finding data
structure, so that it stores the weight of all two-edge paths from u to v. Each
update of an edge uv in our structure involves a set of individual triangles uvx
involving vertices x ∈ H (whose weight is easily calculated) together with the
triangles formed by paths counted in P [u, v] (whose total weight is P [u, v]wuv).
The same time analysis from Theorem 3 holds for this modified data structure.

�

For social networking ERGM applications, an alternative generalization may
be appropriate. Suppose that the vertices of the given dynamic graph are col-
ored; we wish to maintain the number of triangles with each possible combina-
tion of colors. For instance, in graphs representing sexual contacts [27], edges
between individuals of the same sex may be less frequent than edges between
individuals of opposite sexes; one may model this in an ERGM by assigning the
vertices two different colors according to whether they represent male or female

JGAA, 16(2) 543–567 (2012) 557

individuals and using feature weights that depend on the colors of the vertices
in the features. As we now show, problems of counting colored triangles scale
well with the number of different groups into which the vertices of the graph
are classified.

Theorem 6 Let G be a dynamic graph in which each vertex is assigned one of
k different colors. Then we may maintain the numbers of triangles in G with
each possible combination of colors, in time O(h+ k) per update.

Proof: We modify the structure P [u, v] stored by our triangle-finding data
structure, to store a vector of k numbers: the ith entry in this vector records the
number of two-edge paths from u to v through a low-degree vertex with color i.
Each update of an edge uv in our structure involves a set of individual triangles
uvx involving vertices x ∈ H (whose colors are easily observed) together with the
triangles formed by paths counted in P [u, v] (with k different possible colorings,
recorded by the entries in the vector P [u, v]). Thus, the part of the update
operation in which we compute the numbers of triangles for which the third
vertex has low degree, by looking up u and v in P , takes time O(k) instead of
O(1). The same time analysis from Theorem 3 holds for all other aspects of this
modified data structure. �

Both the weighting and coloring generalizations may be combined with each
other without loss of efficiency.

8 How Small is the h-Index of Typical Graphs?

It is straightforward to identify the graphs with extremal values of the h-index.
A split graph in which an h-vertex clique is augmented by adding n−h vertices,
each connected only to the vertices in the clique, has n vertices and m = h(n−1)
edges, achieving an h-index of m/(n− 1). This is the minimum possible among
any graph with n vertices and m edges: any other graph may be transformed
into a split graph of this type, while increasing its number of edges and not
decreasing h, by finding an h-partition (H,V \H) and repeatedly replacing edges
that do not have an endpoint in H by edges that do have such an endpoint.
The graph with the largest h-index, for a given number of vertices and edges,
is a clique with m edges together with enough isolated vertices to fill out the
total to n; its h-index is

√
2m(1 + o(1)). Thus, for sparse graphs in which the

numbers of edges and vertices are proportional to each other, the h-index may
be as small as O(1) or as large as Ω(

√
n). At which end of this spectrum can

we expect to find the graphs arising in social network analysis?
One answer can be provided by fitting mathematical models of the degree

distribution, the relation between the number of incident edges at a vertex and
the number of vertices with that many edges, to social networks. For many large
real-world graphs, observers have reported power laws in which the number of
vertices with degree d is proportional to nd−γ for some constant γ > 1; a
network with this property is called scale-free [2, 27, 30, 31]. Typically, γ lies in

