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Abstract

We study the classic graph drawing problem of drawing a planar graph
using straight-line edges with a prescribed convex polygon as the outer face.
Unlike previous algorithms for this problem, which may produce drawings
with exponential area, our method produces drawings with polynomial area.
In addition, we allow for collinear points on the boundary, provided such
vertices do not create overlapping edges. Thus, we solve an open problem
of Duncan et al., which, when combined with their work, implies that we
can produce a planar straight-line drawing of a combinatorially-embedded
genus-g graph with the graph’s canonical polygonal schema drawn as a
convex polygonal external face.
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Figure 1. Our problem: given (a) a combinatorially embedded planar graph G and (b) a
polygon P with certain vertices on the outer face of G marked as corresponding to vertices
of P , find (c) a straight-line embedding of G that uses P as the shape of its outer face.

1 Introduction

The study of planar graphs has been a driving force for graph theory, graph
algorithms, and graph drawing. Our interest, in this paper, is on methods for
drawing planar graphs without edge crossings using straight line segments for
edges, in such a way that all faces are convex polygons and the outer face is a
given shape. Figure 1 shows an example.

1.1 Related Prior Work

In seminal work that has been highly influential in the graph drawing literature,
Tutte [22, 23] shows that it is possible to draw any planar graph using non-
crossing straight-line edges so that the vertices of the outer face are drawn on
the boundary of a prescribed convex polygon. This work has enabled a host of
subsequent papers, and, according to Google Scholar, Tutte’s 1963 paper has
been directly cited over 600 times. For instance, along with seminal work on
drawing maximal planar graphs [12, 20, 24] (with triangular outer faces), his
work has inspired many researchers to study methods for drawing planar graphs
using straight-line edges (e.g., see [1, 4, 5, 6, 8, 13, 17, 19]). Moreover, not only
has Tutte’s result itself been highly influential, but because his method is based
on a force-directed layout method, his work has also inspired a considerable
amount of work on force-directed layouts (e.g., see [7, 9, 14, 15, 21]).

Unfortunately, one of the drawbacks of Tutte’s algorithm is that it can produce
drawings with exponential area. This area blowup is not an inherent requirement
for planar straight-line drawings, however, as a number of researchers have
shown that it is possible to produce drawings of planar graphs with non-crossing
straight-line edges using polynomial area (e.g., [5, 6, 13, 17, 19]). Nevertheless,
all of these straight-line drawing algorithms lose a critical feature of Tutte’s
drawing algorithm, in that none of them allow for the vertices of a planar graph’s
outer face to be placed on the boundary of a prescribed convex polygon. Becker
and Hotz [2], on the other hand, show how to draw a planar graph with a
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prescribed outer face so as to optimize the total weighted edge length, but, like
Tutte’s method, their method may also produce drawings with exponential area.
Indeed, we know of no such prior result, and, in fact, Duncan et al. [10] pose as
an open problem whether there exists an algorithm that produces straight-line
drawings with vertices on the boundary of a given convex polygon of polynomial
area.

One motivation for this problem of prescribing the outer face of a planar drawing
comes from a common way of producing hand-drawn planar representations of
genus-g graphs. Namely, if we are given a graph, G, embedded into a genus-g
topological surface, the surface may be cut along the edges and vertices of
2g fundamental cycles in G to form a topological disk (known as a canonical
polygonal schema), with a boundary that is made up of 4g paths (with multiple
copies of the vertices on the fundamental cycles). Moreover, as shown by Duncan
et al. [10], G can be cut in this way so that each of these 4g paths is chord-free,
that is, so that there are no edges between two vertices strictly internal to the
same path (other than path edges themselves).

The standard way of drawing this unfolded version of such an embedding, in the
topology literature (e.g., see [18]), is to draw the disk as a convex polygon with
each of its 4g boundary paths drawn as a straight line segment: the geometric
shape is used to make clear the pattern in which the surface was cut to form
a disk. Fortunately, given Tutte’s seminal result, it is possible to draw any
chord-free canonical polygonal schema along the boundary of a given convex
polygon with 4g edges. The drawback of using Tutte’s algorithm for this purpose
is that the resulting drawing may have exponential area. Thus, we are interested
in drawing the unfolded embedding in polynomial area and in polynomial time.

