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Abstract
We introduce a notion of simultaneity for any class of graphs with an inter-

section representation (interval graphs, chordal graphs, etc.) and for compara-
bility graphs, which are represented by transitive orientations. Let G1 and G2

be graphs from such a class C, sharing some vertices I and the corresponding
induced edges. Then G1 and G2 are said to be simultaneous C graphs if there
exist representations R1 and R2 of G1 and G2 that are the same on the shared
subgraph.

Simultaneous representation problems arise in any situation where two re-
lated graphs should be represented consistently. A main instance is for temporal
relationships, where an old graph and a new graph share some common parts.
Pairs of related graphs arise in many other situations. For example, two social
networks that share some members; two schedules that share some events, over-
lap graphs of DNA fragments of two similar organisms, circuit graphs of two
adjacent layers on a computer chip, etc.

For comparability graphs and any intersection graph class, we show that the
simultaneous representation problem for the graph class is equivalent to a graph
augmentation problem: given graphs G1 and G2, sharing vertices I and the
corresponding induced edges, do there exist edges E′ ⊆ V (G1)− I × V (G2)− I
such that the graph G1 ∪G2 ∪ E′ belongs to the graph class. This equivalence
implies that the simultaneous representation problem is closely related to some
well-studied classes in the literature, namely, sandwich graphs and probe graphs.

We give efficient algorithms for solving the simultaneous representation prob-
lem for chordal graphs, comparability graphs and permutation graphs. Further,
our algorithms for comparability and permutation graphs solve a more general
version of the problem when there are multiple graphs, any two of which share
the same common graph. This version of the problem also generalizes probe
graphs. Finally, we show that the general version of the problem is NP-hard for
chordal graphs.
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1 Introduction

We introduce the concept of simultaneity for several classes of graphs. The idea
is to find representations for two graphs that share some common vertices and
edges, and ensure that the common vertices and edges are represented in the
same way. Simultaneous representation problems arise in any situation where
two related graphs should be represented consistently. A main instance is for
temporal relationships, where an old graph and a new graph share some common
subgraph. Pairs of related graphs arise in many other situations, for example,
two social networks that share some members, two schedules that share some
events, overlap graphs of DNA fragments of two similar organisms, floor plans
of two adjacent floors sharing some two-storey rooms, circuit graphs of two
adjacent layers on a computer chip, etc.

Simultaneous representation problems have been previously studied for pla-
nar graphs [4]. Two graphs sharing some vertices and edges (not necessarily
induced) are said to have a simultaneous embedding with fixed edges (SEFE) if
they have planar drawings, such that a shared vertex [edge] is represented by
the same point [curve] in both drawings. Note the implication that two edges
belonging to the same graph are not allowed to cross in the drawing, but two
edges from different graphs are allowed to cross. Simultaneous embeddings are
desirable for representing pairs of related planar graphs and have applications
in graph visualization and graph drawing, The problem of deciding whether two
graphs have a SEFE is open in the general case but there is an efficient algo-
rithm for the case when the shared graph is 2-connected [18, 1]. Several results
are known for restricted pairs of graphs [20, 10, 14, 9, 13, 12, 1, 18].

The contribution of this paper is to introduce a notion of simultaneous rep-
resentations for intersection graph classes and comparability graphs, and to
give efficient algorithms for the simultaneous representation problem for chordal
graphs, permutation graphs, and comparability graphs. For two graphs with n
vertices and m edges we give:

1. An O(n3) algorithm to determine whether the graphs are simultaneous
chordal graphs.

2. An O(n3) algorithm to determine whether the graphs are simultaneous
permutation graphs.

3. An O(nm) algorithm to determine whether the graphs are simultaneous
comparability graphs.

Intersection graphs. An intersection graph is a graph where each vertex can
be associated with a set in such a way that two vertices are adjacent in the
graph if and only if their associated sets have a non-empty intersection. The
intersection representation of such a graph consists of the sets associated with
the vertices, and the graph is called the intersection graph of these sets. Any
graph can be viewed as an intersection graph by associating each vertex with
the set of edges incident to it. However, when the sets associated with vertices
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are restricted to be special, e.g. intervals on a line, disks or line segments in the
plane, subtrees of a tree etc., we get interesting special classes of graphs. Let
C be any intersection graph class formed by restricting the sets associated with
vertices to some class CS . For example, C is the class of interval graphs when
CS is the class of intervals on a line.

Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs in C, sharing some ver-
tices I and the edges induced by I. Then G1 and G2 are said to be simultaneous
C-representable graphs or simultaneous C graphs if there exist intersection rep-
resentations using sets from CS , say R1 and R2 of G1 and G2, respectively, such
that any vertex of I is represented by the same set in both R1 and R2. The si-
multaneous C representation problem asks whether G1 and G2 are simultaneous
C graphs.

For example, Figures 1(a) and 1(b) show two simultaneous interval graphs
and interval representations of them with the property that any vertex common
to both graphs is assigned to the same interval in both representations. Fig-
ure 1(c) shows two interval graphs that are not simultaneous interval graphs.
This is because in any interval representation of G1, the right end point of in-
terval b should appear between the right end points of a and c, due to the path
a, b, d, c. On the other hand, in any interval representation of G2, the right end
point of interval a should appear between the right end points of a and c, due to
the path b, a, f, c. In a companion paper [19], we give an O(n2 log n) algorithm
to determine whether two graphs are simultaneous interval graphs.
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Figure 1: The graphs in (a) are simultaneous interval graphs as shown by the
interval representations in (b). Note that intervals e and f intersect, and this
is allowed. The graphs in (c) are not simultaneous interval graphs.

In this paper we give efficient algorithms to solve the simultaneous represen-
tation problem for two intersection graph classes: chordal graphs and permuta-
tion graphs. Both of these classes are well-studied in the literature (see [15, 22]).
Chordal graphs are graphs with no induced cycles of length greater than 3. They
can be characterized as the intersection graphs of subtrees of a tree, thus gener-
alizing interval graphs, which are the intersection graphs of subtrees of a path.
Permutation graphs are the intersection graphs of a family of line segments that
connect two parallel lines.

Comparability graphs. A directed graph or digraph is a graph where each
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edge has a direction. A digraph is said to be transitive if for any three vertices
a, b, c, the existence of (directed) edges from a to b and from b to c implies
the existence of an edge from a to c. A transitive orientation of an undirected
graph is an assignment of a direction (or orientation) to each edge such that the
resulting digraph is transitive. Not all graphs have a transitive orientation (e.g.
a cycle of length 5 does not). Comparability graphs are defined as the graphs
that have a transitive orientation [15, 22].

Comparability graphs are not known to have a characterization as an inter-
section graph class, though their complements do [17]. There is, however, a very
natural definition of the simultaneous representation problem on comparability
graphs. Two comparability graphs G1 and G2 sharing some common vertices I
and the edges induced by I are said to be simultaneous comparability graphs if
there exist transitive orientations T1 and T2 of G1 and G2 (respectively) such
that any common edge is oriented in the same way in both T1 and T2. For
example, the graphs in Figure 2(1) are simultaneous comparability graphs as
demonstrated by the orientation in Figure 2(2). On the other hand the graphs
in Figure 2(3) are not simultaneous comparability graphs, because orienting
edge ab, say from a to b, forces the orientation of all other edges and in partic-
ular the edge gd is forced to go from g to d in G1 and from d to g in G2, as
shown in Figure 2(4). Note that orienting ab from b to a instead would have a
similar problem. Our third main result is an efficient algorithm for recognizing
simultaneous comparability graphs.

Related Problems. Our results on simultaneous intersection graphs and si-
multaneous comparability graphs rely on a fundamental equivalence to a graph
augmentation problem. Let C be any intersection graph class or the class of
comparability graphs. We show that the simultaneous C representation prob-
lem for G1 and G2 is equivalent to the following graph augmentation prob-
lem: Do there exist edges E′ ⊆ (V1 − I) × (V2 − I) such that the augmented
graph (V1 ∪ V2, E1 ∪ E2 ∪ E′) belongs to C. For example, consider the graphs
in Figure 1(a) and their simultaneous interval representation in Figure 1(b).
The interval representation contains all the intersections corresponding to the
edges of G1 ∪ G2 and an additional edge, ef . The additional edge comes from
(V1− I)× (V2− I), and adding this edge to G1 ∪G2 makes it an interval graph.

Our equivalence results are proved in Theorem 1 for intersection classes and
Theorem 5 for comparability graphs. This equivalence implies that simultaneous
representation problems are closely related to graph sandwich problems and to
probe graphs. Graph sandwich problems were introduced by Golumbic, Kaplan
and Shamir [16] and have applications in several areas such as VLSI design,
algebra, physical mapping of DNA, and constructing perfect phylogeny [16].
In the graph sandwich problem for C, given a graph H = (V,E) and a set
of “optional edges” Eo ⊆ V × V , where E ∩ Eo = ∅, we have to determine
whether H can be converted into a class C graph by adding some edges from
Eo. Thus the simultaneous representation problem for C is a special case of the
graph sandwich problem for C, in which the optional edges induce a complete
bipartite graph. Unfortunately, the graph sandwich problem is NP-hard for
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Figure 2: The graphs in (1) are simultaneous comparability graphs as shown
by the orientation in (2). The graphs in (3) are not simultaneous comparabil-
ity graphs: orienting ab forces orientations as shown in (4), so dg cannot be
consistently oriented.

many interesting classes of graphs including interval graphs, chordal graphs,
comparability graphs and permutation graphs.

Probe graphs are another special case of the graph sandwich problem. For
any graph class C, given a graph G = (P ∪ N,E), where N is an independent
set (given explicitly), G is said to be a probe C graph, if it can be transformed
into a C graph by only adding edges between the vertices of N . Thus the probe
graph recognition problem is a special case of the graph sandwich problem in
which the optional edges induce a clique. Polynomial time algorithms are known
for recognizing several probe classes, in particular, probe interval graphs [21],
probe chordal graphs [2], probe comparability graphs [6] and probe permutation
graphs [6].

