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Abstract

This paper extends the edge addition planarity algorithm from Boyer
and Myrvold to provide a new way of solving the subgraph homeomor-
phism problem for K2,3, K4, and K3,3. These extensions derive much of
their behavior and correctness from the edge addition planarity algorithm,
providing an alternative perspective on these subgraph homeomorphism
problems based on affinity with planarity rather than triconnectivity. Ref-
erence implementations of these algorithms have been made available in
an open source project (http://code.google.com/p/planarity).
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1 Introduction

Recent advancements in combinatorial planar embedding techniques have yielded
new vertex addition planarity methods in which an st-numbering and a PQ-tree
are replaced by depth first search (DFS) and simpler data structures [2, 19].
These vertex addition methods were rationalized with PQ-tree operations by
Haeupler and Tarjan [10]. However, using some of the same principles, Boyer
and Myrvold [3] developed a new planarity algorithm whose processing model
and proof of correctness use edge addition as the atomic operation of planar
embedding. For each edge addition, the following two invariant conditions are
maintained: first, the planar embedding is a collection of biconnected compo-
nents formed by the edges added so far; second, a vertex is kept on the external
face boundary of its containing biconnected component if the vertex is an end-
point of an unembedded back edge or is a cut vertex on the DFS path between
the endpoints of an unembedded back edge.

A planarity characterization by de Fraysseix and Rosenstiehl [6] has been
shown to lead to another linear time planarity algorithm [4, 5] that is important
because it also embeds edges based on resolving conflicts between DFS back
edges as seen from a bottom-up view of the depth first search tree. In compar-
ison, the Boyer-Myrvold algorithm [3] is guided by the DFS vertex numbering,
and the planar embedding is constructed by adding each DFS tree edge as a
singleton biconnected component and adding each back edge along the external
face boundaries of the biconnected components in the planar embedding while
maintaining the above invariant conditions.

The processing model of the edge addition planarity algorithm [3] enabled
non-planarity to be detected with only two tests, the sufficiency of which was
proven with a set of only five minors, four of K3,3 and one of K5. Then, a
Kuratowski subgraph isolator, i.e. an algorithm that finds a subgraph homeo-
morphic to K3,3 or K5 in any non-planar graph, was developed through further
analysis of the K5 minor, which produced four additional K3,3 patterns. This
paper extends that Kuratowski subgraph isolator to a linear time K3,3 search,
i.e. an algorithm that finds a subgraph homeomorphic to K3,3 in a graph, if one
exists.

As with any planarity test, the edge addition algorithm can also be simply
modified to provide an outerplanarity test instead. The adjusted algorithm
produces an outerplanarity obstruction, i.e. a subgraph homeomorphic to K2,3

or K4, in ways that closely match how the edge addition planarity algorithm
produces a subgraph homeomorphic to K3,3 or K5. This paper describes how
the outerplanarity obstructions arise in the edge addition algorithm as the first
step of extending to a linear time K2,3 search and a linear time K4 search, i.e.
O(n) algorithms for finding a subgraph homeomorphic to K2,3, if one exists,
and finding a subgraph homeomorphic to K4, if one exists.

For the algorithms in this paper, we are given a search graph H , and an
augmented form of the edge addition planarity algorithm (for H = K3,3) or
outerplanarity algorithm (for H = K2,3 or H = K4) is performed on an input
graph G to either find a subgraph homeomorphic to H or determine that G is
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H-less (has no subgraph homeomorphic to H). If G is found to be planar or
outerplanar, then G contains no subgraph homeomorphic to H . If a planar or
outerplanar obstruction is found in G, and if it is not homeomorphic to H , then
some additional analyses are performed to see whether a subgraph homeomor-
phic to H is entangled with the obstruction. If not, then the obstruction is re-
duced, an action that removes part of the obstruction thereby allowing the edge
addition planarity or outerplanarity algorithm to proceed with the search for a
subgraph homeomorphic to H . A reduction also typically replaces some parts of
the graph with single edges to help achieve linear time performance. Therefore,
if a subgraph homeomorphic to H is subsequently found, then some additional
post-processing is performed to replace the reduction edges with paths from G.

As Williamson [22] once said of Kuratowski subgraph isolation, it is desir-
able to have not one but several basically different optimal methods for solving
a problem because the requirement of optimality forces the emergence of greater
insight into underlying theoretic phenomena. An elegant case in point is found
in the comparison of the first linear time K4 search in [17] with the linear time
K4 search by Asano [1]. The former has priority, whereas Asano’s work used
triconnectivity to explore a wider class of subgraph homeomorphism problems,
which also included polynomial time solutions for K2,3 and K3,3 search. To
achieve linear time performance, Asano’s searches rely on a linear time tricon-
nectivity algorithm (e.g., see [9, 11, 21]), and the K3,3 search also relies on linear
time planarity testing and Kuratowski subgraph isolation [8].

Given the necessity of a planarity algorithm in the prior K3,3 search algo-
rithms and the straightforward analogy by which outerplanar obstruction iso-
lation processing may be associated with subgraph homeomorphism searches
for K2,3 and K4 searches, this paper presents different optimal methods that
explore the affinity of these subgraph homeomorphism problems to planarity
rather than triconnectivity. A number of the path analyses described in [1, 8]
are simply implicit in the operation of the edge addition planarity algorithm.
Moreover, rather than fully decomposing the graph into triconnected compo-
nents, these new algorithms only selectively eliminate or reduce to a single edge
certain subgraphs that are separable by a pair of vertices, hereafter called a
2-cut, once they are found to meet specific conditions related to planarity or
outerplanarity obstructions. Thus, these new algorithms consist primarily of
extended use of the same techniques that are used by the core edge addition
planarity algorithm [3] to perform planar embedding and Kuratowski subgraph
isolation.

Section 2 provides an updated overview of the core edge addition planarity
algorithm [3], including a comprehensive example of several edge additions. Sec-
tion 3 describes the edge addition outerplanarity algorithm and particularly how
outerplanarity obstructions arise. Section 4 extends this method to provide a
search for subgraphs homeomorphic to K2,3, and Section 5 provides an exten-
sion for finding subgraphs homeomorphic to K4. Section 6 extends the core
planarity algorithm to provide a search for subgraphs homeomorphic to K3,3.
Finally, conclusions and future work are discussed in Section 7.
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2 Edge Addition Planarity Overview (Updated)

The edges of a simple undirected input graph G are added one at a time to the
combinatorial planar embedding G̃ in such a way that planarity is preserved
by the edge addition. Throughout the process, G̃ is managed as a collection
of planar embeddings of the biconnected components that develop as the edges
are embedded. Initially, a depth first search (DFS) is performed [20] to number
each vertex according to its visitation order and to distinguish a spanning tree
called a DFS tree in each connected component. Each undirected edge in a
DFS tree is called a tree edge, and each undirected edge not in a DFS tree is
called a back edge. The DFS tree of each component establishes parent, child,
ancestor and descendant relationships among the vertices in the component.
Each vertex has a lower DFS number than its children and descendants and a
higher number than its parent and ancestors, except the DFS tree root is a vertex
with no parent or ancestors. The vertex endpoints of a DFS back edge share
the ancestor-descendant relationship. A cut vertex r in G̃ separates at least one
DFS child c of r from the DFS ancestors (and any other DFS children) of r. A
virtual vertex is an extra vertex in G̃ but not in G that is used to represent r in
the separate biconnected component containing c. The virtual vertex is denoted
rc, or simply r′ when the child identity is unimportant. The virtual vertex rc

is the root of the biconnected component containing c, which is denoted Brc .
For each DFS tree edge {v, c} of G, a singleton biconnected component

{vc, c} is added to G̃. Then, each back edge of G is added to G̃ in an order that
is partially organized into steps based on the depth first index (DFI) order of
the vertices. For each vertex v, each back edge between v and a DFS descendant
of v that can be added while preserving planarity is embedded in G̃. The DFS
tree of vertices is processed in a bottom-up fashion by simply using reverse DFI
order. Thus, the back edges between a vertex v and its DFS ancestors are
embedded in the future steps in which those ancestors are processed.

