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Abstract

Algorithms or target functions for graph clustering rarely admit qual-
ity guarantees or optimal results in general. Based on properties of
minimum-cut trees, a clustering algorithm by Flake et al. does however
yield such a provable guarantee, which ensures the quality of bottlenecks
within the clustering. We show that the structure of minimum s-t-cuts in
a graph allows for an efficient dynamic update of those clusterings, and
present a dynamic graph clustering algorithm that maintains a clustering
fulfilling this quality guarantee, and that effectively avoids changing the
clustering. Experiments on real-world dynamic graphs complement our
theoretical results.
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1 Introduction

Graph clustering has become a central tool for the analysis of networks in gen-
eral, with applications ranging from the field of social sciences to biology and
to the growing field of complex systems. The general aim of graph clustering
is to identify dense subgraphs, called clusters, that are only loosely connected
to each other in a given network. This is, the connections between the dense
subgraphs constitute bottlenecks in the network while within the dense regions
no significant bottlenecks can be found. The denser the subgraphs and the
smaller the bottlenecks inbetween the clearer is the bottleneck-property, and
thus, the better is the clustering. Countless formalizations of this paradigm of
intra-cluster density and inter-cluster sparsity exist, however, the overwhelming
majority of algorithms for graph clustering relies on heuristics, e.g., for some
NP-hard optimization problem, and do not allow for any structural guarantee
on their output.

Probably the most widespread approach nowadays is a method called greedy
modularity maximization proposed in [5]. Modularity is a quality measure for
clusterings and was first introduced in [23]. Finding a clustering with maxi-
mum modularity is NP-hard [2], so the greedy method improves the modularity
of a clustering by merging given subgraphs, thus building new subgraphs rep-
resenting a clustering of higher modularity. Although modularity is close to
human intuition of clustering quality and therefore widely used, it has some
specific drawbacks as for example the resolution limit explored in [9]. This is,
modularity-based methods tend to detect subgraphs of specific size categories
depending on the size of the network. Further heuristic algorithms to optimize
modularity base on greedy agglomeration [21, 5], greedy movement [1], spectral
division [22, 29], simulated annealing [16, 24] or extremal optimization [6]. De-
ducing a clustering from the structural information given by the spectrum of a
graph is another technique of graph clustering which avoids optimizing a qual-
ity measure. Good introductions on spectral clustering are given in [28, 10] and
advanced topics can be found in [4]. The top-down approach introduced by Kan-
nan et al. [19] relies on a bottleneck-based quality measure called conductance,
which is also NP-hard. It uses a polylogarithmic approximation of minimum-
conductance cuts to recursively split the graph. For further clustering methods
and recent results on graph clustering see, e.g., the following overviews [3, 27, 8]
and references therein.

Inspired by the work of Kannan et al. [19], Flake et al. [7] recently pre-
sented a clustering algorithm which does guarantee a very reasonable bottleneck-
property. Their elegant approach employs minimum-cut trees, pioneered by Go-
mory and Hu [13], and is capable of finding a hierarchy of clusterings by virtue
of an input parameter. There has been an attempt to dynamize this algorithm,
by Saha and Mitra [26, 25], however, we found it to be erroneous. We are not
aware of any other dynamic graph-clustering algorithms in the literature, except
for a recent advance [15], which designs and evaluates several heuristics for dy-
namically maintaining a clustering with high quality. There, clustering quality
is measured again by the index modularity, which is NP-hard to optimize.
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Our Contribution. In this work we develop the first correct algorithm that
efficiently and dynamically maintains a clustering for a changing graph as found
by the method of Flake et al. [7], allowing arbitrary atomic changes in the graph,
and keeping consecutive clusterings similar (a notion we call temporal smooth-
ness). Our algorithm builds upon partially updating a half-finished minimum-
cut tree of a graph in the spirit of Gusfield’s [17] simplification of the Gomory-
Hu algorithm [13]. While it poses an interesting problem on its own right,
updating a complete minimum-cut tree is unnecessary for clusterings and thus
undesirable, as it entails additional costs. We corroborate our theoretical results
on clustering by experimentally evaluating the performance of our procedures
compared to the static algorithm on a real-world dynamic graph.

This paper is organized as follows. We briefly give our notational conventions
and one fundamental lemma in Section 1. Then, in Section 2, we revisit some
results from [13, 17, 7], convey them to a dynamic scenario in Section 3, and
derive our central results. In Section 4 we give a formal description of our
update algorithm, which decomposes into several subalgorithms, followed by an
analysis in Section 5. We conclude in Section 6.

A preliminary version of this work has been presented at WADS’09 [14]; the
main additions are an in-depth treatment of edge insertions alongside corre-
sponding algorithms, a discussion of vertex modifications, an expanded experi-
mental verification and a higher level of detail.

Preliminaries and Notation. Throughout this work we consider an undi-
rected, weighted graph G = (V,E, c) with vertices V , edges E and a non-
negative edge weight function c, writing c(u, v) as a shorthand for c({u, v})
with u ∼ v, i.e., {u, v} ∈ E. We reserve the term node (or super-node) for com-
pound vertices of abstracted graphs, which may contain several basic vertices;
however, we identify singleton nodes with the contained vertex without further
notice. Dynamic modifications of G will concern vertices and edges. The nota-
tion for vertex insertions and deletions is postponed to Section 4.2; the reason
for this is that vertices require a special treatment, although at first glance,
the insertion or deletion of a disconnected vertex in G looks trivial. An edge
modification of G always involves edge {b, d}, with c(b, d) = ∆, yielding G⊕ if
{b, d} is newly inserted into G, and G	 if it is deleted from G. For simplicity we
will not handle changes to the weight of an edge, since this can be done exactly
as deletions and insertions. We further assume G to be connected; if that is not
the case, one can work on each connected component independently and the
results still apply.

A minimum-cut tree T (G) = (V,ET , cT ) of G is a tree on V and represents
for any vertex pair {u, v} ∈

(
V
2

)
a minimum u-v-cut in G by the cheapest edge

on the unique path between u and v in T (G). An edge eT of T (G) induces a
cut in G by decomposing T (G) into two connected components. We sometimes
identify eT with the cut it induces in G. A vertex pair {u, v} is called a cut
pair of an edge eT if eT represents a minimum u-v-cut, i.e., if eT is a cheapest
edge on the path between u and v. Neither must the cheapest edge on a path
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in T (G) be unique, nor T (G). We denote the connectivity between u and v,
which is given by the weight of the cheapest edge, by λ(u, v). Unspecified cuts
are often denoted by θ. For details on minimum-cut trees, see the pioneering
work by Gomory and Hu [13] or the simplifications by Gusfield [17].

A contraction of G by N ⊆ V means replacing set N by a single super-
node η, and leaving η adjacent to all former adjacencies u of vertices of N , with
edge weight equal to the sum of all former edges between N and u. Analogously
we can contract by a set M ⊆ E. In the context of graphs, our understanding of
a clustering C(G) of G is a partition of V into subsets Ci, which define vertex-
induced subgraphs, called clusters, conforming to the paradigm of intra-cluster
density and inter-cluster sparsity. Regarding a dynamic graph G and edge
modifications of {b, d} we particularly designate Cb and Cd containing b and d,
respectively. We start by giving some fundamental insights about minimum cuts
in modified graphs, which we will rely on in the following, leaving their rather
basic proofs to the reader.

Lemma 1 Let θ be a cut in G, and let edge e = {b, d} be modified in G.
Consider G⊕: If θ does not separate b and d then θ has still the same weight

and is still a minimum u-v-cut for all its previous cut pairs {u, v}. If θ sep-
arates b and d then its weight in G⊕increases by ∆; furthermore, if it was a
minimum u-v-cut in G, it stays a minimum u-v-cut iff ∀u-v-cuts θ′ in G that
do not separate b, d: c(θ′) ≥ c(θ) + ∆.

Consider G	: If θ separates b and d then θ has weight c(θ) − ∆ after the
modification and remains a minimum u-v-cut for all its previous cut pairs {u, v}.
If θ does not separate b and d then it retains weight c(θ); furthermore, if it was
a minimum u-v-cut in G, it stays a minimum u-v-cut iff ∀u-v-cuts θ′ in G that
separate b, d: c(θ′) ≥ c(θ) + ∆.

Remark 1 In a cut tree T (G), an edge eT separates b and d iff eT is on the path
between b and d. Thus, according to Lemma 1, in the case of edge deletion, all
edges on the path still represent valid minimum u-v-cuts after the modification.
In the case of edge insertion, all edges besides those on the path remain valid.

2 Fundamentals

Finding communities in the world wide web or in citation networks are but
example applications of graph clustering techniques. In [7] Flake et al. propose
and evaluate an algorithm which clusters such instances in a way that yields a
certain guarantee on the quality of the clusters. The authors base their quality
measure on the expansion of a cut (S, S̄) due to Kannan et al. [19]:

Ψ =

∑
u∈S,v∈S̄ c(u, v)

min{|S|, |S̄|} (expansion of cut (S, S̄)) (1)

The expansion of a graph is the minimum expansion over all cuts in the graph.
For a clustering C, expansion measures both the quality of a single cluster C,
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quantifying the clearest bottleneck within C, and the goodness of bottlenecks
defined by cuts (C, V \C). Inspired by a bicriterial approach for good clusterings
by Kannan et al. [19], which bases on the related measure conductance, Flake et
al. [7] design a graph clustering algorithm (Algorithm 1) that, given parameter α,
asserts the following (where the disjoint union A∪B with A∩B = ∅ is denoted
by A ·∪B):

c(C, V \ C)

|V \ C|︸ ︷︷ ︸
inter-cluster cuts

≤ α ≤ c(P,Q)

min{|P |, |Q|}︸ ︷︷ ︸
intra-cluster cuts

∀C ∈ C ∀P,Q 6= ∅ P ·∪Q = C (2)

2.1 The Static Algorithm

Algorithm 1: Cut-Clustering

Input: Graph G = (V,E, c), α
1 Vα ← V ∪ {t}
2 Eα ← E ∪ {{t, v} | v ∈ V }
3 cα|E ← c, cα|Eα\E ← α
4 Gα ← (Vα, Eα, cα)
5 T (Gα)← minimum-cut tree of Gα
6 T (Gα)← T (Gα)− t
7 C(G)← components of T (Gα)

The above quality guarantees—simply
called quality in the following—are
due to special properties of minimum-
cut trees, which are used by the clus-
tering algorithm, as given in Algo-
rithm 1 (compare to [7]). It performs
the following steps: Add an artificial
vertex t to G, and connect t to all
other vertices by weight α. Then,
compute a minimum-cut tree T (Gα)
of this augmented graph. Finally, re-
move t and let the resulting connected components of T (Gα) define the cluster-
ing. In the following, we will call the fact that a clustering can be computed
by this procedure the invariant. For the proof that Cut-Clustering yields a
clustering that obeys Equation (2), i.e., that the invariant yields quality, we refer
the reader to [7]. Flake at al. further show how nesting properties of commu-
nities can be used to avoid computing the whole minimum-cut tree T (Gα) and
try to only identify those edges of T (Gα) incident to t. In this context the com-
munity of a vertex u is a special minimum u-v-cut, namely the unique cut that
minimizes the size of the cut side containing u. Thus, in line 5 of Algorithm 1,
such a partial minimum-cut tree, which is in fact a star, would suffice. Their
recommendation for finding these edges quickly is to start with separating high
degree vertices from t. Flake et al. also show that further community properties
given in [11] yield a whole clustering hierarchy, if α is scaled. In the following
we will use the definition of Gα = (Vα, Eα, cα), denoting by G	α and G⊕α the
corresponding augmented and modified graphs.