1.2 Our Results

In this paper, we describe an algorithm for drawing a planar graph with a
prescribed outer face shape. The input consists of an embedded planar graph
G, a partition of the outer face of the embedding into a set S of k chord-free
paths, and a k-sided polygon P ; the output of our algorithm is a drawing of
G within P with each path in S drawn along an edge of P . Given the above-
mentioned prior result of Duncan et al. [10], for finding chord-free canonical
polygonal schemas, our result implies that we can solve their open problem: any
graph G combinatorially embedded in a genus-g surface has a polynomial-area
straight-line planar drawing of a canonical polygonal schema S for G, drawn as
a 4g-sided convex polygon P with the vertices of each path in S drawn along an
edge of P .
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2 Preliminaries

In this paper, we show how to draw a graph with a given boundary with
coordinates of polynomial magnitude. Before treating the main construction,
though, we show in this section that we can equivalently state the problem in
terms of the resolution of the graph. Furthermore, we recall some known results
and concepts.

2.1 Resolution

Instead of drawing a graph with integer coordinates of small total size, we will
make a drawing with real coordinates that stays within a fixed region (inside
the input polygon) with a large resolution.

Let G be a graph that is embedded in IR2 with straight line segments as edges.
We define the resolution of G to be the shortest distance between either two
vertices of the graph, or between a vertex and a non-incident edge. The diameter
of G is the largest distance between two vertices of the graph.

We begin by establishing a relation between resolution and size, which basically
says that drawing a graph G with small diameter and large resolution also
ensures the existence of another drawing with integer coordinates and small size.
Generally it may not be possible to scale a given input polygon such that its
coordinates become integers, so we need to do some rounding. We say that two
drawings of G are combinatorially equivalent if their topology is the same, and
any collinear adjacent edges in one drawing are also collinear in the other. We
say two drawings are ε-equivalent if the distance between the locations of each
vertex of G in the two drawings is at most ε.

Lemma 1. LetG be a graph, and let Γ be a drawing ofG without crossings, with
constant resolution, and with diameter D. Then there exists another drawing Γ′

of G with integer coordinates and diameter O(D2), such that a scaled copy of Γ′

with diameter D is both combinatorially equivalent and O(1)-equivalent to Γ.

Proof: We may assume that the resolution of Γ is 1: that is, no vertex is within
unit distance of another vertex or edge. Scale Γ by a factor of 3, forming a
drawing, Γ′, and consider the integer grid squares that contain each vertex of Γ′.
If we change the coordinates of all vertices by at most one unit, each vertex moves
at most

√
2 so this motion can only bring a vertex and an edge closer together

by a distance of 2
√

2, less than the resolution (which is now 3). Therefore, such
a motion cannot introduce crossings or change the combinatorial type of the
drawing. At this stage, we move the vertices of the outer face to their nearest
integer points (changing their coordinates by at most 1/2), but we do not change
the positions of the other vertices.
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Next, we scale the drawing again, by a factor of d3De. The vertices of the outer
face remain on integer coordinates. The vertices in the interior of the drawing
may be moved to any nearby integer point, without changing the combinatorial
type of the drawing. It remains to choose integer coordinates for the vertices
that lie on the sides of the outer face of Γ. For each such vertex v, on side s,
the integer rounding of the endpoints of s will have caused s to move, but there
will still exist a point v′ ∈ s whose coordinates (though not necessarily integers)
are both within 3D/2 of the corresponding coordinates of v. A 3D × 3D box
centered on v′ will consist entirely of points whose coordinates are within 3D
of v (equivalent to being within one unit of v in Γ′), and (because of the way
we rounded the endpoints of s prior to the second scaling step) is guaranteed
to contain an integer point v′′ ∈ s. By rounding v to v′′, and simultaneously
rounding in the same way all the other points of the drawing that belong to the
sides of the outer face, we obtain a drawing Γ′′ that is combinatorially equivalent
to Γ, with a combinatorially equivalent outer face, in which all coordinates are
integers. �

Note that, for a fixed input polygon with non-integer vertex coordinates, this
perturbation may slightly modify its shape, since it may not be possible to find
a similar copy of the polygon with integer vertex coordinates.