A single new back edge {v, w} has the potential to eliminate cut vertices
in G̃. To add a back edge {v, w} to G̃, any previously separable biconnected
components are first merged, then {vc, w} is embedded to complete the bicon-
nection. A back edge {v, w} is always added incident to a virtual vertex vc,
where c is a DFS ancestor of w, because the back edge does not biconnect w

and the parent of v. In some future step when a back edge is added that bi-
connects w and the parent of v, then vc will be merged with v, and the edge
{vc, w} will become {v, w} due to that merge operation.

A biconnected component flip is an operation that logically reverses the
order of the adjacency lists of all vertices in a biconnected component. For
efficiency, the edge addition planarity algorithm includes an optimization that
defers most of the reversals until post-processing. It may be necessary to flip
a biconnected component embedding during the merge operation in order to
keep certain vertices on the external face boundary when the new back edge
is embedded. Generally, a vertex w is active if there is an unembedded back
edge e for which w is either the descendant endpoint or a cut vertex in G̃ on
the DFS tree path between the endpoints of e. A vertex w is inactive if it is
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not active, and it can become inactive during the embedding of any single back
edge. Since each back edge is embedded incident to a virtual vertex, extending
into the external face region, and then incident to the descendant endpoint, the
algorithm keeps all active vertices on the external face boundaries of biconnected
components in G̃ so that a newly embedded edge does not cross an edge of an
external face boundary.

A vertex w is pertinent in step v of edge addition processing if it is active due
to an unembedded back edge e incident to v. In this definition, the descendant
endpoint of edge e may be w or a descendant d of w, in which case w has a child
biconnected component rooted by a virtual vertex wc, where c is the root of a
DFS subtree containing d. Similarly, a vertex w is future pertinent in step v if it
is active due to an unembedded back edge e incident to a DFS ancestor u of v.
Again, the descendant endpoint of edge e may be w or a descendant d of w, in
which case w has a child biconnected component rooted by a virtual vertex wc,
where c is the root of a DFS subtree containing d. A vertex is only pertinent
if it is pertinent but not future pertinent, and it is only future pertinent if it is
future pertinent but not pertinent.

In planarity-related algorithms, such as in [3] as well as in the K3,3 sub-
graph homeomorphism algorithm of this paper, an externally active vertex is
future pertinent. However, this paper exploits the technique of definition re-
laxation to enable the planarity solution to be adapted to conceptually similar
outerplanarity-related problems, whereas definition relaxation is more typically
used to improve algorithm efficiency. Specifically, in the edge addition outer-
planarity algorithm and the associated K2,3 and K4 subgraph homeomorphism
algorithms of this paper, each vertex is always externally active, regardless of
whether or not the vertex is future pertinent, since all vertices must always
remain on the external face boundaries of outerplanar embeddings. This poly-
morphic definition of externally active directly reflects the underlying difference
in the graph theoretic definitions of planarity and outerplanarity. In both the
planarity-related and outerplanarity-related edge addition algorithms, a stop-
ping vertex is externally active but not pertinent.

The definitions related to activity and pertinence are applicable to vertices,
but not to virtual vertices, which are automatically kept on the external face
boundaries until they are merged with the cut vertices they represent. There
are, however, analogous definitions for activity and pertinence for each whole
biconnected component. A biconnected component is active, pertinent or fu-
ture pertinent if it contains an active, pertinent or future pertinent vertex, re-
spectively. These definitions provide underlying operational primitives for the
top-level edge addition processing model presented in Figure 1.

Initialization includes such measures as performing the depth first search,
sorting the vertices into DFS number order (in linear time), and calculating the
least ancestor and lowpoint [20] of each vertex. The DFS tree edges can be
embedded either all at once during initialization as shown in [3] or, as shown
in line 5 of Figure 1, each DFS tree edge {v, c} can be embedded as a singleton
biconnected component {vc, c} immediately before embedding the back edges
between v and descendants of c.
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Algorithm: Edge Addition Planarity (updated)

(1) Initialize embedding G̃ based on input graph G

(2) For each vertex v from n− 1 down to 0
(3) Determine pertinent vertices and biconnected components, relative to v

(4) For each successive DFS child c of v
(5) Embed tree edge {v, c} as a singleton biconnected component {vc, c}
(6) Call Walkdown to embed back edges between vc and descendants of c
(7) If stopping vertices blocked the embedding of a back edge, then
(8) Isolate an obstruction and return NONEMBEDDABLE

(9) Postprocess G̃ and return EMBEDDABLE

Figure 1: The Top Level of the Edge Addition Planarity Algorithm

The edge embedding process is performed for each vertex v in reverse DFI
order. The back edges between v and its descendants are added systematically
for each child c by traversing the external faces of {vc, c} and its descendant
biconnected components. This traversal is performed by a method called Walk-
down. The planarity of G̃ is preserved for each edge addition that the Walkdown
performs, but if the Walkdown is unable to traverse to the descendant endpoint
of any back edge, then the input graph is not planar [3].

When the Walkdown fails to embed a back edge, it is because it has been
blocked from traversing to a pertinent vertex w by stopping vertices x and y

appearing along each of the two external face paths emanating from the root
of a biconnected component. The root may either be vc or it may be a root r′

where r is a descendant of v. As the Walkdown descends to various biconnected
components in search of the the descendant endpoint of a back edge to embed,
the roots of the biconnected components are pushed onto a mergeStack. The
mergeStack is empty if the Walkdown is blocked on the biconnected component
rooted by vc and otherwise the root r′ of the blocked biconnected component is
on the top of the mergeStack.

In the core planarity algorithm, the response to a blocked Walkdown is to
isolate the obstruction. Solving subgraph homeomorphism involves extending
the technique to handle the cases in which the obstruction does not match the
desired subgraph. Unless the desired subgraph can be found entangled with
the obstruction, a reduction is performed to unblock the obstruction, thereby
enabling the Walkdown to proceed.

The edge addition planarity algorithm in Figure 1 has been updated relative
to [3]. The main update is the ability of the Walkdown to directly detect non-
planarity (i.e., blockages). This capability is enabled in part by the successive
order processing of DFS children in step 4. During the initial depth first search,
each vertex is equipped with a sortedDFSChildList, which is easily computed
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since the children of a vertex are visited in order. Each vertex is also equipped
with a sortedForwardArcList containing the list of back edges from each vertex
to its descendants, sorted by the descendant endpoints. These lists can also be
computed in linear time during the initial depth first search. As soon as the
DFS encounters a back edge {v, w} from a vertex w to a previously numbered
ancestor v, the back edge is added to the sortedForwardArcList of v. Later,
during edge addition processing, when a back edge between a root copy of v
and a descendant w is embedded, it is removed from the sortedForwardArcList of
v. Also, unembedded back edges may be removed, rather than embedded, by the
subgraph homeomorphism algorithms when a reduction is performed, in which
case the back edges are also removed from the front of the sortedForwardArcList.
Given these revisions, let d denote the descendant endpoint of the first element
of the sortedForwardArcList of v or 0 if the list is empty, and let s denote the
next DFS child of v after c, or n+1 if c is the last child of v. It is a property of
DFS that if c is a child of v and s is a successor child of v, then the descendants
of c have lower DFS numbers than s. Thus, at the end of the Walkdown for vc,
we can detect if it was blocked from embedding a back edge if c < d < s.

2.1 In-depth Review of the Walkdown

To embed the back edges between a vertex v and its descendants in a DFS
subtree rooted by child c, the Walkdown is invoked on a biconnected component
Bvc rooted by the virtual vertex vc. The Walkdown performs two traversals
of the external face of Bvc , corresponding to the two opposing external face
paths emanating from vc. The traversals perform the same operations and are
terminated by the same types of conditions, so the method of traversal will only
be described once.