558

n h log n log h
log h

log n
10 5 2.3026 1.6094 0.6990
10 10 2.3026 2.3026 1.0000
11 6 2.3979 1.7918 0.7472
11 6 2.3979 1.7918 0.7472
12 2 2.4849 0.6931 0.2789
13 2 2.5649 0.6931 0.2702
16 6 2.7726 1.7918 0.6462
16 6 2.7726 1.7918 0.6462
16 8 2.7726 2.0794 0.7500
16 7 2.7726 1.9459 0.7018
17 8 2.8332 2.0794 0.7340
18 4 2.8904 1.3863 0.4796
19 7 2.9444 1.9459 0.6609
21 14 3.0445 2.6391 0.8668
21 9 3.0445 2.1972 0.7217
21 4 3.0445 1.3863 0.4553
23 8 3.1355 2.0794 0.6632
24 10 3.1781 2.3026 0.7245
24 8 3.1781 2.0794 0.6543
24 7 3.1781 1.9459 0.6123
24 7 3.1781 1.9459 0.6123
25 16 3.2189 2.7726 0.8614
26 5 3.2581 1.6094 0.4940
27 12 3.2958 2.4849 0.7540
31 7 3.4340 1.9459 0.5667
32 9 3.4657 2.1972 0.6340
32 28 3.4657 3.3322 0.9615
32 30 3.4657 3.4012 0.9814
32 18 3.4657 2.8904 0.8340
33 10 3.4965 2.3026 0.6585
34 34 3.5264 3.5264 1.0000
34 34 3.5264 3.5264 1.0000
35 10 3.5553 2.3026 0.6476
35 12 3.5553 2.4849 0.6989

n h log n log h
log h

log n
35 12 3.5553 2.4849 0.6989
35 7 3.5553 1.9459 0.5473
35 14 3.5553 2.6391 0.7423
35 12 3.5553 2.4849 0.6989
36 4 3.5835 1.3863 0.3869
36 9 3.5835 2.1972 0.6131
36 8 3.5835 2.0794 0.5803
37 11 3.6109 2.3979 0.6641
37 11 3.6109 2.3979 0.6641
37 12 3.6109 2.4849 0.6882
38 4 3.6376 1.3863 0.3811
39 10 3.6636 2.3026 0.6285
39 10 3.6636 2.3026 0.6285
39 12 3.6636 2.4849 0.6783
39 18 3.6636 2.8904 0.7890
39 20 3.6636 2.9957 0.8177
39 12 3.6636 2.4849 0.6783
41 10 3.7136 2.3026 0.6200
44 16 3.7842 2.7726 0.7327
44 23 3.7842 3.1355 0.8286
46 12 3.8286 2.4849 0.6490
46 17 3.8286 2.8332 0.7400
48 33 3.8712 3.4965 0.9032
48 33 3.8712 3.4965 0.9032
48 17 3.8712 2.8332 0.7319
54 15 3.9890 2.7081 0.6789
58 47 4.0604 3.8501 0.9482
58 58 4.0604 4.0604 1.0000
59 28 4.0775 3.3322 0.8172
60 8 4.0943 2.0794 0.5079
60 8 4.0943 2.0794 0.5079
62 14 4.1271 2.6391 0.6394
64 8 4.1589 2.0794 0.5000
65 10 4.1744 2.3026 0.5516

Table 1: Raw data from analysis of real-world networks, part I

JGAA, 16(2) 543–567 (2012) 559

n h log n log h
log h

log n
69 27 4.2341 3.2958 0.7784
69 27 4.2341 3.2958 0.7784
69 27 4.2341 3.2958 0.7784
71 22 4.2627 3.0910 0.7251
71 22 4.2627 3.0910 0.7251
72 7 4.2767 1.9459 0.4550
73 6 4.2905 1.7918 0.4176
75 8 4.3175 2.0794 0.4816
75 8 4.3175 2.0794 0.4816
80 7 4.3820 1.9459 0.4441
80 24 4.3820 3.1781 0.7252
84 8 4.4308 2.0794 0.4693
86 10 4.4543 2.3026 0.5169
97 35 4.5747 3.5553 0.7772
97 35 4.5747 3.5553 0.7772

