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Abstract

Given a graph G and positive integers b and w, the black-and-white
coloring problem asks about the existence of a partial vertex-coloring of
G, with b vertices colored black and w white, such that there is no edge
between a black and a white vertex. This problem is known to be NP-
complete in general. We provide here a polynomial time algorithm for
chordal graphs.
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1 Introduction

The Black-and-White Coloring (BWC) problem is defined as follows. Given an
undirected graph G and positive integers b, w, determine whether there exists a
partial coloring of G such that b vertices are colored black and w vertices white
(with all other vertices left uncolored), such that no black vertex and white
vertex are adjacent. Such a partial coloring, if exists, is a Black-and-White
Coloring (BWC) of the graph.

One application of the BWC problem comes from the chemical industry.
A set of b samples of a product B and w samples of a product W has to be
stored in n ≥ x + y different available places. For security reasons, due to the
chemical nature of the samples and the configuration of the storing places, there
are certain pairs of places that cannot contain two different types of products.
The question is whether it is possible to store all samples by respecting these
restrictions. By constructing a graph G that has a vertex for each storing place
and an edge between each two places that are not allowed to contain two different
types of products, this problem reduces to the BWC problem.

Another application is solved explicitly in [2]: Items of two data types, D1

and D2, are stored in a 2-dimensional table. A person would like to retrieve
data of type D1 or of type D2, but not of both. When retrieving data, we would
like to allow a one-unit error in each of the table’s indexes. In case of an error,
we do not want a person trying to retrieve an element of type D1 to extract
an element of type D2. An additional goal is to populate the elements of type
D1 in a way that will maximize the number of places left in the table for the
elements of type D2.

We sometimes refer to the optimization version of this problem, in which
we are given a graph G and a positive integer b, and have to color b of the
vertices black, so that there will remain as many vertices as possible which are
non-adjacent to any of the b vertices. These latter vertices are to be colored
white, and the resulting coloring is optimal. Clearly, when referring to a BWC,
it suffices to refer to its black vertices only.

For example, in Figure 1, an optimal BWC with B = 3 and W = 4 is
depicted. Notice that by coloring black three out of the four vertices on the
right of the figure, one would obtain a BWC with B = 3 and W = 3, which is
not optimal.

The problem was originated by Berge, who raised the following instance [15].

Problem 1.1 Given positive integers n and b ≤ n2, place b black and w white
queens on an n × n chessboard, so that no black queen and white queen attack
each other, and with w as large as possible.

The BWC problem has been introduced in general, and proved to be NP -
complete, by Hansen et al. [15]. In the same paper, an O(n3) algorithm for trees
was given. In [3], an O(n2 lg 3n) algorithm for trees was given. Kobler et al. [16]
gave a polynomial algorithm for partial k-trees with a fixed k.
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Figure 1: An optimal BWC with B = 3 and W = 4

Yahalom [20] investigated an analogous problem to that suggested by Berge,
using rooks instead of queens, and gave a sub-linear algorithm to this problem.
For special cases, in which the ratio between the sides of the board is an integer
or close to an integer, she derived an explicit formula for the optimal solution.
In [2], we investigated an analogous problem, using kings instead of queens,
and provided explicit optimal solutions for the toroidal and the non-toroidal
versions.

In [5] we examined several heuristic algorithms, in particular tabu search,
for solving the problem in general.

The BWC problem admits a generalization for any number of colors. An
anticoloring of a graph is a partial vertex coloring with two or more colors, in
which no two adjacent vertices have distinct colors. In the general anticoloring
problem, we are given an undirected graph G and positive integers b1, . . . , bk,
and have to determine whether there exists an anticoloring of G such that bj
vertices are colored in color j, j = 1, . . . , k. We call such an anticoloring a
(b1, . . . , bk)-anticoloring. Yahalom [20] noticed that it is easy to rewrite the
anticoloring problem as an integer linear programming problem.

The BWC problem is closely related to the separation problem. In the latter,
we are given an n-vertex graph G and a constant α < 1, and have to partition
the vertices of G into three sets A,B,C such that (i) no edge joins a vertex in A
with a vertex in B, (ii) A and B contain at most αn vertices each, and (iii) C
is “small”. The set C is a separator of G, i.e., its removal splits the graph into
two parts, each with at most some fixed fraction of the vertices. This fraction
is defined by α. Thus, coloring the vertices of A black and those of B white,
and leaving those of C uncolored, we obtain a BWC of G.

The separation problem usually deals with a class S of graphs, closed under
the subgraph relation. An f(n)-separator theorem (cf. [17]) for S is a theorem
which ensures that every graph G in S may be split as above with |C| ≤ f(n).

A graph is chordal if every cycle of length at least 4 has a chord, i.e., an
edge connecting two nonconsecutive vertices on the cycle. Clearly, any induced
subgraph of a chordal graph is chordal as well.

It was shown in [14] that any chordal graph which has no (k + 2)-clique
can be separated with f(n) = k and α = 1/2 in time O(mα(m,n)), where
m is the number of edges in the graph and α(m,n) is a very slowly growing
function described in [19]. Thus, by [4], we can easily obtain an algorithm



264 Zucker S. The BWC Problem on Chordal Graphs

which finds, for such a graph with n vertices, a BWC with b black vertices
and w ≥ n−b−O(min{klog n, b}) white vertices, in the same runtime. However,
this algorithm does not necessarily find an optimal BWC.