Probe graphs (where the optional edges induce a clique) and simultaneous
graphs (where the optional edges induce a complete bipartite subgraph) have
a common generalization, which we are able to solve efficiently in some cases.
The generalization involves simultaneous representations of multiple graphs, as
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we discuss next.

Simultaneous representations of multiple graphs. The simultaneous rep-
resentation problem can be defined for multiple graphs, where any two graphs
share some common vertices and the edges induced by them. A formal defini-
tion is given in the next section. In this paper we consider a special case of the
problem, where there are multiple graphs (say r of them) and any two graphs
share the same common graph. In other words, every vertex and every edge is
either common to all the graphs or is “private” and belongs to exactly one of
the graphs. We call these r-sunflower graphs. For intersection classes and for
comparability graphs, the simultaneous representation problem for r-sunflower
graphs is equivalent to a graph sandwich problem where the optional edges in-
duce a complete r-partite graph. Thus the problem generalizes the recognition
of probe graphs, which is the special case where every graph has only one private
vertex. (So the number of graphs is equal to the number of non-probe vertices).
We extend our algorithms for recognizing simultaneous comparability graphs
and simultaneous permutation graphs to the r-sunflower versions. Our results
therefore generalize the polynomial time algorithms for recognizing probe com-
parability graphs and probe permutation graphs. In contrast, we show that the
r-sunflower version of the simultaneous representation problem is NP-hard for
chordal graphs.

The rest of the paper is organized as follows. Section 2 gives notation and
definitions. In Section 3 we prove that the simultaneous representation problem
for intersection graphs is equivalent to a graph augmentation problem. Sec-
tions 4, 5 and 6 deal with the simultaneous representation problem for chordal,
comparability and permutation graphs respectively. These sections are indepen-
dent of each other and can be read in any order. Finally we present conclusions
and open problems in Section 6.

2 Notation and Definitions

Throughout the paper we only consider simple graphs with no self-loops. The
graphs will be undirected unless otherwise specified. For a graph H, we use
V (H) and E(H) to denote its vertex set and edge set respectively. An edge
between vertices u and v is denoted by (u, v) or uv. A directed edge from u to
v is denoted by −→uv. Given a set S ⊆ V (H) of vertices, we use H[S] to denote
the graph induced by S. We use E(S) as a shorthand for E(H[S]), when the
graph H is clear from the context. Given a vertex v and a set of edges A,
we use NA(v) to denote the neighbors of v with respect to A, i.e. the vertex
set {u : (u, v) ∈ A}. Also, N(v) denotes all the neighboring vertices of v and
N [v] = N(v) ∪ {v}. We use EH(v) to denote the edges incident to v, i.e. the
edge set {(u, v) : (u, v) ∈ E(H)}. We use H − v to denote the graph obtained
by removing v and its incident edges from H.

Given a graphG = (V,E), its complement is defined as the graph Ḡ = (V, Ē),
where Ē consists of all edges between vertices in V which are not present in E.
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Given two graphs G1 = (V1, E1) and G2 = (V2, E2), their union is defined as
the graph G1 ∪G2 = (V1 ∪ V2, E1 ∪ E2). If E′ is a set of edges incident on V1,
then G1 ∪ E′ is the graph G1 ∪ (V1, E

′).
We now define the general version of the simultaneous representation prob-

lem for intersection graph classes and comparability graphs. Let G1, G2, . . . , Gr

be r graphs, where a vertex/edge may be present in multiple graphs. We then
say that the graphs share the vertex/edge.

Let C be an intersection graph class where the sets associated with vertices
come from a class CS . Then G1, G2, . . . , Gr are said to be simultaneous C graphs
if for each i ∈ {1, . . . , r}, there exists an intersection representation Ri for Gi

that assigns a set from CS to each vertex of Gi, with the property that any
vertex v that appears in multiple graphs is assigned to the same set in all the
corresponding representations. The simultaneous C representation problem for
G1, G2, . . . , Gr asks whether G1, G2, . . . , Gr are simultaneous C graphs. Observe
that if G1, G2, . . . , Gr are simultaneous C graphs, then each of the individual
graphs must belong to C, and furthermore, because C is an intersection class they
must satisfy the following necessary condition: If an edge uv is present in some
graph, then any other graph that contains vertices u and v must also contain the
edge uv. When considering the simultaneous representation problem for interval
graphs, chordal graphs and permutation graphs, we will assume that the input
graphs satisfy this necessary condition. We will make the same assumption for
simultaneous comparability graphs (defined below), although in this case the
assumption is not necessary and the more general problem may be of interest.

In the case where r = 2, which is our starting point, the above necessary
condition can be stated very simply: the edges induced by the common vertices
must be the same in both graphs.

Graphs G1, G2, . . . , Gr are said to be simultaneous comparability graphs if
for each i ∈ {1, . . . , r}, there exists a transitive orientation Wi of Gi such that
every edge e is oriented the same way in all the orientations that contain e.
The simultaneous comparability representation problem for G1, G2, . . . , Gr asks
whether G1, G2, . . . , Gr are simultaneous comparability graphs.

We define a family of r-sunflower graphs to be a family of r graphsG1, G2, . . . ,
Gr, sharing some vertices I and the edges induced by I, i.e., for any two dis-
tinct i, j ∈ {1, . . . , r}, V (Gi) ∩ V (Gj) = I and Gi[I] = Gj [I]. Additionally if
G1, G2, . . . Gr all belong to a class C, then we use the term r-sunflower C graphs
to denote them. Figure 3 shows the structure of 5-sunflower graphs.

As mentioned in the introduction, our starting point is to prove an equiva-
lence between simultaneous representation problems and a graph augmentation
problem, which we now define. An augmenting edge in a family of r-sunflower
graphs is an edge whose end points appear in distinct graphs. In other words,
an augmenting edge belongs to the set

⋃{(V (Gi) − I) × (V (Gj) − I) : i 6=
j ∈ {1, . . . , r}}. Let C be any graph class. The C augmentation problem for
G1, G2, . . . , Gr asks whether there exists a set A of augmenting edges such
that G1 ∪ G2 ∪ · · ·Gr ∪ A is a graph from class C. In this case, the family
Gi, i ∈ {1, . . . , r} is said to be augmentable to a C graph. The C augmenta-
tion problem for sunflower graphs can be defined for any graph class C, not
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just for intersection graph classes. The C augmentation problem for r-sunflower
graphs is (by definition) a special case of the graph sandwich problem for C—
specifically, it is the special case where the optional edges induce a complete
r-partite graph. On the other hand, the C augmentation problem for sunflower
graphs strictly generalizes the recognition problem for probe C graphs (where
the optional edges induce a clique). This is because a k-clique is a complete
k-partite graph in which every part has a single vertex.

G1 − I

G2 − I

G3 − I

G4 − IG5 − I

I

Figure 3: A family of 5-sunflower graphs. The graphs G1, . . . , G5 share the
vertex set I and the edges induced by I.

3 Simultaneous Intersection Graphs as an Aug-
mentation Problem

In this section we prove that for any intersection class C, the simultaneous C
representation problem for sunflower graphs is equivalent to the C augmentation
problem for sunflower graphs. This result is the starting point for our algorithms
to recognize simultaneous chordal and permutation graphs. Also, as discussed
above, this result implies that for any intersection class C, the C representation
problem for sunflower graphs is a graph sandwich problem that generalizes the
problem of recognizing probe C graphs.

The analogous equivalence result for comparability graphs appears as The-
orem 5 in Section 5.

At the end of this section, we show that the C augmentation problem for
sunflower graphs is equivalent when we complement the sunflower graphs and
complement the class C.

We begin with the equivalence between augmentation and simultaneity. To
understand the following theorem, it may be helpful to refer back to the discus-
sion of Figure 1 in the Introduction.
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Theorem 1 Let C be an intersection graph class. Let G1, G2, · · · , Gr be r-
sunflower C graphs, sharing some vertices I and the edges induced by I. Then
Gi, i ∈ {1, . . . , r} are simultaneous C graphs if and only if they are augmentable
to a C graph.

Proof: Let G = G1 ∪G2 ∪ · · · ∪Gr.
Suppose G1, . . . , Gr are simultaneous C graphs. For i ∈ {1, . . . , r}, let Ri

be the intersection representation of Gi, such that all Ri are consistent on I,
i.e. each vertex in I is assigned to the same set in all Ri. In this representation,
let vertex v ∈ V (G) be mapped to set Tv. Now consider the intersection graph
Ga of {Tv : v ∈ V (G)}. Clearly Ga belongs to class C and V (Ga) = V (G).
Further, every vertex of E(Ga) is either present in G or is an augmenting
edge connecting V (Gi) − I and V (Gj) − I, for some i, j ∈ {1, . . . , r}. Thus
E(Ga) = E(G) ∪ A, where A is a set of augmenting edges. Hence G1, . . . , Gr

are augmentable to a C graph.
For the other direction, suppose G1, . . . , Gr are augmentable to a C graph.

Then there exists a set A of augmenting edges such that the graph Ga = G ∪
A belongs to class C. Now consider the intersection representation R of Ga.
Then R maps each vertex v ∈ V (G) to a set Tv. For i ∈ {1, . . . , r}, obtain a
representation Ri of Gi by restricting the domain of R to V (Gi). Note that Ri

is an intersection representation of Gi, since Gi is the subgraph of G induced
by V (Gi). Now any vertex v in I is mapped to the same set, Tv, in all Ri. Thus
G1, . . . , Gr are simultaneous C graphs. 2

Let G1, G2, . . . , Gr be r-sunflower graphs, sharing some vertices I. Observe
that their complements Ḡ1, Ḡ2, . . . , Ḡr are also r-sunflower graphs that share
I. The following theorem shows the relationship between augmenting sunflower
graphs and their complements. Note that we do not assume C is an intersection
class.