2.2 A Dynamic Attempt

Saha and Mitra [25, 26] published an algorithm that aims at the same goal as
our work. The authors describe four procedures for updating a clustering and
a data structure for the deletion and the insertion of intra-cluster and inter-
cluster edges. Unfortunately, we discovered a methodical error in their work.
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Algorithm 2: Old Inter-Edge Insertion

Input: G = (V,E, c), α, C, e⊕ = {b, d}, b ∈ Cb, d ∈ Cd
1 if inter-cluster quality of Cd, Cb is maintained then Case 1:
2 return C (do nothing)

3 else if 2c(Cb,Cd)
|V | ≥ α then Case 2:

4 return (C \ {Cb, Cd}) ∪ {{Cb ∪ Cd}} (merge Cb and Cd)

5 Case 3 (default): enlarge G to Gα (cp. Cut-Clustering)
6 dissolve Cb and Cd and contract all other vertices
7 perform line 5 and 6 of Cut-Clustering on Gα
8 return (C \ {Cb, Cd}) ∪ {newly formed clusters from Cb ∪ Cd}

Roughly speaking, it seems as if the authors implicitly (and erroneously) assume
an equivalence between quality and the invariant. A full description of issues is
beyond the scope of this work, but we briefly point out errors in the authors’
procedure that deals with the insertion of intra-cluster edges and give counter-
examples in the following. These issues, alongside correct parts, are further
scrutinized in-depth by Hartmann [18]. Algorithm 2 sketches the approach given
in [26] for handling edge insertions between clusters. Summarizing, we found
that Case 1 does maintain quality but not the invariant. Case 2 maintains both
quality and the invariant if and only if the input fulfills the invariant, however
it can be shown that this case is of purely theoretical interest and extremely
improbable. Finally, Case 3 neither maintains quality nor the invariant. The
following subsections illustrate these shortcomings with examples.

A Counter-Example for Case 1 and Case 2. We now give an example in-
stance which the algorithm given in [26] fails to cluster correctly. The two upper
figures (Figure 1(a), 1(b)) show the input instance, as computed by algorithm
Cut-Clustering. In Figure 1(c), a first edge insertion then triggers Case 1,
and thus the clustering is kept unchanged. Note that here, quality is still main-
tained. Then in Figure 1(d) a second edge is added and handled by Case 2, since
inter-cluster quality is violated (c(C1, C2) = 4α > 3α = α ·min{|C1|, |C2|}), and
the condition for Case 2 in line 3 of the algorithm is fulfilled (2 · 4α/6 > α).
Thus the two clusters are merged. In this result the dashed cut in Figure 1(d)
shows an intra-cluster cut with value c(dashed) = 2.75 ·α < 3 ·α, which violates
intra-cluster quality, as claimed in Equation (2).

A Counter-Example for Case 3. Finally we give an example instance which
the algorithm given in [26] fails to cluster correctly due to shortcomings in
Case 3. Figures 2(a) and 2(b) describe the graph and the minimum-cut tree
before edge {2, 12} is inserted. Then the edge is added and Figure 2(c) describes
the resulting construction given in [26], on which a procedure called “adapted
Cut-Clustering” (line 7) is then applied, yielding Figure 2(d). The result
does neither conform to Equation (2) (quality) nor to what is attempted to be
proven in [26]: A “newly formed cluster from Cb ∪ Cd” as returned in line 8
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(a) Graph G0 with clustering C(G0) by the
Cut-Clustering method.
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(b) Minimum-cut tree T (G0
α) inducing the

clustering C(G0) shown in Figure (a).
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(c) Adding edge {1, 6}, weighted by 11/4α,
yields G1 with clustering C(G1) resulting
from Case 1 of the inter-edge-add algorithm.
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(d) Adding edge {3, 4}, weighted by α, yields
G2 with the trivial clustering C(G2) by Case
2, which violates Equation (2) (dashed cut).

Figure 1: A dynamic instance violating the clustering quality. Weights are
parameterized by the same α as used in Cut-Clustering. After two modifi-
cations to G0 the algorithm returns one cluster which can be cut (dashed) with
a cut value that violates quality.

does not exist as the clustering resulting from the line before consists of a single
cluster containing all vertices. Ignoring line 8, the cut ({7, 8, 9}, V \ {7, 8, 9})
is an intra-cluster cut that with P := {7, 8, 9} and Q := V \ {7, 8, 9} violates
Equation (2) as 3 · α = α ·min{|P |, |Q|} ≥ c(P,Q) = 2 · α.

2.3 Minimum-Cut Trees and the Gomory-Hu Algorithm

We briefly describe the construction of a minimum-cut tree as proposed by
Gomory and Hu [13] and simplified by Gusfield [17]. Although we will adopt
ideas of the latter work, we first give Gomory and Hu’s algorithm (Algorithm 3)
as the foundation.

The algorithm builds the minimum-cut tree of a graph by iteratively finding
minimum u-v-cuts for vertices that have not yet been separated by a previous
minimum cut. Each iteration allows the construction of exactly one edge of the
final minimum-cut tree. Thus, the algorithm needs exactly n − 1 iterations,
and the runtime of each iteration is the time of one maximum-flow calculation,
which yields a minimum u-v-cut, plus some overhead for vertex contraction
and re-organization of intermediate structures. For a rough idea of the total
runtime take the well known maximum-flow algorithm by Goldberg and Tar-
jan [12] which uses the push-relabel method to compute a maximum flow in
O(nm log(n2/m)) time and neglect the overhead. Then the worst case runtime
for Gomory-Hu is O(n4). At the beginning, the intermediate minimum-cut
tree T∗(G) = (V∗, E∗, c∗) (or simply T∗ if the context is clear) is initialized as
an isolated, edgeless super-node containing all original vertices (line 1). Then,
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from the Cut-Clustering method.
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(c) Graph G′α, resulting from G⊕ by
adding the sink t and contracting the ver-
tices in {5, 6} ∪ {7, 8, 9} (as by Case 3).
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(d) Minimum-cut tree T (G′α) of graph G′α,
yielding a single cluster violating quality by
cut ({7, 8, 9}, V \ {7, 8, 9}) (see Figure (a)).

Figure 2: Counter-example for the correctness of Case 3.

Algorithm 3: Gomory-Hu (Minimum-Cut Tree)

Input: Graph G = (V,E, c)
Output: Minimum-cut tree of G

1 Initialize V∗ ← {V }, E∗ ← ∅ and c∗ empty and tree T∗(G) := (V∗, E∗, c∗)
2 while ∃S ∈ V∗ with |S| > 1 do // unfold all super-nodes

3 {u, v} ← arbitrary pair from
(
S
2

)
4 forall the Sj ∼ S in T∗(G) do
5 Nj ← subtree of S with Sj ∈ Nj
6 GS = (VS , ES , cS)← in G contract each subtree Nj to node ηj
7 (U, VS \ U)← minimum u-v-cut in GS , weight δ, u ∈ U
8 Su ← S ∩ U and Sv ← S ∩ (VS \ U) // split S = Su ·∪Sv
9 V∗ ← (V∗ \ {S}) ∪ {Su, Sv}, E∗ ← E∗ ∪ {{Su, Sv}}, c∗(Su, Sv)← δ

10 forall the former edges ej = {S, Sj} ∈ E∗ do
11 if ηj ∈ U then ej ← {Su, Sj} ; // either reconnect Sj to Su
12 else ej ← {Sv, Sj} ; // or reconnect Sj to Sv

13 return T∗(G)
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until no node S of T∗ contains more than one vertex, a node S is split. To
this end, nodes Si 6= S are dealt with by contracting in G whole subtrees Nj
of S in T∗, connected to S via edges {S, Sj}, to single nodes ηj (line 6) before
splitting S, which yields GS . The split of S into (Su, Sv) is then defined by
a minimum u-v-cut in GS (line 7), which does not cross any of the previously
used minimum cuts due to the contraction technique. Afterwards, each Nj is
reconnected in T∗, again by Sj , to either Su or Sv depending on which side of
the cut ηj , containing Sj , ended up. It is crucial to note, that this cut in GS
can be proven to induce a minimum u-v-cut in G.

An (partial) execution GH = (G,F,K) of Gomory-Hu is characterized by
graph G, sequence F of |F | ≤ n − 1 step pairs of vertices (compare to line 3)
and sequence K of split cuts (compare to line 7). A step pair {u, v} is hidden
if {u, v} is no edge in the final tree T (G). Hidden pairs occur if either partner
moves farther away from the other by unfavorable involvement in later split
cuts.

In the situation of Cut-Clustering whereG gets augmented by an artificial
vertex t the minimum-cut tree T (Gα) attributes an edge ei to each cluster Ci.
Let {ui, vi} denote the step pair of ei during Gomory-Hu with ui ∈ Ci. We
call ui the representative r(Ci) (or ri for short) of Ci. The edges ei represent
a set of non-crossing, non-nested minimum ui-vi-cuts in Gα that together sepa-
rate t from G. Here non-nested means that the cut sides containing the uis are
mutually disjoint. Remember that Flake et al. deduced from the nesting proper-
ties of communities that it is not necessary to compute the whole minimum-cut
tree T (Gα). In the following we will apply some results of Gusfield [17] to show
that even with arbitrary minimum cuts a partial minimum-cut tree suffices.

2.4 Using Arbitrary Minimum Cuts in G

Gusfield [17] presented an algorithm for finding minimum-cut trees which avoids
complicated contraction operations. In essence he provided rules for adjusting
iteratively found minimum u-v-cuts in G (instead of in GS) that potentially
cross, such that they are rendered consistent with the Gomory-Hu procedure
and thus made non-crossing, but still minimal. We review some of these ideas
that justify our later arguments. The following lemma tells us, that at any time
in Gomory-Hu, for any edge e of T∗(G) there exists a cut pair of e in the two
nodes incident to e. It was first formulated and proven within a longer proof in
[13] and later rephrased by Gusfield [17].

Lemma 2 (Gus. [17], Lemma 4) Let {S, Sj} be an edge in T∗(G) inducing
a cut with cut pair {x, y}, wlog. x ∈ S. Let now step pair {u, v} ⊆ S split S
into Su and Sv, wlog. Sj ending up on the same cut side with Su, i.e. {Su, Sj}
becomes a new edge in T∗(G). If x ∈ Su, {x, y} remains a cut pair of edge
{Su, Sj}. If x ∈ Sv, then {u, y} is an additional cut pair of {Su, Sj}.

In the latter case of Lemma 2, pair {x, y} gets hidden, and, in the view of
vertex y, we say that its former counterpart x gets shadowed by the split cut
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(a) If x ∈ Su vertex pair {x, y} remains a
cut pair of edge {Su, Sj} in T∗.
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(b) Although x /∈ Su, with {u, y} there is
still a cut pair in the adjacent nodes Su and
Sj in T∗.

Figure 3: This illustration shows the situation described in Lemma 2: There
always exists a cut pair of edge {Su, Sj} in its incident nodes, independent of
the shape of the split cut (red dashed).

associated with step pair {u, v}. It is not hard to see that during Gomory-
Hu, step pairs remain cut pairs, but cut pairs need not stem from step pairs.
However, by Lemma 2, each edge in T∗(G) has at least one cut pair in the
incident nodes. We define the nearest cut pair of an edge in T∗(G) as follows:
As long as a step pair {x, y} is in adjacent nodes S, Sj , it is the nearest cut pair of
edge {S, Sj}; if a nearest cut pair gets hidden in T∗(G) by a step of Gomory-Hu,
as described in Lemma 2 (if x ∈ Sv), the nearest cut pair of the reconnected
edge {Su, Sj} becomes {u, y} (which are in the adjacent nodes Su, Sj). The
following theorem basically states that we can iteratively find minimum cuts as
Gomory-Hu does, without the necessity to operate on a contracted graph.