In this paper we give an algorithm which solves the BWC problem for chordal
graphs in time O(χn3), where χ is the chromatic number of the graph. We will
show that, if n is large, then our algorithm works in O(χn2) time for almost all
chordal graphs. Note that the family of chordal graphs is much larger than that
of trees, and contains roughly 2n

2/4 graphs on n vertices [1].
Sections 2 and 3 present the main results. In Section 4 we survey briefly some

results concerning chordal graphs, which are used in the sequel. The proofs and
the algorithms are detailed in Sections 5, 6 and 7. Section 8 explains how a
BWC for given b and w can actually be found. In Section 9 we extend our
algorithm to solve the anticoloring problem with many colors.

The author is grateful to D. Berend for helpful comments and suggestions.

2 Main Results

A (b, w)-coloring of G is a BWC of G with b black and w white vertices. The
pair (b, w) is non-dominated if there exists no BWC with b′ ≥ b black and
w′ ≥ w white vertices, and b′+w′ > b+w; otherwise, it is dominated. A (b, w)-
coloring for a non-dominated pair (b, w) is an optimal BWC. Our algorithm
solves simultaneously the BWC problem for all pairs (b, w).

Theorem 1 Algorithm 1 finds the list consisting of all non-dominated pairs of
a chordal graph G with n vertices in time O(n4).

3 Improvement of the Algorithm

The following theorem improves the runtime of Algorithm 1 for chordal graphs
whose chromatic number is o(n).

Theorem 2 Let χ be the size of the maximum clique of the graph. Algorithm 1
can be improved to run in time O(χn3).

Chordal graphs are known to be perfect. Therefore, the size of the maximum
clique of a chordal graph is equal to its chromatic number.

Remark 3 (a) As we shall see in the proof of Theorem 2, if the number of
internal vertices of the clique tree (see Definition 2 below) of G is k, then we
obtain a runtime of O(χn2klg n

k ) in the theorem. For k = o(n), this yields an
improvement.

(b) From the proof of Theorem 2 we also get that, if the number of maximal
cliques of size Ω(n) is O(1), then Theorem 2 holds, where χ is now the maximal
size of the cliques of size o(n).
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Chordal graphs may well contain cliques of size Ω(n). For such graphs,
Algorithm 1 runs in O(n4) time. How does Algorithm 1 perform on a typical
chordal graph? Unfortunately, by [1], the largest clique in most chordal graphs
is of size about n/2. Fortunately, though, most chordal graphs (i.e., a proportion
of at least 1− ( 1

2

√
3 + ε)n for sufficiently large n) are split [1], in which case we

attain an improved result.
A split graph is a graph whose vertices can be partitioned into two sets, one

of which induces a clique and the other an independent set. Obviously, every
split graph is chordal.

Theorem 4 Algorithm 1 may be modified to run in time O(χn2) for split
graphs.

Once the list of all non-dominated pairs has been found, it is straightforward
to find the maximal number of white vertices in a BWC of G for any prescribed
number b of black vertices. In fact, search the list for the element (b′, w) with
minimal b′ such that b′ ≥ b. The w in that pair is the required number.

Throughout the rest of this paper, we deal only with connected chordal
graphs. It follows from [4] that, after solving the problem for such graphs, the
solution for all chordal graphs is easy to obtain.

4 Chordal Graphs – Preliminaries

Let G be a chordal graph and a, b ∈ V (G). A set S ⊂ V (G) is a minimal ab-
separator if the graph induced by V (G)− S contains no path between a and b,
and no proper subset of S is such. S is a minimal vertex separator if it is a
minimal ab-separator for some vertices a, b.

Theorem 5 [9] A graph G is chordal if and only if every minimal vertex sep-
arator of G is a clique.

An example for the next two definitions can be found in Figure 2 below.

Definition 1 [7] Let G = (V,E) be a chordal graph. The weighted clique

intersection graph (or simply clique graph) of G is denoted by C(G) =
(VC , EC , µ), with µ : EC → N, and given by:

1. Its vertex set VC is the set {K1,K2, . . . ,Km} of all maximal cliques in G.

2. EC = {(Ki,Kj) : Ki,Kj ∈ VC , Ki ∩ Kj 6= ∅}.

3. µ(Ki,Kj) = |Ki ∩Kj |, (Ki,Kj) ∈ EC.

Recall that, by [13], a chordal graph contains at most |V | maximal cliques,
and therefore |VC | ≤ |V |.

The following notion will play a critical role in the paper.

Definition 2 Let G = (V,E) be a chordal graph and C(G) its clique graph. A
clique tree in G is a maximum weighted spanning tree of C(G).
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Blair et al. [7] present a linear time algorithm for finding a clique tree of a
chordal graph.

The following result is due to Lundquist [18].

Theorem 6 Let T be a clique tree of a chordal graph G = (V,E). A set S ⊂ V
is a minimal vertex separator of G if and only if S = K∩K ′ for some (K,K ′) ∈
E(T ).