Theorem 2 Let C be any graph class and let G1, G2, · · · , Gr be r-sunflower C
graphs. Then G1, . . . , Gr are augmentable to a C graph if and only if Ḡ1, . . . , Ḡr

are augmentable to a co-C graph.

Proof: Let I be the set of vertices shared by the graphs G1, . . . , Gr. Let
G1, . . . , Gr be augmentable to a C graph. Then there exists a set A of aug-
menting edges such that the graph Ga = G1 ∪ G2 ∪ · · · ∪ Gr ∪ A belongs to
C. Let A′ be the complement of A in the set of augmenting edges, i.e. A′ =
{⋃(V (Gi)− I)× (V (Gj)− I) : i, j ∈ {1, . . . , r}, i 6= j} −A. Observe that A′ is
a set of augmenting edges and the graph G′a = Ḡ1 ∪ Ḡ2 ∪ · · · ∪ Ḡr ∪A′ belongs
to co-C. Hence Ḡ1, . . . , Ḡr are augmentable to a co-C graph.

The proof of the converse is symmetric and hence the theorem holds. 2

Theorems 1 and 2 imply that for any intersection graph class C, the simul-
taneous C representation problem for r-sunflower graphs is equivalent to the
C augmentation problem for r-sunflower graphs and to the co-C augmentation
problem for r-sunflower graphs. Furthermore, all these problems clearly belong
to NP.
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Turning to comparability graphs, Theorem 2 implies that the compara-
bility augmentation problem for r-sunflower graphs is equivalent to the co-
comparability augmentation problem for r sunflower graphs. Equivalence of
these problems with the simultaneous comparability representation problem for
r-sunflower graphs will be established once we prove Theorem 5 in Section 5.

4 Simultaneous Chordal Graphs

In this section we give an efficient algorithm for determining whether two
chordal graphs sharing some vertices are simultaneous chordal graphs. In other
words, we solve the simultaneous chordal representation problem for 2-sunflower
graphs. We do this by giving an efficient algorithm for the chordal augmentation
problem for 2-sunflower graphs, which is an equivalent problem by the results of
the previous section. On the other hand, we show that the simultaneous chordal
representation problem is NP-complete for r-sunflower graphs when r is part of
the input.

Recall that chordal graphs are characterized by the existence of a perfect
elimination ordering, which is an ordering v1, . . . , vn of the vertices such that
each vi is simplicial (its neighbors form a clique) in the subgraph induced by
{vi, . . . , vn} (see [15, 22]).

4.1 Algorithm for 2-Sunflower Graphs

Let G1 = (V1, E1) and G2 = (V2, E2) be two chordal graphs, sharing some
vertices I (and the edges induced by I). As mentioned in section 2, we define
an augmenting edge to be an edge between V1 − I and V2 − I. Given G1, G2,
and a set A of augmenting edges between V1− I and V2− I, we use (G1, G2, A)
to denote the graph whose vertex set is V (G1) ∪ V (G2) and whose edge set
is E(G1) ∪ E(G2) ∪ A. Note that by Theorem 1, the simultaneous chordal
representation problem for G1, G2 is equivalent to asking whether there exists a
set A of augmenting edges such that the graph (G1, G2, A) is chordal. We solve
the following generalized problem: Given G1, G2 and I (as above), and a set F
of forced augmenting edges, does there exist a set A of augmenting edges such
that the graph (G1, G2, F ∪A) is chordal?

For a vertex v in G = (G1, G2, F ), we use N1(v) and N2(v) to denote the
sets NE(G)(v) ∩ V (G1) and NE(G)(v) ∩ V (G2), respectively. In other words,
N1(v) [resp. N2(v)] denotes the neighbors of v in graph G that belong to G1

[resp. G2]. Note that if v ∈ V1− I, then N2(v) may be non-empty because of F .
Finally, we use C(v) to denote the set of augmenting edges with both endpoints
adjacent to v, i.e., C(v) = {(x, y) : x ∈ N1(v)− I, y ∈ N2(v)− I}. A vertex v in
G = (G1, G2, F ) is said to be S-simplicial (where S stands for “simultaneous”),
if N1(v) and N2(v) induce cliques in G1 and G2 respectively.

Lemma 1 If G = (G1, G2, F ) is augmentable to a chordal graph, then there
exists an S-simplicial vertex v of G.
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Proof: LetA be a set of augmenting edges such that the graphG′ = (G1, G2, F∪
A) is chordal. Because G′ is chordal it has a simplicial vertex, i.e. a vertex v
such that NE(G′)(v) induces a clique in G′. This in turn implies that N1(v) and
N2(v) induce cliques. 2

Theorem 3 Let G1 = (V1, E1) and G2 = (V2, E2) be 2-sunflower chordal
graphs. Let G = (G1, G2, F ) and let v be any S-simplicial vertex of G. Then
G is augmentable to a chordal graph if and only if the graph Gv = (G1, G2, F ∪
C(v))− v is augmentable to a chordal graph.

Proof: Let I be the set of vertices common to G1 and G2.
If Gv is augmentable to a chordal graph, then there exists a set A of augment-

ing edges such that G′v = (G1, G2, F ∪ C(v) ∪A)− v is chordal. We claim that
G′ = (G1, G2, F ∪ C(v) ∪ A) is chordal. Note that NE(G′)(v) = N1(v) ∪N2(v),
which forms a clique in G′. Thus v is simplicial in G′. Furthermore, G′−v = G′v
is chordal. This proves the claim. Thus G can be augmented to a chordal graph
by adding the edges C(v) ∪A.

To prove the other direction, assume without loss of generality that v ∈ V1.
Let A be a set of augmenting edges of G such that the graph G′ = (G1, G2, F∪A)
is chordal. Consider a subtree representation of G′. In this representation, each
node x ∈ V1 ∪ V2 is associated with a subtree Tx and two nodes are adjacent in
G′ if and only if the corresponding subtrees intersect. We now alter the subtrees
as follows.

For each node x ∈ N1(v) − I we replace Tx with T ′x = Tx ∪ Tv. Note that
T ′x is a (connected) tree since Tx and Tv intersect. Consider the chordal graph
G′′ defined by the (intersections of) the resulting subtrees. Our goal is to show
that the chordal graph G′′ − v is an augmentation of Gv, which will complete
our proof.

By construction, every edge in E(G′′) − E(G′) connects some vertex x ∈
N1(v) − I with some vertex y ∈ NE(G′)(v). If y ∈ V1, then (y, v) ∈ E1 and
thus x, y are both in the clique N1(v), and are already joined by an edge in G
(and hence G′). Therefore y ∈ V2 − I. Thus every edge of E(G′′) − E(G′) is
an augmenting edge. Moreover, for every x ∈ N1(v) − I and y ∈ NE(G′)(v),
subtree T ′x intersects subtree Ty. Thus E(G′′) ⊇ C(v). Therefore G′′ − v is an
augmentation of Gv. 2

Theorem 3 leads to the following algorithm for testing whether G1 and G2

are simultaneous chordal graphs.

Algorithm
1. Let G1 and G2 be the input graphs and let F = ∅.
2. While there exists an S-simplicial vertex v of G = (G1, G2, F ) Do
3. F ← F ∪ C(v)
4. Remove v and its incident edges from G1, G2, F .
5. End
6. If G is empty return YES else return NO
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Note that if G1 and G2 are simultaneous chordal graphs, then the above
algorithm can also generate an augmented chordal graph Ga. The graph Ga can
be represented as the intersection graph of subtrees in a tree. This representation
is also a simultaneous subtree representation for G1 and G2. We now show that
the above algorithm can be implemented to run in time O(n3).

Determining whether a vertex v is S-simplicial is a key step of the algorithm.
For this we have to check whether N1(v) and N2(v) induce cliques in G1 and
G2 respectively. Note that although the sets N1(v) and N2(v) change as we add
to the edge-set F , the graphs G1 and G2 are unchanged. The straightforward
implementation takes O(n2) time for this step. However we can improve this to
O(n) as explained below.

In a chordal graph H on n nodes, given a set X ⊆ V (H) of vertices, we can
test whether X induces a clique in O(n) time as follows. Let v1, . . . , vn be a
perfect elimination order of H and let vi be the first vertex in this order that is
present in X. Then (by the definition of perfect elimination order) X induces
a clique if and only if N(vi) ⊇ X. Note that computing a perfect elimination
order takes linear-time [15] and hence the test takes O(n) time using adjacency
matrices.

Thus determining whether v is S-simplicial takes O(n) time. Since we may
have to check O(n) vertices before finding an S-simplicial vertex and since the
number of iterations is O(n), the algorithm runs is O(n3) time. However using
adjacency matrices results in O(n2) space complexity.

4.2 NP-Completeness for r-Sunflower Graphs

In this subsection we show that the simultaneous chordal representation problem
is NP-complete for r-sunflower graphs when r is part of the input. The previous
section had a polynomial time algorithm for the case r = 2. The complexity is
open for fixed r, even for r = 3.

Since the simultaneous chordal representation problem for r-sunflower graphs
is equivalent to the chordal augmentation problem for r-sunflower graphs, the
problem is clearly in NP. Thus it enough to show that the problem is NP-hard.
We reduce the problem of triangulating colored graphs (TCG) to our problem.

In the TCG problem, given a graph H and a proper coloring function c of H,
we have to determine whether there exists a supergraph H ′ ⊇ H such that H ′

is chordal and c is a proper coloring of H ′. Bodlaender et al. [3] and Steel [23]
have independently shown that TCG is NP-hard.

Theorem 4 The simultaneous chordal representation problem for r-sunflower
graphs is NP-hard, even when the common vertices induce an independent set.

Proof: Let (H, c) be an instance of TCG, where H is a graph and c is a proper
coloring of H. Set r equal to the number of colors of c, and let C1, C2, . . . , Cr

be the color classes defined by c. In other words, for i ∈ {1, . . . , r}, Ci denotes
the set of vertices in H that are colored i. Note that Ci induces an independent
set.



