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Abstract

We provide an NC algorithm for finding Hamilton cycles in directed
graphs with a certain robust expansion property. This property captures
several known criteria for the existence of Hamilton cycles in terms of the
degree sequence and thus we provide algorithmic proofs of (i) an ‘oriented’
analogue of Dirac’s theorem and (ii) an approximate version (for directed
graphs) of Chvátal’s theorem. Moreover, our main result is used as a tool
in a recent paper by Kühn and Osthus, which shows that regular directed
graphs of linear degree satisfying the above robust expansion property
have a Hamilton decomposition, which in turn has applications to TSP
tour domination.
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1 Introduction

In this paper we study the problem of finding Hamilton cycles in directed graphs
efficiently. The decision problem is one of the most famous NP-complete prob-
lems so we will restrict our attention to some specific classes of directed graphs
which are known to be Hamiltonian and provide fast parallel algorithms for
finding Hamilton cycles in such graphs. These algorithms immediately trans-
late into sequential algorithms with polynomial running time. Our model of
computation will be the EREW PRAM, in which concurrent reading or writing
is not allowed. We say that a problem belongs to the class NC if it can be
solved in polylogarithmic time on a PRAM containing a polynomial number of
processors. If the algorithm has running time O((log n)i), then we say that it
belongs to the class NCi. For a discussion of the various PRAM models, we
refer the reader to [13].

By Dirac’s theorem [9], one class of undirected graphs which are known to
be Hamiltonian is the class of graphs with minimum degree at least n

2 , where
n is the order of the graph. Although Dirac’s proof was not formulated in
algorithmic terms, it can be easily turned into a polynomial time algorithm
for finding a Hamilton cycle in such graphs. Goldberg raised the question of
whether the problem of finding such a cycle belongs to NC. This question was
answered affirmatively by Dahlhaus, Hajnal and Karpinski [8] who designed an
NC4 algorithm for this problem.

Following Dirac’s theorem, there was a series of results by various authors
giving even weaker conditions which still guarantee Hamiltonicity. Finally,
Chvátal [6] showed that if the degree sequence d1 6 d2 6 · · · 6 dn of a graph G
satisfies dk > k + 1 or dn−k > n − k whenever k < n

2 , then G is Hamiltonian.
Chvátal’s condition is best possible in the sense that for every degree sequence
d1 6 · · · 6 dn not satisfying this condition, there is a non-Hamiltonian graph on
n vertices whose degree sequence dominates d1 6 · · · 6 dn. Chvátal’s original
proof was not algorithmic. A sequential polynomial time algorithm for finding
Hamilton cycles in such graphs was found later by Bondy and Chvátal [5]. No
NC-algorithm for finding Hamilton cycles in such graphs is known yet. Recently
however, Sárközy [25] proved the following approximate result.

Theorem 1 Let 0 < η < 1 be fixed and let G be a graph of order n whose degree
sequence satisfies

dk > min {k + ηn, n/2} or dn−k−ηn > n− k

whenever k < n
2 . Then there is an NC4 algorithm for finding a Hamilton cycle

in G.

Let us now turn our attention to directed graphs (digraphs). The digraphs
considered in this paper do not have loops and we allow at most 2 edges be-
tween any pair of vertices, at most one in each direction. When referring to
paths and cycles in digraphs we always mean that these are directed without
mentioning this explicitly. For an analogue of Dirac’s theorem for digraphs it



JGAA, 16(2) 335–358 (2012) 337

is natural to consider the minimum semi-degree δ0(G) of a digraph G, which
is the minimum of its minimum out-degree δ+(G) and its minimum in-degree
δ−(G). The corresponding analogue is a theorem of Ghouila-Houri [10] which
states that every digraph G on n vertices with minimum semi-degree at least n

2
contains a Hamilton cycle. Thomassen [26] asked for an analogue for oriented
graphs (these are digraphs without 2-cycles). One could expect that for such
graphs, a much weaker degree condition suffices. Indeed Häggkvist [12] pointed
out that a minimum semi-degree of 3n−4

8 is necessary and conjectured that it
is also sufficient to guarantee a Hamilton cycle in any oriented graph of order
n. The following approximate version of this conjecture was proved by Kelly,
Kühn and Osthus [15].

Theorem 2 For every α > 0 there exists an integer n0 = n0(α) such that for
every oriented graph G of order n > n0 the following hold:

(i) If δ(G) + δ+(G) + δ−(G) >
(
3
2 + α

)
n, then G contains a Hamilton cycle;

(ii) if d+(x) + d−(y) >
(
3
4 + α

)
n whenever xy /∈ E(G), then G contains a

Hamilton cycle.

In particular, if δ0(G) >
(
3
8 + α

)
n, then G contains a Hamilton cycle. (Here,

δ(G) denotes the minimum number of edges incident to a vertex of G.)

Finally, the conjecture of Häggkvist was proved for all large enough oriented
graphs by Keevash, Kühn and Osthus [14].

What about an analogue of Chvátal’s theorem for digraphs? No such ana-
logue has yet been proved. For a digraph G, let us write d+1 6 · · · 6 d+n for
its out-degree sequence and d−1 6 · · · 6 d−n for its in-degree sequence. The fol-
lowing conjecture of Nash-Williams [24] would provide an analogue of Chvátal’s
theorem for digraphs.

Conjecture 3 Let G be a strongly connected digraph of order n and suppose
that for all k < n

2

(i) d+k > k + 1 or d−n−k > n− k;

(ii) d−k > k + 1 or d+n−k > n− k.

Then G contains a Hamilton cycle.

Recently, the following approximate version of Conjecture 3 for large di-
graphs was proved by Kühn, Osthus and Treglown [22].

Theorem 4 For every η > 0 there exists an integer n0 = n0(η) such that the
following holds. Suppose G is a digraph on n > n0 vertices such that for all
k < n

2

(i) d+k > k + ηn or d−n−k−ηn > n− k;

(ii) d−k > k + ηn or d+n−k−ηn > n− k.
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Then G contains a Hamilton cycle.

It is natural to ask whether the Hamilton cycles guaranteed in Theorems 2
and 4 can be found efficiently. The main tools used to prove the above results
were a version of Szemerédi’s Regularity Lemma for digraphs [3] and the Blow-
up Lemma [17]. Although both of them have algorithmic versions, (see [1] for the
undirected version of the Regularity Lemma and [18] for the Blow-up Lemma)
the authors needed to use a version of the Blow-up Lemma due to Csaba [7]
which is not yet known to be algorithmic. Using a different approach, in this
paper we give algorithmic versions of Theorems 2 and 4. In particular we avoid
the use of Csaba’s version of the Blow-up Lemma. More generally, our main
result will work for all digraphs which have certain expansion properties. To
state our result we first need some definitions.

Given 0 < ν 6 τ 6 1
2 , we call a digraph G a (ν, τ)-outexpander if for

every S ⊆ V (G) with τ |G| 6 |S| 6 (1 − τ)|G| we have |N+(S)| > |S| + ν|G|.
Here, N+(S) denotes the set of all outneighbours of vertices of S. Although all
digraphs we consider in this paper are outexpanders, this notion of expansion is
not strong enough in order to be inherited by the reduced graph after we apply
the Regularity Lemma. (Consider for example two disjoint cliques of equal size,
joined by a matching.) For this reason, we will instead use the notion of robust
outexpansion (introduced in [22] for similar reasons). Given a digraph G and
S ⊆ V (G), the ν-robust out-neighbourhood of S is the set

RN+
ν,G(S) = {x ∈ V (G) : |N−(x) ∩ S| > ν|G|}.

We will usually drop the subscript G if it is clear to which digraph we are
referring to. We call G a robust (ν, τ)-outexpander if |RN+

ν (S)| > |S|+ ν|G| for
every S ⊆ V (G) with τ |G| 6 |S| 6 (1−τ)|G|. Thus a robust (ν, τ)-outexpander
is also a (ν, τ)-outexpander.

We can now state our main theorem which implies algorithmic versions of
Theorems 2 and 4. Here, and later on, we write 0 < ak � . . . � a1 6 1
to mean that there are increasing functions f2, . . . , fk such that, given 0 <
a1 6 1, whenever we choose positive reals a2 6 f2(a1), . . . , ak 6 fk(ak−1), all
calculations needed in the proofs of our statements are valid.