For example, in Figure 2 we have that v7 = K2∩K3 and {v2, v3} = K1∩K2

are two different minimal vertex separators of the given chordal graph.
For every clique tree T , consider the set consisting of all sets K ∩K ′ with

(K,K ′) ∈ E(T ). By Theorem 6, each element in this set is a minimal vertex
separator of G.

The following theorem was proved in [6].

Theorem 7 Given a clique tree T of a chordal graph, for any pair of distinct
cliques K,K ′ ∈ V (T ), the set K ∩K ′ is contained in every clique on the path
connecting K and K ′ in T .

For example, in Figure 2(b) we can see that K1 ∩ K4 = {v2}, and indeed,
v2 ∈ K2, which is a clique on the path connecting K1 and K4.

5 Proof of Theorem 1

5.1 Sketch of the Algorithm

Throughout the next two sections G will denote a chordal graph and T a clique
tree of G, constructed as in [7]. Note that there is a correspondence between
subtrees of T and certain subgraphs of G, whereby for each subtree T ′ there
exists a corresponding subgraph G′, induced by K1 ∪ . . . ∪Kt, where V (T ′) =
{K1,K2, . . . ,Kt}.

The main steps of the algorithm, which will be detailed in Section 5.2, are
as follows.

In general, the algorithm takes a chordal graph G, computes its clique tree T
and finds in T the list of all non-dominated pairs (b, w) such that G admits a
BWC with b black and w white vertices.

In order to find all the non-dominated pairs, we begin by defining a new
notion for trees, called full-coloring. Each full-coloring of a clique tree T implies
a corresponding BWC for the corresponding chordal graph G.

According to the algorithm, each vertex in the tree is attached with two lists,
depending on its color, black or white. Each list of each vertex contains pairs
(b, w) saying that the subtree rooted at that vertex has a (b, w)-full-coloring. The
corresponding (original) graph has a BWC with b black and w white vertices.
These lists are computed in a post-order form, from the leaves of the tree to its
root, using two aid procedures: merge and extension.

Eventually, to actually find a BWC with given numbers b,w of black and
white vertices respectively, find a pair (b′, w′) such that b′ ≥ b and w′ ≥ w and
color the graph as explained in Section 8.
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5.2 The Algorithm

Lemma 3 Given an optimal BWC of G, the set U of uncolored vertices satisfies
U =

⋃
(K,K′)∈E0

(K ∩K ′) for some E0 ⊆ E(T ).

Proof: Obviously, U separatesG intom ≥ 2 connected componentsG1, . . . , Gm.
For 1 ≤ i < j ≤ m, let Uij ⊆ U be a minimal subset of U that separates the com-
ponents Gi and Gj . Obviously, U =

⋃
1≤i<j≤m Uij , and each Uij is a minimal

ab-separator of G for any a ∈ V (Gi) and b ∈ V (Gj). By Theorem 6, for each i
and j, Uij = Ki ∩Kj for two cliques Ki and Kj such that (Ki,Kj) ∈ E(T ). �

It will be convenient to introduce another notion of coloring of (clique) trees.
A full-coloring of T is a coloring of the vertices of T , such that each vertex is
colored either black or white. We emphasize that there are no constraints on
the coloring of adjacent vertices, so that a full-coloring is in general neither a
coloring nor a BWC. Note that T is both vertex- and edge-weighted, where the
weight functions ν : V (T )→ N and µ : E(T )→ N are given by

ν(K) = |K| , K ∈ V (T ),
µ(K1,K2) = |K1 ∩K2| , (K1,K2) ∈ E(T ).

(1)

Given a full-coloring of T , we construct a BWC of G as follows. For each
vertex v ∈ V (G), consider all maximal cliques in G containing it. If all these
cliques have the same color in T , color v in that same color; otherwise, leave v
uncolored. Since, for any two adjacent vertices in G, there exists a maximal
clique containing them both, the resulting coloring is indeed a BWC. Let b and w
be the number of black and white vertices, respectively, in this BWC. The given
full-coloring of T thus gives rise to a (b, w)-coloring of G, and will therefore be
referred to as a (b, w)-full-coloring of T . Note that, if (b, w) happens to be a
non-dominated pair for G, then every (b, w)-coloring of G can be obtained from
some full-coloring of T . Thus, we refer to (b, w) also as a non-dominated pair
for T . A (5,6)-coloring of a chordal graph, obtained from a (5,6)-full-coloring of
a corresponding clique tree is presented in Figure 2.

Assume T is rooted (arbitrarily). To each vertex K ∈ V (T ) we attach two
lists, BK and WK . The former list consists of all the non-dominated pairs for
the subtree of T rooted at K, where K is constrained to be colored black. WK

is the analogous list for the case where K is constrained to be colored white.
The variable K.dList consists of these two lists.

To simplify the algorithm, we split it into several algorithms, called by each
other.