100 11 4.6052 2.3979 0.5207
100 20 4.6052 2.9957 0.6505
101 14 4.6151 2.6391 0.5718
101 41 4.6151 3.7136 0.8047
102 13 4.6250 2.5649 0.5546
105 5 4.6540 1.6094 0.3458
111 8 4.7095 2.0794 0.4415
112 6 4.7185 1.7918 0.3797
118 6 4.7707 1.7918 0.3756
124 116 4.8203 4.7536 0.9862
124 6 4.8203 1.7918 0.3717
128 38 4.8520 3.6376 0.7497
128 38 4.8520 3.6376 0.7497
128 38 4.8520 3.6376 0.7497
129 18 4.8598 2.8904 0.5947
151 37 5.0173 3.6109 0.7197
154 6 5.0370 1.7918 0.3557
169 7 5.1299 1.9459 0.3793
180 7 5.1930 1.9459 0.3747

n h log n log h
log h

log n
205 11 5.3230 2.3979 0.4505
234 3 5.4553 1.0986 0.2014
244 11 5.4972 2.3979 0.4362
265 8 5.5797 2.0794 0.3727
275 6 5.6168 1.7918 0.3190
311 13 5.7398 2.5649 0.4469
332 48 5.8051 3.8712 0.6669
332 12 5.8051 2.4849 0.4281
352 7 5.8636 1.9459 0.3319
395 19 5.9789 2.9444 0.4925
452 10 6.1137 2.3026 0.3766
489 16 6.1924 2.7726 0.4477
533 12 6.2785 2.4849 0.3958
638 15 6.4583 2.7081 0.4193
673 13 6.5117 2.5649 0.3939
674 10 6.5132 2.3026 0.3535
719 13 6.5779 2.5649 0.3899
775 14 6.6529 2.6391 0.3967

1022 27 6.9295 3.2958 0.4756
1059 37 6.9651 3.6109 0.5184
1096 13 6.9994 2.5649 0.3665
1490 96 7.3065 4.5643 0.6247
1577 22 7.3633 3.0910 0.4198
1882 14 7.5401 2.6391 0.3500
2361 56 7.7668 4.0254 0.5183
2361 56 7.7668 4.0254 0.5183
2361 56 7.7668 4.0254 0.5183
2909 60 7.9756 4.0943 0.5134
3084 38 8.0340 3.6376 0.4528
4470 47 8.4051 3.8501 0.4581
6927 88 8.8432 4.4773 0.5063
7343 65 8.9015 4.1744 0.4690
8497 34 9.0475 3.5264 0.3898

10616 25 9.2701 3.2189 0.3472

Table 2: Raw data from analysis of real-world networks, part II

560

or near the interval 2 ≤ γ ≤ 3 although more extreme values are possible. The
h-index of these graphs may be found by solving for the h such that h = nh−γ ;
that is, h = Θ(n1/(1+γ)). For any γ > 1 this is an asymptotic improvement on
the worst-case O(

√
n) bound for graphs without power-law degree distributions.

For instance, for γ = 2 this would give a bound of h = O(n1/3) while for γ = 3
it would give h = O(n1/4). That is, by depending on the h-index as it does,
our algorithm is capable of taking advantage of the extra structure inherent in
scale-free graphs to run more quickly for them than it does in the general case.

8.1 Corpus of real-world graphs

To further explore h-index behavior in real-world networks, we computed the
h-index for a collection of 136 network data sets typical of those used in social
network analysis. These data sets were drawn from a variety of sources tradi-
tionally viewed as common repositories for such data. The majority of our data
sets were from the well known Pajek datasets [4]. Pajek is a program used for
the analysis and visualization of large networks. The collection of data avail-
able with the Pajek software includes citation networks, food-webs, friendship
network, etc. In addition to the Pajek data sets, we included network data sets
from UCINET [5]. Another software package developed for network analysis,
UCINET includes a corpus of data sets that are more traditional in the social
sciences. Many of these data sets represent friendship or communication rela-
tions; UCINET also includes various social networks for non-human animals.
We also used network data included as part of the statnet software suite [22],
statistical modeling software in R. statnet includes ERGM functionality, making
it a good example for data used specifically in the context of ERGM models.
Finally, we included data available on the UCI Network Data Repository [9],
including some larger networks such as the WWW, weblog networks, and other
online social networks. By using this data we hope to understand how the h-
index scales in real-world networks. Details of the statistics for these networks
are presented in Tables 1 and 2.