JGAA, 16(2) 283–315 (2012) 295

We now create an instance of the simultaneous chordal representation prob-
lem, by defining a family of r-sunflower graphs G1, . . . , Gr, that share a set
I of vertices (to be defined). For i ∈ {1, . . . , r}, we define Gi − I to be Ci.
For each edge uv in H, we create vertices xuv and yuv in I and add the edges
uxuv, uyuv, vxuv, vyuv. This completes the construction. See Figure 4 for an
example. We now show that the TCG problem for (H, c) has a solution if and
only if the chordal augmentation problem for G1, . . . , Gr has a solution.

I
G1 − I

G2 − I

G3 − I

G4 − IG5 − I

a

b

c

de
f

xab
yab

H

a

b

c

d
e

f

1

2

3

45

4

3

Figure 4: The graph H to the left is an instance of the TCG problem with
vertices {a, b, c, d, e, f} and a 5 coloring of the vertices. Note that vertices f and
d are both colored 4. The graphs to the right are 5-sunflower graphs constructed
from H.

Suppose the TCG problem on (H, c) has a solution. Then there exists a
supergraph H ′ of H, such that H ′ is chordal and c is a proper coloring of H ′.
Note that every edge uv of H ′ is an augmenting edge between vertices u and v of
G1∪ · · ·∪Gr, as u and v are colored differently by c. We now construct a graph
G′ as follows. Initially, G′ = G1 ∪ · · · ∪Gr. For each edge uv in H ′, we add the
corresponding edge between vertices u and v in G′. Note that G′−I is the same
as H ′ and is therefore chordal. Further, every vertex of I in G′ is a simplicial
vertex, because it has two neighbors and those neighbors are joined by an edge.
Thus G′ is a chordal graph that is obtained by augmenting G1, . . . , Gr. Thus
the chordal augmentation problem for G1, . . . , Gr has a solution.

For the other direction, assume that G1, . . . , Gr are augmentable to a chordal
graph G′ by adding a set A′ of augmenting edges. For every edge uv in H, G′

contains the 4-cycle uxuv, xuvv, vyuv, yuvu and hence it must contain the edge
uv. (Note that xuvyuv is not an augmenting edge and cannot be present in
G′.) Thus every edge of H is also present in G′ and hence A′ ⊇ E(H). Let
H ′ = G′−I. Note that E(H ′) = A′ and hence H ′ is a supergraph of H. Further
every edge of A′ joins vertices of distinct colors and hence c is a proper coloring
of H ′. Thus H ′ is a solution to the TCG problem on (H, c). 2
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5 Simultaneous Comparability Graphs

In this section we give an efficient algorithm to solve the simultaneous com-
parability representation problem for r-sunflower graphs. Our starting point
is proving that the problem is equivalent to the comparability augmentation
problem for r-sunflower graphs. This is the analogue to the equivalence result
for intersection graphs that was proved in Section 3.

Then we give an algorithm to solve the comparability augmentation problem
for r-sunflower graphs. Our algorithm is based on Golumbic’s algorithm for
recognizing comparability graphs and constructing a transitive orientation if it
exists [15]. We achieve the same run time, O(nm), where n and m are the [total]
number of vertices and edges.

Besides the definitions and notation from Section 2, we use the following
specialized notation in this section. If A and B are disjoint sets, we use A+B
to denote the disjoint-union of A and B. A directed edge from u to v is denoted
by −→uv. Using this notation, A is transitive if for any three vertices a, b, c, we

have
−→
ab ∈ A and

−→
bc ∈ A implies that −→ac ∈ A. If A is a set of directed edges,

then we use A−1 to denote the set of edges obtained by reversing the direction
of each edge in A. We use Â to denote the union of A and A−1. Our edge
sets never include loops, so note that if A is transitive, then it cannot contain a

directed cycle and must satisfy A∩A−1 = ∅ (because if it contained both
−→
ab and−→

ba it would contain −→aa). Recall that an orientation of a graph is an assignment
of directions to all its edges, and a transitive orientation is an orientation that
is transitive. We use G−A to denote the graph obtained by undirecting A and
removing it from graph G.

For the rest of this section we let G1 = (V1, E1), G2 = (V2, E2), · · · , Gr =
(Vr, Er) be r-sunflower comparability graphs sharing some vertices I (and the
edges induced by I). We use E(I) to denote the set of edges induced by I in
any graph, say G1. Recall that the simultaneous comparability representation
problem for Gi, i ∈ {1, . . . , r}, asks whether G1, G2, . . . , Gr can be transitively
oriented in such a way that any edge in E(I) (i.e. any common edge) is oriented
in the same way in all the graphs. Recall that an augmenting edge is an edge
whose end points appear in different graphs. Let G = G1 ∪ G2 ∪ · · · ∪ Gr,
n = |V (G)| and m = |E(G)|. If W ⊆ Ê(G), then W is said to be pseudo-
transitive if W∩Êi is transitive for all i ∈ {1, . . . , r}. We say that W is a pseudo-
transitive orientation if it is an orientation of G and is pseudo-transitive. Thus
by the definition of simultaneous comparability, G1, G2, . . . , Gr are simultaneous
comparability graphs if and only if G = G1∪G2∪· · ·∪Gr has a pseudo-transitive
orientation.

5.1 Simultaneous Comparability Graphs as an Augmen-
tation Problem

In this section we prove that the simultaneous comparability problem for
sunflower graphs is equivalent to the the comparability augmentation problem
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for sunflower graphs. This is analogous to Theorem 1, which only applied
for intersection classes. The main ingredient of the proof is to show that any
pseudo-transitive orientation of G can be augmented to a transitive orientation.

Theorem 5 Let G1 = (V1, E1), G2 = (V2, E2), . . . , Gr = (Vr, Er) be r-sunflower
comparability graphs sharing some vertices I and the edges induced by I. The
graphs Gi, i ∈ {1, . . . , r} are augmentable to a comparability graph if and only if
G1 ∪G2 ∪ · · · ∪Gr has a pseudo-transitive orientation (or equivalently, Gi, i ∈
{1, . . . , r} are simultaneous comparability graphs).

Proof: Let G = G1 ∪G2 ∪ · · · ∪Gr.
Let Gi, i ∈ {1, . . . , r} be augmentable to a comparability graph. Then there

exists a set A ⊆ {⋃(Vi − I) × (Vj − I) : i, j ∈ {1, . . . , r}, i 6= j} of augmenting
edges such that the graph GA = G ∪ A is a comparability graph. Let T be a
transitive orientation of GA. For i ∈ {1, . . . , r}, let Ti be the (directed) subgraph
of T induced by Vi. Clearly Ti is a transitive orientation of Gi. Further, any
edge in E(I) gets the same orientation in Ti, for all i. Now it is easy to see that
the orientation T − Â = T1 ∪ T2 ∪ · · · ∪ Tr is a pseudo-transitive orientation of
G.

For the other direction let T be a pseudo-transitive orientation of G. We
now extend T to a transitive orientation T ′ by adding a set A′ of (directed) aug-
menting edges. This is enough to show that Gi, i ∈ {1, . . . , r} are augmentable
to a comparability graph. We define A′ as follows:

For all distinct i, j ∈ {1, . . . , r} and all vertex triples a, b, c with

a ∈ Vi− I, b ∈ I and c ∈ Vj − I, if
−→
ab ∈ T and

−→
bc ∈ T , then −→ac ∈ A′.

Now it is sufficient to prove that T ′ = T ∪ A′ is transitive. We prove this
by showing the following: (1). For any two vertices a, c ∈ V (G) at most one of
−→ac and −→ca is in T ′. (2). For any three vertices a, b, c ∈ V (G), if

−→
ab ∈ T ′ and−→

bc ∈ T ′, then −→ac ∈ T ′.
Suppose both −→ac ∈ T ′ and −→ca ∈ T ′. Since T is pseudo-transitive, −→ac and −→ca

cannot both belong to T . Suppose −→ac ∈ A′ with a ∈ Vi − I and c ∈ Vj − I.
Then −→ca must be in A′ as well (not in T ). Thus (by definition of A′) there exist

vertices b, d ∈ I such that
−→
ab ∈ T ,

−→
bc ∈ T ,

−→
cd ∈ T and

−→
da ∈ T . Now b, a, d ∈ Vi,

therefore
−→
da ∈ T and

−→
ab ∈ T implies that

−→
db ∈ T . Similarly b, c, d ∈ Vj , therefore−→

bc ∈ T and
−→
cd ∈ T implies that

−→
bd ∈ T . Thus T contains both

−→
bd and

−→
db which

contradicts that T is pseudo-transitive.

Now let
−→
ab and

−→
bc belong to T ′. It is enough to show that −→ac ∈ T ′.

Case 1:
−→
ab ∈ T and

−→
bc ∈ T

Assume without loss of generality that a, b ∈ V1. If c ∈ V1, then by transitivity
of T1, −→ac ∈ T1 ⊆ T ′. Otherwise c ∈ Vj − I, for some j, which forces b ∈ I, so by
definition of A′, −→ac ∈ A′ ⊆ T ′.
Case 2:

−→
ab ∈ T and

−→
bc ∈ A′

Since
−→
bc ∈ A′, we can assume without loss of generality that b ∈ V1 − I and
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c ∈ V2− I. Also by definition of A′, there exists a vertex d ∈ I such that
−→
bd ∈ T

and
−→
dc ∈ T .

a

b
c

G2

d

G1

a

b
c

G2

d

G1

Figure 5: The two subcases of Case 2.

Now
−→
ab ∈ T implies that a ∈ V1 (since b ∈ V1) and thus a, b, d all belong to

V1. Since
−→
ab ∈ T and

−→
bd ∈ T we must have

−→
ad ∈ T . Now if a ∈ V1 − I, then−→ac ∈ A′ ⊆ T ′ and if a ∈ I, then ac ∈ T ⊆ T ′ (since {a, d, c} ⊆ V2). Figure 5

gives an illustration of the two scenarios.