Now, let Q be a set of points in the plane. We define the potential resolution
of Q to be the resolution of the complete graph on Q. Similarly, for a polygon
P , we define its potential resolution to be the potential resolution of its set of
vertices. Clearly, the resolution of any drawing we can achieve will depend on
the potential resolution of the input polygon, because the drawing could be
forced to include any edge of the complete graph.

Next, we make an observation about the nature of the potential resolution of
convex polygons.

Observation 1. If P is a convex polygon, then the potential resolution of P is
the minimum over the vertices of P of the distance between that vertex and the
line through its two neighboring vertices.

Thus, for a convex polygon P to allow for a drawing of polynomial area in its
interior, we insist that P has a polynomially-bounded aspect ratio. It cannot be
arbitrarily thin and still support a polynomial-area drawing in its interior.

2.2 Alpha Cuts

We now describe a useful property of the potential resolution of a convex polygon,
namely that it can be “distributed” any way we want when cutting the polygon
into smaller parts. This will be made more precise later. We first make another
observation about convex polygons.
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Figure 2. Cases to consider with respect to resolution with respect to a convex polygon.

Lemma 2. Let P be a convex polygon, v a vertex of P , e an edge incident to
v, and α ∈ (0, 1) a number. Let P ′ be a copy of P where v has been replaced by
v′ by moving v along e over a fraction α of the length of e. Then the potential
resolution of P ′ is at least 1− α times the potential resolution of P .

Proof: Let a, b, c be three vertices of P in counterclockwise order, and consider
the distance from b to the line ` through a and c, as in Figure 2(a). By
Observation 1, the potential resolution of P is the minimum of this distance over
all such triples of vertices. Now consider the situation in P ′. If none of a, b, c
are equal to v, then clearly the distance in P ′ is the same as in P .

If v = b, then the line ` through a and c is still the same as in P , see Figure 2(b).
The edge e must be either between a and v or between v and c; in both cases,
moving v along e changes the distance to ` linearly. Therefore, the distance from
b′ to ` is exactly (1 − α) times the distance from b to `, which is bounded by
(1− α) times the potential resolution of P .

If v = a, then there are two subcases depending on whether e is between v and
b or between v and its predecessor. If e goes between v and the predecessor of
v, as in Figure 2(c), then the line `′ between v′ and c rotates around c as v′

moves over e. Because P is convex, the distance from b to `′ as a function of
the position of v′ has no local minimum, so when v′ is at one of the endpoints
of e the distance is smaller than at any interior point. Therefore, the distance
from b to `′ is bounded by the potential resolution of P . If e goes between v
and b itself, as in Figure 2(d), then let c′ be the point on a fraction α along the
edge between c and b. Then distance from b to the line `′ through a′ and c is
clearly larger than the distance from b to the line `′′ through a′ and c′, which
is exactly (1− α) times the distance from b to the line ` through a and c, see
Figure 2(e). So in this case the distance is again bounded by (1− α) times the
potential resolution of P .

The case where v = c is symmetric to the case where v = a. �

Let P be a convex polygon. We will show that we can cut P into two smaller
polygons, “distributing” its potential resolution in any way we want.

We define an α-cut of P to be a directed line ` that splits P into two smaller
polygons, such that if an edge e of P is intersected by `, the length of the piece
of e to the left of ` is α times the length of e, and the piece of e to the right of `
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Figure 3. (a) An α-cut through a vertex and an edge. (b) An α-cut through two non-adjacent
edges. (c) An α-cut through two adjacent edges.

is (1− α) times the length of e. For a given convex polygon and two features
of its boundary (either vertices or edges), there is a unique α-cut that cuts the
polygon through those two features in order.