8.2 Summary statistics

A summary of the statistics for network size and h-index for this sample of 136
real-world networks are in Table 3, below. The h-index ranges from 2 to 116.
The row of summary statistics for log h/ log n suggests that, for many networks,
h scales as a sublinear power of n. The one case with an h-index of 116 repre-
sents the ties among Slovenian magazines and journals between 1999 and 2000.
The vertices of this network represent journals, and undirected edges between
journals have an edge weight that represents the number of shared readers of
both journals; this network also includes self-loops describing the number of all
readers that read this journal. Thus, this is a dense graph, more appropriately
handled using statistics involving the edge weights than with combinatorial tech-
niques involving the existence or nonexistence of triangles. However, this is the
only network from our dataset with an h-index in the hundreds. Even with

JGAA, 16(2) 543–567 (2012) 561

significantly larger networks, the h-index appears to scale sublinearly in most
cases.

min. median mean max.

network size (n) 10 67 535.3 10616
h-index (h) 2 12 19.08 116

log n 2.303 4.204 4.589 9.270
log h 0.6931 2.4849 2.6150 4.7536

log h/ log n 0.2014 0.6166 0.6006 1.0000

Table 3: Summary statistics for real-world network data

A histogram of the h-index data in Figure 1 clearly shows a bimodal distribu-
tion. Additionally, as the second peak of the bimodal distribution corresponds
to a scaling exponent greater than 0.5, the graphs corresponding to that peak
do not match the predictions of the scale-free model. However we were unable
to discern a pattern to the types of networks with smaller or larger h-indices,
and do not speculate on the reasons for this bimodality. We look more deeply
at the scaling of the h-index using standard regression techniques in the next
section.

Figure 1: A frequency histogram for log h/ log n.

8.3 Detailed analysis of real-world network data

We calculated the h-index of the networks in our sample in R, using a subroutine
provided by Carter T. Butts, one of the authors of the statnet software suite.
The data that results from this calculation in plotted in Figure 2. This figure
suggests that the data might be more appropriately viewed on a log-log scale.
This plot is seen in Figure 3.

To find an upper bound on the scaling of the h-index of our real-world
networks we clustered the data into two groups, and used quantile regression to

562

Figure 2: Scatter plot of h-index and network size

Figure 3: Scatter plot of h-index and network size, on log-log scale

fit the data with curves of the form log h = β0 +β1 log n, at the 95th percentile.
That is, we are looking for a power law h = cnβ1 , and we want 95% of the
graphs to have an h-index no larger than the one predicted by this law. We fit
a law of this type to the two clusters separately to provide a more conservative
and substantive prediction. The resulting regression lines are reported in Table
4. Corresponding goodness of fit measure are also reported in Table 5. We note
that these are conservative estimates and the actual scaling is likely better.

JGAA, 16(2) 543–567 (2012) 563

Cluster Intercept β0 Slope β1 df

1 0.0609 0.9735 92
(-0.964, 2.581) (0.231, 1.266)

2 -0.598 0.604 44
(-1.938, 5.248) (0.44712, 0.847)

Table 4: Coefficients for quantile regression lines

●

●

●● ●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●
●

●●
●

●

●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

2 4 6 8 10

1
2

3
4

5
6

log (size)

lo
g

(h
−i

nd
ex

)

Cluster 1: 95th pencentile
Cluster 2: 95th pencentile

Figure 4: h-index scaling using quantile regression fits

Cluster log-like AIC BIC

1 -109.345 222.691 227.734
2 -41.071 86.143 89.712

Table 5: Goodness of fit measures for quantile regression lines

564

9 Discussion

We have defined an interesting new graph invariant, the h-index, presented
efficient dynamic graph algorithms for maintaining the h-index and, based on
them, for maintaining the set of triangles in a graph, and studied the scaling
behavior of the h-index both on theoretical scale-free graph models and on real-
world network data.

There are many directions for future work. For sparse graphs, the h-index
may be larger than the arboricity and the degeneracy, two graph invariants that
are within a constant factor of each other and that have both used in static
subgraph isomorphism and clique-finding algorithms [7, 13]. Can we speed up
our dynamic algorithms to run more quickly on graphs in which these parameters
are bounded?