A traversal begins at vc and proceeds in a given direction from vertex to
vertex along the external face boundary in search of the descendant endpoints
of back edges. Whenever a vertex is found to have a pertinent child biconnected
component, the Walkdown descends to its root and proceeds with the search.
Once the descendant endpoint w of a back edge is found, the biconnected com-
ponent roots visited along the way must be merged (and the biconnected com-
ponents flipped as necessary) before the back edge {vc, w} is embedded. An
initially empty mergeStack is used to help keep track of the biconnected com-
ponent roots to which the Walkdown has descended as well as information that
helps determine whether each biconnected component must be flipped when it
is merged.

A Walkdown traversal terminates either when it returns to vc or when it
encounters a vertex that is only future pertinent. If the Walkdown were to
proceed to embed an edge after traversing beyond such a vertex, then the vertex
would not remain on the external face, but it must because it is future pertinent.
This is why the vertex is called a stopping vertex. By comparison, a future
pertinent vertex that is also pertinent is processed because the Walkdown can
descend to a pertinent child biconnected component rather than traversing past
the vertex. Once the traversal visits the descendant endpoint of a back edge,
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the pertinent child biconnected component is merged with the future pertinent
vertex without removing it from the external face.

Observe that if a child biconnected component Bw′ is only pertinent, then
after its root is merged with w, the Walkdown traversal eventually visits the
entire external face boundary of Bw′ and returns to w. By comparison, if Bw′

is pertinent and also future pertinent, then the Walkdown traversal encounters
a stopping vertex before returning to w. To avoid prematurely encountering a
stopping vertex, the Walkdown enforces Rule 2.1.

Rule 2.1 When vertex w is encountered, first embed a back edge to w (if needed)
and then descend to all of its child biconnected components that are only perti-
nent (if any) before descending to a pertinent child biconnected component that
is also future pertinent.

A similar argument governs how the Walkdown chooses a direction from
which to exit a biconnected component root rs to which it has descended. Both
external face paths emanating from rs are searched to find the first active ver-
tices x and y in each direction. The path along which traversal continues is then
determined by Rule 2.2.

Rule 2.2 When selecting an external face path from the root rs of a biconnected
component to the next vertex, preferentially select the path to a vertex that is
only pertinent, if one exists, and select an external face path to a pertinent vertex
otherwise.

Finally, if both external face paths from rs lead to vertices that are only
future pertinent, then both are stopping vertices and the entire Walkdown (not
just the current traversal) can be immediately terminated due to a non-planarity
condition. Similarly, if both traversals from vc encounter stopping vertices, and
there is an unembedded back edge between v and a descendant of c, then a
non-planarity condition has occurred.

2.2 Example of Walkdown Processing

This section provides an illustration of the key processing rules of the Walkdown
method. Figure 2(a) presents a partial embedding of a graph at the beginning of
step v and with the following edges still to embed: {u, d}, {u, s}, {u, x}, {u, y},
{v, p}, {v, q}, {v, t}, {v, x}, and {v, y}. Note that the vertex i is inactive and
the biconnected component rooted by w′ is not pertinent. The square vertices
are future pertinent; some are only future pertinent, such as d and s, and others
are also pertinent, such as p, x and y. During edge embedding, vertices such
as p, x and y become only future pertinent as the edges corresponding to their
pertinence are embedded.

The first Walkdown traversal begins at v′, proceeds counterclockwise (on the
left of the edge) to c, then descends to c′. The first active vertices along the
two external face paths are x and p. Both are future pertinent and pertinent,
so the decision to proceed in the direction of x is made arbitrarily. At x, there
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Figure 2: An Example of a Walkdown in Step v. Square vertices are future
pertinent due to unembedded back edges {u, d}, {u, s}, {u, x}, and {u, y}. Back
edges {v, p}, {v, q}, {v, t}, {v, x}, and {v, y} are to be added in step v. a)
Embedding at the start of step v. b) Merge at c to add {v, x}, then stop
counterclockwise traversal. c) Clockwise traversal visits p and embeds {v, p}.
d) Merge p and p′ and embed {v, q}. e) Flip biconnected component rooted by
p′′, merge p and p′′, merge r and r′, then embed {v, t}. f) Embed {v, y} and
stop clockwise traversal.
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is a back edge to embed, so the Walkdown first merges c and c′ with no flip
operation since the traversal direction was consistently counterclockwise when
entering c and exiting c′. After this merge, c becomes non-pertinent because it
has no more pertinent child biconnected components, and it is no longer future
pertinent because it has no separated DFS children with back edge connections
to ancestors of v. Figure 2(b) shows the result of the merge and the embedding
of {v, x}.

Once the back edge to x has been embedded, the Walkdown determines
that x is a stopping vertex, so the second Walkdown traversal commences in a
clockwise direction from v′ to c. In this example, c became inactive in the first
traversal, so the second traversal proceeds beyond c to p.

At p, the back edge {v, p} is embedded first, as shown in Figure 2(c). Then,
the Walkdown descends to p′, rather than p′′, because Bp′ is only pertinent.
Both paths lead to q, which is only pertinent, so p and p′ are merged and the
back edge {v, q} is embedded as shown in Figure 2(d). Since q becomes inactive,
the Walkdown proceeds to its successor on the external face, which is p.

In this second visitation of p, the Walkdown again tests whether a back edge
to p must be embedded, but since the back edge has already been embedded,
the result is negative. The Walkdown again tests for pertinent child biconnected
components, but this time there are none which are only pertinent, so the
Walkdown descends to p′′. The two external face paths from p′′ lead to future
pertinent vertices r and s, but r is pertinent and s is not, so the Walkdown
selects the counterclockwise direction from p′′ to r. This is contrary to the
clockwise direction by which the Walkdown entered p, so the indication of a flip
operation is pushed onto the mergeStack, along with p′′.

The Walkdown proceeds to r, where it finds r has no back edge to embed, but
r does have a pertinent child biconnected component, so the Walkdown descends
to r′. The two external face paths from r′ lead to y and t. While y is pertinent,
it is also future pertinent, whereas t is only pertinent. The clockwise path to t is
selected, in opposition to the counterclockwise direction used to enter r. Thus,
r′ and a flip indicator are pushed onto the mergeStack.

At t, the Walkdown determines that a back edge must be embedded. First,
the mergeStack is processed. Br′ is flipped, and r′ is merged with r. Then,
p′′ is popped and the component comprised of Bp′′ merged with Br′ is flipped.
Finally, the back edge {v, t} is embedded. Notice that Br′ is logically flipped
a second time, restoring its original orientation. All such double flips are effec-
tively eliminated using an efficient implementation technique described in [3].
The logical result of these operations is shown in Figure 2(e).

The clockwise traversal then continues from vertex t, which is now inactive,
to vertex y. The back edge {v, y} is embedded as shown in Figure 2(f). Once
the back edge to y is embedded, y is no longer pertinent since it has no pertinent
child biconnected components. Thus, y is a stopping vertex that terminates the
second, clockwise traversal of the Walkdown.
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3 Outerplanarity

As a first step toward subgraph homeomorphism for K2,3 and K4, the edge
addition planarity algorithm is adjusted to form the Edge Addition Outerpla-
narity Algorithm. It is well-known that a planarity algorithm can be extended
to an outerplanarity algorithm by first adding a special vertex incident to all
vertices of the input graph, then performing the planarity algorithm, and then
removing the special vertex and its incident edges. Rather than going through
these explicit steps, the edge addition planarity algorithm is adjusted to achieve
the same effect by classifying all vertices to be always externally active. As
mentioned in Section 2, this change affects the meaning of stopping vertex but
not future pertinence. This alteration ensures that edges are only added as long
as all vertices can be kept on the external face of the embedding. Specifically,
the Walkdown can process the pertinence of a vertex, including descending to
a pertinent child biconnected component and selecting a direction, but it is
blocked from traversing past a vertex once its pertinence is resolved.