Theorem 1 (Gus. [17], Theorem 2) Let {u, v} denote the current step pair
in node S during some GH. If (U, V \ U), with u ∈ U , is a minimum u-v-cut
in G, then there exists a minimum u-v-cut (US , VS \ US) of equal weight in GS
such that S ∩ U = S ∩ US and S ∩ (V \ U) = S ∩ (VS \ US), with u ∈ US (i.e.,
with equal behavior on S).

Being an ingredient to the original proof of Theorem 1, the following Lemma 3
gives a constructive assertion, that tells us how to arrive at a cut described in
the theorem by inductively adjusting a given minimum u-v-cut in G. Thus, it
is the key to avoiding contraction and using cuts in G by rendering minimum
u-v-cuts non-crossing with other given cuts.

Lemma 3 (Gus. [17], Lemma 1) Let (Y, V \Y ) be a minimum x-y-cut in G,
with y ∈ Y . Let (H,V \H) be a minimum u-v-cut, with u, v ∈ V \Y and y ∈ H.
Then the cut (Y ∪H, (V \ Y ) ∩ (V \H)) is also a minimum u-v-cut.

Lemma 3 gives an instrument to protect parts of graph G from being cut al-
though the split cut we initially intended to use wriggles through these parts:
Let (Y, V \Y ) be a given minimum x-y-cut in G (y ∈ Y ) with vertices u, v ∈ V \Y
and consider the minimum u-v-cut (H,V \ H) as a preliminary version of the
current split cut. Then, according to Lemma 3, we may handle side Y of the
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former cut as if it were contracted and thus retain it, even though the prelimi-
nary split cut tries to cut through: The lemma allows to bend the split cut such
that Y is not touched. The final shape of the bent cut depends on the side of
the split cut containing y—roughly speaking, the cut is “deflected” by y.

y

V \ Y Y

H
V \H

H

V \H

y deflects cut
downwards

y deflects cut
upwards

u

v

Figure 4: Depending on y there are two
different directions to which Lemma 3
bends the cut (H,V \ H): upwards or
downwards.

This technique will be used in
many proofs in the following, so we
call it pseudo-contraction whenever
we refer to it. While Lemma 3 tells
us how to find non-crossing cuts, it
does not yet tell us how to proceed
with the minimum-cut tree we are
building up: Given a cut as by Theo-
rem 1, Gomory and Hu state a simple
mechanism which reconnects a former
neighboring subtree Nj of a node S to
either of its two split parts (lines 10-
12 in Algorithm 3), by the cut side on
which the contraction ηj of Nj ends
up. In contrast, to establish reconnec-
tion when avoiding contraction, this
criterion is not available, as Nj is not
handled en-block. For this purpose,
Gusfield iteratively defines represen-
tatives r(Si) ∈ V of nodes Si of T∗(G). Starting with an arbitrary vertex as
r({V }), step pairs in Si must then always include r(Si), with the second vertex
becoming the representative of the newly split off node Sj ⊂ Si. For a suchlike
run of Gomory-Hu, Gusfield shows—iteratively using Lemma 2 as the key—
that for two adjacent nodes Su, Sv in any T∗(G), {r(Su), r(Sv)} is a cut pair of
edge {Su, Sv}, and, most importantly his Theorem 3:

Theorem 2 (Gus. [17], Theorem 3) For u, v ∈ S let any minimum u-v-cut
(U, V \U), u ∈ U , in G split node S into Su 3 u and Sv 3 v and let (US , V \US)
be this cut adjusted via Lemma 3 and Theorem 1; then a neighboring subtree Nj
of S, formerly connected by edge {S, Sj}, lies in US iff r(Sj) ∈ U .

In Cut-Clustering we are free to use Gusfield’s simplification applying
arbitrary minimum cuts to compute T (Gα). In doing so, we preferably choose
step pairs involving t. As soon as t becomes a singleton in T∗(Gα) we have
reached an intermediate minimum-cut tree that defines a valid clustering, i.e.,
a clustering that fulfills the invariant. This can be easily perceived since, in the
view of any further step pair, t and the clusters not containing the step pair are
pseudo-contracted by Lemma 3. This is, the star with center t in T∗(Gα) would
not change if we continued the tree construction, and the final tree would still
induce the same clustering as the intermediate tree. We denote the clustering-
defining intermediate tree by Tc(Gα) and identify the edges in Tc(Gα) with their
nearest cut pairs. Figure 5 depicts an example of a clustering-defining interme-
diate tree, together with the set of non-crossing cuts represented by its edges.
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t
u3

u2

u1

u4

u5

u6

(a) Clustering-defining intermediate tree
Tc(Gα) representing six cuts.

t
u3

u2

u1

u4

u5

u6

(b) Set of cuts represented by the edges in
Tc(Gα); five resulting clusters.

Figure 5: This example shows an intermediate minimum-cut tree resulting from
a sequence {ui, t}, i = 1, . . . , 6 of step pairs (a), where step pair {u1, t} is
hidden. The bold cuts in (b) induce a clustering with representatives r(Ci) = ui,
i = 2, . . . , 6.

Note that the nearest cut pairs that induce the representatives r(Si) of the nodes
adjacent to t equal the step pairs of the edges incident to t, i.e., those step pairs
are not hidden. Thus, the representatives r(Si) correspond to the representa-
tives r(Ci) attributed to the clusters by the final tree. Conversely, according
to the following theorem, any set of non-crossing, non-nested minimum ui-t-
cuts in Gα defines an intermediate minimum-cut tree that can be turned into a
clustering-defining intermediate tree Tc(Gα). Figure 6 exemplarily extracts an
intermediate tree from a cut set.

Theorem 3 For some vertices ui in G let Θ be a set of non-crossing, non-
nested minimum ui-t-cuts in Gα. Let K be any sequence of the cuts in Θ and F
the sequence of the associated vertex pairs {ui, t}. There exists a sequence F ′

of step pairs that include t and a sequence K ′ of split cuts such that GH =
(G,F · F ′,K · K ′) is a feasible GH resulting in an intermediate tree where t
is a singleton (here · denotes the concatenation operator). The intermediate
minimum-cut tree after F is denoted by T◦(Gα).

Proof. We index the vertices ui by the order in F . As the associated split cuts
in K are non-crossing and non-nested, it holds that after the i-th iteration of
Gomory-Hu (or Gusfield’s simlification) ui+1 still shares a super-node with t.
Therefore, {ui+1, t} is a valid step pair in the next iteration step. After the
application of F we get a valid intermediate minimum-cut tree T◦(Gα), which
can be used to continue until t becomes a singleton. Note that the shape of
T◦(Gα) is independent from the actual order in K.

3 Finding and Shaping Minimum Cuts in Dy-
namic Scenarios

In this section we let graph G change, i.e., we consider the insertion of an edge
{b, d} or its deletion, yielding G⊕ or G	 (for the augmented graph Gα we get
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t

u3

u2

u1

u4

u5

(a) Set Θ of five non-crossing, non-nested
split cuts.

t

u3

u2

u1

u4

u5

(b) Intermediate tree T◦ with respect to Θ.

Figure 6: This example shows an intermediate minimum-cut tree T◦ regarding
vertices u1, . . . , u5 (b); in order to have T◦ define a clustering, the vertices inside
t’s super-node need to be separated from t by further cuts.

G	α and G⊕α , respectively). Furthermore, we implicitly use arbitrary split cuts
according to Gusfield instead of contracted subtrees whenever we consider the
process of constructing a clustering-defining tree Tc.

3.1 Cuts That Can Stay

A clustering C found by Cut-Clustering results from |C| non-crossing, non-
nested minimum ui-t-cuts represented in Tc(Gα). If any of such cuts are still

valid after a graph modification, they define an intermediate tree T◦(G
⊕(	)
α )

that can be turned into a new clustering-defining tree Tc for G
⊕(	)
α according

to Theorem 3. Remark 1 implies that some previous cuts are still valid after
a graph modification, making their recomputation unnecessary. The following
four remarks and Lemma 4 concretize this assertion. Thus, the idea of our

dynamic approach is to construct T◦(G
⊕(	)
α ) from the cuts detected by the

remarks below and continuing on T◦ by checking the edges incident to t in the
old tree Tc(Gα) for further remaining cuts.

Remark 2 Intra-cluster insertion (resulting in G⊕α ; vertices b, d are in the same
the cluster in Gα):

None of the edges {r(Ci), t} separates b and d (see Figure 14). Thus by Re-
mark 1 all edges {r(Ci), t} are still minimum r(Ci)-t-cuts after the modification.
This implies a set of non-crossing, non-nested minimum ui-t-cuts in G⊕α that
together separate t from G⊕ and therefore the previous clustering is still valid.

Remark 3 Inter-cluster insertion (resulting in G⊕α ; vertices b, d are in different
clusters in Gα):

Apart from {r(Cb), t} and {r(Cd), t} none of the edges incident to t sepa-
rates b and d. Again by Remark 1 all these edges not separating b and d still in-
duce minimum cuts after the modification, the two other cuts do not necessarily
remain minimum. The thus implied set of non-crossing, non-nested minimum
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ui-t-cuts in G⊕α yields an intermediate minimum-cut tree T◦ with |C(G)| − 1
nodes (see Figure 13) that can be completed as to define a clustering.

Remark 4 Inter-cluster deletion (resulting in G	α ; vertices b, d are in different
clusters in Gα):

Only the two edges {r(Cb), t} and {r(Cd), t} separate b and d. By Remark 1
both cuts represented by these edges are still minimum after the modification,
all other edges incident to t do not necessarily remain minimum. This implies
an intermediate minimum-cut tree T◦ with three nodes (see Figure 11) that can
be completed as to define a clustering.

Remark 5 Intra-cluster deletion (resulting in G	α ; vertices b, d are in the same
cluster in Gα):

None of the edges incident to t separate b and d. The thus implied intermedi-
ate tree T◦ consists of only one node covering all vertices of G	α (see Figure 12).
However, the following lemma yields a condition that allows to preserve the pre-
vious clustering. Its proof mostly relies on properties of Gomory-Hu and on
Lemma 1.

Lemma 4 In the case of an intra-cluster deletion, let Cb/d denote the cluster
containing b and d. In Tc(Gα) consider the edge eb/d representing the mini-
mum r(Cb/d)-t-cut. If eb/d still represents a minimum r(Cb/d)-t-cut in G	α the
previous clustering is still valid.

Proof. Consider the minimum r(Cb/d)-t-cut (Cb/d, Vα \ Cb/d) in G	α . In the
view of any further step pair {r(Ci), t} in Vα \ Cb/d the cut side Cb/d, and in
particular the pair {b.d}, is sheltered by pseudo-contraction. This is, in G	α
there exists a minimum r(Ci)-t-cut that does not separate b and d, and thus,
the connectivity λ(r(Ci), t) is the same as in Gα and the previous minimum
r(Ci)-t-cut is still valid.