Theorem 5 Let n0 be an integer and let ν, τ, β be constants such that 0 <
1/n0 � ν 6 τ � β � 1. Let G be a digraph on n > n0 vertices with δ0(G) > βn
and suppose G is a robust (ν, τ)-outexpander. Then G contains a Hamilton
cycle. Moreover, there is an NC5 algorithm for finding such a Hamilton cycle.
In particular, there is a sequential polynomial time algorithm for finding such a
Hamilton cycle.

A non-algorithmic version of Theorem 5 was already proved in [22]. To see
that the digraphs considered in Theorem 4 are robust outexpanders, we refer
the reader to Lemma 11 of [22]. The fact that the graphs in Theorem 2(i)
are robust outexpanders is proved in Lemma 12.1 of [21]. Lemma 6.2 of [15]
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Figure 1:

shows that the oriented graphs considered in Theorem 2(ii) are outexpanders.
A similar proof shows that they are in fact robust outexpanders.

Theorem 5 is also used as a tool in a paper by Kühn and Osthus [21], which
shows that if a digraph G is a robust outexpander whose minimum semi-degree
is linear in n, then G has a Hamilton decomposition. More precisely, the fact
that Theorem 5 is algorithmic is used in [21] to provide an algorithm which
finds the above Hamilton decomposition in polynomial time. This in turn is
used to solve a problem on TSP tour domination which was posed by Glover
and Punnen [11] as well as Alon, Gutin and Krivelevich [2] (see [21] for more
details).

Our parallel algorithmic version of Theorem 2 is best possible not only in the
sense that there are oriented graphs G with δ0(G) = d(3|G|−4)/8e−1 which are
not Hamiltonian, (see [14] for examples) but also in the following sense. Given
an oriented graph G on n vertices with δ0(G) > ηn where 0 < η < 3/8, it is NP-
complete to decide whether G contains a Hamilton cycle. To see this, consider
the graph G constructed as follows (see Figure 1). G has (4 + α)n+ 1 vertices
partitioned into 5 parts A,B,C,D,H of sizes |A| = |B| = |C| = n, |D| = n+ 1
and |H| = αn, where α is chosen so that 0 < α < 3−8η

2η . Each of A and
C span tournaments which are as regular as possible, B and D induce empty
graphs, H is an arbitrary oriented graph and we add all possible edges from
A to B and H, from B and H to C, from C to D and from D to A as well
as bipartite tournaments between B and D and between D and H which are
as (semi-)regular as possible (i.e. orientations of complete bipartite graphs such
that, the in-degree and out-degree of each vertex differ by at most one.) It is
easy to check that δ0(G) > 3n

2 − 1 > η|G| (provided n is large enough). It is
also easy to check that G contains a Hamilton cycle if and only if H contains a
Hamilton path and it is well-known that to decide whether an arbitrary oriented
graph H contains a Hamilton path is NP-complete.

Our paper is organized as follows. The next section contains some basic no-
tation. In Section 3, we collect all the information we need about the Regularity
Lemma and the Blow-up Lemma, and we state some simple facts about robust
outexpanders. In Section 4, we give a brief overview of the proof. An important
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tool in our proof will be the notion of shifted walks. We explain how we obtain
such walks in Section 5. Finally, in Section 6, we prove Theorem 5.

2 Notation

Given two vertices x and y of a digraph G, we write xy for the edge directed
from x to y. The order |G| of G is the number of its vertices. We write
N+
G (x) and N−G (x) for the out-neighbourhood and in-neighbourhood of x and

d+G(x) and d−G(x) for its out-degree and in-degree. The degree of x is dG(x) =
d+G(x) + d−G(x). The minimum and maximum degree of G are defined to be
δ(G) = min {d(x) : x ∈ V (G)} and ∆(G) = max {d(x) : x ∈ V (G)} respectively.
We usually drop the subscript G if this is unambiguous. Given a set A of vertices
of G, we write N+

G (A) for the set of all out-neighbours of vertices of A, i.e. for
the union of N+

G (x) over all x ∈ A. We define N−G (A) analogously.
Given two vertices x and y on a directed cycle C we write xCy for the

subpath of C from x to y. Similarly, given two vertices x and y on a directed
path P such that x precedes y, we write xPy for the subpath of P from x to
y. A walk of length ` in a digraph G is a sequence v0, v1, . . . , v` of vertices of G
such that vivi+1 ∈ E(G) for all 0 6 i 6 `− 1. The walk is closed if v0 = v`. A
1-factor of G is a collection of disjoint cycles which cover all vertices of G. Given
a 1-factor F of G and a vertex x of G, we write x+F and x−F for the successor and
predecessor of x on the cycle in F containing x. We usually drop the subscript
F if this is unambiguous.

Given disjoint vertex sets A and B in a graph G, we write (A,B)G for
the induced bipartite subgraph of G with vertex classes A and B. We write
EG(A,B) for the set of all edges ab with a ∈ A and b ∈ B and put eG(A,B) =
|EG(A,B)|. As usual, we drop the subscripts when this is unambiguous.

Given a digraph G and a positive integer r, the blow-up of G by a factor of
r is the digraph G′ = G×Er obtained from G by replacing every vertex x of G
by r vertices x1, . . . , xr and replacing every edge xy of G by the r2 edges xiyj
(1 6 i, j 6 r).

To avoid unnecessarily complicated calculations we will sometimes omit floor
and ceiling signs and treat large numbers as if they were integers.

3 The Main Tools

In this section, we collect all the information we need about the Regularity
Lemma and the Blow-up Lemma and state some simple facts about outex-
panders and robust outexpanders. For surveys on applications of the Regularity
Lemma and the Blow-up Lemma, we refer the reader to [19, 16, 20].

3.1 The Regularity Lemma

The density of an undirected bipartite graph G = (A,B) with vertex classes A

and B is defined to be dG(A,B) = eG(A,B)
|A||B| . We often write d(A,B) if this is
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unambiguous. Given ε > 0, we say that G is ε-regular if for all subsets X ⊆ A
and Y ⊆ B with |X| > ε|A| and |Y | > ε|B| we have that |d(X,Y )−d(A,B)| < ε.
Given d ∈ [0, 1], we say that G is (ε, d)-regular if it is ε-regular of density at least
d. We also say that G is (ε, d)-super-regular if it is ε-regular and furthermore
dG(a) > d|B| for all a ∈ A and dG(b) > d|A| for all b ∈ B. Given partitions
V0, V1, . . . , Vk and U0, U1, . . . , U` of the vertex set of some graph, we say that
V0, V1, . . . , Vk refines U0, U1, . . . , U` if for all Vi with 1 6 i 6 k, there is some
Uj with 0 6 j 6 ` which contains Vi. Note that this is weaker than the usual
notion of refinement of partitions since V0 need not be contained in any Uj .

Given a digraph G, and disjoint subsets A,B of V (G), we say that the pair
(A,B) is ε-regular, if the corresponding undirected bipartite graph consisting of
all those edges of G which are directed from A to B is ε-regular. (So the order of
A and B matters here.) We use a similar convention for super-regularity. The
Diregularity Lemma is a version of the Regularity Lemma for digraphs due to
Alon and Shapira [3]. We will use the degree form of the Diregularity Lemma
which can be easily derived from the standard version, in exactly the same
manner as the undirected degree form. (See e.g. [20] for a sketch proof.) We will
also use the Diregularity Lemma in its algorithmic form. The algorithmic version
of the Regularity Lemma is due to Alon, Duke, Lefmann, Rödl and Yuster [1].
Although we are not aware of any appearance of the algorithmic version of
the Diregularity Lemma in print, it can be proved in much the same way as
in [3], using instead the algorithmic ideas developed in [1]. For completeness,
we include a sketch.

Lemma 1 (Diregularity Lemma; Algorithmic degree form) For every ε ∈
(0, 1) and all positive integers M ′,M ′′, there are positive integers M and n0
such that if G is a digraph on n > n0 vertices, d ∈ [0, 1] is any real number and
U0, U1, . . . , UM ′′ is a partition of the vertices of G, then there is an NC1 algo-
rithm that finds a partition of the vertices of G into k+ 1 clusters V0, V1, . . . , Vk
and a spanning subdigraph G′ of G with the following properties:

• M ′ 6 k 6M ;

• V0, V1, . . . , Vk refines the partition U0, U1, . . . , UM ′′ ;

• |V0| 6 εn, |V1| = · · · = |Vk| =: m and G′[Vi] is empty for all 0 6 i 6 k;

• d+G′(x) > d+G(x)−(d+ε)n and d−G′(x) > d−G(x)−(d+ε)n for all x ∈ V (G);

• all pairs (Vi, Vj)G′ with 1 6 i, j 6 k are ε-regular with density either 0 or
at least d;

• all but at most εk2 pairs 1 6 i, j 6 k satisfy either (Vi, Vj)G = (Vi, Vj)G′

or dG(Vi, Vj) < d.