If the Walkdown is blocked with a non-empty mergeStack, then edge contrac-
tion and deletion can be used on G̃, along with the addition of certain unembed-
ded edges represented in G̃ as vertex activity, to produce the non-outerplanarity
minor A in Figure 3(a), which indicates a K2,3 homeomorph.

Figure 3: (a) Non-Outerplanarity Minor A signals aK2,3 homeomorph, (b) Non-
Outerplanarity Minor B signals a K2,3 homeomorph, (c) Non-Outerplanarity
Minor E signals a K4 homeomorph.

If the Walkdown is blocked with an empty mergeStack, there are two more
non-outerplanarity cases. For both, consider the two external face neighbors of
vc, denoted x and y. There is an external face path from x to y that contains
vc and a second external face path P from x to y that excludes vc. P contains
a pertinent vertex w. If w has a pertinent child biconnected component, then
G is not outerplanar due to non-outerplanarity minor B in Figure 3(b), which
also indicates a K2,3 homeomorph.
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Now suppose a pertinent vertex w along path P has no pertinent child bi-
connected component, in which case there is an unembedded back edge {vc, w}.
Let the term x-y path refer to an edge1 embedded inside the biconnected com-
ponent rooted by vc with one endpoint incident to a vertex px internal to the
path (vc, . . . , x, . . . , w) and the other endpoint incident to a vertex py internal
to the path (vc, . . . , y, . . . , w). An x-y path separates the region inside the bi-
connected component’s external face cycle such that the edge {vc, w} cannot be
embedded in the internal region. Suppose there is no x-y path for w. Due to
processing Rules 2.1 and 2.2, this contradicts the supposition that {vc, w} is
unembedded since the Walkdown would then have no way to avoid visiting w

prior to merging w, x and y into the same biconnected component. Hence, w
must have an x-y path if it has no pertinent child biconnected component.

If there is an x-y path associated with w, then the input graph G is not
outerplanar due to non-outerplanarity minor E2 in Figure 3(c), which indicates
a K4 homeomorph with image vertices v, px, w, and py.

The three non-outerplanarity minors in Figure 3 form a characterization of
outerplanarity, i.e. they form an unavoidable set for non-outerplanar graphs
and an avoidable set for outerplanar graphs. The reasoning is analogous to
that appearing in [3] for the non-planarity minors associated with the core
edge addition planarity algorithm. To summarize, when the Walkdown adds all
back edges for a biconnected component Bvc rooted by vc, then the result is
an outerplanar embedding of Bvc . When the Walkdown fails to embed a back
edge for Bvc , then the mergeStack is either non-empty, which results in a K2,3

homeomorph (Figure 3(a)), or it is empty. If the mergeStack is empty, then
Bvc contains a pertinent vertex w that either has a pertinent child biconnected
component, which results in a K2,3 homeomorph (Figure 3(b)), or it does not.
In this case, we reach the crucial contradiction described above unless w has a
separating x-y path, which results in a K4 homeomorph (Figure 3(c)). Thus,
when the Walkdown fails to embed a back edge in Bvc , the input graph G is
not outerplanar and an outerplanar obstruction is isolated. By the arguments
above, we have the following theorem:

Theorem 1 Given a graph G, the Edge Addition Outerplanarity Algorithm
determines an outerplanar embedding if G is outerplanar or a subgraph homeo-
morphic to K2,3 or K4 if G is not outerplanar in O(n) time.

4 Search for K2,3 Homeomorphs

The Edge Addition K2,3 Search algorithm extends the outerplanarity algorithm
of Section 3 with further examinations of the graph if non-outerplanarity minor

1The notion of x-y path comes from the planarity-related algorithms, but it is a single
edge in outerplanarity-related algorithms because no vertices are embedded within the regions
surrounded by the external face bounding cycles of biconnected components.

2This non-outerplanarity minor is labeled E because it is analogous to non-planarity minor
E. The non-planarity minors C and D (Figure 9(c,d)) have no analogous non-outerplanarity
minors because the conditions they characterize cannot occur in the outerplanarity algorithm.
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E is found since it indicates an obstructing K4 homeomorph. This section
proves that either there is additional graph structure necessary to find a K2,3

homeomorph entangled with the K4 homeomorph, or the non-outerplanarity
minor E is a K4 separable by a cut vertex. Due to the separability of the
K4, the K2,3 search algorithm unblocks the Walkdown, enabling the search to
proceed elsewhere in the graph as if the K4 had not obstructed outerplanarity.

When the Walkdown is blocked on biconnected component Bvc , if it is
blocked by non-outerplanarity minor A or B, then a subgraph homeomorphic
to K2,3 is indicated. If the Walkdown is blocked by non-outerplanarity minor
E, then the x-y path is obtained, and additional analyses are performed corre-
sponding to the diagrams in Figure 4.

Figure 4: K2,3 Homeomorphs from Non-Outerplanarity Minor E. (a) the x-y
path has a point of attachment not equal to x or y , (b) the external face path
(x, . . . , w, . . . , y) contains an extra vertex z, (c) x or y is future pertinent, (d)
w is future pertinent.

If either point of attachment of the x-y path is attached below x or y (i.e.
if px 6= x or py 6= y), then a K2,3 homeomorph can by isolated according to
Figure 4(a) (note the simple variation cases of having px = z 6= x, py = z 6= y,
and having both px 6= x and py 6= y). Hence, consider the case in which the x-y
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path (a single edge) is attached directly to x and y. If any other vertex z is on
the lower external face path (x, . . . , w, . . . , y), then a K2,3 homeomorph can
be isolated according to Figure 4(b) (note the symmetric case of having z along
the lower external face path between w and y).

Thus, w must be the only vertex along the lower external face path, and the
connection from w to v must be an edge (otherwise, non-outerplanarity minor
B). From above, we also know that x and y are direct neighbors of each other,
and by construction of the outerplanarity algorithm we know that x and y are
direct neighbors of v. Thus, the vertices v, x, y and w form a K4.

If x or y can be connected to an ancestor u of v by zero or more separated
biconnected components plus an unembedded back edge, then a K2,3 home-
omorph can be isolated according to Figure 4(c) (note symmetric case of a
connection from y to u). If w can be connected to an ancestor u of v by zero or
more separated biconnected components plus an unembedded back edge, then
a K2,3 homeomorph can be isolated according to Figure 4(d). The absence of
the conditions corresponding to Figures 4(c) and 4(d) imply that neither w, x
nor y connect to ancestors of v, except through v. Thus, the K4 formed by v,
x, y and w is separable in G by the cut vertex v.

As a result, there are not enough paths available for any of w, x, and y

to be in any K2,3 homeomorph that may be in G, so the Edge Addition K2,3

Homeomorph Search can therefore proceed with outerplanarity testing as if x, y
and w were not in G. Such further outerplanarity testing will either find another
non-outerplanarity minor and repeat the logic above, or it will not.

If the conditions for a K2,3 homeomorph are found by the above steps, then
the top-level algorithm of Figure 1 isolates it and returns NONEMBEDDABLE.
Otherwise, no post-processing of G̃ is required, and EMBEDDABLE is returned
to indicate that G has no subgraph homeomorphic to K2,3. By the arguments
above, we have the following theorem:

Theorem 2 Given an input graph G, the Edge Addition K2,3 Homeomorph
Search algorithm finds a subgraph homeomorphic to K2,3 in G or determines
that G is K2,3-less in O(n) time.

5 Search for K4 Homeomorphs

The Edge Addition K4 Search algorithm extends the outerplanarity algorithm
of Section 3 with further examinations of the graph if non-outerplanarity minors
A or B are found since they indicate an obstructingK2,3 homeomorph. This sec-
tion proves that either there is additional graph structure necessary to find a K4

homeomorph entangled with the K2,3 homeomorph, or the non-outerplanarity
minor A or B can be reduced to unblock the Walkdown, enabling the search to
proceed as if the K2,3 had not obstructed outerplanarity.
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5.1 Handling Non-Outerplanarity Minor A

When the Walkdown is blocked by non-outerplanarity minor A, the root r′

of the blocked biconnected component Br′ is on top of the mergeStack. The
non-pertinent vertices x and y along both external face paths emanating from
r′ prevent traversal to the pertinent vertex w.3 Although non-outerplanarity
minor A is associated with a K2,3 homeomorph, there are two cases below in
which it can also be associated with a K4 homeomorph. Otherwise, Br′ is
unblocked by reducing it to a single edge.