3.2 The Shape of New Cuts

Most cases in the above remarks of Section 3.1 leave at least parts of the clus-
tering of the updated graph G⊕(	) unfinished. When continuing on T◦ by
checking the edges incident to t in the old tree Tc(Gα) we might then find an
edge {r(Ci), t}, i.e., a minimum r(Ci)-t-cut, that is not reconfirmed by a com-

putation in G
⊕(	)
α , but a new, cheaper minimum r(Ci)-t-cut is found. As we

shall see in this section, for such a new cut we can still make some guarantees on
its shape as to resemble its “predecessor”, thereby both enforcing smoothness
and saving runtime.

New Cuts After Edge Deletions. We first discuss the case of edge dele-
tions. Let us assume that the minimum r(Ci)-t-cut represented in the old tree
Tc(Gα) has not been reconfirmed, but instead, by a computation in G	α , a new,
cheaper minimum r(Ci)-t-cut θ′ = (U, Vα \ U) is found, with r(Ci) ∈ U .
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If the cluster Ci neither contains b nor d the following lemma tells us that
for any such minimum r(Ci)-t-cut θ′ there is a minimum r(Ci)-t-cut θ = (U ∪
Ci, (Vα\U)\Ci) in G	α that does not split Ci, but splits Vα\Ci exactly as θ′ does.

ΓA

ΓB

Γ̄
Γ

θ′

θ

ḡ

g

db

Γ̄BΓ̄A

Figure 7: Situation of Lemma 5: min-
imum ḡ-g-cut (dotted) splits Vα (gray
area) into Γ̄ and Γ. Any cut θ′ (black
dashed) that separates ḡ and g can be
reshaped according to θ (red dashed).

If Ci contains b and d there is a mini-
mum r(Ci)-t-cut θ = (U ∩ Ci, (Vα \
U) ∪ ⋃C∈C(G)\{Ci} C) in G	α that

does not split
⋃
C∈C(G)\{Ci} C, but

splits Ci exactly as θ′ does.

Lemma 5 For a minimum r(Ci)-t-
cut (Ci, Vα \ Ci) in Gα that does not
separate b and d denote the cut side
containing b and d by Γ and let g
denote the vertex in {r(Ci), t} ∩ Γ.
We further define Vα \ Γ := Γ̄ and
{r(Ci), t} \ {g} := {ḡ}. Let (A,B)
be a cut separating r(Ci) and t such
that (A,B) induces a cut (Γ̄A, Γ̄B) of
Γ̄ with ḡ ∈ Γ̄A and a cut (ΓA,ΓB) of Γ with g ∈ ΓB. Then c	α (ΓA ∪ Γ̄,ΓB) ≤
c	α (ΓA ∪ Γ̄A,ΓB ∪ Γ̄B).

Proof. Using the fact that, in the previous graph Gα, (Ci, Vα\Ci) is a minimum
r(Ci)-t-cut, we prove Lemma 5 by contradiction. We show that cut (Γ̄A, Vα\Γ̄A)
would have been cheaper than the given minimum ḡ-g-cut (Γ̄, Vα \ Γ̄) in Gα if
c	α (ΓA ∪ Γ̄A,ΓB ∪ Γ̄B) was cheaper than c	α (ΓA ∪ Γ̄,ΓB) in G	α . We express the
costs of (Γ̄A, Vα \ Γ̄A) and (Γ̄, Vα \ Γ̄) with the aid of (ΓA ∪ Γ̄A,ΓB ∪ Γ̄B) and
(ΓA ∪ Γ̄,ΓB) considered in Lemma 5. Note that (Γ̄A, Vα \ Γ̄A) and (Γ̄, Vα \ Γ̄)
do not separate b and d. Thus, their costs are unaffected by the deletion, by
Lemma 1. We get

(i) cα(Γ̄A, Vα \ Γ̄A) = c	α (ΓA ∪ Γ̄A,ΓB ∪ Γ̄B) − c	α (ΓA,ΓB ∪ Γ̄B)

+ c	α (ΓA, Γ̄A)

(ii) cα(Γ̄, Vα \ Γ̄) = c	α (ΓA ∪ Γ̄,ΓB) − c	α (ΓA,ΓB)

+ c	α (ΓA, Γ̄)

Certainly, it holds that c	α (ΓA,ΓB) ≤ c	α (ΓA,ΓB ∪ Γ̄B) and that c	α (ΓA, Γ̄A) ≤
c	α (ΓA, Γ̄); together with the assumption that the lemma does not hold, i.e.,
that c	α (ΓA ∪ Γ̄A,ΓB ∪ Γ̄B) < c	α (ΓA ∪ Γ̄,ΓB) holds, we can see the following,
by subtracting (i) and (ii):

cα(Γ̄A, Vα \ Γ̄A)− cα(Γ̄, Vα \ Γ̄) = [c	α (ΓA ∪ Γ̄A,ΓB ∪ Γ̄B)− c	α (ΓA ∪ Γ̄,ΓB)]

− [c	α (ΓA,ΓB ∪ Γ̄B)− c	α (ΓA,ΓB)]

+ [c	α (ΓA, Γ̄A)− c	α (ΓA, Γ̄)] < 0

This contradicts the fact that the previous cut (Γ̄, Vα \ Γ̄) is a minimum ḡ-g-cut
in Gα.
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r(Ci)
r(Cj)

tUiŪi

(a) θ′i separates r(Cj) and t.

r(Ci)
r(Cj)

t Uj ŪjUiŪi

(b) θ′i separates r(Cj) and t,
but θ′j is known and does not

separate r(Ci) and t.

r(Ci)
r(Cj)

t
Uj ŪjUiŪi

(c) neither does θ′i separate
r(Cj) and t, nor θ′j r(Ci)
and t.

Figure 8: Three different scenarios concerning the positions of θ′i and θ′j (black
and gray dashed, respectively), and their adjustments (red dotted).

While this lemma can be applied in order to retain a cluster Ci, even if new
a new minimum r(Ci)-t-cut is found (case b, d /∈ Ci), in the following, we take
a look at how such a new, cheap cut can affect other clusters Cj , with j 6= i.
In fact a similar cluster-conserving result can be stated. Consider a clustering
defined by a tree Tc(Gα). By Lemma 5 the following conservation-property holds
for each cluster Cj with Cj ∩ {b, d} = ∅: In G	α let θ′j denote any r(Cj)-t-cut

(Ūj , Uj) (with Ūj := (Vα \ Uj), t ∈ Uj and θ′j not necessarily minimum with

respect to r(Cj) and t). The cut θj := (Ūj ∪ Cj , Uj \ Cj) has at most the same
weight as θ′j .

Suppose we have improved a new minimum r(Ci)-t-cut in G	α according
to the conservation-property described above such that it does not split Ci; for
the sake of notational simplicity we again call this cut θ′i = (Ūi, Ui), and then,
processing it further, work it into a cut called θi. In the view of Ci any other
cluster Cj with j 6= i and Cj ∩{b, d} = ∅ appears in exactly one of the following
three scenarios:

(a) θ′i separates t and r(Cj) and we do not know a minimum r(Cj)-t-cut
in G	α yet.

(b) θ′i separates t and r(Cj) and we already know a minimum r(Cj)-t-cut θ′j in
G	α that does not separate t and r(Ci). In this case suppose θ′j has also
been improved according to the conservation-property, retaining Cj .

(c) θ′i does not separate t and r(Cj) and we already know a minimum r(Cj)-
t-cut θ′j in G	α that does not separate t and r(Ci). Again suppose θ′j
retains Cj .

Figure 8 shows θ′i (black dashed), θ′j (gray dashed) and the adjustment of θ′i
denoted by θi (red dotted) in the three scenarios given above. Note that if
we already know a minimum r(Cj)-t-cut θ′j in G	α that separates t and r(Ci),
this cut behaves like θ′i in Scenario (a) and using this cut as a split cut in the
construction of a new clustering-defining tree Tc(G

	
α ) prevents r(Ci) and t from

ever becoming a step pair in a later step, since they are already separated. Thus,
there is no such scenario.

Scenario (a): As cut θ′i separates r(Cj) and t, and as Cj satisfies the
conservation-property, the cut θi := (Ūi ∪ Cj , Ui \ Cj) (red dotted) has weight
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c	α (θi) ≤ c	α (θ′i) and still separates r(Ci) and t and is thus a minimum r(Ci)-t-
cut, which does not split Ci ∪ Cj .

While Lemma 5 covers this case only for Cj ∩ {b, d} = ∅, we can even
drop this limitation: Using r(Cb) (r(Cd) is analogous) as r(Cj) in the case of
inter-cluster edge deletion, the same assertion immediately holds, but now by
pseudo-contraction. To see this, note that while {r(Cb), t} is on γb,d, the cut
defining Cb remains a minimum r(Cb)-t-cut in G	α (by Lemma 1) and thus
pseudo-contracts Cb in the view of θ′i. In the case of intra-cluster edge deletion,
we can not apply Lemma 1 as {r(Cb/d), t} is not on γb,d, i.e., we can not adjust
other r(Ci)s’ cuts to Cb/d with the arguments in this scenario.

Scenario (b): Here we assume that θ′j is already known before θ′i is consid-
ered. This is, r(Cj)’s side of θ′j is already pseudo-contracted by θ′j . As θ′j does
not separate r(Ci) from t, indeed, but may separate some other cluster represen-
tatives from t and thus may already have been adjusted accordingly, the cut θ′i
is reshaped regarding the whole cut side Ūj (instead of only to cluster Cj ⊆ Ūj
as by Scenario (a)). By pseudo-contraction the cut θi := (Ui ∩Uj , Ūi ∪ Ūj) (red
dotted) is a minimum r(Ci)-t-cut, which does not split Ci ∪Cj . The comments
from Scenario (a) carry over.

Scenario (c): In this scenario, neither newly found minimum cut separates
the other representative from t. By pseudo-contraction, the cut (Ūi∩Uj , Ūj∪Ui)
(blue dash-dotted) is a minimum r(Ci)-t-cut. This cut can be adjusted to
θi := ((Ūi∩Uj)∪Ci, (Ūj ∪Ui)\Ci) (red dotted), which neither splits Ci nor Cj ,
by means of the conservation-property of Ci. Analogously, θj := ((Ūj ∩ Ui) ∪
Cj , (Ūi ∪Uj) \Cj) (not shown) is a minimum r(Cj)-t-cut, and θi and θj do not
cross.

If in the case of inter-cluster edge deletion we consider r(Cb) (r(Cd) is analo-
gous) instead of r(Cj) where Cj ∩{b, d} = ∅ was assumed, the cut defining Cb is
a known minimum r(Cb)-t-cut in G	α (by Lemma 1), i.e., θ′b := (Cb, Vα\Cb) does
not split Ci. This is, θ′i bent along θ′b by pseudo-contraction neither splits Ci
nor Cb and both cuts do not cross. In the case of intra-cluster edge deletion,
if r(Cb/d) is used as r(Cj), any newly found minimum r(Cb/d)-t-cut θ′b/d can
be reshaped by Lemma 5 such that it does not cross the union of all other old
clusters and t (Note that it can not be adjusted such that it definitely spares
Cb/d as Cb/d has no conservation-property). Thus, θ′b/d does not cut through Ci.

However, θ′i still may cut through Cb/d.
To summarize the cases discussed above, we make the following observation.