Algorithm 1, which finds all the non-dominated pairs, initializes the lists BK

and WK for all leaves of T , and then invokes Algorithm 2, which in turn finds
these lists for the internal vertices of T . In particular, by unifying the two lists
attached to the root of T , we obtain the required output, as stated in Theorem 1.
Eventually, the algorithm uses the procedure contract, which gets a list and
deletes from it all dominated pairs (as well as repeated occurrences of pairs).
This procedure uses the bucket-sort algorithm (cf. [8]).
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Figure 2: (a) a BWC of a chordal graph, (b) a corresponding full-coloring of its
clique tree (where the dotted edges belong only to the clique graph).

fullColorTree(G,T )
Input: A chordal graph G and a clique tree T thereof (ν and µ are as

in (1))
Output: The list optPairs, providing the non-dominated pairs (b, w)

for T

R← root(T )
for each leaf K of T //initialization
K.dList[black]← (ν(K), 0)
K.dList[white]← (0, ν(K))

R.dList ← solveCliqueTree(G,R) // find the lists for the internal vertices
optPairs ← R.dList[black] ∪R.dList[white]
contract(optPairs) // delete dominated pairs
return optPairs

Algorithm 1: Find all non-dominated pairs for a clique tree.

Algorithm 2 below is based on the algorithm that solves the BWC problem
on trees [15]. It traverses the tree in post-order and computes the lists for each
vertex. Let d be the degree of the root R. At the beginning the algorithm invokes
Algorithm 3 on the i-th child Ki of R, 1 ≤ i ≤ d, (with added edge between R
and Ki) in order to find the list for the subtree induced by {R} ∪ V (TKi

). This
list is saved as listi. Namely, listi[black] (respectively, listi[white]) is the current
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list obtained for the case where the root is colored black (respectively, white).
After finding the lists corresponding to all the children of R, the algorithm
merges all these lists step by step. At each step i, the algorithm performs
Algorithm 4 on list1 and listi. The merged list is saved as list1. Eventually, list1
is the required list for TR.

Algorithm 2 invokes Algorithms 3 and 4, which perform the computations.
Algorithm 4 is performed on pairs of dLists, until it merges them all to a sin-
gle one.

solveCliqueTree(G,R)
Input: A chordal graph G and a root R of its clique tree
Output: R.dList

if R is a leaf
return R.dList

K1,K2, . . . ,Kd ← all children of R
for i← 1 to d
Ki.dList ← solveCliqueTree(G,Ki)
listi ← extension(G,Ki.dList) // list for the subtree TKi , adding R

// as root
for i← 2 to d // find the lists for the tree rooted at R

list1 ← merge(G,list1[black],listi[black],list1[white],listi[white])
R.dList ← list1
return R.dList

Algorithm 2: Generate dList for the root of a clique tree.

Algorithm 3 is given root(T ).dList for some subtree T and finds root(T ′).dList,
where T ′ is composed of T and a new root, R′, whose only child is root(T ). R′

is in fact the father of R in T .

The computation of the algorithm is very simple. Let R =root(T ) and
R′ =father(R). For each (b, w) ∈ BR it records the pair (b+ν(R′)−µ(R′, R), w)
in BR′ , and (b− µ(R′, R), w + ν(R′)− µ(R′, R)) in WR′ . Note that in the first
case, where R and R′ are both black, all the vertices of R′ ⊆ G are colored black.
In the second case, where R is black and R′ is white, all the vertices of R′∩R ⊆ G
must be left uncolored. Similarly, for each (b, w) ∈ WR the algorithm records
the pair (b, w+ν(R′)−µ(R′, R)) in WR′ and (b+ν(R′)−µ(R′, R), w−µ(R′, R))
in BR′ . Eventually, it uses the procedure contract to delete dominated pairs.

Note that after performing Algorithm 3, Algorithm 2 calls Algorithm 4 to
merge two dLists. The performance of Algorithm 4 requires specific input
(for example, the exact sets of colored vertices), which is computed in Algo-
rithm 3. More specifically, in addition to computing the required lists, Algo-
rithm 3 records, for each pair (b, w) in the two lists of a vertex K ∈ V (T ), all
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the vertices v ∈ K that are colored in the corresponding (b, w)-coloring. These
data are saved by Algorithm 3 in (b, w).colored. The procedure append adds a
given pair at the end of a given list. The last pair in a list l is l.tail.

extension(G,BR,WR,R′)
Input: A chordal graph G, the lists BR,WR, where R = root(T ), and the

vertex R′ =father(R)
Output: BR′ ,WR′ – the lists for R′ = root(T ′), where T ′ is composed

of T and a new root R′, whose only child is R

BR′ ,WR′ ← empty list
for each (b, w) ∈ BR

append(BR′ , (b+ ν(R′)− µ(R′, R), w))
BR′ .tail.colored ← R′ // all v ∈ R′ ⊆ G are colored
append(WR′ , (b− µ(R′, R), w + ν(R′)− µ(R′, R)))
WR′ .tail.colored ← R′ −R // all v ∈ R′ ∩R must be left uncolored

for each (b, w) ∈WR

append(WR′ , (b, w + ν(R′)− µ(R′, R)))
WR′ .tail.colored ← R′ // all v ∈ R′ are colored
append(BR′ , (b+ ν(R′)− µ(R′, R), w − µ(R′, R)))
BR′ .tail.colored ← R′ −R // all v ∈ R′ ∩R must be left uncolored

contract(BR′) // delete dominated pairs
contract(WR′)
return BR′ ,WR′

Algorithm 3: Add a new root to a given subtree.