We call V1, . . . , Vk the clusters of the partition, V0 the exceptional set and the
vertices of G in V0 the exceptional vertices. The fifth condition of the lemma
says that all pairs of clusters are ε-regular in both directions (but possibly with
different densities).
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Proof: [Sketch proof of Lemma 1] To prove an algorithmic version of the stan-
dard form of the Diregularity Lemma we follow the proof of Lemma 3.1 in [3].
To refine a partition P = (V1, . . . , Vk), instead of applying Lemma 3.4 of [3]
which merely asserts the existence a refinement with some given properties we
proceed as follows. Corollary 3.3 of [1] gives an NC1 algorithm which either
certifies that P is ε-regular (meaning that it produces a list of at least

(
k
2

)
− εk2

pairs which are ε-regular), or certifies that at least ε4

16 pairs are not ε4

16 -regular
(meaning that it returns subsets of the vertex classes of the pair which verify the
non-regularity of the pair). Given these certificates, Lemma 3.4 of [1] gives an
NC1 algorithm which produces a refinement P ′ of P with the same properties
as the refinement whose existence is guaranteed by Lemma 3.4 of [3] (but with
slightly worse constants). Note that each time we apply Lemma 3.4 of [1] we

apply it to one of the undirected graphs
−→
G(P ),

←−
G(P ) or G(P ) which have the

same vertex set as G and in which there is an edge between x ∈ Vi and y ∈ Vj
with i < j, if and only if xy is an edge of G, yx is an edge of G, both xy and
yx are edges of G respectively. Given the partition P , these undirected graphs
can be constructed in NC1. The proof of Lemma 3.1 of [3] shows that we only
need to repeat this a constant number of times before Corollary 3.3 of [1] proves
that we have arrived at an ε-regular partition. Although Lemma 3.1 of [3] does
not mention the refinement property stated in Lemma 1 it is obvious that the
same proof works for this property as well. It remains to show how to obtain
the degree form of the Diregularity Lemma. This is obtained in a similar way
from the standard version as in the undirected case: one applies the Diregularity
lemma with a parameter ε′ � ε and then deletes a small proportion of the edges
(in particular all edges between pairs which are not ε′-regular or have density
less than d+ ε′) and moves a small proportion of the vertices into V0. (See [20]
for a sketch of this for the undirected case.) One important difference is that
in our case we do not know whether each pair is ε′-regular or not. However, for
most ε′-regular pairs, we do have certificates confirming the ε′-regularity of the
pair. So, instead of removing all edges between non ε′-regular pairs, we remove
all edges between all pairs which are not known to be ε′-regular. The calcula-
tions remain unchanged. Finally, we just need to check that whenever we delete
edges, or we remove vertices from the clusters into the exceptional cluster, we
only need knowledge of the degrees of the vertices in the various clusters and
there is an NC1 algorithm for finding these degrees. �

The reduced digraph R of G′ with parameters ε, d,M ′ (with respect to the
above partition) is the digraph whose vertices are the clusters V1, . . . , Vk and in
which ViVj is an edge precisely when (Vi, Vj)G′ has density at least d (and thus
is also ε-regular).

In various stages of our proof of Theorem 5, we will want to make some pairs
of clusters super-regular, while retaining the regularity of all other pairs. This
can be achieved by the following folklore lemma.

Lemma 2 Let ε � d, 1/∆ and let R be a reduced digraph of G as given by
Lemma 1. Let H be a subdigraph of R of maximum degree ∆. Then, we can
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move exactly ∆εm vertices from each cluster Vi into V0 such that each pair of
clusters corresponding to an edge of H becomes (2ε, d2 )-super-regular, while each
pair of clusters corresponding to an edge of R becomes 2ε-regular with density at
least d− ε. Moreover, there is an NC1 algorithm for finding the set of vertices
to be removed.

Proof: For each cluster V of the partition, let

A(V ) =

x ∈ V :
|N+(x) ∩W | < (d− ε)m for some out-neighbour

W of V in H, or |N−(x) ∩W | < (d− ε)m
for some in-neighbour W of V in H


The definition of regularity implies that |A(V )| 6 ∆εm. Remove from each

cluster V a set of size exactly ∆εm containing A(V ). Since ∆ε 6 1
2 , it follows

easily that all pairs corresponding to edges of R are 2ε-regular of density at least
d− ε. Moreover, the minimum degree of each pair corresponding to an edge of
H is at least (d− (∆+1)ε)m > d

2m, as required. Finally, for each cluster V and
each vertex x ∈ V , to check whether x ∈ A(V ) we only need to compute the
out-degrees and in-degrees of x in all the other clusters W so the parallelization
claim follows. �

3.2 A parallel algorithm for finding maximal matchings
and systems of paths

At several steps of our algorithm, we will need to produce matchings in certain
bipartite graphs. It will turn out that if we only needed to find a sequential
polynomial time algorithm, then we could find these matchings greedily. To find
them in parallel, we will use the following result of Lev [23].

Theorem 6 There exists an NC4 algorithm for finding a maximal matching
(i.e. a matching which cannot be extended) in a bipartite graph.

We will also use the following result. Note that, using the definition of super-
regularity, it is easy to greedily find the paths guaranteed by this result. The
point is that one can find those paths efficiently in parallel.

Lemma 3 Suppose k,m are integers and ε2, ε, d are real numbers such that 0 <
1
m � ε2 � ε, 1/k � d 6 1. Let R be a graph on [k], let V1, . . . , Vk be pairwise
disjoint sets of size m and let G be a graph with vertex set V = V1 ∪ · · · ∪ Vk
obtained from R by replacing every vertex i of R with the set Vi (1 6 i 6 k) and
replacing every edge ij of R by an (ε, d)-super-regular pair between Vi and Vj.
Let s 6 ε2m be a positive integer and for each 1 6 i 6 s, let Wi = i1i2 . . . i`(i)
be a walk in R with 4 6 `(i) 6 k3. Suppose also that any closed subwalk of any
Wi has length at least 4. Let x1, y1, . . . , xs, ys be distinct vertices of V such that
xi ∈ Vi1 and yi ∈ Vi`(i) for each 1 6 i 6 s. Then, there is an NC4 algorithm
(wrt m) which finds s disjoint paths P1, . . . , Ps in G such that each Pi joins xi
to yi, has the same length as Wi and such that whenever ab is an edge of Wi,
the corresponding edge of Pi joins the sets Va and Vb.
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Proof: We begin by finding the first edge of all paths Pi for which `(i) > 5.
To find these edges consider the bipartite graph with vertex classes A = {xi :
`(i) > 5} and B = V \{xi, yi : 1 6 i 6 s}. In this graph we join xi ∈ A to v ∈ B
if and only if v ∈ Vi2 and xi is adjacent to v in G. By super-regularity of the
pair (Vi1 , Vi2), each xi ∈ A has at least (d/2−2ε2)m neighbours in this bipartite
graph. Since 1

m � ε2 � d, it follows that any maximal matching in this bipartite
graph covers every vertex of A. Thus Theorem 6 implies that we can find the
required edges. Repeating this at most 1

k3 times, we may find the first `(i)− 4
edges of each path Pi. Indeed, at each application of Theorem 6 we know that at
most sk3 6 ε2k3m� dm vertices have been used from each Vi and so a similar
argument as above shows that the paths can be extended. To avoid introducing
more notation, from now on we will assume that each walk Wi has length
exactly 3 (and so is a path) and keep in mind the extra restriction that each Vi
contains a subset Ui of size at most ε2k

3m of vertices which are not allowed to be
used when creating the paths Pi. For each 1 6 i 6 k, let V ′i = Vi \ Ui. We now
want to find distinct w1, z1, . . . , ws, zs ∈ V ′ = V ′1 ∪ · · · ∪ V ′k such that for each i,
xiwi, wizi, ziyi are edges of G, wi ∈ Vi2 and zi ∈ Vi3 . Then, the Pi := xiwiziyi
will be the required paths in G. To find these wi’s and zi’s we proceed as follows.
For each i, consider N(xi)∩V ′i2 and N(yi)∩V ′i3 . By super-regularity of the pairs
(Vi1 , Vi2) and (Vi3 , Vi4) we have that |N(xi) ∩ Vi2 |, |N(yi) ∩ Vi3 | > dm/2 and so
|N(xi) ∩ V ′i2 |, |N(yi) ∩ V ′i3 | > (d/2 − ε2k3)m. Since ε2k