Observation 1 During the construction of a clustering-defining tree Tc(G
	
α )

starting from T◦ and checking the remaining edges incident to t in old Tc(Gα),
whenever we discover a new, cheaper minimum r(Ci)-t-cut θ′ (Ci ∩ {b, d} = ∅)
we can iteratively reshape θ′ into a minimum r(Ci)-t-cut θ which neither cuts Ci
nor any other cluster Cj with Cj∩{b, d} = ∅, by means of Scenarios (a,b,c). For
r(Cb) and r(Cd) in the case of inter-cluster deletion the clusters Cb and Cd are
preserved anyway. In contrast, in the case of intra-cluster deletion, the cluster
Cb/d can not be protected but at least any new minimum r(Cb/d)-t-cut spares all
other old clusters.
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New Cuts After Edge Insertions. The bigger picture of the last subsec-
tion’s findings can be summarized as follows: After an edge deletion, it never
pays off to cut through that side of a former minimum cut, which can not offer
new, cheaper cuts, as it was unaffected by the update. In the following we will
confer this idea to edge insertions.

In contrast to edge deletion, after an edge insertion between two different
clusters Cb and Cd only two edges need to be checked during the construction of
a new clustering-defining tree Tc(G

⊕
α ) from T◦; namely {r(Cb), t} and {r(Cd), t},

i.e., those edges that are incident to t and separating b and d. The checked edges
are reconfirmed by a computation in G⊕α if there exists a minimum r(Cb)-t-cut
and a minimum r(Cd)-t-cut which is as expensive as the previous minimum
cut, respectively, plus ∆ (the weight of the inserted edge), as pointed out in
Lemma 1. However, if {r(Cb), t} or {r(Cd), t} is not reconfirmed, depending on
the shape of the new cut, we may still be able to retain the associated cluster.
In the following we only consider the edge {r(Cb), t}. Analog assertions hold for
{r(Cd), t}.

ΓA

ΓB

Γ̄ Γ

θ′

θ

ḡ

g

dbΓ̄B

Γ̄A

Figure 9: Situation of Lemma 6: min-
imum ḡ-g-cut (dotted) splits Vα (gray
area) into Γ̄ and Γ. Any cut θ′ (black
dashed) that does not separate b, d, ḡ
but separates ḡ, g can be transformed
into θ (red dashed).

For any new minimum r(Cb)-t-cut
θ′b = (U, Vα \ U) with {r(Cb), b} ⊆
U the following lemma tells us that
there is a minimum r(Cb)-t-cut θb =
(U ∪ Cb, (Vα \ U) \ Cb) in G⊕α that
does not split Cb, but splits Vα \ Cb
exactly as θ′b does. Note that a new
minimum r(Cb)-t-cut never separates
b and d as otherwise it would not be
cheaper than the previous one plus ∆.
For a new minimum r(Cb)-t-cut θ′b =
(U, Vα \ U) with {t, b} ⊆ (Vα \ U),
by Lemma 6, there is a minimum
r(Cb)-t-cut θ = (U ∩ Cb, (Vα \ U) ∪⋃
C∈C(G)\{Cb} C) in G⊕α that does not

split
⋃
C∈C(G)\{Cb} C, but splits Cb

exactly as θ′b does. (The attribute of a cut to have r(Cb), b, d on the same side,
will later be introduced as car, as by “cut attribute regarding representative”.)
Analogously, cat will stand for the attribute of a cut to have t, b, d on the same
side, as by “cut attribute regarding t”.)

Lemma 6 Consider a minimum r(Ci)-t-cut (Ci, Vα\Ci) in Gα that separates b
and d, i.e., Ci ∈ {Cb, Cd}. Let (A,B) be a cut separating r(Ci) and t but not b
and d, with {b, d} ⊆ A. Let g denote the vertex in {r(Ci), t} ∩ B and define
{r(Ci), t} \ {g} := {ḡ}. Denote the cut side of (Ci, Vα \ Ci) containing g by Γ
and Vα\Γ := Γ̄. Then (A,B) induces a cut (Γ̄A, Γ̄B) of Γ̄ with ḡ ∈ Γ̄A and a cut
(ΓA,ΓB) of Γ with g ∈ ΓB such that c⊕α (ΓA ∪ Γ̄,ΓB) ≤ c⊕α (ΓA ∪ Γ̄A,ΓB ∪ Γ̄B).

Proof. The Proof of Lemma 6 bases on the same idea as the proof of Lemma 5.
We prove it by contradiction. We show that cut (Γ̄A, Vα \ Γ̄A) would be cheaper
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than the edge-induced minimum ḡ-g-cut (Γ̄, Vα\Γ̄) in Gα if c⊕α (ΓA∪Γ̄A,ΓB∪Γ̄B)
was cheaper than c⊕α (ΓA ∪ Γ̄,ΓB) in G⊕α . We express the costs of (Γ̄A, Vα \ Γ̄A)
and (Γ̄, Vα \ Γ̄) with the aid of (ΓA ∪ Γ̄A,ΓB ∪ Γ̄B) and (ΓA ∪ Γ̄,ΓB) considered
in Lemma 6. Note that cα(Γ̄A, Vα \ Γ̄A) = c⊕α (Γ̄A, Vα \ Γ̄A)−∆ and cα(Γ̄, Vα \
Γ̄) = c⊕α (Γ̄, Vα \ Γ̄) − ∆. Thus, for our contradiction, it will do to show that
c⊕α (Γ̄A, Vα \ Γ̄A) would be cheaper than c⊕α (Γ̄, Vα \ Γ̄). We get

(i) c⊕α (Γ̄A, Vα \ Γ̄A) = c⊕α (ΓA ∪ Γ̄A,ΓB ∪ Γ̄B) − c⊕α (ΓA,ΓB ∪ Γ̄B)

+ c⊕α (ΓA, Γ̄A)

(ii) c⊕α (Γ̄, Vα \ Γ̄) = c⊕α (ΓA ∪ Γ̄,ΓB) − c⊕α (ΓA,ΓB)

+ c⊕α (ΓA, Γ̄)

Again we observe two inequalities:
c⊕α (ΓA,ΓB) ≤ c⊕α (ΓA,ΓB ∪ Γ̄B) and c⊕α (ΓA, Γ̄A) ≤ c⊕α (ΓA, Γ̄); together with
the contradicting assumption that c⊕α (ΓA ∪ Γ̄A,ΓB ∪ Γ̄B) < c⊕α (ΓA ∪ Γ̄,ΓB), by
subtracting (i) and (ii), we get:

c⊕α (Γ̄A, Vα \ Γ̄A)− c⊕α (Γ̄, Vα \ Γ̄) = [c⊕α (ΓA ∪ Γ̄A,ΓB ∪ Γ̄B)− c⊕α (ΓA ∪ Γ̄,ΓB)]

− [c⊕α (ΓA,ΓB ∪ Γ̄B)− c⊕α (ΓA,ΓB)]

+ [c⊕α (ΓA, Γ̄A)− c⊕α (ΓA, Γ̄)] < 0

This contradicts the fact that the edge-induced cut (Γ̄, Vα \ Γ̄) is a minimum
ḡ-g-cut in Gα.

While this lemma can be applied in order to retain the current cluster (wlog.
Cb), given that a new minimum r(Cb)-t-cut, with r(Cb), b, d on the same side, is
found, in the following, we take a look at how this new cut can affect the other
cluster Cd.

In a clustering-defining tree Tc(Gα) consider the two edges {r(Cb), t} and
{r(Cd), t}. Returning to the notation used before in the case of edge deletion,
by Lemma 6, the following conservation-property holds for Cb: In G⊕α let θ′b
denote any r(Cb)-t-cut (Ūb, Ub) that has r(Cb), b, d on the same side(with Ūb :=
(Vα \ Ub), t ∈ Ub and θ′b not necessarily minimum with respect to r(Cb) and t).
The cut θb := (Ūb ∪Cb, Ub \Cb) is of at most the same weight as θ′b. For Cd an
analogous property holds.

In order to see which cuts are eligible for adjustment by this conservation-
property, as already announced, we introduce the following attributes for cuts:
We say that a r(Cb)-t-cut possesses the cut attribute car(b) if it has r(Cb), b, d
on the same side; and it has the cut attribute cat(b) if it has t, b, d on the same
side (note that car(b) and cat(b) are mutually exclusive). Analogously, car(d)
and cat(d) denote the cut attributes for r(Cd)-t-cuts.

In G⊕α consider a new minimum r(Cb)-t-cut θ′b which is cheaper than the
previous cut plus ∆. Such a cut either satisfies car(b) or cat(b) as it does not
cross the inserted edge {b, d}, by Lemma 1. If it possesses car(b), suppose we
have already improved this cut in G⊕α according to the conservation-property de-
scribed above such that it does not split Cb; for the sake of notational simplicity
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Ud ŪdUbŪb
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(c) θ′b possesses cat(b). θ′d
has three possibilities (not
shown).

Figure 10: Three different scenarios concerning the positions of θ′b and θ′d (black
and gray dashed, respectively), and their adjustments (red dotted).

we again call it θ′b = (Ūb, Ub), and then, processing it further, work it into a
cut called θb. In the view of Cb the cluster Cd appears in exactly one of the
following three scenarios:

(a) θ′b possesses car(b) and separates t and r(Cd). A new minimum r(Cd)-t-cut
θ′d in G⊕α has different possibilities discussed below.

(b) θ′b possesses car(b) and does not separate t and r(Cd) and we know a new
minimum r(Cd)-t-cut θ′d in G	α that behaves analogously. Suppose θ′d has
also been improved according to the conservation-property, retaining Cd.

(c) θ′b possesses cat(b) and thus can be reshaped by Lemma 6 such that it does
not cut through

⋃
C∈C(G)\{Cb} C. Then a new minimum r(Cd)-t-cut θ′d in

G⊕α has three possibilities, as described below.

Figure 10 shows θ′b (black dashed), θ′d (gray dashed) and the adjustment of θ′b
denoted by θb (red dotted) in the three scenarios given above.

Scenario (a): The attribute car(b) together with the conservation-property
for Cd allows to conserve both clusters Cb and Cd as follows. As cut θ′b sepa-
rates r(Cd), t and satisfies car(b) it also possesses car(d), and as Cd satisfies the
conservation-property, the cut θb := (Ūb ∪ Cd, Ub \ Cd) (red dotted) has weight
c⊕α (θb) ≤ c⊕α (θ′b) and is thus a minimum r(Cb)-t-cut that does not split Cb ∪Cd.
If there is a new minimum r(Cd)-t-cut θ′d that behaves analogously, we can
choose between the two improved cuts θb and θd. In this case, in order to keep
consecutive clusterings similar, we prefer that cut that shadows less of the re-
maining clusters in C(Gα)\{Cb, Cd}. Minimum r(Cd)-t-cuts of any other shape
are ignored.

Scenario (b): Here, by pseudo-contraction, θ′b can be reshaped to the blue
dash-dotted cut which possesses cat(b). Applying Lemma 6 to this minimum
r(Cb)-t-cut yields θb := (Ud ∩ Cb, Vα \ (Ud ∩ Cb)) (red dotted) as a minimum
r(Cb)-t-cut, which does not shadow any of the old clusters. Furthermore, θ′d at
least pseudo-contracts cluster Cd. Since in this scenario θ′d and θ′b are swappable,
we choose that cut for reshaping that shadows more of the remaining clusters
in C(Gα) \ {Cb, Cd}. A similar situation also appears in Scenario (c(ii)).