Case 3:
−→
ab ∈ A′ and

−→
bc ∈ T

This case is identical to case 2.
Case 4:

−→
ab ∈ A′ and

−→
bc ∈ A′

We can assume without loss of generality that a ∈ V1 − I, b ∈ V2 − I and

c ∈ Vj − I for some j 6= 2. Now
−→
ab ∈ A′ implies that there exists a vertex d ∈ I

such that
−→
ad ∈ T and

−→
db ∈ T

Similarly
−→
bc ∈ A′ implies that there exists a vertex e ∈ I such that

−→
be ∈ T and−→ec ∈ T

Since
−→
db,
−→
be ∈ T and {d, b, e} ∈ V2,

−→
de ∈ T . Now a, d, e all belong to V1, hence

{−→ad,−→de} ⊆ T implies −→ae ∈ T ⊆ T ′. Now if c ∈ V1, then −→ac ∈ T ⊆ T ′, else−→ac ∈ A′ ⊆ T ′.
Thus in all cases −→ac ∈ T ′. Hence we conclude that T ′ is transitive. 2

5.2 Overview

We now sketch a high level overview of Golumbic’s algorithm for recognizing
comparability graphs and describe the modifications needed for our algorithm.
Golumbic’s recognition algorithm is conceptually quite simple: orient one edge
(call it a “seed” edge), and follow implications to orient further edges. If this
process results in an edge being oriented both forwards and backwards, the input
graph is rejected. Otherwise, when there are no further implications, the set of
oriented edges (called an “implication class”) is removed and the process repeats
with the remaining graph. The correctness proof is not so simple, requiring an
analysis of implication classes, and of how deleting one implication class changes
other implication classes. Golumbic proves the following theorem.
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Theorem 6 (Golumbic [15]) Let H = (V,E) be an undirected graph and let
Ê(H) = B̂1 + B̂2 + · · · + B̂j be any decomposition of H, where for each k ∈
{1, . . . , j}, Bk is an “implication class” of H − ∪1≤l<kB̂l. The following state-
ments are equivalent:

1. H is a comparability graph.

2. A ∩A−1 = ∅ for all implication classes A of H.

3. Bk ∩B−1k = ∅ for k = 1, . . . , j.

We follow a similar strategy except that the “seed” edges must be chosen
carefully for our proof to work. In the next subsection we will define the concept
of a “composite class” which is analogous to an implication class. We further
classify a composite class as a “base class” or a “super class” depending on
whether it is disjoint from E(I) or not (respectively). Our algorithm works as
follows: As long as there is a base class, remove it and recursively orient the
remaining graph. Otherwise (when there are no base classes left) as long as
there is a super class, remove it and recursively orient the remaining graph.

We define an S-decomposition of G1 ∪G2 ∪ · · · ∪Gr, in the next subsection,
and prove the following theorem.

Theorem 7. Let G1 = (V1, E1), G2 = (V2, E2), · · · , Gr = (Vr, Er) be r-
sunflower comparability graphs, sharing some vertices I and the edges induced
by I. Let G = G1 ∪G2 ∪ · · · ∪Gr and let Ê(G) = B̂1 + B̂2 + · · ·+ B̂i + Ŝi+1 +
Ŝi+2 + · · · + Ŝj be an “S-decomposition” of G. The following statements are
equivalent.

1. G1, G2, . . . , Gr are simultaneous comparability graphs.

2. Every composite class of G is pseudo-transitive, i.e. C ∩ C−1 = ∅ for all
composite classes C of G.

3. Every part of the S-decomposition is pseudo-transitive, i.e. Bk ∩B−1k = ∅
for k = 1, . . . , i and Sk ∩ S−1k = ∅ for k = i+ 1, . . . , j.

5.3 Algorithm for Simultaneous Comparability Graphs

We now formalize and justify the above ideas. Given an undirected graph H,
we can replace each undirected edge (u, v) by two directed edges −→uv and −→vu and
define a relation Γ on the directed edges of H as explained below. Whenever
there are edges ab and bc and no edge ac, then any transitive orientation of H

cannot use directions
−→
ab and

−→
bc nor can it use directions

−→
cb and

−→
ba. This can

be expressed as the constraint that we use
−→
ab iff

−→
cb and we use

−→
ba iff

−→
bc. We

define Γ on the directed edges of H to capture this:

−→
abΓ
−→
a′b′ ⇔ (a = a′ ∧ bb′ 6∈ E(H)) or (b = b′ ∧ aa′ 6∈ E(H))
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The relation Γ can be viewed as a constraint that directs the ab edge from
a to b if and only if the edge a′b′ is directed from a′ to b′. It is easy to see that
the transitive closure of Γ, denoted by Γt, is an equivalence relation. We refer
to the equivalence classes of Γt as implication classes. The following lemmas
capture some of the fundamental properties of implication classes.

Lemma 2 ([15]) Let A be an implication class of a graph H. If H has a
transitive orientation F , then either F ∩ Â = A or F ∩ Â = A−1 and in either
case, A ∩A−1 = ∅.

Lemma 3 ([15]) Let the vertices a, b, c induce a triangle in H and let
−→
bc, −→ca

and
−→
ba belong to implication classes A,B and C respectively (see Figure 6). If

A 6= C and A 6= B−1, then

1. If
−→
b′c′ ∈ A, then

−→
b′a ∈ C and

−→
c′a ∈ B

2. No edge of A is incident with a.

b c

a

b′ c′

A

A

B

BC

C

Figure 6: An example to illustrate Lemma 3.

Lemma 4 ([15]) Let A be an implication class of a graph H. If A ∩ A−1 = ∅,
then A is transitive.

Note that in Lemma 3, if the directions of one or more edges of triangle abc
are reversed, then the lemma can still be applied by inverting the corresponding

implication classes. For example, when
−→
ab ∈ C, −→ac ∈ B and

−→
bc ∈ A, if A 6= C−1

and A 6= B, then condition (1) becomes: If
−→
b′c′ ∈ A, then

−→
ab′ ∈ C and

−→
ac′ ∈ B.

Let G1 = (V1, E1), G2 = (V2, E2), · · · , Gr = (Vr, Er) be r-sunflower com-
parability graphs, sharing some vertices I (and the edges induced by I). Let
G = G1 ∪ G2 ∪ · · · ∪ Gr. We define a relation Γ′ on the (directed) edges of G

as follows: −→e Γ′
−→
f if −→e Γ

−→
f and e and f belong to Ei for some i ∈ {1, . . . , r}. It

is easy to see that the transitive closure of Γ′ denoted by Γ′t is an equivalence
relation. We refer to the equivalence classes of Γ′t as composite classes.

From the definition, it follows that each composite class is a union of zero or
more implication classes of Gi for all i ∈ {1, . . . , r}. If a composite class C of G
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has an edge that belongs to E(I), then we use the term “super class” to refer
to C. Otherwise C is said to be a “base class”. Thus any base class is a single
implication class of Gi for some i ∈ {1, . . . , r} and is contained in Êi − Ê(I).
Figure 7 shows a pair of comparability graphs and their composite classes.

S1
S1

S1

S1

S1S1

S1

S1

S1

S1
S1

S1

S1

B1

B1

B1B3

B2

a

b

c

d

e

f

g

h i

j k

l m

n

G1
G2

Figure 7: An instance of simultaneous comparability representation problem
with two graphs G1 and G2 sharing vertices {h, i, j, k, l,m, n}. S1 and its inverse
are the super classes of G1 ∪G2 and B1, B2, B3 and their inverses are the base
classes. Thus there are 8 composite classes in total.

Observation: Note that every implication class of a super class contains an
edge −→e ∈ Ê(I).

The following lemmas for composite classes are analogous to Lemmas 2, 3
and 4.

Lemma 5 Let A be a composite class of G. If F is a pseudo-transitive ori-
entation of G, then either F ∩ Â = A or F ∩ Â = A−1 and in either case,
A ∩A−1 = ∅.

Proof: Let Y be a set of directed augmenting edges of G = G1 ∪G2 ∪ · · · ∪Gr

such that F ′ = F ∪ Y is a transitive orientation. Let G′ be the graph obtained
by undirecting F ′. Thus G′ is an augmentation of G. Now any composite class
of G is contained in some implication class of G′, as any two edges that are
related by Γ′ in G are related by Γ in G′. Let A′ be the implication class of G′
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that contains A. Note that A ⊆ A′ − Y . Now the lemma follows by applying
Lemma 2 on A′ and G′. 2

Lemma 6 Let the vertices a ∈ I, b and c induce a triangle in G, such that
−→
bc,

−→ca and
−→
ba belong to composite classes A,B and C respectively. If A 6= C and

A 6= B−1, then

1. If
−→
b′c′ ∈ A, then

−→
b′a ∈ C and

−→
c′a ∈ B.

2. No edge of A is incident with a.

Proof: We cannot apply Lemma 3 directly because although
−→
bc and

−→
b′c′ belong

to the same composite class A, they need not be in the same implication class.

Since
−→
bc,
−→
b′c′ ∈ A, there exist a sequence of edges

−−→
b1c1, · · · ,

−−→
bkck, from A, such

that
−→
bcΓ′
−−→
b1c1Γ′ · · ·Γ′ −−→bkckΓ′

−→
b′c′. Assume inductively that (1) holds for

−−→
bkck,

i.e.
−→
bka ∈ C and −→cka ∈ B. Now since

−−→
bkckΓ′

−→
b′c′, both (bk, ck) and (b′, c′) belong

to Ei for some i ∈ {1, . . . , r}. Further
−−→
bkckΓ

−→
b′c′. Assume without loss of gener-

ality that (bk, ck), (b′, c′) ∈ E1. Since a ∈ I ⊆ V1, we have {bk, b′, ck, c′, a} ⊆ V1.