3 � d, the regularity
of the pair (Vi2 , Vi3) implies that for each 1 6 i 6 s, we can find subsets
Wi ⊆ N(xi) ∩ V ′i2 and Zi ⊆ N(yi) ∩ V ′i3 such that each wi ∈ Wi has at least
d2m
3 neighbours in Zi and each zi ∈ Zi has at least d2m

3 neighbours in Wi. In

particular, |Wi|, |Zi| > d2m
3 . We claim that we can pick distinct w1, . . . , ws such

that wi ∈ Wi for each 1 6 i 6 s. Since ε2 � d and so s � d2m, this follows
by applying Theorem 6 in the natural auxiliary bipartite graph. Finally, we
claim that we can pick distinct z1, . . . , zs such that zi ∈ Zi ∩ N(wi) for each
1 6 i 6 s. This follows again by applying Theorem 6 in the natural auxiliary
bipartite graph. This completes the proof of the lemma. �

3.3 The Blow-up Lemma

The Blow-up Lemma implies that dense super-regular pairs behave like complete
bipartite graphs with respect to containing bounded degree graphs as subgraphs.
In our proof of Theorem 5, we will need the algorithmic version of the Blow-up
Lemma [18].

Lemma 4 (Blow-up Lemma; Algorithmic form) For any graph R of or-
der k and any positive parameters d,∆, there exists an ε0 = ε0(d,∆, k) > 0
such that whenever 0 < ε 6 ε0, the following holds. Let n be a positive integer
and let us replace the vertices of R with pairwise disjoint sets V1, . . . , Vk of size
n (blowing-up). We construct two graphs on the same vertex set V1 ∪ · · · ∪ Vk.
The graph R(n) is obtained by replacing all edges of R with copies of the com-
plete bipartite graph Kn,n and a sparser graph G is obtained by replacing the
edges of R with some (ε, d)-super-regular pairs. If a graph H with maximum
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degree ∆(H) 6 ∆ is embeddable into R(n) then it is already embeddable into G.
Moreover, there is an NC5 algorithm for finding such a copy of H in G.

In fact, we will only use the following consequence of the Blow-up Lemma.

Lemma 5 For every real number d ∈ [0, 1], there exists an ε′0 = ε′0(d) > 0
such that whenever 0 < ε 6 ε′0, the following holds. Let k, n be positive integers
with k > 4, V1, . . . , Vk be pairwise disjoint sets of size n and suppose G is
a digraph on V1 ∪ · · · ∪ Vk such that each (Vi, Vi+1)G is (ε, d)-super-regular.
(Here, Vk+1 := V1.) Take any x ∈ V1 and any y ∈ Vk. Then there is an NC5

algorithm which finds a Hamilton path P in G, starting with x and ending with
y. Moreover, for every vertex v ∈ Vi, the successor of v on P lies in Vi+1.

Proof: We claim that we may take ε′0(d) = min { 12ε0(d/2, 2, `) : ` 6 6}. We
show that this ε′0 works as follows. By deleting edges if necessary we may
assume that for every edge vw of G there is an i such that v ∈ Vi and w ∈
Vi+1. Consider (Vk, V1)G − {x, y}. By the Blow-up Lemma (applied to the
corresponding undirected graph), there is an NC5 algorithm giving a perfect
matching from Vk \ y to V1 \ x. Let us write Vi = {xi1, . . . , xin} for each
1 6 i 6 k. We may assume x11 = x, xkn = y and the edges of the matching
are all edges of the form xkix1(i+1) for 1 6 i 6 n − 1. Hence, it is enough to

give an NC5 algorithm which produces n vertex disjoint paths of length k − 1,
connecting x1i with xki for each 1 6 i 6 n. By fixing some intermediate vertices
we can partition the edge set of the path of length k − 1 corresponding to the
graph G into paths of length at least 3 and at most 5. By considering these
paths instead, we may assume that 4 6 k 6 6. We now define a new undirected
graph G′ by identifying V1 with Vk via the identification of x1i with xki and by
ignoring the orientation of the edges. Applying the Blow-up Lemma to G′ we
obtain n disjoint cycles of length k in G′. The result now follows since these
cycles in G′ correspond to the required paths of length k − 1 in G. �

3.4 Properties of Outexpanders

In this subsection, we gather some simple properties about outexpanders that
will be needed in the proof of Theorem 5. We assume throughout that 0 < ν 6
τ 6 1

2 .

Lemma 6 Let G be a digraph of order n with δ0(G) > τn and suppose G is a
(ν, τ)-outexpander. Then G contains a 1-factor.

Proof: We claim that for every S ⊆ V (G), we have |N+(S)| > |S|. Indeed,
if 0 6= |S| < τn, then |N+(S)| > δ+(G) > τn > |S|, if τn 6 |S| 6 (1 − τ)n,
then |N+(S)| > |S| + νn by the outexpansion properties of G, and finally, if
|S| > (1− τ)n, then |S|+ δ−(G) > n and so N+(S) = V (G), hence |N+(S)| >
|S|. The result now follows by applying Hall’s theorem to the bipartite graph H
with vertex classes A and B, where A and B are both copies of the vertex set of
G and there is an edge joining a ∈ A to b ∈ B if and only if there is a directed
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edge from a to b in G. Indeed, by Hall’s theorem H has a perfect matching and
by the definition of H this corresponds to a 1-factor of G. �

Lemma 7 Let G be a (ν, τ)-outexpander of order n and let G′ be a graph ob-
tained from G by adding at most ν

2n isolated vertices. Then G′ is a (ν4 , 2τ)-
outexpander.

Proof: Take S′ ⊆ V (G′) with 2τ |G′| 6 |S′| 6 (1−2τ)|G′| and let S = S′∩V (G).
Then τn 6 |S| 6 (1− τ)n, hence

|N+
G′(S

′)| > |N+
G (S)| > |S|+ νn > |S′|+ ν

2
n > |S′|+ ν

4
|G′|,

as required. �

Lemma 8 Let G be a (ν, τ)-outexpander and let G′ be a blow-up of G. Then
G′ is also a (ν, τ)-outexpander.

Proof: Let us denote the order of G by n and suppose G′ is the blow-up of G
by a factor of r. Take S′ ⊆ V (G′) with τrn 6 |S′| 6 (1− τ)rn and consider

S = {x ∈ G : S′ contains a copy of x}.

Since G is a (ν, τ)-outexpander, it follows that:

(i) Either |N+(S)| > |S|+ νn;

(ii) or |S| > (1−τ)n, in which case (considering a subset of S of size (1−τ)n)
we have |N+(S)| > (1− τ + ν)n.

Note that if a vertex x of G belongs to N+(S), then any copy x′ of x in G′

belongs to N+(S′). It follows that |N+(S′)| > r|N+(S)|. Thus, in case (i) we
have

|N+(S′)| > r|N+(S)| > r|S|+ rνn > |S′|+ νrn,

while in case (ii) we have

|N+(S′)| > r|N+(S)| > (1− τ)rn+ νrn > |S′|+ νrn,

as required. �

We will also use the following lemma from [22, Lemma 11]. This is the
only place where, for our proof to work, we do need our digraphs to be robust
outexpanders rather than just outexpanders.