Scenario (c): Applying Lemma 6 to θ′b which satisfies cat(b) yields a cut
θb := (Ūb ∩ Cb, Vα \ (Ūb ∩ Cb)) shaped as shown in the figure (red dotted), in
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particular, a cut that does not shadow any of the old clusters and does not sep-
arate r(Cd), t. Note that similar assertions also hold for θ′b being a reconfirmed,
remaining cut pseudo-contracting Cb. However, if θ′b is not reconfirmed, the
further new cuts potentially needed to separate t from remaining vertices may
cut through Cb (while θ′b definitely does). The second cut θ′d (not shown) now
has one of three possible, mutually exclusive characteristics:

(i) θ′d also possesses cat(d): Then it has a shape analogous to θ′b (after
the above adjustment, respectively). Thus, neither Cb nor Cd is conserved, but
none of the old, remaining clusters get shadowed so far. Furthermore, Cb is not
cut by θ′d and vice versa.

(ii) θ′d possesses car(d) but does not separate r(Cb), t: In this case we sup-
pose θ′d to be at least improved according to the conservation-property retaining
and thus pseudo-contracting Cd.

(iii) θ′d separates r(Cb), t with car(d): Then, independent of the shape of θ′b,
we get Scenario (a) with roles of r(Cb) and r(Cd) swapped.

Observation 2 During the construction of a clustering-defining tree Tc(G
⊕
α )

starting from T◦ and checking the two remaining edges incident to t in old
Tc(Gα), whenever we discover a new minimum cut that is cheaper than the
previous cut plus ∆ and possesses car, we can reshape this cut such that it does
not cut through its associated cluster. If it further separates the other vertex
from t, even Cb∪Cd can be preserved, by means of Scenario (a). In Scenario (b)
we can preserve at least one of the two clusters Cb and Cd, while the other cluster
gets split. However, all vertices split off from the latter cluster are shadowed
by the new cut associated to the preserved cluster. A new minimum cut that
possesses cat can be adjusted such that it does not shadow any old, remaining
cluster in C(Gα) \ {Cb, Cd} and does not cut the opposite cluster (compare to
Scenario (c)). In case of Scenario (c(ii)) at least one of the two clusters Cb
and Cd remains. However, in contrast to Scenario (b), it might be necessary to
resolve crossings between both newly computed cuts. By pseudo-contraction we
can further assume all new cuts not to cut through any of the remaining clusters
in C(Gα) \ {Cb, Cd}.

Coverage of Cases and Scenarios. At this point it is reasonable to briefly
review the cases treated above. It is important to note that the above elabora-
tions are exhaustive in that all possible cases for edge-based updates have been
discussed. Before we turn to formal descriptions of update algorithms based on
our observations, let us summarize.

For edge deletions we have found comprehensive rules allowing for the preser-
vation or at least for the en-bloc treatment of former clusters. Deleting an edge
between clusters in fact never forces us to split any former cluster, while inside
a single cluster, an edge deletion can at most require us to demolish that par-
ticular cluster. For edge insertions our rules are slightly less comprehensive. On
the one hand, nothing needs to be done for intra-cluster insertions (compare to
Remark 2). On the other hand, for inter-cluster insertions we have established
rules which enable cluster preservation for a number of cases. However, the
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Figure 11: T◦(G	α ) for an inter-cluster
deletion, edges not separating b, d
need inspection. The cuts of r(Cb)
and r(Cd) are correct, but they might
get shadowed.
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Figure 12: T◦(G	α ) for an intra-cluster
deletion, any new r(Cb/d)-t-cut (red
dashed) spares

⋃
C∈C(Gα)\{Cb/d} C and

could be added to Θ by Algorithm 6
(line 12).

remaining cases can again only require us to demolish both affected clusters,
not others.

4 Update Algorithms for Dynamic Clusterings

In this section we put the results of the previous sections to good use and give
algorithms for updating a minimum-cut tree clustering, such that the invariant
is maintained and thus also the quality.

4.1 Edge Modifications

By concept, for updating a clustering after an edge modification, we merely
need to know all vertices of Tc(Gα) adjacent to t, i.e., all representatives of the
clusters. We call this set W (G), with rb := r(Cb), rd := r(Cd), rb/d := r(Cb/d)
being the particular representatives. We call the corresponding set of non-
crossing, non-nested minimum r(Ci)-t-cuts that isolate t, Θ(G). We will thus
focus on dynamically maintaining only this information. From Remarks 2-5, for
a given edge insertion or deletion, we know T◦, and we know in which node of
T◦ to find t, this is the node we need to examine. We now give algorithms for
the deletion and the insertion of an edge running inside or between clusters.

Edge Deletion. Our first algorithm handles inter-cluster deletion (see Algo-
rithm 4). Just like its three counterparts, it takes as an input the sets W (G) and
Θ(G) of the old graph G, furthermore it takes the changed graph, augmented
by t, G	α and the deleted edge {b, d}. Recall that an inter-cluster deletion yields
an intermediate tree T◦(G	α ) that consists of three nodes and contains edges
{r(Cb), t} and {r(Cd), t} representing cuts θb, θd defining the clusters Cb and
Cd, as shown in Figure 11. All other edges incident to t in Tc(Gα) need to be
changed or reconfirmed. To this end Algorithm 4 lists all previous represen-
tatives ri ∈ W (G), into the tentative list Wten, and initializes their shadows
D(ri) = {ri} by means of Lemma 5. The known cuts θb, θd are already added
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to Θten (line 1). Then the core algorithm, Check Representatives is called,
which—roughly speaking—performs those Gomory-Hu steps that are neces-
sary to isolate t, of course, using the lemmas derived above.

First of all, note that if |C| = 2 (C = {Cb, Cd} and {t} singleton in T◦(G	α ))
then Wten = {rb, rd} and Algorithm 4 lets Check Representatives (Algo-
rithm 5) simply return the input cuts and terminates. Otherwise, it iterates
the set of former representatives Wten, thereby possibly shortening it, due to
shadowing. We start by computing a new minimum ri-t-cut for ri. If the new

Algorithm 4: Inter-Cluster Edge Deletion

Input: W (G), Θ(G) G	α = (Vα, Eα \ {{b, d}}, c	α ), edge {b, d}
Output: W (G	), Θ(G	)

1 Θten ← {θb, θd}, Wten ← {rb, rd}
2 D(rb)← {rb}, D(rd)← {rd}
3 for ri ∈W (G) \ {rb, rd} do // not including rb, rd
4 Add ri to Wten // old representatives

5 D(ri)← {ri} // shadows

6 return Check Representatives
(W (G),Θ(G), G	α , {b, d}, D,Wten,Θten)

Algorithm 5: Check Representatives

Input: W (G),Θ(G), G	α , {b, d}, D,Wten,Θten

Output: W (G	),Θ(G	)
1 while Wten has next element ri /∈ {rb, rd} do // Wten may change

2 θi ← minimum ri-t-cut given by FlowAlgo(ri, t)

3 if c	α (θi) = cα(θoldi ) then // retain old cuts of same weight

4 Add θold
i to Θten // pointed at by ri

5 else // new cheaper cuts

6 Add θi to Θten // pointed at by ri
7 while Wten has next element rj 6= ri do // cp. to other cuts

8 if θi separates rj and t then // Scen. (a), (b) shadow rj
9 Remove rj from Wten, D(ri)← D(ri) ∪D(rj)

10 if Θten 3 θj, pointed at by rj then Delete θj from Θten

11 forall the ri ∈Wten, ri /∈ {rb, rd} do // let cuts preserve clusters

12 set (Ū , U) := θi with t ∈ U for θi ∈ Θten pointed at by ri
13 forall the rj ∈ D(ri) do // handle Ci and shadowed cuts ...

14 θi ← (Ū ∪ Cj , U \ Cj) // ...with Scenario (a), (b), Lem. 5

15 forall the rj 6= ri in Wten do // handle other cuts ...

16 forall the rx ∈ D(rj) do // ...with Scenario (c)

17 θi ← (Ū \ Cx, U ∪ Cx)

18 return Wten,Θten
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cut is not cheaper, we use the old one instead, and add it to the tentative list of
cuts Θten (lines 3-4). Otherwise we store the new, cheaper cut θi, and examine
it for later adjustment: For any candidate rj still in Wten that is separated
from t by θi, Scenario (a) or (b) applies (line 8). Note that the while loop in
line 7 iterates Wten from scratch. Thus, rj will be in the shadow of ri, and
not a representative in the new clustering (line 9). In case rj has already been
processed (Scenario (b)), its cut is removed from Θten.

Once all candidates for new representatives are processed, for each of them
exactly one of the following options holds: It induces the same cut as before,
it is new and shadows other former representatives or it is itself shadowed by
another candidate. Now that we have collected these relations, we actually
apply Lemma 5 and Scenarios (a,b,c) in lines 11-17. Note that for retained, old
cuts, no adjustment is actually done here, however, for brevity, the pseudocode
superficially iterates throughout Wten. In fact, it is not hard to see that at most
two vertices in Wten are assigned to new cuts which require treatment. Finally,
all non-shadowed candidates alongside their adjusted, non-crossing, non-nested
cuts are returned.

Next we look at intra-cluster edge deletion. Looking at our starting point T◦,
the modified edge {b, d} lies within some cluster Cb/d, which does not help much,
since none of the edges incident to t in Tc(Gα) separates b and d. However, in
this case, Lemma 5 tells us that any new minimum rb/d-t-cut spares the part of
G	α containing all other former clusters and t, see the dashed cut in Figure 12.
Algorithm 6 has the same in- and output as Algorithm 4, and starts by finding
a new minimum rb/d-t-cut. If this yields that no new, cheaper rb/d-t-cut exists,
then, by Lemma 4, we are done (line 2). Otherwise, we first adjust θb/d such that
it at least does not interfere with any former cluster Ci by Lemma 5 (lines 5-
6); note that Cb/d can not necessarily be preserved. Then we prepare the sets
Wten,Θten in lines 7-10. Check Representatives now performs the same
tasks as for Inter-Cluster Edge Deletion: It separates all candidates for
new representatives from t in a non-intrusive manner; note that this excludes
rb/d (line 8), as Cb/d is not retained, and thus defies the adjustments.

After line 11 we have one minimum rb/d-t-cut that leaves the former clusters
untouched, but might split Cb/d, and we have a new set Θten of minimum ri-t-
cuts (with some former rj ∈W (G) possibly having become shadowed) which do
not cut through former clusters Ci but might, however, also cut through Cb/d.
These cuts may further cross each other and θb/d in the area of Cb/d. So we
put all these cuts and representatives into Θ(G	) and W (G	) and apply the
technique of pseudo-contraction to make all cuts non-crossing. Note that this
may result in shadowing rb/d. In this case we delete the nested cut. Finally, some
vertices from the former cluster Cb/d might still remain unclustered, i.e., not
separated from t by any θ ∈ Θ(G	). For clustering these vertices v we can not
do better than proceeding as conservatively: Compute their set of minimum v-
t-cuts and render them non-crossing by pseudo-contraction, possibly shadowing
one another or some previous cut θ. We refrain from detailing the latter steps.
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Algorithm 6: Intra-Cluster Edge Deletion

Input: W (G),Θ(G), G	α = (Vα, Eα \ {{b, d}}, c	α ), edge {b, d}
Output: W (G	), Θ(G	)

1 θb/d ← minimum rb/d-t-cut given by FlowAlgo(rb/d, t)

2 if c	α (θb/d) = cα(θoldb/d) then // no cheaper cut found

3 return W (G),Θ(G) // retain clustering by Lemma 4

4 else // a new cut should spare former clusters

5 set (Ū , U) := θb/d with t ∈ U // just nomenclature

6 forall the Ci 6= Cb/d do θb/d ← (Ū \ Ci, U ∪ Ci, ) ; // by Lemma 5

7 Wten ← ∅,Θten ← ∅
8 for ri ∈W (G) \ {rb/d} do // not including rb/d
9 Add ri to Wten

10 D(ri)← {ri}
11 Wten,Θten ← Check Representatives

(W (G),Θ(G), G	α , {b, d}, D,Wten,Θten )
12 W (G	)←Wten ∪ {rb/d}, Θ(G	)← Θten ∪ {θb/d}
13 Resolve all crossings in Θ(G	) by pseudo-contraction, delete nestings
14 Isolate the sink t from all remaining unclustered vertices
15 return W (G	),Θ(G	)
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Figure 13: T◦(G⊕α ) for an inter-cluster
insertion. At least r(Cb) and r(Cd)
need inspection.
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Figure 14: T◦(G⊕α ) for an intra-cluster
insertion. All relevant minimum r(Ci)-
t-cuts persist.