Case A1: A K4 homeomorph can be obtained from non-outerplanarity minor
A if any vertex z other than w in Br′ is pertinent or future pertinent. In Figure
5(a), vertex z is pertinent and it is depicted as distinct from x. In Figure 5(b),
vertex z is future pertinent and depicted being equal to x. The difference of
pertinence and future pertinence only affects how z connects to v. Similarly,
being distinct from or equal to x has no important effect on how z connects to
r′ and w. Furthermore, the case of z being along the external face path (r′, . . . ,
y, . . . , w) is symmetric with the cases depicted in Figure 5. A K4 homeomorph
can be isolated with image vertices v, r, w and z.

(a) (b)

Figure 5: Illustrations of Case A1: A K4 homeomorph entangled with the K2,3

of non-outerplanarity minor A based on a second pertinent or future pertinent
vertex z. (a) Shows z being pertinent and distinct from x and y. (b) Shows z
being future pertinent and equal to x. All other cases are symmetric.

Case A2: A K4 homeomorph can be obtained from non-outerplanarity minor
A if the biconnected component Br′ contains an edge e connecting a vertex
along r . . . x . . . w and a vertex along r . . . y . . . w, excluding r and w. The edge
e is known as an x-y path, but the path has no internal vertices because Br′

is outerplanar. Figure 6 depicts the condition described by this case. The

3If x or y were pertinent, then the Walkdown would not have been blocked; instead, Br′

would have been merged into Bv′ as part of resolving the pertinence of x or y.
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Figure 6: Illustration of Case A2: A K4 homeomorph entangled with non-
outerplanarity minor A based on an x-y path appearing within Br′ . The path
is a single edge due to outerplanarity, and its points of attachment may not be
equal to x and y due to the use of edge contraction in the diagram.

endpoints px and py of the x-y path need not be equal to x and y since edge
contraction was used to depict e incident to x and y while still bisecting the
internal region. Thus, r′ and w are on the bounding cycles of separate internal
regions of Br′ , and a K4 homeomorph can be isolated with image vertices r, w,
px and py.

If cases A1 and A2 are not applicable to non-outerplanarity minor A, then
Br′ can be reduced to the edge {r′, w}. If case A1 does not occur, then w is the
only pertinent vertex in Br′ . Hence, the subgraph induced by the vertices of
Br′ is separable from the input graph by the 2-cut {r, w}. If case A2 also does
not occur, then Br′ also lacks the internal structure to contribute more than a
single path to a K4 homeomorph. Thus, Br′ can be reduced to the edge {r′,
w} to remove the obstruction to outerplanarity while preserving the essential
structure of any K4 homeomorph that may be elsewhere in the input graph.

5.2 Handling Non-Outerplanarity Minor B

When the Walkdown is blocked by non-outerplanarity minor B, the external face
paths emanating from the root v′ of a biconnected component Bv′ are blocked
by non-pertinent vertices x and y, preventing the Walkdown from reaching a
vertex w that has a pertinent child biconnected component.

The first active vertices, ax and ay, along each external face path emanating
from v′ are obtained. Since x and y stopped the outerplanarity Walkdown, they
are not pertinent, but they may not be future pertinent (i.e. x and y blocked
the WalkDown simply because all vertices are externally active). Thus, ax and
ay may not equal x and y.

Case B1: A K4 homeomorph can be obtained from non-outerplanarity minor
B if the vertices ax and ay are distinct and future pertinent. Figure 7 depicts
this condition. A K4 homeomorph can be isolated based on the external face
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bounding cycle of Bv′ , the future pertinence paths of ax and ay, and the DFS
tree path from v to the minimum numbered ancestor u associated with the
future pertinence of ax and ay. The degree 3 image vertices are ax, ay, v and
the maximum numbered DFS ancestor associated with the future pertinence of
ax and ay.

4

Figure 7: Illustration of Case B1: Finding a K4 homeomorph entangled in non-
outerplanarity minor B based on the future pertinence and inequality of the
first active vertices ax and ay along the external face paths emanating from the
root of Bv′ . Vertex w may be distinct, or it may equal ax or ay.

Case B2: A K4 homeomorph can be obtained from non-outerplanarity minor
B if either ax or ay has an x-y path. The vertex, ax or ay, can be pertinent or
future pertinent. Figure 8 depicts these conditions. If the vertex is pertinent, as
depicted for ax in Figure 8(a), then a K4 homeomorph can be isolated, which
can be seen by replacing the label ax with w to recognize non-outerplanarity
minor E. Hence, consider the case in which the vertex ax or ay is future pertinent
and has a separating x-y path. In Figure 8(b), vertex ay is shown to be future
pertinent, which is shown to have no significant difference from pertinence with
regard to obtaining a K4 homeomorph.5

If the conditions of cases B1 and B2 are not applicable to non-outerplanarity
minor B, then the paths v′ . . . ax and v′ . . . ay can be reduced to the edges {v′,
ax} and {v′, ay}, respectively. Specifically, since the vertices ax and ay are
the first active vertices along the external face paths v′ . . . ax and v′ . . . ay, no
preceding vertices closer to v′ along those paths have unembedded back edges or

4This K4 homeomorph includes w but not the pertinent path from w to v. A K4 homeo-
morph that includes the pertinent path could also be isolated, but special cases arise such as
when w is equal to ax or ay . The isolation method depicted in Figure 7 avoids special cases.

5The K4 homeomorph corresponding to Figure 8(b) is not based on pertinence in step v.
This case could be ignored since it would be found in step u via case A2. However, the path
(v′ . . . ay) has been explored but cannot be reduced to an edge due to the x-y path attached
to it, so a K4 homeomorph must be isolated in order to maintain linear time performance.



398 J. M. Boyer Subgraph Homeomorphism via Edge Addition Planarity

(a) (b)

Figure 8: Illustration of Case B2: Finding a K4 homeomorph entangled in non-
outerplanarity minor B based on an x-y path for ax or ay. (a) The active vertex
is pertinent, (b) The active vertex is future pertinent.

separate child biconnected connected components that connect to v or ancestors
of v. Furthermore, neither ax nor ay has an x-y path. Since the biconnected
component Bv′ is an outerplanar embedding, any additional structure attached
to these paths consists of individual edges that are parallel to the paths. Thus,
the subgraphs induced by the vertices in the paths v′ . . . ax and v′ . . . ay are 2-cut
separable components that lack the structure needed to contribute more than
a single path to any K4 homeomorph in the graph. The paths can therefore be
reduced to the single edges {v′, ax} and {v′, ay}.

The purpose of the reductions of case B2 is to remove vertices from the
external face so that the Walkdown can continue to explore the pertinent sub-
graph attached to Bv′ . This is guaranteed if the condition of case B1 are not
met, since then at least one of ax or ay is pertinent. The vertices ax and ay
were selected due to being active, so each is either pertinent or future pertinent.
The condition of case B1 is that the vertices are distinct and both are future
pertinent, so failing that condition means either they are not distinct or are not
both future pertinent. If ax and ay are distinct, then at least one is not future
pertinent, but it is active so it must be pertinent. If ax and ay are equal, then ax
is the only active vertex on the external face of the biconnected component Bv′ .
Since Bv′ was selected for non-outerplanarity processing, it is pertinent, so ax
(equivalently ay) must be pertinent, whether or not it is also future pertinent.