Lemma 9 Let M ′, n0 be integers and let ε, d, ν, τ, β be constants such that 0 <
1
n0
� ε � d � ν 6 τ, β < 1/2 and such that 0 < M ′ � n0. Let G be a

digraph on n > n0 vertices with δ0(G) > βn and such that G is a robust (ν, τ)-
outexpander. Let R be the reduced digraph of G with parameters ε, d and M ′.
Then δ0(R) > β

2 |R| and R is a robust (ν2 , 2τ)-outexpander.
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4 Overview of the Proof of Theorem 5

We now give a rough overview of the proof of Theorem 5, which is worth keeping
in mind when following the details of the proof. By applying the Diregularity
Lemma to G with parameters ε1, d1 and M ′1 = 1

ε1
, we obtain a reduced graph

R1 of order k1 and an exceptional set V 1
0 . By Lemma 9 R1 is an outexpander

and so by Lemma 6 it contains a 1-factor F1. By Lemma 2, we may assume that
the edges of F1 correspond to super-regular pairs. Let R∗1 be the graph obtained
from R1 by adding the set V 1

0 of exceptional vertices and for each x ∈ V 1
0 and

each V ∈ R1 adding the edge xV if x has many out-neighbours in V and the
edge V x if x has many in-neighbours in V . We would like to find a closed walk
W in R∗1 such that

(a) For each cycle C1 of F1, W visits every vertex of C1 the same number of
times;

(b) W visits every cluster of R1 at least once but not too many times;

(c) W visits every vertex of V 1
0 exactly once;

(d) any two vertices of V 1
0 are at distance at least 3 along W .

Having obtained W , we would then find a corresponding cycle W ′ such that
whenever W visits a vertex of V 1

0 , W ′ visits the same vertex, and whenever W
visits a cluster Vi of R1, then W ′ visits a vertex x ∈ Vi. We would then be
able to use Lemma 5 to transform W ′ to a Hamilton cycle of G. Property (a)
is required because we want to ensure that whenever we apply Lemma 5, all
clusters have the same sizes. Property (b) is required to ensure that whenever
we apply Lemma 5, all pairs of clusters we are interested in are indeed super-
regular. Property (c) is required so that the Hamilton cycle does indeed cover
all vertices of V 1

0 (exactly once) and finally property (d) is required in order
to construct W ′ with the properties described above. Unfortunately, since V 1

0

might have size ε1n, this simple approach can only guarantee that W visits each
cluster of R1 at most O( ε1ν n) times. This however is far too large to allow the
use of Lemma 5 (as it is larger than the number of vertices in each cluster). So,
instead of considering R∗1, we proceed as follows.

We refine our partition by applying the Diregularity Lemma with new pa-
rameters ε2, d2 � ε1 and M ′2 = 1

ε2
to obtain a new reduced graph R2 whose

clusters are subclusters of the Vi and a new exceptional set V 2
0 . Fix 0 < θ < 1.

Using the fact that the blow-up of R1 is an outexpander, we can find a union F2

of disjoint cycles covering all subclusters of V 1
0 as well as a θ-proportion of the

subclusters of each cluster Vi of R1 (provided θ is large enough.) As before, we
may assume that the edges of F2 correspond to super-regular pairs. For each
cycle C2 of F2, Lemma 5 gives a Hamilton path in the subgraph of G corre-
sponding to C2. Now let R∗ be the graph obtained from R1 by adding the set
V 2
0 of exceptional vertices and a vertex for each cycle C2 of F2. For each x ∈ V 2

0

and each V ∈ R1 add the edge xV if x has many out-neighbours in V and the
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edge V x if x has many in-neighbours in V . Given a cycle C2 of F2, suppose
that the application of Lemma 5 yields a Hamilton path in the corresponding
subgraph of G, starting at x and ending at y, where x belongs to the cluster Vk.
Then add an edge in R∗ from C2 to Vk and an edge from V −k (the predecessor
of Vk in F1) to C2. Provided θ is not too large, we can find a closed walk W in
R∗ such that

(a) For each cycle C1 of F1, W visits every vertex of C1 the same number of
times;

(b) W visits every cluster of R1 at least once but not too many times;

(c) W visits every vertex of V 2
0 exactly once;

(d) W visits every cycle C2 of F2 exactly once;

(e) any two vertices of V 2
0 are at distance at least 3 along W .

With this approach, we can now guarantee that the number of times that
W visits a cluster Vi of R1 is � |Vi|, and this is small enough to allow the use
of Lemma 5 in order to transform W into a Hamilton cycle of G.

5 Shifted Walks

To achieve property (a) above, we will build up W from certain special walks,
each of them satisfying property (a). Given vertices a, b ∈ R1, a shifted walk
from a to b is a walk W (a, b) of the form

W (a, b) = x1C1x
−
1 x2C2x

−
2 . . . xtCtx

−
t xt+1,

where x1 = a, xt+1 = b, C1, . . . , Ct are (not necessarily distinct) cycles of F1,
and for each 1 6 i 6 t, x−i is the predecessor of xi on Ci. We call C1, . . . , Ct
the cycles which are traversed by W (a, b). So even if the cycles C1, . . . , Ct are
not distinct, we say that W traverses t cycles. Note that for every cycle C of
F1, the walk W (a, b)− b visits the vertices of C an equal number of times.

Our next lemma will guarantee that between any two vertices a, b of R1 there
will be a shifted walk W (a, b) which does not traverse too many cycles.

Lemma 10 Let R be a (ν, τ)-outexpander with δ0(R) > 3τ |R| and let F be a
1-factor in R. Then, for any a, b ∈ V (R), there is a shifted walk W (a, b) from
a to b traversing at most 1

ν cycles.

Proof: Let S1 = N+
R (a−) and for i > 1, let Si+1 = N+

R (N−F (Si)). Note that
for every i > 1, Si is the set of vertices x of R for which there exists a shifted
walk from a to x traversing at most i cycles. In particular, Si ⊆ Si+1. Note
also that |S1| > δ+(R) > 3τ |R|. Since R is a (ν, τ)-outexpander, it follows
that either |S1| 6 (1− τ)|R| in which case we have |S2| > |S1|+ ν|R| > 4ν|R|,
or |S1| > (1 − τ)|R| in which case we have |S2| > (1 − τ + ν)|R|. In both
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cases, it follows that |S2| > min {4ν|R|, (1− τ + ν)|R|} and inductively, |Si| >
min {(i+ 2)ν|R|, (1− τ + ν)|R|} for every i > 1. In particular, |Sb1/νc−1| >
(1 − τ + ν)|R|. But then |Sb1/νc−1| + δ−(R) > n, and so Sb1/νc = V (R) as
required. �

6 Proof of Theorem 5

We begin by defining additional constants such that

1

n0
� ε2 � d2 � ε1 � θ � d1 � ν 6 τ � β 6 1.

Recall that this means that we can choose the constants from right to left
as explained before the statement of Theorem 5.

Apply the Diregularity Lemma with parameters ε1, d1 andM ′1 = 1
ε1

to obtain

an exceptional set V 1
0 , a spanning subdigraph G′1 of G and a reduced graph R′1.

By Lemma 9, R′1 is a (ν2 , 2τ)-outexpander with δ0(R′1) > β
2 |R

′
1|. So by Lemma 6,

R′1 contains a 1-factor F ′1.
For technical reasons, it will be convenient to be able to assume that each

cycle of F ′1 has length at least 4. (This is because Lemma 3 fails if one of the
walks Wi has length less than 3.) To achieve this, we arbitrarily partition each
cluster of G into 2 parts of equal size. (If the sizes of the clusters are odd then
we move one vertex from each cluster to V 1

0 .) Consider the graph R
′′

1 whose
vertices correspond to the parts and where two vertices are joined by an edge
if the corresponding bipartite subgraph of G′1 is (3ε1,

2d1
3 )-regular. Note that

we may not be able to construct R
′′

1 in NC. This is because deciding whether
a given pair is ε-regular is co-NP-complete (see [3]). For this reason, we will
instead work with the subgraph R1 = R′1 × E2 of R

′′

1 . We will denote the
order of R1 by k1 and write V1, . . . , Vk1 for its clusters (which were the parts of
the original clusters). Note that δ0(R1) > β

2 k1. Note also that by Lemma 8,
R1 is a (ν2 , 2τ)-outexpander. The size of the exceptional set is now at most
ε1n+ |R′1| 6 2ε1n. Each cycle of length ` of F ′1 now becomes a copy of C`×E2,
which contains a cycle of length 2`. This yields a 1-factor F1 of R1 so that all
cycles of F1 have length at least 4.