Edge Insertion. The good news for handling G⊕ is that an algorithm Intra-
Cluster Edge Addition does not need to do anything, but return the old
clustering (compare to Remark 2 and Figure 14). By contrast, inserting an
edge between clusters is more demanding (Algorithm 7). Again, the algorithm
takes as an input the sets W (G) and Θ(G) of the old graph G, the changed
graph G⊕α , the inserted edge {b, d} and its weight ∆. An inter -cluster insertion
yields an intermediate tree T◦(G⊕α ) with |C(G)| − 1 nodes, thus in T◦ the only
unknown cuts are those for r(Cb) and r(Cd) in Tc(Gα), see Figure 13. A sketch
of what needs to be done, as given in Algorithm 7, is as follows: We compute
new minimum rb-t- and minimum rd-t-cuts (line 5) and keep the former ri-t-cuts
for the remaining clusters in Θ(G⊕) and W (G⊕) (line 3). To also conserve the
clusters Cb and Cd we try to apply Scenario (a). To this end the attribute car is
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Algorithm 7: Inter-Cluster Edge Addition

Input: W (G),Θ(G), G⊕α = (V,E ∪ {{b, d}}, c⊕α ), {b, d} with weight ∆
Output: W (G⊕),Θ(G⊕)

1 Θten, D(rb), D(rd)← ∅, Wten ← {rb, rd}
2 car(b), car(d)← False
3 W (G⊕)←W (G) \ {rb, rd}, Θ(G⊕)← Θ(G) \ {θb, θd}
4 forall the ri ∈ {rb, rd} do
5 θi ← minimum ri-t-cut given by FlowAlgo(vi, t)

6 if c⊕α (θi) = cα(θoldi ) + ∆ then θi ← θold
i // retain old cuts

7 else
8 set (Ū , U) := θi with t ∈ U // just nomenclature

9 if θi has {ri, b, d} on same side then // check attribute car
10 car(i)← True // car for θi
11 θi ← (Ū ∪ Ci, U \ Ci) // by Lemma 6 for car
12 D(ri)← checkShadows(θi)
13 θi ← adjustShadows(θi, D(ri))

14 else // then cat holds

15 θi ← (Ū ∩ Ci, Vα \ (Ū ∩ Ci)) // by Lemma 6 for cat

16 Add θi to Θten // pointed at by ri

17 if ∃ ri ∈ {rb, rd}: car(i) ∧ [θi separates rj , t; ri 6= rj ∈ {rb, rd}] then
// Scenario (a)

18 set (Ū , U) := θi, t ∈ U // just nomenclature

19 if car(j) ∧ [θj separates ri, t] then // other cut is feasible, too

20 wlog. |D(ri)| ≤ |D(rj)|, choose ri for reshaping // better cut

21 θi ← (Ū ∪ Cj , U \ Cj) // by Scenario (a)

22 Wten ← {ri}, Θten ← {θi}
23 else if car(b) ∧ car(d) then // Scenario (b)

24 set (Ūb, Ub) := θb, set (Ūd, Ud) := θd // just nomenclature

25 wlog. |D(rd)| ≤ |D(rb)|, choose rb for reshaping // better cut

26 θb ← (Ud ∩ Cb, Vα \ (Ud ∩ Cb)) // by Scenario (b)

27 Wten ← {rb, rd}, Θten ← {θb, θd}
28 Resolve all crossings in Θten by pseudo-contraction // necessary for

Scenario (c(ii))

29 Add all vertices in Wten to W (G⊕), all cuts in Θten to Θ(G⊕)
30 Isolate the sink t from all remaining unclustered vertices // necessary

for Scenario (c(i/ii))

31 return W (G⊕),Θ(G⊕)

checked for the new cuts θb, θd (line 10). If θb or θd is cheaper than the old cut
weight plus ∆, i.e., is not reconfirmed, and satisfies car (line 9) we reshape it
such that its associated cluster is conserved by Lemma 6, followed by potential
shadowings of former ri (line 12). Otherwise (if it satisfies cat, line 14) it does
not shadow or cut any other cluster by pseudo-contraction and Lemma 6, so we
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Procedure checkShadows(θ)

1 forall the rj ∈W (G) \ {rb, rd} do
2 if θ separates rj and t then delete θj from Θ(G⊕), move rj from

W (G⊕) to D

3 return D

Procedure adjustShadows(θ, D)

1 set (Ū , U) := θ, t ∈ U // just nomenclature

2 forall the rj ∈ D do θ ← (Ū ∪ Cj , U \ Cj) // by pseudo-contraction

3 forall the rj ∈W (G) \ ({vb, vd} ∪D) do θ ← (Ū \ Cj , U ∪ Cj)
4 return θ

can skip checkShadows and adjustShadows.
If possible we apply Scenario (a) in line 17–22. In case that both checked

cuts satisfy car and separate t from the other vertex, respectively, as an optional
step for the sake of temporal smoothness, the algorithm chooses that cut for re-
shaping that shadows less of the remaining clusters (line 20). If Scenario (a)
is skipped, then both checked cuts have been reconfirmed before or both cuts
meet Scenario (b) (line 23–27) or at least one meets Scenario (c(i)) or (c(ii)).
Scenario (b) finally ends up with two cuts akin to those of Scenario (c(ii)) but
non-crossing. As an optional step for the sake of temporal smoothness, the al-
gorithm here chooses that cut for reshaping that shadows more of the remaining
clusters (line 25). In Scenario (c(ii)) it might become necessary to make the two
cuts in Θten non-crossing (line 28). Furthermore, some vertices of the former
clusters Cb and Cd might still remain unclustered. For clustering these vertices
we compute their set of minimum v-t-cuts and render them non-crossing by
pseudo-contraction, possibly shadowing one another or some previous represen-
tatives.

4.2 Vertex Modifications

In this section we consider the insertion and deletion of single vertices in a
dynamic graph G = (V,E). Augmenting V by a new vertex d realizes a vertex
insertion; to delete a vertex d from G the vertex d needs to be isolated, i.e., d is
only removable from G if all incident edges were removed by edge modifications
first. Thus, a vertex modification of G solely involves vertex d yielding G⊕ if it
is newly inserted, and G	 if it is deleted from G.

Note that a disconnected vertex d in G is no longer disconnected in the
augmented graph Gα, as d is adjacent to t via an edge with weight α. The fol-
lowing lemma describes how a clustering C(G) resulting from Cut-Clustering
behaves with respect to a disconnected vertex d in G.

Lemma 7 Given a disconnected vertex d in graph G = (V,E) and a clustering C
for G resulting from Cut-Clustering. Furthermore let Θ denote the set of
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non-crossing, non-nested split cuts induced by C. Then Θ contains cut θd :=
({d}, V \ {d}) with {d, t} as cut pair. This is, Cd := {d} ∈ C.

Proof. It is easy to see that θd has weight α with respect to Gα, and thus
is a minimum d-t-cut. Assume vertex d ∈ Ci 6= Cd, i.e., |Ci| ≥ 2. Cut θi :=
(Ci, Vα \Ci) is a minimum r(Ci)-t-cut for a vertex r(Ci) ∈ Ci ∈ C which has at
least weight 2α. Thus, r(Ci) 6= d. But the r(Ci)-t-cut (Ci \ {d}, Vα ∪ {d}) has
weight c(θi)−α which makes it cheaper than θi. This contradicts the assumption
that Ci containing d is a valid cluster in C.

With Lemma 7 a disconnected vertex in G always forms a singleton cluster.
This fact makes updating a clustering C after a vertex modification very simple:
A vertex deletion removes the corresponding cluster in C, a vertex insertion cre-
ates a new singleton in C and stores the new vertex together with t as associated
cut pair, i.e., the vertex becomes the representative of the new cluster.

5 Performance of the Algorithm

Temporal Smoothness. Our secondary criterion, which we left unformal-
ized, to preserve as much of the previous clustering as possible, in parts syn-
ergizes with effort-saving, an observation foremost reflected in the usage of T◦.
Lemma 4 and Observations 1 and 2 nicely enforce temporal smoothness. How-
ever, in some cases we must cut back on this issue, e.g., when we examine which
other candidates for new representatives are shadowed by another one, as for
example in line 8 of Algorithm 5. Here it entails many more cut-computations
and a combinatorially non-trivial problem to find best-shaped cuts and an order-
ing of Wten to optimally preserve old clusters. For our experiments we ordered
the vertices in Wten by decreasing degrees according to the recommendation of
Flake et al. for the static Cut-Clustering. Independent of the ordering of
Wten we can give the following stability guarantee:

Lemma 8 Let Algorithm 6 use for each considered vertex v in line 14 that cut
among all minimum v-t-cuts which has the fewest number of vertices on the
side containing v, i.e., the community of v with respect to t. Assume further
Algorithm 6 applies cut (Cb/d, Vα\Cb/d) if a minimum v-t-cut of the same weight
is found.

Let Algorithm 7 use the communities of rb and rd in line 5, and in line 30 the
communities for each considered vertex v. Assume further Algorithm 6 applies
the cuts (Cb, Vα \ Cb) and (Cd, Vα \ Cd) if a respective minimum v-t-cut of the
same weight is found.

With these slight changes each of our update algorithms guarantees stability,
i.e., returns the previous clustering C(G) if C(G) still fulfills the invariant for the
modified graph G⊕(	).

As our experiments serve as a first proof of concept, focusing on the number
of necessary maximum-flow calculations, we did not explicitly implement the
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prerequisites of this lemma for the cases of intra-cluster deletion and inter-
cluster insertion. However, since most minimum u-v-cuts were unique in our
instance, these are more often than not satisfied implicitly. The proof for the
deletion algorithms relies on the fact that any output clustering differing in
cluster Ci requires at least one minimum r(Ci)-t-cut (r(Ci) ∈ Ci) to separate
b, d, invalidating C(G). Intra-cluster insertion obviously retains a valid previous
clustering; for inter-cluster insertion an argument akin to that used for the
deletion algorithms can be used.

Proof. Consider inter-cluster deletion (Algorithm 4) first. To return a new
clustering C(G	) different from C(G) the algorithm needs to find a new cheaper
minimum r(Ci)-t-cut for at least one representative ri ∈ W (G) \ {rb, rd}. As
the previous clustering is also valid for G	, there must exist another vertex
u ∈ Ci that serves as a witness that the cut θi (defining Ci) still constitutes a
minimum u-t-cut in the modified graph G	α . However, each cheaper minimum
ri-t-cut found by the algorithm also separates u and t. This contradicts the
existence of a vertex u ∈ Ci such that {u, t} is a cut pair for θi in G	α .