5.3 Coda

When the Walkdown on vc becomes blocked due to non-outerplanarity minor E,
then a subgraph homeomorphic to K4 is indicated. If the Walkdown is blocked
by non-outerplanarity minor A or B, then additional analyses are performed
as described in Sections 5.1 and 5.2. If the conditions for a K4 homeomorph
are found by the above steps, then the planarity algorithm of Figure 1 isolates
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it and returns NONEMBEDDABLE. Otherwise, a reduction is performed to
unblock the biconnected component, and the Walkdown is able to continue to
the next pertinent vertex. The processing leading up to a reduction only need
perform work over the portion(s) of the graph being reduced. Proceeding with
the Walkdown may result in further occurrences of non-outerplanarity minors
A or B may be encountered, which are handled in the manner described above,
or an occurrence of non-outerplanarity minor E, which results in a desired K4

homeomorph. Thus, either a K4 homeomorph is found attached to Bv′ or the
pertinence of all vertices in Bv′ is resolved. If this occurs throughout the graph,
then the planarity algorithm of Figure 1 performs no post-processing of G̃, and
EMBEDDABLE is returned to indicate that G has no subgraph homeomorphic
to K4. By the arguments above, we have the following theorem:

Theorem 3 Given an input graph G, the Edge Addition K4 Homeomorph
Search algorithm finds a subgraph homeomorphic to K4 in G or determines
that G is K4-less in O(n) time.

6 Search for K3,3 Homeomorphs

The edge addition planarity algorithm characterizes planarity based on the five
graph minors in Figure 9. A subgraph homeomorphic to K3,3 can be obtained
based on non-planarity minors A, B, C and D. Non-planarity minor E is a K5

minor, from which a subgraph homeomorphic to K3,3 can be obtained based on
four additional non-planarity minors in Figure 10. Absent the conditions cor-
responding to the patterns in Figure 10, the edge addition planarity algorithm
isolates a subgraph homeomorphic to K5. [3]

The Edge Addition K3,3 Search algorithm extends the edge addition pla-
narity algorithm with additional test cases to perform in lieu of isolating a
subgraph homeomorphic to K5. Either the additional conditions exist that en-
able a subgraph homeomorphic to K3,3 to be isolated or the pertinent subgraph
attached to the blocking biconnected component B is discarded, which elimi-
nates the local obstruction to planarity and allows the planarity algorithm to
continue searching for a subgraph homeomorphic to K3,3.

The following terms and notation aid the presentation of the main result.
Let uw, ux, and uy denote ancestor endpoints of future pertinent connections
from w, x, and y, respectively, to ancestors of v. Initially, uw, ux, and uy

have the least depth first index (DFI) from among all the future pertinent
connections of w, x, and y, respectively, except in cases 2 and 3 below, which
test for future pertinent connections with endpoints closer to v (i.e. with higher
numbered DFIs). Let umin and umax denote the minimum DFI and maximum
DFI, respectively, of uw, ux, and uy. A piece Π of a graph G with respect
to a subgraph H is either an edge in G − H whose endpoints are in H or a
connected component of G − H plus the edges of G having one endpoint in
G − H and the other in H . An attachment point of Π to H is a vertex of H
incident with an edge of Π. A bridge of a graph G with respect to a subgraph
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Figure 9: Edge Addition Non-planarity Minors A, B, C, D and E

H is a piece of G with respect to H that has more than one attachment point
to H . Let B denote the blocked biconnected component containing vc. Let Tc

denote the DFS subtree with root c, and let P denote the DFS path (umin, . . . ,
v). Consider the bridges of the input graph G with respect to path P . The
Tc-bridge is the bridge of G with respect to P that contains the vertices in Tc.
Let βP denote the set of all bridges of G with respect to P except the Tc-bridge.
A bridge in βP straddles the vertex umax if the bridge attaches to a descendant
of umax in P and to an ancestor of umax (see Figure 12).

Based on these definitions, Theorem 4 proves the sufficiency of testing only
the seven cases below to determine whether a K3,3 homeomorph is entangled in
the K5 homeomorph found by the edge addition planarity algorithm:

Case 1: If there is any pertinent or future pertinent vertex other than w, x
and y along the external face path (x, . . . , w, . . . , y) of B, then a K3,3 home-
omorph can be isolated by non-planarity minor E1 from [3] (see Figure 10(a)).
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Figure 10: Additional K3,3 Minors from the K5 Minor E in Figure 9. (a) Minor
E1, (b) Minor E2, (c) Minor E3, (d) Minor E4

Note that w is pertinent and future pertinent in the K5 minor pattern. If the
vertex z is future pertinent, then only the pertinence of w is needed, as shown
in see Figure 10(a). If z is pertinent but not future pertinent, then swap w and
z in order to obtain a K3,3 homemorph according to Figure 10(a).

Case 2: If w or any of its descendants in separate biconnected components
can connect by a back edge to an ancestor of v that is descendant to ux and uy,
then a K3,3 homeomorph can be isolated by non-planarity minor E2 from [3]
(see Figure 10(b)).

Case 3: A K3,3 homeomorph can be isolated by non-planarity minor E3



402 J. M. Boyer Subgraph Homeomorphism via Edge Addition Planarity

from [3] (see Figure 10(c)) if x or its descendants in separate biconnected com-
ponents can connect by a back edge to an ancestor of v that is descendant to
uy and uw, or symmetrically if y or its descendants in separate biconnected
components can connect by a back edge to an ancestor of v that is descendant
to ux and uw.

Case 4: If there exists an x-y path in B with a point of attachment px 6= x,
then a K3,3 homeomorph can be isolated by non-planarity minor E4 from [3]
(see Figure 10(d)). The condition py 6= y is symmetric.

Case 5: If the x-y path in B contains a single endpoint z of a second path p

of the form (w, . . . , z), where all vertices in the path (except w) are embedded
inside B, then a K3,3 homeomorph can be isolated by the non-planarity minor
E5 (see Figure 11(a)), which is symmetric to non-planarity minor D (see Figure
9(d)). The paths represented by edges {u, v}, {x,w} and {w, y} are not needed
in the K3,3 homeomorph.

Case 6: If uw < umax and there exists a bridge in βP that straddles umax,
then a K3,3 homeomorph can be isolated by non-planarity minor E6 (see Figure
11(b)), which uses a path from the straddling bridge represented by edge {uw, v}
and omits the paths corresponding to the edges {uxy, v}, {x, y} and {v, w}.

Case 7: If uy < umax and there exists a bridge in βP that straddles umax,
then a K3,3 homeomorph can be isolated by non-planarity minor E7 (see Figure
11(c)). Note the symmetric case for ux < umax. The paths in the graph
corresponding to the edges {v, y}, {x,w} and {uwx, v}, excluding the endpoints,
are not needed to form the K3,3 homeomorph. In the symmetric case (in which
ux < umax), the edges to omit are {v, x}, {y, w} and {uwy, v}).

Figure 11: Minor characterizations of additional K3,3 homeomorphs that can be
extracted despite meeting minimal conditions for isolating a K5 homeomorph.
(a) Minor E5, (b) Minor E6, (c) Minor E7
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Theorem 4 Given an input graph G, the Edge Addition K3,3 Homeomorph
Search algorithm finds a subgraph homeomorphic to K3,3 in G or determines
that G is K3,3-less.

Proof: If G is planar, then it is K3,3-less, and a planar embedding is created
without encountering a non-planarity condition and therefore without invoking
any augmentations of the K3,3 homeomorph search algorithm. Hence, assume G
is non-planar. If the edge addition Kuratowski subgraph isolator identifies aK3,3

homeomorph, or if a K3,3 homeomorph is identified by one of the 7 cases above,
then it is isolated and returned. Some of the edges of the K3,3 homeomorph may
be virtual edges arising from prior reductions of K5 homeomorphs, but any such
reduction edge is replaced with a path from the component it reduced. Hence,
the key to correctness is ensuring that K5 homeomorph reductions preserve any
existing K3,3 homeomorph in G. If the edge addition Kuratowski subgraph
isolator identifies a K5 homeomorph, and none of the above cases 1 to 7 find a
K3,3 homeomorph, then we prove that the K5 homeomorph can be planarized,
enabling the search for a K3,3 homeomorph to proceed elsewhere in G.