The algorithms in this paper can handle only undirected graphs, but the
directed case is also of interest: for instance, in social networks, not all ties be-
tween actors are bidirectional. In subsequent work, we extended the algorithms
here to count three-vertex directed subgraphs in the same O(h) time bound per
update [17], as well as to count larger subgraphs such as 4-cycles, 4-cliques, and
claws in a time bound that is be slower than our triangle-finding algorithms
but that may still provide speedups over static algorithms. Lin, Soulignac, and
Szwarcfiter provide a simpler data structure that handles vertex insertion and
deletion updates in time O(dh) per update, where d is the degree of the updated
vertex; however, their method is less efficient for edge updates [28].

The h-index of a graph, and the partition of a graph into high and low degree
vertices based on the h-index, may be of interest in other graph algorithms as
well. For instance, subsequently to our work the same decomposition has been
used by Cheng et al. in an external-memory algorithm for listing maximal
cliques in real-world graphs [6].

Another network statistic related to triangle counting is the clustering co-
efficient of a graph; can we maintain it efficiently? Additionally, there is an
opportunity for additional research in implementing our data structures and
testing their efficiency in practice.

JGAA, 16(2) 543–567 (2012) 565

References

[1] R. Adler, J. Ewing, and P. Taylor. Citation Statistics: A report from the
International Mathematical Union (IMU) in cooperation with the
International Council of Industrial and Applied Mathematics (ICIAM)
and the Institute of Mathematical Statistics. Joint Committee on
Quantitative Assessment of Research, 2008.

[2] R. Albert, H. Jeong, and A.-L. Barabási. Diameter of the world wide web.
Nature 401:130–131, 1999, doi:10.1038/43601, arXiv:cond-mat/9907038.

[3] N. Alon, R. Yuster, and U. Zwick. Finding and counting given length
cycles. Algorithmica 17(3):209–223, 1997, doi:10.1007/BF02523189.

[4] V. Batagelj and A. Mrvar. Pajek datasets. Web page
http://vlado.fmf.uni-lj.si/pub/networks/data/, 2006.

[5] S. P. Borgatti, M. G. Everett, and L. C. Freeman. UCINet 6 for
Windows: Software for social network analysis. Analytic Technologies,
Harvard, MA, 2002.

[6] J. Cheng, Y. Ke, A. W.-C. Fu, J. X. Yu, and L. Zhu. Finding maximal
cliques in massive networks. ACM Trans. Database Syst.
36(4):21:1–21:34, 2011, doi:10.1145/2043652.2043654.

[7] N. Chiba and T. Nishizeki. Arboricity and subgraph listing algorithms.
SIAM J. Comput. 14(1):210–223, 1985, doi:10.1137/0214017.

[8] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic
progressions. J. Symbolic Comput. 9(3):251–280, 1990,
doi:10.1016/S0747-7171(08)80013-2.

[9] C. L. DuBois and P. Smyth. UCI Network Data Repository. Web page
http://networkdata.ics.uci.edu, 2008.

[10] R. A. Duke, H. Lefmann, and V. Rödl. A fast approximation algorithm
for computing the frequencies of subgraphs in a given graph. SIAM J.
Comput. 24(3):598–620, 1995, doi:10.1137/S0097539793247634.

[11] F. Eisenbrand and F. Grandoni. On the complexity of fixed parameter
clique and dominating set. Theor. Comput. Sci. 326(1–3):57–67, 2004,
doi:10.1016/j.tcs.2004.05.009.

[12] D. Eppstein. Connectivity, graph minors, and subgraph multiplicity. J.
Graph Theory 17:409–416, 1993, doi:10.1002/jgt.3190170314.