Lemma 3. Suppose we are given a convex polygon P of resolution d, two
features (either vertices or edges) of P , and a fraction 0 < α < 1. Let ` be
the α-cut through the two given features that cuts P into a piece Pl to the left
of ` and a piece Pr to the right of `. Then the potential resolution of Pl is at
least αd unless the two features are two adjacent edges that meet to the right
of `. Similarly, the potential resolution of Pr is at least (1− α)d unless the two
features are two adjacent edges that meet to the left of `.

Proof: We will argue about the potential resolution of Pl; the argument for Pr

is symmetric. We prove this lemma by applying Lemma 2 to the new vertices
of Pl. If both features where ` cuts through P are vertices, then all vertices of
Pl are also vertices of P and clearly the potential resolution can only become
better. However, if one or both of the features are edges, then Pl has one or two
new vertices that are not part of P . Figure 3 shows three different cases that
can occur. We first alter P to a different polygon P ′ that has the new vertices.
Let u′ be the place where ` enters P and u the closest vertex to the right of
` along the boundary to it (possibly u = u′), and similarly let v′ be the place
where ` exits P and v the closest vertex to the right of `. Now, we create P ′ by
moving u to u′ and v to v′. Clearly, both will (independently) move a fraction
1− α along their edges, so by Lemma 2 P ′ has a potential resolution of at most
α times the potential resolution of P . Therefore, the potential resolution of Pl

can only be larger.

The only exception is when u = v; in this case we cannot move the vertex to two
new places simultaneously, but we have to create two new vertices. Indeed, the
result is not true in that case, since the two new vertices can be arbitrarily close
to each other as α comes arbitrarily close to 1, so the resolution of P ′ cannot be
expressed in terms of α, as can be seen in Figure 3(c). �
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2.3 Combinatorial Embeddings

Let G = (V,E) be a plane graph. That is, we consider the combinatorial
structure of G’s embedding to be fixed, but we are free to move its vertices and
edges around. Let F be the set of faces of G, excluding the outer face. We make
some definitions about faces. We say that a subset F ′ ⊂ F induces a subgraph
G〈F ′〉 of G that consists of all vertices and edges that are incident to the faces
in F ′. A subset F ′ ⊂ F is said to be vertex-connected if G〈F ′〉 is connected; it is
said to be edge-connected if the dual graph induced by the dual vertices of F ′ is
connected. In other words, faces that share an edge are both edge-connected and
vertex-connected, but faces that share only a vertex are only vertex-connected.

We recall a lemma from [10], rephrased in terms of the faces of the graph:

Lemma 4. Given an embedded plane graph G that is fully triangulated except
for the external face, and two edges e1 and e2 on the external face, it is possible
to partition the faces of G into three sets F1, F2, R ⊂ F such that:

1. All vertices of G are in either G〈F1〉 or G〈F2〉.

2. R is edge-connected and contains the faces incident to e1 and e2.

3. F1 and F2 are both vertex-connected.

4. The edge-connected components of F1 and F2 all share an edge with the
outer face of G.

Intuitively, R is a path of faces that goes from e1 to e2 and that splits the
remaining faces into two sets F1 and F2.

3 Drawing a Graph with a Given Boundary

We are now ready to formally state the problem and describe the algorithm to
solve it.

3.1 The Problem

Let G be a triangulated planar graph with a given combinatorial embedding,
and let B be the cycle that bounds the outer face of G. Let f be a map from
a subset of the vertices of B to points in the plane, such that these points are
in convex position and their order along their convex hull is the same as their
order along B.

We say that a map g from all vertices of G to points in the plane respects f
when:
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1. The vertices mapped by f are also mapped by g to the same points; these
define a convex polygon P .

2. The remaining vertices of B are mapped to points on the corresponding
edges of P .

3. The remaining vertices of G are mapped to the interior of P .

4. If all edges of G are drawn as straight line segments, they cause no crossings
or incidences not present in G.

An example of a respectful embedding was shown in Figure 1.

The input to our problem is a pair (G, f). We will use the notations B and P
as above. We will further define F to be the set of faces of G, excluding the
outer face. We define s = |F |, the number of internal faces, to be the size of the
problem. We define d to be the resolution of the problem, which is the potential
resolution of P (recall that this is the resolution of the complete graph on the
corners of P ). Our goal is to compute a mapping g that respects f and such that
the resolution of the embedded graph is bounded by some function of s and d.