Our next step is to make the pairs of clusters corresponding to edges of F1

(6ε1,
d1
3 )-super-regular, rather than just regular. By Lemma 2 we can achieve

this by moving exactly 6ε1|Vi| vertices from each cluster Vi into V 1
0 and thus

increasing the size of V 1
0 to at most 8ε1n. We will still refer to the new clusters

as V1, . . . , Vk1 and to the new exceptional set as V 1
0 . We will denote the size of

the Vi by m1. Note that R1 has not been altered in any way and all edges of
R1 correspond to 6ε1-regular pairs of density at least d1

3 .
As explained in the overview, we will now need to refine our partition. Before

doing so, we define a new graph G1 obtained from G′1 by removing, for each
x ∈ V 1

0 , all edges from x into Vi (for 1 6 i 6 k1) unless |N+
G (x) ∩ Vi| > β

4m1,

and all edges from Vi into x unless |N−G (x) ∩ Vi| > β
4m1. Since |V 1

0 | 6 8ε1n, it
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is immediate that for every x ∈ V (G) \ V 1
0 , we have d+G1

(x) > d+G′1
(x)− 8ε1n >

d+G(x)− (d1 + 9ε1)n and similarly d−G1
(x) > d−G(x)− (d1 + 9ε1)n. Moreover, for

each x ∈ V 1
0 we have

d+G1
(x) > d+G′1

(x)− βm1k1/4 > d
+
G(x)− (d1 + ε1 + β/4)n > βn/4.

Similarly d−G1
(x) > β

4n. We now apply the Diregularity Lemma to G1 with

parameters ε2, d2 and M ′2 = 1
ε2

to obtain a partition refining V 1
0 , V1, . . . , Vk1 .

Observe that since k1 is bounded by a function of ε1, we may assume that
the constant d2 is chosen in such a way that d2 � 1

k1
holds. We denote the

exceptional set by V 2
0 , the spanning subdigraph by G′2, the reduced graph by

R′2, its order by k2 and the size of the clusters of R′2 by m′2. For each 1 6 i 6 k1,
we denote the clusters of R′2 contained in Vi by Vij and call them the subclusters
of Vi. Since (1 − 8ε1) nk1 6 m1 6 n

k1
and (1 − ε2) nk2 6 m′2 6

n
k2

we have for all
i > 1 that

(1− 9ε1)
k2
k1
6 (m1 − |V 2

0 |)
k2
n
6 |{Vij : j > 1}| 6 1

(1− ε2)

k2
k1
. (1)

Note however that distinct Vi may have different number of subclusters. Finally,
we denote the clusters of R′2 contained in V 1

0 by V0j and call them the subclusters
of V 1

0 .
Our next aim is to find a union F2 of cycles in R′2 covering all subclusters of

V 1
0 and exactly θ k2k1 subclusters of every other Vi. Before doing that, it will be

convenient to collect some results about the edge distribution in R′2. The next
lemma states that every subcluster of V 1

0 has significant degree in R′2.

Lemma 11 Every subcluster V0i of V 1
0 satisfies d+R′2

(V0i), d
−
R′2

(V0i) >
β
5 k2.

Proof: Suppose this is not the case, say d+R′2
(V0i) <

β
5 k2 for some i and consider

any x ∈ V0i. Then

β

4
n 6 d+G1

(x) 6 d+R′2
(V0i)m

′
2 + |V 2

0 |+ (d2 + ε2)n <

(
β

5
+ d2 + 2ε2

)
n,

a contradiction. �

We now remove some edges from G′2 to obtain a new digraph G2. The reason
for doing this, is to guarantee later that any two subclusters of V 1

0 are at distance
at least 3 in the union F2 of cycles. For each subcluster Vij with i > 1, we either
remove all edges from Vij into all subclusters V0k of V0, or we remove all edges
from all subclusters V0k of V0 into Vij . We also let R2 ⊆ R′2 be the reduced
digraph of G2 with respect to the same partition. We can randomly remove the
edges in such a way that the conclusion of the following lemma holds.

Lemma 12 There is a subdigraph G2 obtained from G′2 as above, such that for
every subcluster V0k of V 1

0 we have d+R2
(V0k), d−R2

(V0k) > β
20k2. Moreover, G2

can be obtained from G′2 in constant parallel time.
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Proof: For each Vij with i > 1, either remove all edges from Vij into all
subclusters V0k of V0, or remove all edges from all subclusters V0k of V0 into
Vij choosing either option with probability 1/2, independently at random. For
each subcluster V0k of V 1

0 denote by X+
k the random variable d+R2

(V0k) and by

X−k the random variable d−R2
(V0k). Lemma 11 implies that EX+

k >
β
10k2 and so

by Chernoff’s inequality (see e.g. [4, Theorem A.1.4])

P
(
X+
k 6

β

20
k2

)
6 P

(
X+
k 6

1

2
EX+

k

)
6 exp

{
− β

40
k2

}
.

A similar inequality holds for X−k and so the probability that G2 does not

satisfy the required properties of the lemma is at most 2k2 exp
{
− β

40k2

}
. Since

k2 >M ′2 � 1, there is a positive probability that G2 has the required properties.
Finally, to see that G2 can be obtained from G′2 in constant time, note that the
size of the probability space used depends only on k2 and not on n. �

We proceed by showing that every subcluster of V 1
0 forms an edge of R2

(and thus an (ε2, d2)-regular pair) with many subclusters of many clusters of
R1.

Lemma 13 For every subcluster V0i of V 1
0

(i) there are at least β
50k1 clusters Vj such that (V0i, Vjk) is an edge of R2 for

at least β
50
k2
k1

subclusters Vjk of Vj;

(ii) there are at least β
50k1 clusters Vj such that (Vjk, V0i) is an edge of R2 for

at least β
50
k2
k1

subclusters Vjk of Vj.

Proof: If (i) is not true, then by (1) there is an i such that

d+R2
(V0i) 6

(
β

50
k1

)(
1

1− ε2
k2
k1

)
+ k1

(
β

50

k2
k1

)
<

β

20
k2,

contradicting Lemma 12. Part (ii) of the lemma is proved in a similar way. �

The last result we need in order to produce the union F2 of cycles is that if
(Vi, Vj) is an edge of R1 then in G2 most subclusters of Vi form an edge of R2

with many subclusters of Vj .

Lemma 14 Let (Vi, Vj) be an edge of R1. Let Si and Sj be unions of si and
sj subclusters of Vi and Vj respectively, where si, sj >

√
ε1
k2
k1

. Call a subcluster

Vik of Vi bad for Sj, if there are at most d21sj subclusters Vj` belonging to Sj
such that (Vik, Vj`) is an edge of R2. Then Si has at most 4

√
ε1si subclusters

which are bad for Sj.

Proof: Suppose Si has b > 4
√
ε1si subclusters which are bad for Sj . Let B be

the union of these bad subclusters and consider the bipartite graph (B,Sj)G1
.
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Since |B|, |Sj | � ε1m1 and (Vi, Vj)G1 is (6ε, d1/3)-regular, we have dG1(B,Sj) >
d1
3 − 6ε1 >

d1
4 . However, by our assumption, at least (1 − d21)bsj pairs of

subclusters Vik, Vj` belonging to B and Sj do not form an edge of R2. The last
property of Lemma 1 implies that at most ε2k

2
2 of these have density at least d2

in G1. Since ε2k
2
2 � d21bsj as ε2 � 1

k1
, it follows that at least (1 − 2d21)bsj of

the pairs Vik, Vj` belonging to B and Sj have density less than d2 in G1. But
then (B,Sj)G1 must have density at most 2d21 + d2 <

d1
4 , a contradiction. �

We can now find the promised union F2 of cycles in R2.

Lemma 15 R2 contains a union F2 of cycles covering all subclusters of V 1
0 and

exactly θ k2k1 subclusters of every Vi with 1 6 i 6 k1. Furthermore, every cycle
in F2 has length at least 4 and contains two consecutive subclusters, say Vij
followed by Vk`, such that neither of them is a subcluster of V 1

0 and moreover,
Vij is not bad for Vk.