Algorithm 4 is given the lists for two subtrees having a common root, and
finds the lists for the root of the subtree obtained by merging these two subtrees.
For each (b1, w1) ∈ BR1 (respectively, WR1) and each (b2, w2) ∈ BR2 (respec-
tively, WR2), the algorithm computes (b1 + b2 − size, w1 + w2) (respectively,
(b1 + b2, w1 +w2− size)), where the variable size is the number of colored ver-
tices in the unified root, and appends it to the list BR (respectively, WR). Note
that the colored vertices of R ⊆ G are exactly the intersection of the colored
vertices of R1 ⊆ G and R2 ⊆ G. Similarly to Algorithm 3, we record these
data. After finding the required lists, all dominated pairs are deleted, using the
procedure contract.

Example 8 In Tables 1–6 below the performance of the algorithm on the clique
tree of Figure 2 is shown. In Table 1 we give the lists for the leaves of T .
Table 2 gives the resulting lists after performing Algorithm 3 on K5.dList to
obtain K3.dList. In Table 3 we see the temporary lists list1 and list2, which
are the input for Algorithm 4. In Tables 4 and 5 we give the results of the
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merge(G,BR1 , BR2 ,WR1 ,WR2)
Input: BRi ,WRi – the lists for the roots Ri, i = 1, 2, of the two subtrees
Output: BR,WR – The lists for the unified root R

BR,WR ← empty list
for each (b1, w1) ∈ BR1

for each (b2, w2) ∈ BR2

size ← |(b1, w1).colored ∪ (b2, w2).colored| // the number of colored
//vertices in the unified root

append(BR, (b1 + b2 − size, w1 + w2))
BR.tail.colored ← (b1, w1).colored∩(b2, w2).colored

contract(BR) // delete dominated pairs
for each (b1, w1) ∈WR1

for each (b2, w2) ∈WR2

size ← |(b1, w1).colored ∪ (b2, w2).colored|
append(WR, (b1 + b2, w1 + w2 − size))
WR.tail.colored ← (b1, w1).colored∩(b2, w2).colored

contract(WR) // delete dominated pairs
return BR,WR

Algorithm 4: Merge two subtrees with a common root.

performance of Algorithm 4 before and after the deletion of dominated pairs. In
Table 6 we give the final list, obtained after performing Algorithm 3 on K2.dList,
which was obtained in the preceding two tables.

5.3 Conclusion of the Proof of Theorem 1

Let Tv be the subtree of T rooted at v, and G(Tv) be the subgraph of G corre-
sponding to Tv.

The following lemmas prove the correctness of the algorithm. Suppose first
that R1 and R2 are two children of R. Let T i

R be the subtrees of T defined by

T i
R = V ((TRi

∪ {R}), E(TRi
) ∪ {(R,Ri)}), i = 1, 2,

both rooted at R.

Lemma 4 The lists obtained by performing Algorithm 3 on Ri.dLists, i = 1, 2,
consist of all the non-dominated pairs for G(T i

R).

Proof: Assume, say, thatRi is colored black. For each non-dominated pair (b, w)
for G(TRi

), by coloring R black, we add exactly |R|−|R ∩Ri| = ν(R)−µ(R,Ri)
black vertices and do not change the number of white vertices. Note that, if
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BK4 WK4 BK5 WK5

(5,0) (0,5) (4,0) (0,4)

Table 1. First step: Initializing.

BK3
WK3

(6,0),(2,3) (0,6),(3,2)

Table 2. Second step: Computing K3.dList.

list1

black (8,0),(4,3) (2,5),(5,1)
white (0,8),(3,4) (5,2),(1,5)

colored K2 K2 −K3

list2

black (6,0) (1,3)
white (0,6) (3,1)

colored K2 K2 −K4

Table 3. Third step: Temporary lists for K2.

Lists before deleting dominated pairs
BK2 (11,0),(7,3),(5,5),(8,1),(6,3),(2,6) (1,8),(4,4)
WK2

(0,11),(3,7),(5,5),(1,8),(3,6),(6,2) (8,1),(4,4)
size 3 2

Table 4. Computing K2.dList by performing Algorithm 4 on the temp lists.

BK2 (11,0),(7,3),(5,5),(8,1),(2,6),(1,8)
WK2

(0,11),(3,7),(5,5),(1,8),(6,2),(8,1)

Table 5. Perform contract(K2.dList) to delete dominated pairs.
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BK1
(12,0),(8,3),(6,5),(9,1),(3,6)

WK1 (0,12),(3,8),(5,6),(1,9),(6,3)

Table 6. Last step: Computing K1.dList by performing Alg. 3 on K2.dList.

there exists a vertex K such that (R,K) ∈ EC and (R1,K) ∈ E(T ), then,
according to Theorem 7, we get R ∩ K ⊆ R1 ∩ K, and therefore the color
of K does not influence this computation. By coloring R white, we add exactly
|R|−|R ∩Ri| = ν(R)−µ(R,Ri) white vertices and subtract |R ∩Ri| = µ(R,Ri)
black vertices (which should be left uncolored). Again, by Theorem 7, if there
exists a vertex K as above, then R ∩K ⊆ R ∩R1 and we may ignore the color
of K. �

Lemma 5 If we have the lists for each subtree T i
R, i = 1, 2, then by performing

Algorithm 4 on these lists, we get the required lists for G(TR).