[13] D. Eppstein. Arboricity and bipartite subgraph listing algorithms.
Inform. Process. Lett. 51(4):207–211, August 1994,
doi:10.1016/0020-0190(94)90121-X.

http://dx.doi.org/10.1038/43601
http://arxiv.org/abs/cond-mat/9907038
http://dx.doi.org/10.1007/BF02523189
http://dx.doi.org/10.1145/2043652.2043654
http://dx.doi.org/10.1137/0214017
http://dx.doi.org/10.1016/S0747-7171(08)80013-2
http://dx.doi.org/10.1137/S0097539793247634
http://dx.doi.org/10.1016/j.tcs.2004.05.009
http://dx.doi.org/10.1002/jgt.3190170314
http://dx.doi.org/10.1016/0020-0190(94)90121-X

566

[14] D. Eppstein. Subgraph isomorphism in planar graphs and related
problems. J. Graph Algorithms Appl. 3(3):1–27, 1999,
arXiv:cs.DS/9911003.

[15] D. Eppstein. Diameter and treewidth in minor-closed graph families.
Algorithmica 27:275–291, 2000, doi:10.1007/s004530010020,
arXiv:math.CO/9907126.

[16] D. Eppstein, Z. Galil, and G. F. Italiano. Dynamic graph algorithms.
Algorithms and Theory of Computation Handbook, chapter 8. CRC Press,
1999.

[17] D. Eppstein, M. T. Goodrich, D. Strash, and L. Trott. Extended dynamic
subgraph statistics using h-index parameterized data structures. Theor.
Comput. Sci. 447:44–52, 2012, doi:10.1016/j.tcs.2011.11.034,
arXiv:1009.0783.

[18] J. Feigenbaum and S. Kannan. Dynamic graph algorithms. Handbook of
Discrete and Combinatorial Mathematics. CRC Press, 2000.

[19] O. Frank. Statistical analysis of change in networks. Stat. Neerl.
45:283–293, 199, doi:10.1111/j.1467-9574.1991.tb01310.x.

[20] O. Frank and D. Strauss. Markov graphs. J. Amer. Statistical Assoc.
81:832–842, 1986, http://www.jstor.org/stable/2289017.

[21] E. Gilbert. Random Graphs. Ann. Math. Stat. 30:1141–1144, 1959,
doi:10.1214/aoms/1177706098.

[22] M. S. Handcock, D. Hunter, C. T. Butts, S. M. Goodreau, and M. Morris.
statnet: An R package for the Statistical Modeling of Social Networks.
Web page http://www.csde.washington.edu/statnet, 2003.

[23] J. E. Hirsch. An index to quantify an individual’s scientific research
output. Proc. Natl. Acad. Sci. USA 102(46):16569–16572, 2005,
doi:10.1073/pnas.0507655102.

[24] A. Itai and M. Rodeh. Finding a minimum circuit in a graph. SIAM J.
Comput. 7(4):413–423, 1978, doi:10.1137/0207033.

[25] N. Kashtan, S. Itzkovitz, R. Milo, and U. Alon. Efficient sampling
algorithm for estimating subgraph concentrations and detecting network
motifs. Bioinformatics 20(11):1746–1758, 2004,
doi:10.1093/bioinformatics/bth163.

[26] T. Kloks, D. Kratsch, and H. Müller. Finding and counting small induced
subgraphs efficiently. Inform. Process. Lett. 74(3–4):115–121, 2000,
doi:10.1016/S0020-0190(00)00047-8.

http://arxiv.org/abs/cs.DS/9911003
http://dx.doi.org/10.1007/s004530010020
http://arxiv.org/abs/math.CO/9907126
http://dx.doi.org/10.1016/j.tcs.2011.11.034
http://arxiv.org/abs/1009.0783
http://dx.doi.org/10.1111/j.1467-9574.1991.tb01310.x
http://www.jstor.org/stable/2289017
http://dx.doi.org/10.1214/aoms/1177706098
http://dx.doi.org/10.1073/pnas.0507655102
http://dx.doi.org/10.1137/0207033
http://dx.doi.org/10.1093/bioinformatics/bth163
http://dx.doi.org/10.1016/S0020-0190(00)00047-8

JGAA, 16(2) 543–567 (2012) 567

[27] F. Liljeros, C. R. Edling, L. A. N. Amaral, H. E. Stanley, and Y. Åberg.
The web of human sexual contacts. Nature 411:907–908, 2001,
doi:10.1038/35082140, arXiv:cond-mat/0106507.