Proof: We begin by finding a 1-factor FA2 in an auxiliary graph A, and then
use FA2 to create F2. We define A as follows: We blow up R1 by a factor of θ k2k1
and add to this blow-up all subclusters of V 1

0 . Moreover we add edges from V0i
to all copies of Vj in the blow-up if and only if (V0i, Vjk) is an edge of R2 for at

least β
50
k2
k1

subclusters Vjk of Vj and similarly we add edges from all copies of

Vj to V0i if and only if (Vjk, V0i) is an edge of R2 for at least β
50
k2
k1

subclusters
Vjk of Vj . By Lemma 8, the blow-up of R1 is (ν2 , 2τ)-outexpander. Hence,
by Lemma 7, A is a (ν8 , 4τ)-outexpander. This follows because we can assume

ε1 � νθ. Moreover, Lemma 13 implies that δ0(A) > β
51 |A|, and so, by Lemma 6,

A contains a 1-factor FA2 . We claim that we may assume that FA2 contains no
cycles of length 2. Indeed, if such a cycle appears, then by definition of R2 it
cannot contain a subcluster of V 1

0 . So suppose that this cycle is AiAj where Ai
is a copy of Vi and Aj is a copy of Vj . Then remove this cycle, find any other
copy Bi of Vi on some other cycle, and replace the appearance of Bi by AiAjBi.
By the construction of A, we still have a union of cycles, with one fewer cycle of
length 2. A similar argument also shows that we may assume that FA2 contains
no cycles of length 3. Moreover, the fact that every two vertices corresponding
to subclusters of V 1

0 have distance at least 3 in R2 implies that every cycle of FA2
contains two consecutive vertices, say Ai and Aj , which correspond to clusters
Vi and Vj with i, j > 1.

We now use FA2 to induce the required union F2 of cycles in R2. To do this,
we will find for each cycle A1A2 . . . ArA1 of FA2 , a cycle Vi1j1Vi2j2 . . . VirjrVi1j1
of R2 such that:

• If A` is a subcluster of V 1
0 , then Vi`j` = A` (and so i` = 0). If A` is a

copy of some cluster Vi with i 6= 0, then Vi`j` is a subcluster of Vi (and so
i` = i).

• If both i` and i`+1 (addition done modulo r) are not equal to 0, then Vi`j`
is not bad for Vi`+1

.
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• Every subcluster Vij of R2 is used in at most one such cycle.

Clearly, if we can do this, we obtain the required union F2 of cycles.
Suppose first that A1 and As are subclusters of V 1

0 but A2, . . . , As−1 are not
(possibly with A1 = As, i.e. r = s − 1). Note that we must have s > 4. For
` = 2, 3, . . . , s − 3, given Vi`−1,j`−1

we choose Vi`,j` such that (Vi`−1,j`−1
, Vi`,j`)

is an edge of R2 and Vi`,j` is not bad for Vi`+1
. To see that this can be done

note that if ` = 2, then by definition of A there are at least β
50
k2
k1
> d21

2
k2
k1

choices for Vi2,j2 such that (Vi1,j1 , Vi2,j2) is an edge of R2. If ` > 3, then by

Lemma 14 and (1) there are also at least (1− 9ε1)d21
k2
k1
> d21

2
k2
k1

choices for Vi`,j`
such that (Vi`−1,j`−1

, Vi`,j`) is an edge of R2. By Lemma 14 and (1) again, at

most 1
1−ε2

4
√
ε1
k2
k1

of those choices are bad for Vi`+1
. Of those remaining, at most

θ k2k1 have been already used in our construction so far. Since d1 � ε1, θ, it
follows that there is such a choice for Vi`,j` . (If s = 4, then Vis−3js−3

has already
been chosen so we do nothing.) It remains to choose Vis−2js−2

and Vis−1js−1

so that (Vis−3js−3
, Vis−2js−2

), (Vis−2js−2
, Vis−1js−1

) and (Vis−1js−1
, As) are edges

of R2 and moreover Vis−2js−2 is not bad for Vis−1 . To see that this can be

done, note that as above, there are at least
d21
2
k2
k1

choices for Vis−2js−2
so that

(Vis−3js−3
, Vis−2js−2

) is an edge of R2 (whether s = 4 or not). By Lemma 14

and (1), at most 1
1−ε2

4
√
ε1
k2
k1

of those are bad for Vis−1
. Of those remaining, at

most θ k2k1 have been already used. In particular, we have at least
d21
3
k2
k1

choices for
Vis−2js−2

so that (Vis−3js−3
, Vis−2js−2

) is an edge of R2 and Vis−2js−2
is not bad

for Vis−1 . By the definition of A, there are at least β
50
k2
k1

choices for Vis−1js−1
,

so that (Vis−1js−1
, As) is an edge of R2 and of those at most θ k2k1 have been

already used. It remains to show that among all possible choices for Vis−2js−2

and Vis−1js−1
as above, there is such a choice such that (Vis−2js−2

, Vis−1js−1
) is

an edge of R2. But this follows from Lemma 14 since d1, β � ε1, θ.
Repeated application of this argument shows that we can create a cycle of

R2 having the required properties for each cycle of FA2 containing at least one
subcluster of V 1

0 . Similarly, we can also create such a cycle for each cycle of FA2
not containing a subcluster of V 1

0 . (For this we need that the length of such a
cycle is at least 3, but we already guaranteed that this will be the case.) �

Our next step is to make the pairs of clusters corresponding to edges of F2

(2ε2,
d2
2 )-super-regular, rather than just regular. By Lemma 2 we can achieve

this by moving exactly 2ε2m
′
2 vertices from each cluster of R2 into V 2

0 and
thus increasing the size of V 2

0 to at most 3ε2n. We still write V 2
0 for the new

exceptional set and Vij for these altered clusters of R2 and we denote the sizes
of Vij by m2. So m2 = (1− 2ε2)m′2. Note that R2 has not been altered in any
way and all edges of R2 correspond to 2ε2-regular pairs of density at least d2

2 .
For each cycle C of F2 we now use Lemma 5 to obtain a Hamilton path

PC in the subgraph of G1 corresponding to C. Note that for the endpoints
of this path we may choose any two vertices which lie in any two consecutive
clusters of C. We make this choice as follows. First we pick two consecutive
clusters, say Vij followed by Vk` of C such that none of them is a subcluster of
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V 1
0 and moreover Vij is not bad for Vk. The existence of these two subclusters

is guaranteed by Lemma 15. We choose any xC in Vk` as the initial vertex of
the path. For the endvertex of the path we choose any vertex yC ∈ Vij which
maximizes |N+

G (yC) ∩ V ′k|, where by V ′k we denote the union of all subclusters
of Vk not used in F2.

Lemma 16 Let C be a cycle of F2 and let yC be chosen as above. Then
|N+

G (yC) ∩ V ′k| > 1
5d

2
1d2m1.

Proof: Suppose yC belongs to the subcluster Vij and let Vk` be the successor
of Vij in F2. By our choice of Vij and Vk`, Vij is not bad for Vk. By (1)
and the definition of a subcluster being bad, it follows that there are at least
(1− 9ε1)d21

k2
k1

subclusters Vk`′ of Vk such that (Vij , Vk`′) is an edge of R2. From

this, using Lemma 15 and the fact that θ � d1 we conclude that at least
d21
2
k2
k1

of these Vk`′ ’s are not used in any of the cycles of F2 and so they belong to V ′k.
The result follows since every edge of R2 corresponds to a (2ε2, d2/2)-regular
pair in G′2. �

Let V 2
0 = {v1, . . . , vr} and let {C1, . . . , Cs} be the set of cycles of F2. For

each vi ∈ V 2
0 , since δ0G(vi) > βn, we can find distinct clusters Ui and Wi in R1

such that |N−G (vi)∩Ui| > β
2m1 and |N+

G (vi)∩Wi| > β
2m1. We write Pi for the

path from U+
i to Ui in the 1-factor F1 of R1. For each cycle Cj of F2, we denote

the cluster of R1 containing xCj
by Bj and write Qj for the path from Bj to

B−j in F1. Define a graph R∗ by adding to the vertex set of R1 all vertices of

V 2
0 and one vertex for each cycle Cj of F2 as follows. For each 1 6 i 6 r we

add the edges Uivi and viWi and for each 1 6 j 6 s we add the edges B−j Cj
and CjBj . Now we define the closed walk W described in Section 4. For each
1 6 i, j 6 k1 we apply Lemma 10 to R1 to obtain a shifted walk W (Vi, Vj) from
Vi to Vj traversing at most 2

ν cycles. We start at V1 and we incorporate the
vertices of V 2

0 by following the walks

W (V1, U
+
1 ), P1, U1v1W1,W (W1, U

+
2 ), P2, U2v2W2, . . . ,W (Wr−1, U

+
r ), Pr, UrvrWr.

Then we incorporate the cycles of F2 by following the walks

W (Wr, B1), Q1, B
−
1 C1B1,W (B1, B2), Q2, B

−
2 C2B2, . . . ,W (Bs−1, Bs), Qs, B

−
s CsBs.