Let A1, B1 and C1 be the implication classes of G1 such that
−−→
bkck ∈ A1,

−→cka ∈ B1, and
−→
bka ∈ C1. Note that A1 ⊆ A, B1 ⊆ B and C1 ⊆ C. Since−−→

bkckΓ
−→
b′c′, we have

−→
b′c′ ∈ A1. Now applying Lemma 3 on triangle abkck and

the edge
−→
b′c′, we conclude that

−→
c′a ∈ B1 and

−→
b′a ∈ C1. Therefore

−→
c′a ∈ B and−→

b′a ∈ C.
For the second part, assume for the sake of contradiction that an edge of

A is incident with a. Then there exists a vertex d such that either
−→
ad ∈ A or−→

da ∈ A. If
−→
ad ∈ A, then by the first part of this theorem,

−→
da ∈ B, and thus

A = B−1, a contradiction. Similarly, if
−→
da ∈ A, then by the first part of this

theorem,
−→
da ∈ C, and thus A = C, a contradiction. This shows the second part.

2

Lemma 7 Let the vertices a, b, c form a triangle in G and let the edges
−→
bc,−→ca

and
−→
ba belong to composite classes A,B and C respectively with A 6= C, A 6=

B−1 and B 6= C. If B and C are both super classes, then there exists a triangle

a′, b′, c′ in I with
−→
b′c′ ∈ A,

−→
c′a′ ∈ B and

−→
b′a′ ∈ C and hence A is a super class.

Proof: We can assume without loss of generality that a, b, c ∈ V1. Let the

edges −→ca and
−→
ba belong to implication classes Ib and Ic (respectively) of G1

(thus Ib ⊆ B, Ic ⊆ C). Hence Ib∩ ˆE(I) 6= ∅, Ic∩ ˆE(I) 6= ∅. Let
−−→
b′a′′ ∈ Ic∩ ˆE(I)

and
−→
c′a′ ∈ Ib ∩ ˆE(I). Applying Lemma 3 on triangle c, a, b and the edge

−−→
b′a′′

(and noting that A 6= C, B 6= C), we infer that
−→
ca′′ ∈ Ib and

−→
b′c ∈ A. Now

applying Lemma 3 again on triangle b′, c, a′′ and the edge
−→
c′a′ (and noting that

B 6= C and B 6= A−1), we infer that
−→
b′a′ ∈ Ic and

−→
b′c′ ∈ A. This in turn implies

that A is a super class (since b′, c′ ∈ I). 2
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Figure 8: An example to illustrate Lemma 7.

Lemma 8 Let A be a composite class of G = G1∪G2∪· · ·∪Gr. If A∩A−1 = ∅,
then for all i ∈ {1, . . . , r}, A∩ Êi is transitive and hence A is pseudo-transitive.

Proof: If A is a base class, then A is transitive by Lemma 4. Thus we can
assume that A is a super class. If A does not satisfy the conclusion of the
lemma, then we can assume without loss of generality that there exist vertices

a, b, c ∈ V1 such that
−→
ba ∈ A, −→ac ∈ A and

−→
bc 6∈ A. If the edge (b, c) is not present

in E1, then
−→
baΓ′−→ca and thus −→ca ∈ A ∩ A−1. Therefore we can assume that

(b, c) ∈ E1. Let Ca be the composite class that contains
−→
bc. Now in triangle

abc, we have
−→
ba ∈ A and −→ca ∈ A−1. Also both A and A−1 are super classes with

A 6= Ca. Therefore by Lemma 7, Ca must be a super class. Further there exists

a triangle a′b′c′ in I with
−→
b′a′ ∈ A,

−→
a′c′ ∈ A and

−→
b′c′ ∈ Ca. But by the second

condition of Lemma 6 (on triangle b′c′a′), b′ cannot be incident with an A edge,
a contradiction. Thus Ca = A and we conclude that A is pseudo-transitive. 2

The following Corollary is a consequence of Lemma 8.

Corollary 1 Let A be a composite class of G. Then A is pseudo-transitive iff
A ∩A−1 = ∅.

Recall that our approach involves deleting a composite class A from G. Any
composite class of G−A is a union of composite classes of G formed by successive
“merging”. Two composite classes B and C of G are said to be merged by the
deletion of class A, if deleting A creates a (Γ′) relation between a B-edge and
a C-edge. Note that for this to happen there must exist a triangle a, b, c in G

with (b, c) ∈ Â and either
−→
ba ∈ C and −→ca ∈ B or

−→
ab ∈ C and −→ac ∈ B. We first
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iteratively delete all the base classes followed by the (remaining) super classes.
The following lemmas examine what happens when a base or super class gets
deleted by the algorithm.

Lemma 9 If the composite classes of G are all pseudo-transitive and A is a
base class of G, then the composite classes of G−A are also pseudo-transitive.

Proof: Let C be any (composite) class of G−A. If C is also a composite class
of G, then it is pseudo-transitive by assumption. So assume that C is formed by
merging two or more composite classes of G. We prove the pseudo-transitivity
of C by showing that C is either a merge of two base classes that are not inverses
of each other or a merge of a super class and a set of base classes, no two of
which are inverses of each other. We need the following claims to show this.

Claim 1. Let B1 be a base class contained in C. If B1 merges with another
composite class M , then B1 6= M−1 and B1 does not merge with any other class.

Proof: Since C contains a merge of B1 and M , there exists a triangle a, b, c in
G such that one of the following conditions hold:

1.
−→
ba ∈M , −→ca ∈ B1 and

−→
bc ∈ A.

2.
−→
ba ∈M , −→ca ∈ B1 and

−→
cb ∈ A.

3.
−→
ab ∈M , −→ac ∈ B1 and

−→
bc ∈ A.

4.
−→
ab ∈M , −→ac ∈ B1 and

−→
cb ∈ A.

All these cases are symmetric and hence we assume without loss of generality
that condition (1) holds. If B1 = M−1, then by Lemma 8, A = M , a contra-

diction. Let B2 ⊆ M be the implication class containing the edge
−→
ba. Now it

is enough to show that deleting A would not merge B1 with some other impli-
cation class D 6= B2 of G. To see this, suppose deleting A merges B1 with D.

Then there exists an edge
−→
b′c′ ∈ A which together with a B1 edge and a D edge

forms a triangle T in G. Let a′ be the other vertex of T .

b c

a

A

B1B2

b′ c′

a′

A

B1D
B2

B1

T

Figure 9: An example to illustrate Claim 1.

We claim that the B1 edge of T is
−→
c′a′. To see this we first note that by

Lemma 3,
−→
b′a ∈ B2 and

−→
c′a ∈ B1. Applying the second part of Lemma 3 on
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b′c′a we infer that b′ cannot be adjacent to a B1 edge. Also by the same lemma,

applied on b′c′a and
−→
a′c′, if

−→
a′c′ ∈ B1, then

−→
b′c′ ∈ B2, a contradiction. Thus−→

c′a′ ∈ B1 and hence
−→
b′a′ ∈ D.

Now applying Lemma 3 again on b′c′a and edge
−→
c′a′, we infer that D = B2.

2

Claim 2. Two super classes do not merge in C.

Proof: Assume (for the sake of contradiction) that two super classes Sy and
Sz merge in C. Thus we can assume without loss of generality that there exists
a triangle a, y, z in G with −→yz ∈ A, −→za ∈ Sy and −→ya ∈ Sz. (The other cases

are symmetric as observed in Claim 1). Since A is disjoint from Ŝy and Ŝz and
Sy 6= Sz, the conditions of Lemma 7 are satisfied. Thus applying Lemma 7 on
triangle ayz, we conclude that A is a super class, a contradiction. 2

Claim 3. If C contains a super class, say S (of G), then C is of the form
C = S∪B1∪B2∪· · ·∪Bk, where B1, . . . , Bk are base classes of G and Bi 6= B−1j

for 1 ≤ i, j ≤ k. Otherwise C is the union of two base classes B1 and B2 with
B1 6= B−12 .

Proof: This follows directly as a consequence of Claims 1 and 2. 2

Claim 3 implies that C ∩ C−1 = ∅ and hence C is pseudo-transitive (by
Lemma 8). 2

Lemma 10 Let each of the composite classes of G = G1∪G2∪· · ·∪Gr be super
and pseudo-transitive. If A is any super class of G, then each of the composite
classes of G−A is pseudo-transitive.

Proof: Let L be a composite class of G−A. If L is also a composite class of G,
then L is pseudo-transitive by assumption. So assume that L is not a composite
class of G. We claim that L consists of precisely a merge of two super classes.
To see this let L contain the merge of super classes B and C. We can assume

(without loss of generality) that there exists a triangle abc in G with
−→
bc ∈ A,

−→ca ∈ B and
−→
ba ∈ C. Further by Lemma 7, we can assume that {a, b, c} ∈ I.

We now show that deleting A would not merge B with some other super
class D 6= C. The proof is parallel to that of Claim 1, though we cannot apply
Lemma 3 as we did there, and must use Lemma 6 instead. If L contains a merge
of B with some other super class D, then there exists a triangle T = a′b′c′ in

G with
−→
b′c′ ∈ A and the other two edges in B and D. Further by Lemma 7, we

can assume that {a′, b′, c′} ⊆ I.

We claim that the B edge of T must be
−→
c′a′. To see this we first note that

by Lemma 6,
−→
b′a ∈ C and

−→
c′a ∈ B. Applying the second part of Lemma 6 on

b′c′a we infer that b′ cannot be adjacent to a B edge. Also by the same lemma

applied on b′c′a and
−→
a′c′, if

−→
a′c′ ∈ B, then

−→
b′c′ ∈ C, a contradiction. Thus−→

c′a′ ∈ B and
−→
b′a′ ∈ D.
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Now applying Lemma 6 again on b′c′a and the edge
−→
c′a′, we infer that D = C.

Therefore B does not merge with any class other than C and similarly C does
not merge with any class other than B. Hence L consists of precisely a merge of
two super classes B and C and therefore L is pseudo-transitive (since B 6= C−1).