Proof: We split the proof into two cases.

Case 1: R1 and R2 are colored in the same color.

The black (and white) vertices in G(TR) are the same as in G(T i
R), i = 1, 2,

except for the vertices which were turned to uncolored in Algorithm 3. Thus,
if the number of black (respectively, white) vertices in G(TRi

) is bi (respec-
tively, wi), i = 1, 2, then the total number of black (respectively, white) ver-
tices is b1 + b2 − size (respectively, w1 + w2 − size), where size is equal to
|(b1, w1).colored ∪ (b2, w2).colored|.

Case 2: R1 and R2 are colored in different colors.

Besides the considerations described in Case 1, we need to check that, if
R1 ∩R2 is non-empty, then it is left uncolored. Assume, say, that R1 is colored
black and R2 white. Since T is a tree, (R1, R2) /∈ E(T ). Consider the path
R1RR2 in T . Assume, say, that R is colored black. Then, by the algorithm,
R ∩ R2 is left uncolored. By Theorem 7 we have R1 ∩ R2 ⊆ R ∩ R2, which
concludes the proof. �

Lemma 6 For each vertex K of T , K.dLists consists of all the non-dominated
pairs for G(TK).

Proof: We prove this lemma by induction on the height of TK . If the height is
zero, then TK consists ofK only, and the algorithm givesK.dList[black]=(ν(K), 0)
and K.dList[white]=(0, ν(K)), which are the required lists for G(TK).

Assume the lemma is correct for all subtrees with height up to h−1. Let TK
be a subtree of height h, and let K1,K2, . . . ,Kd be the children of K. Obviously,
the heights of TK1 , TK2 , . . . , TKd

are at most h − 1, and the lemma is correct
for them. By Lemma 4, for each T i

K we have the required lists. Applying the
merge procedure over and over, on two children at a time, by Lemma 5, we get
the required lists for TK . �
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5.4 Runtime of the Algorithm

The construction of a clique graph takes linear time (cf. [7]). Finding a clique
tree is done by Prim’s algorithm for finding a minimal spanning tree of a graph
in O(|EC | lg |VC |) time, where GC = (VC , EC) is the clique graph. The proce-
dure contract has a linear runtime. Therefore, the runtime of Algorithm 1
is identical to the runtime of Algorithm 2 with the addition of O(|EC | lg |VC |)
time.

Algorithm 2 calls Algorithm 3 exactly once for each vertex, and Algorithm 4
exactly d times for each vertex with d children in the clique tree. Thus, it calls
both algorithms O(n) times.

For each pair in K.dList (out of at most 2n pairs), for some vertex K, Algo-
rithm 3 performs computations in O(1) time and then records all the vertices of
some clique in O(n) time. Therefore the total runtime of Algorithm 3 is O(n2).

Each of the double loops in Algorithm 4 is performed over O(n2) indexes.
Each computation of size in the loops takes O(n) time. Therefore, the total
runtime of Algorithm 4 is O(n3).

Thus, the total running time of Algorithm 1 is O(n4).

6 Proof of Theorem 2

In this section we prove Theorem 2. The bottleneck of our algorithm is Algo-
rithm 4. In this section we reduce the runtime of the latter to O(χn2). (Recall
that χ is the chromatic number of the graph.) Thus, by choosing a suitable
order for the performances of Algorithm 4 on each vertex, the total runtime of
Algorithm 1 decreases to O(χn2klg (n/k)), where k is the number of internal
vertices in T .

We begin with

Lemma 7 Given a clique K ∈ V (T ) and the list of non-dominated pairs ob-
tained by Algorithm 1 for K, consider for each pair (b, w) the corresponding
(b, w)-coloring of the subgraph G′ corresponding to TK . The number of uncol-
ored vertices v ∈ K in this coloring is at most

∑
K1 child of K |K ∩K1|.

Proof: Let v ∈ K be an uncolored vertex for a specific non-dominated pair.
Obviously, (v, u1) ∈ E and (v, u2) ∈ E, where u1 is colored black and u2 is
colored white, and ui ∈ Ki, i = 1, 2, for some children K1,K2 of K. It suffices
to prove that v ∈ K∩K1 or v ∈ K∩K2. Assume this is not the case. Then, there
exists K ′ ∈ V (T ) such that v, u1 ∈ K ′. Thus, v ∈ K ∩K ′ and u1 ∈ K1 ∩K ′.
Since K ∩ K ′ 6= ∅, we get that (K,K ′) ∈ EC . Therefore, T contains one of
the paths p1 = KK1K

′ and p2 = K1KK
′. If T contains p1, then according to

Theorem 7, since v ∈ K ∩K ′, we get that v ∈ K ∩K1, which ends the proof.
If T contains p2, then according to Theorem 7, since u1 ∈ K1 ∩K ′, we get that
u1 ∈ K ∩K ′, and therefore u1 ∈ K.