Observe that it will not be possible to do so when there are any edges in G
between two non-consecutive vertices that have to be on the same edge of P .
Therefore, we call a problem invalid if this is the case. We will show that for
any valid problem, we can find an embedding with a polynomially bounded
resolution.

3.2 The Main Idea

We solve the problem using divide-and-conquer, an approach that has been used
before to draw graphs in a given region [3, 11, 16]. The idea is to divide P
into smaller convex polygons, and F into smaller sets of faces, and map each
subset of faces to one of the smaller polygons. Then we need to decide which
vertices of G are mapped to the new corners of the smaller polygons, and solve
the subproblems.

A first idea would be to find a path in G between two vertices of B, and lay
that out on a straight line, resulting in a split of P into two smaller polygons
and solve the two subproblems. There are two issues with this approach though.
First, the vertices on the new straight line have to be placed the same way in
the two subproblems, which means they are not independent. Second, if there
are any chords on this path one of the subproblems will become invalid.

To avoid these issues, we will not split along a single path, but along two paths
next to each other. The region between these two paths, which we call a river,
has a controlled structure, which means that we can always complete the interior
independently of how the vertices on the edges were placed. Furthermore, if
these paths have any chords, we shortcut them along the chords and show how
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(a) (b) (c)

Figure 4. (a) A “river” (a path in the dual graph that does not reuse any vertices of the
primal graph) between two edges on B. (b) The river banks have chords, and so we include
the region behind the chords in the river. (c) We fix the vertices on the river boundary that
are on B, and draw the rest of the river boundary straight. This results in three smaller
problems, plus the region of the river itself.

to deal with the added complexity of the river. Because the river may touch the
boundary of P in more places, the problem may be decomposed into more than
two subproblems. Figure 4(a) shows an example instance, and Figure 4(c) shows
a possible decomposition where some vertices on the boundary of P have been
fixed, and the paths between them are made straight.

We assume the input is a valid problem with size s and resolution d. We will
keep as an invariant the ratio d/s, and show in Section 3.3 how to subdivide
a problem into smaller valid problems with the same (or better) ratio, plus an
extra region (the river). We then recursively solve the independent subproblems,
which results in a placement of all vertices that are not in the interior of the
river. Finally, we show in Section 3.4 how to we place the vertices inside the
river.

3.3 Splitting a Problem

Let (G,P ) be a valid problem of size s and resolution d, and suppose that P
has at least four sides.

Let e1 and e2 be two edges of B that lie on two sides of P that are not consecutive.
Note that the endpoints of e1 and e2 are not necessarily fixed yet. Now, by
Lemma 4, there exists a path of faces that connects e1 to e2, such that the
boundary of this path does not have any repeated vertices. Let R be the union
of the faces of F on this path. We call R a river ; Figure 4(a) shows an example.
This river may touch B in other points than e1 and e2, so it can subdivide the
faces of F into any number of edge-connected subsets (apart from the river itself).
We will assign a separate subproblem to each such edge-connected component.

We would like to straighten the banks of the river, but this may lead to invalid
subproblems if these banks have any chords. Therefore, we identify any chords
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that the river has (note that they can only appear on the outside of the river,
since the river forms a dual path), and we add the faces of F behind those chords
to R. Similarly, if one of the paths that delimit the river touches a side of P
more than once, it would create a subproblem that would be flattened. To avoid
that, we also incorporate such a region into the river (even though the straight
side that lies alongside P is not necessarily a chord).

Next, we count the numbers of faces in the river, as well as those in the parts
outside the river. Then we fix the vertices where the river touches P by cutting
off the subproblems, using α-cuts where α is the fraction of faces inside the
subproblem. Now, by Lemma 3, if we have a problem with parameters s and
d, we will construct subproblems with the same (or better) ratio d/s. Finally
we straighten the new banks of the river, so that the subproblems have proper
convex boundaries. Figure 4 shows an example.