2

Recall that a partition of the edge set ˆE(G) = B̂1 + B̂2 + · · ·+ B̂i + Ŝi+1 +
Ŝi+2 + · · · + Ŝj is said to be an S-decomposition of G = G1 ∪ G2 ∪ · · · ∪ Gr,

if for each k ∈ {1, . . . , i}, Bk is a base class of G − ∪1≤l<kB̂l and for each

k ∈ {i+ 1, . . . , j}, Sk is a super class of G − ∪1≤l≤iB̂l − ∪i+1≤l<kŜl

We are now ready to prove the main theorem.

Theorem 7 Let G1 = (V1, E1), G2 = (V2, E2), . . . , Gr = (Vr, Er) be r-sunflower
comparability graphs, sharing some vertices I and the edges induced by I. Let
G = G1 ∪G2 ∪ · · · ∪Gr and Ê(G) = B̂1 + B̂2 + · · ·+ B̂i + Ŝi+1 + Ŝi+2 + · · ·+ Ŝj

be an S-decomposition of G. The following statements are equivalent.

1. G1, G2, . . . , Gr are simultaneous comparability graphs.

2. Every composite class of G is pseudo-transitive, i.e. C ∩ C−1 = ∅ for all
composite classes C of G.

3. Every part of the S-decomposition is pseudo-transitive, i.e. Bk ∩B−1k = ∅
for k = 1, . . . , i and Sk ∩ S−1k = ∅ for k = i+ 1, . . . , j.

Proof:
(1) ⇒ (2) By Theorem 5 G has a pseudo-transitive orientation. Thus the

claim follows from Lemmas 5 and 8.
(2) ⇒ (3) is a direct consequence of Lemmas 9 and 10.
(3) ⇒ (1)

Let T = B1 +B2 + · · ·+Bi + · · ·Si+1 +Si+2 + · · ·+Sj . We now claim that T is
pseudo-transitive. For k = 1, . . . , j, define Ck as Ck = Bk if k ≤ i and Ck = Sk

otherwise. Thus T = C1 + · · ·+ Cj .

For k = 1 . . . j, let Tk = Ck + · · ·+Cj . (Thus T1 = T ) and Hk = Ĉk + · · · Ĉj .
Thus Ck is a composite class of Hk. Now it is enough to show that Tk is
pseudo-transitive for any k. Assume inductively that Tk+1 = Tk−Ck is pseudo-
transitive. Note that T̂k+1 ∩ Ĉk = ∅. Now we claim that Tk = Tk+1 ∪Ck is also
pseudo-transitive.

Suppose not. We can assume without loss of generality that there exist

vertices a, b, c all in G1 such that
−→
ab ∈ Tk,

−→
bc ∈ Tk and −→ac 6∈ Tk. Since Tk+1 and

Ck are pseudo-transitive we only have to consider the case when
−→
ab ∈ Tk+1 and−→

bc ∈ Ck (the other case
−→
ab ∈ Ck and

−→
bc ∈ Tk+1 is symmetric).

Now if the edge (a, c) is not present in Hk, then
−→
bcΓ′
−→
ba and thus

−→
ba ∈ Ck,

contradicting that T̂k+1 ∩ Ĉk = ∅. So either −→ca ∈ Tk+1 or −→ca ∈ Ck. This implies

(by the pseudo-transitivity of Tk+1 and Ck) that
−→
cb ∈ Tk+1 or

−→
ba ∈ Ck. In both

cases we get a contradiction to T̂k+1 ∩ Ĉk = ∅.
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Hence we conclude that Tk is pseudo-transitive. 2

Theorem 7 gives rise to the following O(nm)-time algorithm for determin-
ing whether a family of r-sunflower graphs are simultaneous comparability
graphs: Given graphs G1, G2, . . . , Gr check whether all composite classes of
G = G1∪G2∪· · ·∪Gr are pseudo-transitive. If so return YES otherwise return
NO. Further, if G1, G2, . . . , Gr are simultaneous comparability graphs, then the
following algorithm computes an S-decomposition of G. As shown in the proof
of Theorem 7, this immediately gives a pseudo-transitive orientation. In fact it
gives 2j pseudo-transitive orientations.

To compute a pseudo-transitive orientation (because of Theorem 7), we have
to first iteratively select and delete base classes from G1 ∪G2 ∪ · · · ∪Gr, before
selecting and deleting super classes. We compute a pseudo-transitive orienta-
tion as follows.

Algorithm 2
1. Initialize T = ∅ and G′ = G.
2. Compute all base-classes B1, B−11 , . . . , Bb, B

−1
b .

3. For i = 1 to b, place all the edges of Bi (resp. B−1i ) in a separate set labelled
i (resp. −i).
4. Place all the remaining edges in one set and assign a label 0.
5. Let S−→uv denote the set containing −→uv.
6. While there exists a set S with non-zero label Do:
7. Add all (directed) edges of S to T .
8. Assign label 0 to S and S−1.

9. For each edge
−→
bc in S and each vertex a in G such that abc forms a triangle

Do:
10. If labels of S−→

ab
and S−→ac are not equal:

11. Let l be a label defined as: l = 0 if labels of S−→
ab

or S−→ac is 0, otherwise
l = label of S−→

ab
.

12. Merge S−→
ab

and S−→ac and assign label l to the union.
13. Merge S−→

ba
and S−→ca and assign label −l to the union.

14. End
15. End
16.Let G′ = G− T̂ . /* Now each composite class of G′ is a super class. */
17. While G′ is non-empty Do:
18. Let C be a super class of G′.
19. T = T ∪ C and G′ = G′ − Ĉ.
20. End
21. Return T .

Given simultaneous graphsG1, G2, . . . , Gr, Algorithm 2 computes the pseudo-
transitive orientation of G = G1 ∪G2 · · · ∪Gr as follows. We first compute all
the base classes and distinguish them from super classes using labels (lines 2,
3 and 4). The algorithm iteratively orients all the base classes before orienting
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the super classes. In each iteration of the first while loop (line 6), we use the
labels to find a base class, add it to the solution and delete it (lines 6–8). By
Lemma 9, deletion of a base class may leave other composite classes unchanged,
or merge two base classes or merge a super class with a set of base classes. We
handle these cases in lines 9 to 13 and update the labels. Note that we label
the super classes and the base classes that get deleted with ‘0’. After the while
loop terminates, we are only left with super classes. These are handled in lines
17 to 21.

Algorithm 2 can be implemented to run in O(nm) time using a disjoint-set
data structure. Using a linked-list representation and a weighted-union heuristic
(see [8]), we obtain O(1) amortized time for the find operation and O(log n) time
for the union operation. Since the number of find operations in the algorithm
is greater than the number of union operations by a polynomial factor, we may
assume that each set operation takes O(1) amortized time. Now consider the
run time of each of the steps in the algorithm: Computing all the composite
classes (base and super) takes O(nm) time. Thus line 2 takes O(nm) time.
Lines 3 and 4 take O(m) time. In line 6, finding a set with non-zero label takes
at most O(m) time. In each iteration of the while loop, if the chosen set has m1

elements, then the For loop (lines 9–14) takes O(m1n) time. Hence the total
run time of the while loop is O((m1 + m2 + · · ·mi)n) where mi is the size of
the set chosen in the ith iteration of the algorithm. This in turn is at most
O(nm). Lines 16–21 also run in O(nm) time. Hence the run time of Algorithm
2 is O(nm).

Algorithm 2 can be improved to run faster for sparse graphs as follows. In
the for loop of line 9, instead of visiting each vertex a to check whether it forms
a triangle with the edge bc, we can take the minimum degree vertex among b
and c, and visit each of its neighbors to check whether it forms a triangle with
bc. Thus if each vertex has degree at most d, then the algorithm takes O(md)
time. Even if the vertex degrees are not bounded, this algorithm can be shown
to have a better running time for sparse graphs, as follows.

Let d > 0 be any constant. For each edge bc, if one of the end vertices
has degree at most d, then we spend O(d) time for the edge, otherwise we may
spend at most O(n). The number of vertices with degree greater than d is at
most m/d. Thus the number of edges, for which we need to do more than O(d)
work is at most (m/d)2. Hence the total running time of the algorithm is at
most O(md) +O(n(m/d)2). By choosing d to be O((mn)1/3), we get a running
time of O(m4/3n1/3).

Remark: Note that if T is a pseudo-transitive orientation of G, then T can
be augmented to a transitive orientation by computing T ′ = T ∪ T 2 (as shown
in the proof of Theorem 5). This can be easily done in O(nm) time as follows:

Initialize T ′ to T . For each edge
−→
ab ∈ T and each vertex c ∈ G, if

−→
ab ∈ T

and
−→
bc ∈ T , then add −→ac to T ′. Hence computing an augmented comparability

graph takes O(nm) steps.
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5.4 Summary

We have given an O(nm) algorithm to solve the simultaneous comparability
representation problem for r-sunflower graphs, for arbitrary r. This is the same
as solving the comparability augmentation problem for r-sunflower graphs and
is equivalent to solving the comparability graph sandwich problem when the
set of optional edges induces a complete r-partite graph. Hence our algorithm
strictly generalizes the recognition algorithm for probe comparability graphs.
Furthermore the currently known algorithm for recognizing probe comparability
graphs also runs in O(nm) time [6].

Our algorithm implies that the co-comparability augmentation problem for
r-sunflower graphs can be solved in O(n3) time, by taking the complements of
the r-sunflower graphs and testing whether they are simultaneous comparability
graphs. Since co-comparability graphs are intersection graphs, we then have
an O(n3) algorithm to solve the simultaneous co-comparability representation
problem for r-sunflower graphs.

In the next section, we use the algorithm for simultaneous comparability
graphs presented in this section to obtain an efficient algorithm for solving the
simultaneous permutation representation problem for r-sunflower graphs.

Finally, we note that a more general version of simultaneity can be studied for
comparability graphs. Let G1 and G2 be two graphs that share some vertices I.
If G1[I] is the same as G2[I], then G1 and G2 are 2-sunflower graphs. However,
if we allow G1[I] to be different from G2[I], then the problem of testing whether
G1 and G2 are simultaneous comparability graphs is an open problem.