Equivalently, we get that u2 ∈ K. Now, u1 is black and u2 is white, and it
is impossible for them both to belong to the same clique K, in contradiction to
our assumption. This proves the lemma. �
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Our purpose is to compute size in Algorithm 4 faster. Recall that, for each
two pairs (b1, w1) and (b2, w2) in the lists of the roots R1 and R2 of the subtrees
to be merged,

size = |(b1, w1).colored ∪ (b2, w2).colored| .

Note that, denoting by R the root of the unified tree, we have

size = ν(R)− |(b1, w1).uncolored ∩ (b2, w2).uncolored| .

Therefore, instead of recording for each pair (bi, wi) the colored vertices, we
rather record the uncolored vertices. These vertices are maintained in a sorted
list, sorted by the vertices’ names.

Thus, in order to find the value of size, simply go over the two sorted lists
of R1 and R2 in parallel, to find the number of vertices which are left uncolored
in both lists. This is detailed in Algorithm 5. Note that Algorithm 5 comes
instead of line 4 in Algorithm 4.

findSize((b1, w1).uncolored,(b2, w2).uncolored,ν(R))
Input: The lists of the uncolored vertices of the two pairs from

Algorithm 4 and the weight of the unified root R
Output: The variable size required for Algorithm 4

size ← 0
h1 ← (b1, w1).uncolored.head
h2 ← (b2, w2).uncolored.head
while h1.next 6=NULL and h2.next 6=NULL

if h1.name < h2.name
h1 ← h1.next

else if h2.name < h1.name
h2 ← h2.next

else if h1.name = h2.name
size←size+1
h1 ← h1.next
h2 ← h2.next

size ← ν(R)− size

return size

Algorithm 5: Find the variable size quickly.

In order to record the list of uncolored vertices, both in Algorithm 3 and
in Algorithm 4, we want to record (b1, w1).uncolored ∪(b2, w2).uncolored in a
sorted way. Similarly to Algorithm 5, we run over the two input lists in parallel,
but this time we record each vertex which appears in at least one of these lists.
Since the lists are already sorted, the new list is also sorted.
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The runtime of this procedure is proportional to that of Algorithm 5, and
therefore to the number of uncolored vertices in the two lists. By Lemma 7, the
number of uncolored vertices in the list of Ri, i = 1, 2, is at most∑

R′ child of Ri

∣∣Ri ∩R′
∣∣ .

Therefore, the runtime of Algorithm 4 is

O(n2 · (
∑

R1
c child of R1

∣∣R1
c ∩R1

∣∣+
∑

R2
c child of R2

∣∣R2
c ∩R2

∣∣)),
and since R1 and R2 are both instances of R, this is equal to

O(n2 ·
∑

R′ child of R1∪R2

|R′ ∩R|).

Now, if di is the degree of a vertex Ki and χi = |Ki|, then Algorithm 4
is performed di − 1 times on Ki. The total runtime of all these performances
depends on the sequence of di − 1 times it is performed, and is thus equal
to O(n2 ·

∑
K child of Ki

|K ∩Ki| · X), where X is the number of times that
extension(G,BK ,WK ,Ki) is inserted as an input to the algorithm. Such a
sequence of merges can be represented by a binary tree M , with the children
of Ki as leaves. Every internal node of M corresponds to one merge, and X
is equal to the depth of K in M . Therefore, if we perform Algorithm 4 in the
order specified by Algorithm 2, we get that X = O(di), and the total runtime
of Algorithm 4 on a vertex Ki is O(n2χidi). By performing Algorithm 4 each
time on the i-th and the (i+2k)-th children, 0 ≤ k ≤ dlgde , 1 ≤ i ≤ d−2k+1+1
and i = c · 2k+1 for some constant c, as if M is as balanced as possible, we get
that X = O(lgdi), and the total runtime on a vertex becomes O(n2χilgdi).

Similarly, the total runtime of Algorithm 3 on Ki is O(nχilgdi).

Thus, the total runtime of Algorithm 1 is

O(n2
n∑

i=1

χilgdi) = O(χn2
n∑

i=1

lgdi),

which is maximized when all di’s are equal. Since
∑n

i=1 lgdi ≤ n− 1, the total
runtime is O(χn2klg (n/k)), where k is the number of internal vertices in T .

Thus, if T has Θ(n) internal vertices, the runtime is O(χn3), but if it has o(n)
internal vertices, we obtain a better result. This concludes the proof of Theo-
rem 2.

Let us now explain the second part of Remark 3. If the number of maximal
cliques K with ν(K) = Ω(n) is some constant C, and the size of all other
maximal cliques is bounded by Y = o(n), then it is easy to show that the total
runtime of the algorithm will be C ·O(n3) +O(n) ·O(Y n2) = O(Y n3).
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7 Proof of Theorem 4

Let G be a split graph [1]. It is easy to show that there exists a clique tree T
of G in which all the leaves are children of the root, and the root is the maximal
clique of G (see Figure 3). In fact, such a clique tree can be found by taking
the maximal clique of the graph as the root, and then taking all other maximal
cliques (each of which consists of a single vertex from the independent set and
all its neighbors) as its children. The values of ν and µ are as described in
Section 5.
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Figure 3: (a) a split graph, (b) a clique tree of the split graph.