Due to the failure to find minor C, the planar subgraphs represented by edges
{v, x} and {v, y} are separable from biconnected component B by 2-cuts {v, x}
and {v, y}. The failure to find minors E1 and E4 implies that edges {x,w} and
{w, y} represent planar subgraphs separable from B by 2-cuts {x,w} and {w, y}.
The failure to find minors C, D, E4 and E5 implies that edge {x, y} represents a
planar subgraph separable from B by the 2-cut {x, y}. The failure to find minor
B implies that edge {v, w} represents a planar subgraphH that is separable from
B by the 2-cut {v, w}. AlthoughH includes one or more edges not yet embedded
incident to v plus planar embeddings of any pertinent descendant biconnected
components of B, the roots of the descendant biconnected components and
the endpoints of the unembedded edges are on external face boundaries, so
H + {v, w} is planar, hence K3,3-less. Similarly, each other component of B
represented by an edge above is a planar embedding that remains planar, hence
K3,3-less, when an edge between the 2-cut endpoints is added. Thus, B plus the
unembedded edges can be reduced to a K4 on v, x, y and w. The rest of the
proof consists of showing that B can be reduced to K4 minus the edge {v, w}
while preserving every K3,3 homeomorph in G. Since H is separable from G by
the 2-cut {v, w}, we need only focus on K3,3 homeomorphs in G that would be
required to contain a single path in H to join v and w. We show that the path
can be obtained from B − (H − v − w) instead.

Let βP+B denote the set of all bridges of G − (H − v − w) with respect to
the subgraph induced by the vertices of B plus the path P = (umin, . . . , v). Let
βx, βy and βw denote the subsets of bridges in βP+B whose attachment points
include x, y or w, respectively. As Figure 12 shows, βP+B = βP ∪ βx ∪ βy ∪ βw.
Note that βP does not include βx, βy and βw because they are part of the
Tc-bridge, which is excluded from βP by its definition above.

The bridges of βP+B are subgraphs of G that can attach to P + B. We
examine various subsets of βP+B that, when combined with P , are separable
from B by a 2-cut {s1, s2}. Consider a subgraph S of G that is separable from
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Figure 12: Example of bridges in βP+B . In this depiction, βx has the farthest
attachment to an ancestor of v, i.e. umin = ux. The farthest ancestor attach-
ment for βy and βw are shown to be equal, so umax = uw = uy. Since βy

has a point of attachment closer to v than umax, a K3,3 homeomorph can be
obtained via minor E3 in Figure 10(c). In this example, βw is shown attached
only to umax, so uw = umax = ûw, whereas for βx and βy, ux = umax < ûx

and uy = umax < ûy. In this example, there are three bridges in βP attached
along the path P = (umin, . . . , v). The topmost bridge in βP , attached closest
to umin, does not straddle umax, so it is also in BL. The bottommost bridge in
βP , attached closest to v, is also a non-straddling bridge, so it is in BH . The
middle bridge in βP , shown with two only points of attachment, is a bridge that
straddles umax, so it is not in BL nor BH . Due to this straddling bridge, a K3,3

homeomorph can be obtained via minor E7 in Figure 11(c).

B by the 2-cut {s1, s2}. Since three disjoint paths are needed to access an image
vertex of a K3,3 homeomorph, if S−{s1, s2} contains an image vertex of a K3,3

homeomorph, then all its image vertices are in S. Thus, to preserve any K3,3

homeomorph with one or more image vertices in S − {s1, s2}, we need at most
one path from B to help connect s1 and s2.

The desired 2-cuts exist due to the absence of the conditions in cases 2,
3, 6 and 7. Some additional notation will aid the proof. Let ûw denote the
maximum numbered ancestor connection of the bridge set βw, i.e. the closest
ancestor of v to which a bridge of βw attaches by an unembedded back edge.
Similarly, let ûx denote the maximum numbered ancestor connection of the
bridge set βx, and let ûy denote the maximum numbered ancestor connection of
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the bridge set βy. The ancestor attachment range of a bridge set βw, βx or βy is
(uw, . . . , ûw), (ux, . . . , ûx) or (uy, . . . , ûy), respectively. Let βH denote a subset
of βP consisting of non-straddling bridges that attach to the path (umax, . . . , v).
Let βL denote the subset of non-straddling bridges in βP − βH . The bridges in
βL attach to ancestors of v with DFS numbers less than or equal to umax.

The absence of the conditions of cases 2 and 3 places severe restrictions on the
ancestor attachment ranges of bridge sets βw, βx and βy. When the condition of
case 2 is absent, ûw ≤ umax, and all vertices in the ancestor attachment range
of βw must be less than or equal to one of ux or uy (no closer to v than one
of ux or uy). Otherwise, ûw would be a descendant of both ux and uy, which
contradicts the absence of the condition of case 2. Without loss of generality,
let ûw ≤ ux since ûw ≤ uy is symmetric.

There are four initial possibilities to consider: uw = ûw and uw < ûw

combined with each of ux = ûx and ux < ûx. However, when ux < ûx, there is
no position for uy that does not result in meeting the conditions of case 3 since
we already have ûw ≤ ux from above. Hence, ux = ûx.

Under both remaining possibilities (uw = ûw and uw < ûw), if ûw < ux,
then the absence of the conditions of case 3 ensures that uy = ûy = ux. This
common ancestor attachment point for βX and βY , denoted uxy, is equal to
umax. Hence, βx is separable by the 2-cut {umax, x}, βy is separable by the
2-cut {umax, y}, and βH is separable by the 2-cut {umax, v}. Since ûw < umax,
we have the ancestor attachment range structure corresponding to case 6 (see
Figure 11(b)) except the absence of the condition of case 6 ensures that βP

contains no straddling bridges. Therefore, βw ∪ βL is also separable from B by
the 2-cut {umax, w}.

Now consider both possibilities (uw = ûw and uw < ûw) when ûw = ux. If
uw < ûw, then the absence of the conditions of case 3 ensures that uy = ûy =
ux, so the separability arguments in the above paragraph apply. If uw = ûw,
then the fact that ûw = ux means that βW and βX share a common ancestor
attachment point, denoted uwx, and it equals umax. Note that ûy ≤ umax due
to the absence of the conditions of case 3. If uy = umax, then umax is a common
ancestor attachment point for βW , βX and βY ; thus, βL is empty, βH is separable
by the 2-cut {umax, v}, and each of βW , βX and βY are separable by a 2-cut
containing umax and w, x and y, respectively. On the other hand, if uy < umax,
then we have the ancestor attachment range structure corresponding to case 7
(see Figure 11(c)) except the absence of the condition of case 7 ensures that βP

contains no straddling bridges. Thus, βw is separable by the 2-cut {umax, w},
βx is separable by the 2-cut {umax, x}, βH is separable by the 2-cut {umax, v},
and βy ∪ βL is separable by the 2-cut {umax, y}.

Finally, suppose there is a K3,3 homeomorph whose image vertices are on
the 2-cut vertices for the various bridge subsets of βP+B discussed above, i.e.
on three or more of umax, v, w, x, and y. In the absence of the conditions
of cases 2, 3, 6 and 7, only five vertices appear in all the 2-cuts that separate
the bridge subsets from one another. Therefore, at least one of the six image
vertices would be internal to one of the bridge subsets, i.e. in the bridge subset
excluding the 2-cut vertices, which contradicts the assumption that any of the
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image vertices are outside of that bridge subset plus its 2-cut.