6 Simultaneous Permutation Graphs

In this section give an efficient algorithm for the simultaneous permutation rep-
resentation problem for r-sunflower graphs. We make use of the algorithm for
the simultaneous comparability representation problem for r-sunflower graphs.
Our result implies that the permutation augmentation problem and the co-
permutation augmentation problem can be solved efficiently for r-sunflower
graphs.

Recall that a graph H = (V,E) on vertices V = {1, . . . , n} is a permutation
graph if there exists a permutation π of the numbers 1, 2, . . . , n such that for all
1 ≤ i < j ≤ n, (i, j) ∈ E if and only if π(i) > π(j). Equivalently, H = (V,E) is
a permutation graph if and only if there are two orderings L and P of V such
that (u, v) ∈ E iff u and v appear in the opposite order in L and in P . We
call 〈L,P 〉 an order-pair for G. The intersection representation for permutation
graphs follows immediately: H = (V,E) is a permutation graph iff there are two
parallel lines l and p and a set of line segments each connecting a distinct point
on l with a distinct point on p such that H is the intersection graph of the line
segments. Observe that L and P correspond to the ordering of the endpoints
of the line segments on l and p respectively. Figure 10 shows a permutation
graph and its intersection representation. Since permutation graphs are a class
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of intersection graphs, the equivalence Theorem 1 is applicable for this class.
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Figure 10: A permutation graph and its intersection representation.

Let G1 = (V1, E1), G2 = (V2, E2), · · · , Gr = (Vr, Er) be r-sunflower permu-
tation graphs, sharing some vertices I (and the edges induced by I). We begin
with a “relaxed” characterization of simultaneous permutation graphs in terms
of order-pairs.

Lemma 11 G1, G2, . . . , Gr are simultaneous permutation graphs iff for every
i ∈ {1, . . . , r} there exists an order-pair 〈Li, Pi〉 of Gi, such that every pair of
vertices u, v ∈ I appears in the same order in all Li AND appears in the same
order in all Pi.

Proof: LetG1, G2, . . . , Gr be simultaneous permutation graphs. By Theorem 1,
there exists a set A of augmenting edges such that the graph GA = G1 ∪
G2 · · · ∪ Gr ∪ A is a permutation graph. Let 〈L,P 〉 be an order pair of GA

and, for i ∈ {1, . . . , r}, let 〈Li, Pi〉 be an order-pair obtained from 〈L,P 〉 by
only considering the vertices of Gi. Clearly 〈Li, Pi〉 is an order-pair of Gi and
further every pair of vertices v, u ∈ I appear in the same order in all Li and
appear in the same order in all Pi.

For the reverse direction, we create a total order L on V1 ∪ V2 ∪ · · · ∪ Vr
consistent with all Li, where i ∈ {1, . . . , r}. This is possible because Li are
consistent on I. Similarly we create a total order P on V1 ∪ V2 ∪ · · · ∪ Vr
consistent with all Pi. The orderings L and P provide the endpoints of line
segments for the simultaneous intersection representations of G1, G2, . . . , Gr. 2

It is known that a graph H is a permutation graph if and only if H and
H̄ are both comparability graphs [11]. Using this we can prove the following
analogous result for simultaneous permutation graphs. We note that Chandler
et al. [6] prove a similar result for probe permutation graphs.

Theorem 8 Let G1 = (V1, E1), G2 = (V2, E2), · · · , Gr = (Vr, Er) be r-sunflower
permutation graphs, sharing some vertices I and the edges induced by I. Then
G1, G2, · · · , Gr are simultaneous permutation graphs if and only if they are si-
multaneous comparability graphs and simultaneous co-comparability graphs.
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Proof: Let G = G1 ∪G2 ∪ · · · ∪Gr.

Suppose G1, G2, · · · , Gr are simultaneous permutation graphs. By Theo-
rem 1 there exists an augmenting set of edges A ⊆ {⋃(Vi− I)× (Vj − I) : i, j ∈
{1, . . . , r}, i 6= j}, such that GA = G ∪ A is a permutation graph. Thus GA

and ḠA are comparability graphs and hence by Theorem 5, Gi, i ∈ {1, . . . , r}
are simultaneous comparability graphs and Ḡi, i ∈ {1, . . . , r} are simultaneous
comparability graphs.

For the other direction, Suppose G1, G2, · · · , Gr are simultaneous compara-
bility graphs and Ḡ1, Ḡ2, · · · , Ḡr are also simultaneous comparability graphs.
For i ∈ {1, . . . , r}, let Fi be the transitive orientation of Gi such that the Fi’s
are consistent on the edges induced by I. Also let Ri be the transitive orien-
tation of Ḡi, such that the Ri’s are consistent on the edges induced by I. As
shown in [11], Fi + Ri and F−1i + Ri are both acyclic transitive orientations
of Gi. Following the original idea of Pnueli et al. [11], we define an order-pair
〈Li, Pi〉 on Vi as follows: let Li be a total order of Vi consistent with the partial
order Fi +Ri; and let Pi be a total order of Vi consistent with the partial order
F−1i +Ri.

We now show that any two vertices u, v ∈ I satisfy the conditions of Lemma 11.
Case 1. (u, v) ∈ E(G): Note that (u, v) ∈ Ei for all i ∈ {1, . . . , r}. Without
loss of generality assume that the edge is directed from u to v in all Fi. Now
for any i ∈ {1, . . . , r}, Li(u) < Li(v) (since Fi + Ri is a transitive orientation).
Similarly Pi(u) > Pi(v) for all i.

Case 2. (u, v) ∈ E(Ḡ): Note that (u, v) ∈ Ēi for all i ∈ {1, . . . , r}. Without loss
of generality assume that the edge is directed from u to v in all Ri. We have
Li(u) < Li(v), and Pi(u) < Pi(v) for all i.

From the above two cases, the conditions of Lemma 11 hold for Gi, i ∈
{1, . . . , r} and hence we conclude that G1, G2 . . . , Gr are simultaneous permu-
tation graphs. 2

Since the simultaneous comparability representation problem for r-sunflower
graphs can be solved in O(nm) time, Theorem 8 implies that the simultaneous
permutation representation problem for r-sunflower graphs can be solved in
O(n3) time. We also note that a similar approach was used in [6] to obtain
an O(n3) algorithm for recognizing probe permutation graphs. Since our result
is equivalent to solving the permutation augmentation problem for r-sunflower
graphs, for arbitrary r, it is more general than recognizing probe permutation
graphs.

The best known algorithm for recognizing probe permutation graphs runs in
O(n2) time [5, 7]. It is an open problem to solve the simultaneous permutation
representation problem for r-sunflower graphs in O(n2) time.

7 Conclusions

The main contribution of this paper is in initiating the study of the simulta-
neous representation problem for intersection graphs and comparability graphs.
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Summary of results for comparability and intersection graphs

Graph Class
2-sunflower
graphs

r-sunflower
graphs

Simultaneous Chordal Graphs O(n3) NP-hard
Simultaneous Interval Graphs O(n2 log n) [19] Open
Simultaneous Comparability Graphs O(nm) O(nm)
Simultaneous Permutation Graphs O(n3) O(n3)

Table 1: Summary of algorithmic and complexity results for simultaneous com-
parability graphs and simultaneous intersection graphs. Note that r is part of
the input.

We gave efficient algorithms for the case of chordal graphs, permutation graphs,
and comparability graphs. In the latter two cases, our algorithms extend to
simultaneous representation of multiple graphs that intersect with the special
structure of r-sunflower graphs. However, for chordal graphs, the problem be-
comes NP-hard for r-sunflower graphs. Table 1 gives a summary of results for
comparability and intersection graph classes.

Our method involved solving an equivalent augmentation problem, a special
case of the graph sandwich problem, and our algorithms thus generalize the
algorithms to recognize probe permutation graphs, and probe comparability
graphs.

There are a number of open problems arising from this work. An obvious
one is to improve the running times of our algorithms. The running time of the
algorithm to recognize simultaneous comparability graphs matches the running
time of the best known algorithm for recognizing probe comparability graphs.
However the best known algorithms for recognizing probe chordal and probe
permutation graphs run in O(nm) and O(n2) time, respectively. It is an open
problem to determine whether simultaneous chordal and simultaneous permu-
tation graphs can be recognized as quickly.

Another obvious question concerning chordal graphs is the complexity of the
simultaneous chordal representation problem for r-sunflower graphs when r is
fixed. We gave an efficient algorithm for 2-sunflower graphs and an NP-hardness
proof for general r-sunflower graphs. Our techniques for 2-sunflower graphs do
not seem to be extendable to 3-sunflower graphs. In particular, the proof of
Theorem 3 does not extend to three graphs.

In a companion paper [19] we gave an efficient algorithm for the simultaneous
interval representation problem for 2-sunflower graphs. We conjecture that there
is an efficient algorithm for the case of r-sunflower graphs. This would generalize
the known polynomial-time algorithm to recognize probe interval graphs [21].

An interesting avenue for further research is to explore the simultaneous
representation problem for graphs that intersect in more general ways than
r-sunflower graphs. One open problem concerns comparability graphs. Our
algorithm for two simultaneous comparability graphs was only for the case where
the common graph is induced, but the problem makes sense for more general
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intersections, and is open in that case even for two graphs.
Another tantalizing and possibly tractable case of the simultaneous repre-

sentation problem is when we have a sequence of graphs and each vertex/edge is
present in a contiguous subsequence. This layered simultaneous representation
problem arises when a graph changes over time, assuming that no vertex/edge
disappears and then reappears. For example, in the 3-layer version of the prob-
lem, there are three graphs G1, G2, G3 with the property that if a vertex/edge is
present in G1 and G3 then it is also present in G2. Is there an efficient algorithm
for the 3-layer simultaneous representation problem for interval graphs, chordal
graphs, or comparability graphs?

Finally, it would be interesting to study the complexity of the simultaneous
representation problem and the augmentation problem for r-sunflower graphs
for other classes of graphs such as proper interval graphs, circular arc graphs,
perfect graphs and strongly chordal graphs.
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