Lemma 8 If the clique tree T in Algorithm 1 is of height 1, then the algorithm
runs in time O(χn2), where χ is the chromatic number of the chordal graph.

Proof: For each leaf L, the algorithm initializes each of the lists BL and WL

with a list of size 1. The computation of the required list for the root starts
with performing Algorithm 3 on each of the leaves, which creates lists of size 2.
Finally, Algorithm 4 gets each time two lists as input: one of size at most n and
the other, of size exactly 2. Therefore, the runtime of the improved Algorithm 4
becomes O(χn), and thus the runtime of Algorithm 1 is reduced to O(χn2). �

Theorem 4 follows straightforwardly from Lemma 8.
A linear-time algorithm for recognizing split graphs is presented in [11]. This

algorithm also finds the maximum clique in the graph, which will immediately
give us the desired clique tree.

8 Finding a BWC

Suppose we are required to actually find a BWC of a chordal graph G with given
numbers b, w of black and white vertices, respectively. We may assume, without
loss of generality, that (b, w) belongs to the list optPairs found by Algorithm 1.
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In fact, find a pair (b′, w′) in optPairs such that b′ ≥ b, w′ ≥ w. (If no such pair
exists, then there is no BWC as required.) After constructing a BWC with b′

black and w′ white vertices, we uncolor b′ − b black and w′ − w white vertices.
We first construct a full-coloring of the clique tree T from the input of

Algorithm 1. To this end, we change Algorithm 4 to save pointers from each
non-dominated pair it finds to the non-dominated pairs it was obtain from.
The constructed full-coloring of T gives rise to a BWC of G, as described in
Section 5.2.

9 Extension to Many Colors

In this section we discuss the anticoloring problem with k colors for a constant k.
The extension of the results of Section 2 to this general case is simple, and

we shall explain it briefly.
Instead of non-dominated pairs, we have here non-dominated k-tuples. To

each vertex we attach k lists, where the i-th list, 1 ≤ i ≤ k, consists of all
non-dominated k-tuples for the case it is colored i.

Algorithm 1 needs to be updated to initialize the leaves of the clique tree
with the appropriate k-tuples. Its output is now the union of the k lists of the
root. In Algorithm 2, the only change is the input of Algorithm 4, which should
contain all k lists, instead of only two.

More modifications are required for Algorithms 3 and 4. First we denote
by LiR the i-th list of a vertex R. Since the number of optimal k-tuples is at
most nk−1, this is the maximal possible length of each list LiR . For convenience,
in the input to the append procedure, called by Algorithm 6, we write only the
values for (bi, bj) (or (bi) in case i = j), since the other values remain unchanged.
This is not the case for the call to the same procedure in Algorithm 7.

The computation of the runtime of Algorithms 1 and 2 does not change.
The runtime of Algorithm 6 is O(k2nk) and that of Algorithm 7 is O(kn2k−1).
Since k is a constant, the total runtime of Algorithm 1 is O(n2k).

Note that since the number of k-tuples might be nk−1, this is also the lower
bound for the optimal runtime, and our algorithm cannot be improved drasti-
cally.
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multiColorExtension(G,L1R , ..., LkR
,R′)

Input: A chordal graph G, the lists LiR , 1 ≤ i ≤ k where R = root(T ),
and the vertex R′ =father(R)

Output: L1R′ , ..., LkR′ – the lists for R′ = root(T ′), where T ′ is
composed of T and a new root R′, whose only child is R

L1R′ , ..., LkR′ ← empty list
for i = 1 to k

for each (b1, ..., bk) ∈ LiR

for j = 1 to k
if j == i

append(LiR′ , (bi + ν(R′)− µ(R′, R)))
LiR′ .tail.colored ← R′

else
append(LjR′ , (bi − µ(R′, R), bj + ν(R′)− µ(R′, R)))
LiR′ .tail.colored ← R′ −R

for i = 1 to k
contract(LiR′ )

return L1R′ , ..., LkR′

Algorithm 6: Add a new root to a given subtree.

multiColorMerge(G,L1R1 , . . . , LkR1 , L1R2 , . . . , LkR2 )

Input: LiR1 , LiR2 – the lists for the roots Rj , j = 1, 2, of the two
subtrees where 1 ≤ i ≤ k

Output: L1R , ..., LkR
– The lists for the unified root R

L1R , ..., LkR
← empty list

for i = 1 to k
for each (b11, . . . , b

1
k) ∈ LiR1

for each (b21, . . . , b
2
k) ∈ LiR2

size ←
∣∣(b11, . . . , b1k).colored ∪ (b21, . . . , b

2
k).colored

∣∣
append(LiR , (b

1
1 + b21, . . . , b

1
i + b2i − size, . . . , b1k + b2k))

contract(LiR)
return L1R , ..., LkR

Algorithm 7: Merge two subtrees with a common root.
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