Finally, to close the walk and to make sure that W visits every cluster of
R1, we follow the walks

W (Bs, V2),W (V2, V3), . . . ,W (Vk1−1, Vk1),W (Vk1 , V1)

Note that the walk W thus defined visits every vi and every Cj exactly once,
for each cycle C of F1 it visits every vertex of C the same number of times and
for each cluster V of R1 it visits V at least once and at most(

2

ν
+ 1

)
r +

(
2

ν
+ 1

)
s+

2k1
ν
6

7ε2n

ν
6

7ε2k1m1

(1− 8ε1)ν
6
d1m1

4
(2)
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times. The last inequality follows since ε2 � 1/k1, d1, ν.
It remains to show how to transform W into a Hamilton cycle of G. Initially,

we will transform W to a cycle W ′ of G with the following properties:

• Each cluster V in W is replaced by an x ∈ V ′ ⊆ V in W ′. (Recall that
V ′ is the union of all the subclusters of V not used in F2. Of course, to
ensure that W ′ is a cycle, different x’s will be chosen for each appearance
of V in W ′.)

• Each vi ∈ V 2
0 in W is left unchanged in W ′.

• For each Cj ∈ F2, we replace Cj in W with the path PCj in W ′.

To achieve this we proceed as follows. For each 1 6 i 6 r we choose ui ∈ Ui and
wi ∈Wi such that all of them are distinct and do not belong to the subclusters
in F2 and moreover uivi and viwi are edges of G. To see that this can be done,
consider the (undirected) bipartite graph with vertex classes D1 and D2 defined
as follows. For every 1 6 i 6 r, D1 contains 2 vertices corresponding to vi ∈ V 2

0

which we call v+i and v−i , while D2 is the set of all vertices of G lying in some V ′k
with 1 6 k 6 k1. We join v+i to a vertex w of D2 if and only if w ∈Wi and viw
is an edge of G and we join v−i to a vertex u of D2 if and only if u ∈ Ui and uvi
is an edge of G. We use Theorem 6 to find a maximal matching in this graph.
We claim that this matching covers all vertices of D1. Indeed, the size of D1

is at most 6ε2n, the degree of every vertex of D1 is at least (β2 − 2θ)m1 and so
any matching which does not cover a vertex in D1 can be extended to a larger
matching as ε2k1 � θ � β. Given this matching from D1 to D2, we now take ui
to be the unique vertex in D2 adjacent to v−i and wi to be the unique vertex in
D2 adjacent to v+i in this matching. Now, for each 1 6 j 6 s we choose bj ∈ Bj
and b−j ∈ B

−
j such that all of them are distinct, they are distinct from the ui, wi

(1 6 i 6 r), they do not belong to the subclusters used in F2 and moreover
b−j xCj and yCj bj are edges of G. To achieve this, consider the bipartite graph
with vertex classes D3 and D4 defined as follows: D3 = {xCj , yCj : 1 6 j 6 s},
D4 = D2 \ {ui, wi : 1 6 i 6 r}, with xCj

adjacent to b− ∈ D4 if and only if

b− ∈ B−j and b−xCj
is an edge of G, and yCj

adjacent to b ∈ D4 if and only
if b ∈ Bj and yCj b is an edge of G. As before, we use Theorem 6 to find a
maximal matching in this graph and claim that this matching covers all vertices
of D3. Indeed, if there was a vertex v of D3 not covered by the matching, then
we could extend the matching either by Lemma 16 if v = yCj

for some j, or

by super-regularity of the pair (B−j , Bj)G1 if v = xCj for some j. Given this

matching, we can now take bj to be the unique vertex adjacent to yCj and b−j
to be the unique vertex adjacent to xCj

in this matching.

Now we use W to join up the vertices ui, wi, bj , b
−
j by disjoint paths whose

edges join clusters corresponding to the relevant edges of W . (For exam-
ple, the path joining up w1 to u2 moves through the clusters in the subwalk
W (W1, U

+
2 )P2U2 of W .) Delete all the vertices in V 2

0 as well as C1, . . . , Cs
from W to obtain a set W of subwalks of W . So each walk in W corresponds
to one of the paths joining up the vertices ui, wi, bj , b

−
j we are looking for. To
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choose these paths we first fix edges in G corresponding to all those edges of the
walks in W that do not lie within a cycle of F1. This can be done by looking
at all ordered pairs (Vi, Vj) with Vj 6= V +

i in turn. Let wij be the number of
times the edge ViVj is used by walks in W. We need to choose a matching in
G that avoids all previously chosen vertices and uses wij edges from V ′i to V ′j .
(Recall that V ′i is the union of all subclusters of Vi not used in F2.) To see
that this matching exists, recall that the pair (Vi, Vj) is (6ε1,

d1
3 )-regular and

so the pair obtained from (V ′i , V
′
j ) by deleting all the previously chosen vertices

is still (7ε1,
d1
4 )-regular. Since wij � d1m1 by (2), this implies the existence

of the required matching from V ′i to V ′j . Theorem 6 now implies that there is

a NC4 algorithm for finding such a matching. After considering all such pairs
(Vi, Vj) we have found edges in G corresponding to all those edges of the walks
in W that do not lie within a cycle of F1. Finally, we can apply Lemma 3
with F1 playing the role of R and with the subgraph of G1 which corresponds
to F1 playing the role of G to find paths that connect all the vertices chosen
so far. (So these paths correspond to the set W ′ of walks obtained from the
walks in W by deleting the edges outside F1. Lemma 3 can be applied since
|W ′| ≤ (r + s + k1) 3

ν ≤
√
ε2n and since each walk in W ′ has length at least 3

and at most k1.) Together with the previously chosen edges of G and the paths
PCj

covering the vertices lying in the subclusters belonging to F2, this yields a
cycle W ′ in G as required.

Finally, we extend W ′ to a Hamilton cycle of G. For this note that by (2) for
each cycle C of F1, W ′ has visited every cluster of C exactly mC times for some
mC 6

d1m1

4 . Fix one particular occasion on which W ‘winds around’ C. It is
enough to show that we can replace the corresponding path P in W ′ by a new
path with the same endpoints exhausting all vertices in the clusters of C which
do not appear in W ′. To do this, remove all vertices from the clusters of C which
are used in W ′ apart from the ones used in P . Since exactly mC − 1 6 m1d1

4
vertices have been removed and since the pairs of clusters corresponding to the
edges of F1 are (6ε1,

d1
3 )-super-regular, the modified clusters are now (12ε1,

d1
12 )-

super-regular and so we can use Lemma 5 to replace P by a new path with the
required property.

To see that the algorithm is in NC5, note that at most steps of the algorithm
we either use one of Lemmas 1,2,3,5,12 or we use Theorem 6 or we work entirely
within one of the reduced digraphs (which have constant size). The only other
steps of the algorithm which we need to check are when obtaining G1 from G′1
and when defining the vertices yC for each cycle C of F2. To obtain G1 from
G′1 we only need knowledge of the in-degrees and out-degrees of each vertex x
within each cluster Vk, which can be found in NC1. Similarly, to define each yC
we only need knowledge of the out-degrees of each vertex y within each set V ′k
which can again be found in NC1. This completes the proof of Theorem 5.



JGAA, 16(2) 335–358 (2012) 357

References

[1] N. Alon, R. A. Duke, H. Lefmann, V. Rödl, and R. Yuster. The algorithmic
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[6] V. Chvátal. On Hamilton’s ideals. J. Combinatorial Theory Ser. B, 12:163–
168, 1972.

[7] B. Csaba. On the Bollobás-Eldridge conjecture for bipartite graphs. Com-
bin. Probab. Comput., 16(5):661–691, 2007.

[8] E. Dahlhaus, P. Hajnal, and M. Karpinski. On the parallel complexity of
Hamiltonian cycle and matching problem on dense graphs. J. Algorithms,
15(3):367–384, 1993.

[9] G. A. Dirac. Some theorems on abstract graphs. Proc. London Math. Soc.
(3), 2:69–81, 1952.

[10] A. Ghouila-Houri. Une condition suffisante d’existence d’un circuit hamil-
tonien. C. R. Acad. Sci. Paris, 251:495–497, 1960.

[11] F. Glover and A. P. Punnen. The Travelling Salesman Problem: New solv-
able cases and linkages with the development of approximation algorithms.
Journal of the Operational Research Society, 48:502–510, 1997.
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blow-up lemma. Random Structures Algorithms, 12(3):297–312, 1998.

[19] J. Komlós and M. Simonovits. Szemerédi’s regularity lemma and its ap-
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