Considering intra-cluster deletion (Algorithm 6), a new minimum rb,d-t-cut
calculated by Algorithm 6 always spares the part of G	α containing all other
clusters and t according to Lemma 5 and thus does not shadow any cluster
in C(G) \ {Cb/d}. If the previous representative rb/d still serves as a witness
that the cut defining Cb/d still constitutes a minimum rb/d-t-cut in the modified
graph G	α the lemma holds. Otherwise, the new cut θb,d is the community
of rb/d with respect to t. Furthermore, all the above arguments for the inter-
cluster deletion case also apply here to the clusters in C(G) \ {Cb/d}. Thus,
these clusters are again found. We show now that (a) while isolating t from the
remaining unclustered vertices, any new minimum v-t-cut (Cv, Vα \ Cv) with
v ∈ Cv is nested in Cb/d. In this context nested means that Cv ⊆ Cb/d. And we
show that (b) Algorithm 6 finds a witness ub/d that the cut defining Cb/d still
constitutes a minimum ub/d-t-cut in the modified graph G	α .

To see (a) recall that (Cv, Vα \ Cv) is supposed to be the community of v
with respect to t. For the sake of notational simplicity we also associate the cut
side Cv with the community of v. Since (Cv, Vα \Cv) pseudo-contracts Vα \Cb/d
in the view of Cb/d, there exists a Gomory-Hu execution for G	α that yields a
minimum-cut tree T (G	α ) in which the represented minimum v-t-cut is nested
in Cb/d, and thus, Cv ⊆ Cb/d particularly.

Aspect (b) holds due to Lemma 3.9 given in [7] that states that communities
are either disjoint or nested: Suppose ub/d to be a witness for Cb/d but shadowed
by a community Cv in G	α , i.e., ub,d ∈ Cv. Then the community Cu of ub,d is
nested in Cv. Furthermore, it is Cv ⊆ Cb/d according to (b) which yields
that Cu ⊆ Cv ⊆ Cb/d all induce cuts with the same costs in G	α . Thus, v is
also a witness for Cb/d and the algorithm applies (Cb/d, Vα \ Cb/d) as split cut.
Furthermore, according to (b) this split cut is not reshaped. Obviously, if ub/d
is not shadowed, the algorithm considers this vertex anyway.

Considering inter-cluster insertion (see Algorithm 7), all clusters in C(G) \
{Cb, Cd} are known to be still valid for G⊕. With the same arguments already
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used above for the case of intra-cluster deletion, for any considered vertex v ∈ Cb
and v ∈ Cd (particularly for rb and rd) that is not reconfirmed, the community
(Cv, Vα \ Cv) is nested in Cb and Cd, respectively, and the algorithm finds a
witness for each of the cuts induced by Cb and Cd.

Running Times. We universally express running times of our algorithms
in terms of the number of necessary maximum-flow computations, leaving open
how these are done. A summary of tight bounds is given in Table 1. The columns
lower bound/upper bound denote bounds for the—possibly rather common—
case that the old clustering is still valid after some graph update. As discussed
in the last subsection, the last column (smooth) states whether our algorithms
always return the previous clustering, in case its valid; the numbers in brackets
denotes a tight lower bound on the running time, in case our algorithms do find
that previous clustering.

best case worst case
old clustering still valid

lower b. upper bound smooth

InterD |C(G	)| − 2 |C(G)| − 2 |C(G)| − 2 |C(G)| − 2 Yes

IntraD 1 |C(G)|+ |Cb/d| − 1 1 |C(G)|+ |Cb/d| − 1 No (1)

InterI 2 |Cb|+ |Cd| 2 |Cb|+ |Cd| No (2)

IntraI 0 0 0 0 Yes

Table 1: Bounds on the number of maximum-flow calculations.

For Inter-Cluster Edge Deletion (Algorithm 4) in the best case we
only calculate as many cuts as new clusters arise while separating t from all
neighbors, except r(Cb) and r(Cd) (compare to Figure 11). We require at most
|C(G)| − 2 cuts, as neighbors of t might get shadowed after their processing. In
this case we calculate more cuts than finally needed to define the new clustering.
Since |C(G	)| = |C(G)| in case the old clustering remains valid, the other bounds
are correct and we know we will find the old clustering. Algorithm 6 (Intra-
Cluster Edge Deletion) needs to examine all clusters in C(G)\{Cb/d}, and
potentially all vertices in Cb/d—even if the previous clustering is retained, e.g.,
with every vertex shadowing the one cut off right before, and pair {r(Cb/d), t}
getting hidden. Obviously, we attain the lower bound if we cut away r(Cb/d)
from t, directly preserving Cb/d and all the other clusters. For Inter-Cluster
Edge Insertion (Algorithm 7), we potentially end up separating every single
vertex in Cb ∪ Cd from t, one by one, even if the previous clustering is valid,
as, e.g., r(Cb) might become shadowed by some other v ∈ Cb, which ultimately
yields the upper bound. In case the previous clustering is valid, however, we
might get away with simply cutting off r(Cb) and r(Cd), alongside their former
clusters. This means, there is no guarantee that we return the previous cluster-
ing; still, with two cuts (r(Cb)-t and r(Cd)-t), we are quite likely to do so. The
row for Intra-Cluster Edge Insertion is obvious.
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total Inter-Del Intra-Del Inter-Ins Intra-Ins

modifications 61870 3742 26179 10010 21939

% 100 6.0482 42.3129 16.1791 35.4598

advantage static 40 0 40 0 0

of total modifications % 0.0647 0.0000 0.0647 0.0000 0.0000

advantage dynamic 61830 3742 26139 10010 21939

of total modifications % 99.9353 6.0482 42.2483 16.1791 35.4598

Table 2: Total number of modifications decomposed into different scenarios.

Note that a computation from scratch (static algorithm) entails a tight upper
bound of |V |−1 maximum-flow computations for all four cases, in the worst case;
although, in practice, the heuristic recommended by Flake et al. usually finds a
new clustering in time proportional to the total number of new clusters. In the
best case it needs as many cut computations as new clusters arise. Comparing
this to the bound for updating an inter-cluster deletion in the best case, lets
us expect only little effort saving for this case; while the case of intra-cluster
insertion promises the biggest effect of effort saving.

Experiments. In this brief section, we very roughly describe some experi-
ments we made with an implementation of the update algorithms described
above, just for a first proof of concept. The instance we use is a network of
e-mail communications within the Fakultät für Informatik at KIT (formerly
Universität Karlsruhe) [20]. Vertices represent members and edges correspond
to e-mail contacts, weighted by the number of e-mails sent between two individ-
uals during the last 72 hours. This means, each e-mail has a fixed time to live.
After that time the contribution of the e-mail to the weight of the edge expires
and the weight of the edge decreases. We process a queue of 69 739 elementary
modifications, 61 870 of which are actual edge modifications, on an initial graph
with |V | = 247 and |E| = 307. This queue represents about three months,
starting on Sunday (2006-10-22). The number of vertices varies between 172
and 557, the number of edges varies between 165 and 1190. We delete zero-
weight edges and isolated nodes. Following the recommendations of Flake et
al. [7], we choose α = 0.15 for the initial graph, yielding 73 clusters. We compare
their static algorithm (see Section 2.1) and our dynamic algorithm in terms of
the number of maximum-flow computations necessary to maintain a clustering.
Forty times out of the 61 870 total operations, the static computation needed
less maximum flows than the dynamic update. In all remaining cases (99.93%)
the update algorithm was at an advantage (see Table 2).

The first two rows of Table 3 show the numbers of clusters found by the
static and dynamic approach over the whole experiment. As both algorithms
range at similar levels we can be sure the observed savings are not induced
by trivial clusterings. Thus, comparing dynamic and static flow computations
is justified: For the 61 870 proper steps, static computation needed 3 300 413
maximum flows, and our dynamic update needed 736 826, saving more than
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total Inter-Del Intra-Del Inter-Ins Intra-Ins

static clusters 3186155 314979 1090890 748442 1031844

% 100 9.8859 34.2384 23.4904 32.3852

dynamic clusters 3185398 314923 1090414 748287 1031774

% 100 9.8865 34.2316 23.4912 32.3907

static flows 3300413 324098 1131538 773730 1071047

% 100 9.8199 34.2847 23.4434 32.4519

dynamic flows 736826 308904 403499 24423 0

of total static flows % 22.3253 9.3596 12.2257 0.7400 0.0000

amortized static costs 1.0359 1.0290 1.0373 1.0338 1.0380

amortized dynamic costs 0.2313 0.9809 0.3700 0.0326 0.0000

flow savings 2563587 15194 728039 749307 1071047

of total static flows % 77.6747 0.4604 22.0590 22.7034 32.4519

average flow savings 41.4351 4.0604 27.8100 74.8558 48.8193

Table 3: Total number of clusters, flows and savings for different scenarios.

77% maximum flows, such that one dynamic cluster on average costs 0.23 flow
computations. The amortized costs of 1.03 flows for a static cluster affirm the
running time to be proportional to the total number of new clusters, as stated
by Flake et al. This running time is also visible in Figure 15, which shows the
consecutive development of the graph structure over one day (Monday, 2006-10-
23). Obviously, the static and dynamic clusterings (upper red and lower green
line) behave similarly. Note that the scale for static clusterings and flows is
offset by about 20 clusters/flows for readability. However, the dynamic flows
(blue dots) cavort around the clusters or, even better, near the ground, which
means there are only few flow computations needed. In contrast, most of the
static flow amounts (orange dots) are still proportional but clearly higher than
the number of clusters in the associated static clustering.

Regarding the total number of edge modifications the savings finally average
out at 41.4 flows (Table 3), while inter-cluster insertions save the most effort per
modification. This is, the case of inter-cluster insertion surprisingly outperforms
the trivial intra-cluster insertions.

6 Conclusion

We have proven a number of results on the nature of minimum u-v-cuts in chang-
ing graphs, allowing for feasible algorithms which efficiently update specific parts
of a minimum-cut tree and thus fully dynamically maintain a graph clustering
based on such trees, as defined by Flake et al. [7] for the static case, under arbi-
trary atomic changes. The striking feature of graph clusterings computed by this
method is that they are guaranteed to yield a certain expansion—a bottleneck
measure—within and between clusters, tunable by an input parameter α. As
a secondary criterion for our updates we encourage temporal smoothness, i.e.,
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Figure 15: Numbers of clusters and flows regarding consecutive clusterings (the
two y-axes have a different offset for better readability).

changes to the clusterings are kept at a minimum, whenever possible. Further-
more, we disprove an earlier attempt to dynamize such clusterings [26, 25]. Our
experiments on real-world dynamic graphs confirm our theoretical results and
show a significant practical speedup over the static algorithm of Flake et al. [7].

Future work on dynamic minimum-cut tree clusterings will include analyzing
the potential of choosing “better” cuts (if a minimum cut is not unique) and
specific orderings of Wten in the algorithms in order to further improve temporal
smoothness. The dynamic update of a single maximum s-t-flow is a means to
gain further speedup beyond the number of cut calculations. Since our algorithm
is able to deal with arbitrary cuts, on the one hand any existing max-flow-min-
cut-implementation and any existing update technique can be used, and on the
other hand, there is no need for prospectively designed update algorithms to
respect any restrictions.

Moreover, we intend to systematically compare our work to other dynamic
clustering techniques and to investigate a method for dynamically adapting the
parameter α. Related to the latter, we will try to expand our update algorithms
to the Hierarchical Cut-Clustering method also given by Flake et al. [7]
which considers a sequence of values for α. How to deal with offline changes
is another interesting question for both methods, Cut-Clustering and Hier-
archical Cut-Clustering.

We thank the anonymous reviewers for their thoughtful comments and their
helpful suggestions on how to achieve an even better readability and under-
standing.
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