[28] M. C. Lin, F. J. Soulignac, and J. L. Szwarcfiter. Arboricity, h-index, and
dynamic algorithms. Theoret. Comput. Sci. 426–427:75–90, 2012,
doi:10.1016/j.tcs.2011.12.006, arXiv:1005.2211.

[29] J. Nešetřil and S. Poljak. On the complexity of the subgraph problem.
Comment. Math. Univ. Carol. 26(2):415–419, 1985.

[30] M. E. J. Newman. The structure and function of complex networks.
SIAM Review 45:167–256, 2003, doi:10.1137/S003614450342480,
arXiv:cond-mat/0303516.

[31] D. J. d. S. Price. Networks of scientific papers. Science
149(3683):510–515, 1965, doi:10.1126/science.149.3683.510.

[32] N. Pržulj, D. G. Corneil, and I. Jurisica. Efficient estimation of graphlet
frequency distributions in protein–protein interaction networks.
Bioinformatics 22(8):974–980, 2006, doi:10.1093/bioinformatics/btl030.

[33] G. Robins and M. Morris. Advances in exponential random graph (p∗)
models. Social Networks 29(2):169–172, 2007,
doi:10.1016/j.socnet.2006.08.004. Special issue of journal with four
additional articles.

[34] T. A. B. Snijders. Markov chain Monte Carlo estimation of exponential
random graph models. Journal of Social Structure 3(2):1–40, 2002,
http://www.cmu.edu/joss/content/articles/volume3/Snijders.pdf.

[35] T. A. B. Snijders, P. E. Pattison, G. Robins, and M. S. Handcock. New
specifications for exponential random graph models. Sociological
Methodology 36(1):99–153, 2006, doi:10.1111/j.1467-9531.2006.00176.x.

[36] M. Thorup and D. R. Karger. Dynamic graph algorithms with
applications. Proc. 7th Scandinavian Workshop on Algorithm Theory
(SWAT 2000), pp. 667–673. Springer-Verlag, Lecture Notes in Computer
Science 1851, 2000, doi:10.1007/3-540-44985-X 1.

[37] V. Vassilevska and R. Williams. Finding, minimizing and counting
weighted subgraphs. Proc. 41st ACM Symposium on Theory of
Computing, 2009, doi:10.1145/1536414.1536477.

[38] S. Wasserman and P. E. Pattison. Logit models and logistic regression for
social networks, I: an introduction to Markov graphs and p∗.
Psychometrika 61:401–425, 1996, doi:10.1007/BF02294547.

[39] R. Yuster. Finding and counting cliques and independent sets in
r-uniform hypergraphs. Inform. Process. Lett. 99(4):130–134, 2006,
doi:10.1016/j.ipl.2006.04.005.

http://dx.doi.org/10.1038/35082140
http://arxiv.org/abs/cond-mat/0106507
http://dx.doi.org/10.1016/j.tcs.2011.12.006
http://arxiv.org/abs/1005.2211
http://dx.doi.org/10.1137/S003614450342480
http://arxiv.org/abs/cond-mat/0303516
http://dx.doi.org/10.1126/science.149.3683.510
http://dx.doi.org/10.1093/bioinformatics/btl030
http://dx.doi.org/10.1016/j.socnet.2006.08.004
http://www.cmu.edu/joss/content/articles/volume3/Snijders.pdf
http://dx.doi.org/10.1111/j.1467-9531.2006.00176.x
http://dx.doi.org/10.1007/3-540-44985-X_1
http://dx.doi.org/10.1145/1536414.1536477
http://dx.doi.org/10.1007/BF02294547
http://dx.doi.org/10.1016/j.ipl.2006.04.005

	Introduction
	Dynamic h-Indexes of Integer Functions
	Gradual Approximate h-Partitions
	Counting Triangles
	Subgraph Multiplicity
	Subgraphs with more than three vertices
	Weighted Edges and Colored Vertices
	How Small is the h-Index of Typical Graphs?
	Corpus of real-world graphs
	Summary statistics
	Detailed analysis of real-world network data

	Discussion