Thus, the failure to find a K3,3 homeomorph based on the biconnected com-
ponent B implies that the K5 homeomorph involving B can be planarized by
ignoring the back edges that the Walkdown failed to embed between v and
vertices in the DFS subtree rooted by w. Provided that this occurs on all bi-
connected components for which the Walkdown failed to embed a back edge, the
planarity algorithm can simply proceed at vertex v − 1, except for v = 0, in
which case the planarity of the reduced graph proves that G is K3,3-less. 2

Much of the testing is performed on the biconnected component B, so if a
K3,3 homeomorph is not found using B, then B is reduced to the edge {x, y}
plus the 4-cycle (v, . . . , x, . . . , w, . . . , y, . . . , v). For any of these edges
that do not exist in the original graph, a virtual edge e is added and the path
from the original graph that connects the endpoints of e is associated with e.
Later, if a K3,3 is found, all virtual edges are replaced by their associated paths.
This reduction of B avoids a non-constant cost for B should it become part
of a larger biconnected component that must subsequently be inspected for a
K3,3 homeomorph. Further, if that inspection fails, note that B is supplanted
by the reduced form of the containing biconnected component. Thus, further
processing of any virtual edge is limited to a constant as the visitation of a
virtual edge will correspond to one of its removal from the external face during
an edge addition, its elimination during isolation of a K3,3 homeomorph, or its
elimination by the aforementioned reduction.

The biconnected component reduction strategy solves most of the problems
of maintaining linear total work for the K3,3 search augmentations to the edge
addition planarity algorithm. However, the tests for cases 2, 3, 6, and 7 require
work to be done outside of the biconnected component B. In particular, work
done along the path from v to umax (except the endpoints) may be repeated
numerous times if there are many K5 homeomorphs that use the path.

For cases 6 and 7, a bridge that straddles umax is sought. The algorithm
proceeds from v up to and excluding umax. For each vertex p, we test whether
either the least ancestor directly adjacent to p by a back edge is less than umax

or p has a DFS child c not an ancestor of x, y and w that has a connection
to an ancestor of umax (in other words, whether the child c has a lowpoint less
than umax). The planarity algorithm initialization calculates the least ancestor
of each vertex as well as a DFS child list sorted by lowpoint, so we process p

in constant time by examining its least ancestor setting and at most the first
two children in the DFS child list of p. To ensure that failed straddling bridge
tests are not performed more than once along a path, the negative result of
a search is cached in an initially nil data member called noStraddle. In each
tree edge along the portion of the path (v, . . . , umax) traversed in the straddling
bridge test, we set the member noStraddle equal to umax. Any future search for
a straddling bridge can be terminated (before reaching umax) at the first edge
whose noStraddle member is not nil. If the terminated straddling bridge test
was searching for a bridge straddling umax, then the test result is negative. If a
future step tests for a bridge that straddles a descendant ud of umax, then the
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result is positive since the bridge containing biconnected component B in the
current step straddles ud. Finally, a future step will never test for a straddling
bridge between a descendant and an ancestor of umax because the mere need
for such a search (whether or not it would succeed) implies that a straddling
bridge would be found in the current step.

For cases 2 and 3, the path (v, . . . , umax) (exclusive of its endpoints) could
be directly inspected for vertices that connect by unembedded back edges to x,
y, or w (possibly through their separated descendants). However, an alternative
is required in order to prevent multiple searches along the path (v, . . . , umax).
Instead, it is possible to achieve linear time by taking advantage of the fact that
the planarity algorithm itself will encounter the conditions for cases 2 and 3, if
they exist. If a future pertinent connection from x, y or w to a descendant ud of
umax exists, then in step ud the planarity algorithm will be required to embed
a back edge connnection that would join ud, x, y and w into one biconnected
component. For each vertex, we can define an initially nil data member called
mergeBlocker that can be used to delay the work of detecting the condition for
cases 2 and 3. The mergeBlocker members of x, y and w are simply set equal to
umax. Then, the Walkdown can be slightly modified to pre-test each biconnected
component merge sequence with a check of the mergeBlocker member of each
vertex on the mergeStack. If any have a mergeBlocker setting that indicates
an ancestor of the current vertex, then a prior step could have isolated a K3,3

homeomorph based on case 2 or 3. The data structures are then easily reset to
return to the settings of step v, except that the additional information about
case 2 or 3 is known without violating the total linear time bound. Finally,
note that the modified Walkdown may not discover the merge blocked vertex if
it first discovers a non-planarity condition in step ud. However, in this case a
K3,3 homeomorph will be discovered by non-planarity minor A or B since the
merge blocked vertex (x, y or w) is both pertinent to ud and future pertinent
due to its connection to umax. Indeed, this always happens for case 2, so the
mergeBlocker member needs only to be set on x and y for case 3.

Besides these optimizations of the K3,3 search augmentations, much of the
linear time performance of the Edge Addition K3,3 Search is inherited from the
core edge addition planarity algorithm. In a few cases, this included more careful
implementation of preexisting low level routines that did not have to be as fast
when only isolating Kuratowski subgraphs. Finally, since Asano [1] proved that
a graph with at least 3n− 5 edges contains a subgraph homeomorphic to K3,3,
then by the arguments above, we have the following theorem:

Theorem 5 Given an input graph G with n vertices, the Edge Addition K3,3

Homeomorph Search algorithm finds a subgraph homeomorphic to K3,3 in G or
determines that G is K3,3-less in O(n) time.

7 Conclusion

This paper has presented new linear time solutions to several subgraph homeo-
morphism problems, unifying them with the theoretical framework of the edge
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addition planarity algorithm [3]. This eliminated the requirement of an effi-
cient SPQR-tree [9] or other means of triconnected component decomposition,
which was particularly relevant to K3,3 search since the requirement of pla-
narity processing was already present in the prior solutions [1, 8]. Efficient
implementations of these new methods are available in an open source project
(http://code.google.com/p/planarity).

An additional outcome that will likely prove useful in future work is that new
techniques related to depth first search were found and exploited to enable the
removal of obstructions to planarity or outerplanarity during the operation of
the core edge addition planarity algorithm. The creation of the new K4 search
in particular forced the full measure of this improvement to be developed since
the K4 search algorithm must continue Walkdown operations on a biconnected
component directly after performing reductions on it.

As future work, there are new problems and solutions suggested by the
algorithms reported in this paper. One problem will be determining a graph
result that can be interpreted as a certificate of non-existence of a requested
homeomorphic subgraph, just as a planar embedding is a certificate of non-
existence of a Kuratowski subgraph. Another will be determining whether the
subgraph homeomorphism algorithms of this paper can be adjusted to efficiently
find all K2,3, K3,3 or K4 homeomorphs in a graph, where efficiency is measured
as a constant ratio of work to output size. Further investigation will also focus on
new solutions for more planarity-related problems, such as for level planarity,
finding a maximal planar subgraph, searching for a K5 minor or a subgraph
homeomorphic to K5, and projective planar graph embedding. The current
techniques for level planarity [13, 15] are linear time but are based on the PQ-
tree data structure, so a solution based on edge addition planarity is likely to be
simpler and more efficient. Similarly, there are two recently reported linear time
solutions of the maximal planar subgraph problem [7, 12]. Particularly given
prior challenges with using complex data structures to solve this problem [14],
it will be valuable to have implementations of those new algorithms to compare
with a future method based on edge addition planarity, which would avoid batch
processing models and complex satellite data structures. There are no linear
time solutions for searching for a subgraph homeomorphic to K5 or a K5 minor.
The best reported result is an O(n2) method for finding a K5 minor [16]. For
projective planar embedding, there is a reported linear time solution [18], but
as yet no implementation. The intent of the future work will be to create and
implement new methods that use a graph as the dominant data structure and
that are conceptually straightforward extensions of the edge addition planarity
algorithm along with the variations and reduction techniques presented herein.



JGAA, 16(2) 381–410 (2012) 409

References

[1] T. Asano. An approach to the subgraph homeomorphism problem. Theoretical
Computer Science, 38:249–267, 1985.

[2] J. Boyer and W. Myrvold. Stop minding your P’s and Q’s: A simplified O(n)
planar embedding algorithm. Proceedings of the Tenth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pages 140–146, 1999.

[3] J. Boyer and W. Myrvold. On the cutting edge: Simplified O(n) planarity by edge
addition. Journal of Graph Algorithms and Applications, 8(3):241–273, 2004.
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