Lemma 5. Given a valid problem (F, P ) where P has at least four sides, We
can subdivide F and P into disjoint sequences F1, F2, . . . , Fh and P1, P2, . . . , Ph

such that each (G〈Fi〉, Pi) is a valid subproblem with ratio at least d/s, and
such that the remainders F ′ = F \

⋃
Fi and P

′ = P \
⋃
Pi have the following

properties:

1. F ′ and P ′ also have ratio d/s.

2. The vertices of G〈F ′〉 that are not vertices of G〈
⋃
Fi〉 form internally

3-connected components that share at least two vertices of G〈
⋃
Fi〉 .

Proof: For the first part of the lemma, we need to show that the subproblems
(Fi, Pi) are valid and have a resolution/size ratio at least as good as d/s. First,
we define the polygons Pi by applying Lemma 3 to P with α = si/s (that is, the
fraction of faces in F that is in Fi). The lemma ensures that the new polygons
have potential resolution at least di ≥ αd = sid/s, so clearly di/si ≥ d/s as
required. Second, recall that a subproblem is valid if it does not have any chords
between two vertices that have to be drawn on the same side of Pi. For those
sides of Pi that are part of P , we already know there are no chords because
(G,P ) was valid. For the new sides, we explicitly added all faces behind chords
to the river R = F ′.

For the second part of the lemma, we need to show that R has the right ratio and
that the internal vertices of the river form 3-connected components that share
two or more vertices with the boundary of the river. If we denote sR = |R| to be
the size of the river and dR to be the potential resolution of the region P ′ in which
it is to be drawn, then by Lemma 3, the potential resolution of R after repeatedly
slicing off subpolygons is at least dR = dΠ(1− si/s) ≥ d(1− Σ(si/s)) = sRd/s,
so dR/sR ≥ d/s. Finally, since we chose R according to Lemma 4, all edge-
connected pieces of F outside R share an edge with the outer face. In particular,
this means that the boundary of R does not touch itself and that any subgraphs
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(a) (b) (c)

Figure 5. (a) The interior of a river, after all vertices on its boundary have already been fixed
by recursive calls to the split algorithm. (b) Because of the structure given by the river, we
can identify small regions inside the river that we draw using the de Fraysseix-Pach-Pollack
algorithm. (c) If we flatten the triangular drawings enough, every vertex is able to see every
other one (in fact we need slightly more, namely that no visibility ray comes too close to
any vertex). Note that in the figure the drawing is not flat enough for that, but otherwise
the structure would become too hard to see. In fact, in this particular case no flattening at
all would be required.

sliced off by chords are 3-connected and share exactly two vertices with the
boundary of R. Furthermore, if the boundary of R touches the same side of
P multiple times, then the edge-connected components of F between that side
of P and R are also 3-connected and share at least two vertices with the new
boundary of R. �

When P has only 3 sides, we cannot choose two edges e1 and e2 on non-adjacent
sides of P . However, we can still use the same basic idea; we just have to be
careful because of the special case in Lemma 3. So, let c be a corner of P and
let e1 and e2 be edges of B on the sides incident to c. The lemma does not give
a bound on the resolution of the region on the far side of c. So, let e1 and e2 be
the edges furthest away from c. Since P is a triangle, the two vertices of B on
the far side on e1 and e2 are the other two corners of P , and they are joined by
a side of P . This means that the region between the river and this side will be
included into the river, and there will be no subproblem on the far side of c.

3.4 Fixing a River

It remains to show how to place the interior vertices of a river after all vertices
on its boundary have been placed recursively. Again, we are given a graph G
and a polygon P that it has to be drawn in (P is the boundary of the river,
and G is the part of the graph that has to be drawn in it), but there are two
important differences with the initial problem: First, now we know that all
vertices of B have already been fixed (not only those on the corners but also
those on the boundary of P ). Second, we know that the remaining vertices
of G have a very specific structure, namely, they form internally 2-connected
components that share at least two vertices with the vertices fixed along an edge.
Furthermore, since all fixed vertices have been placed using the algorithm above,
they will never be closer than d/n to each other. This means we can draw these
components using the algorithm by de Fraysseix, Pach and Pollack [13], and
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rotate and scale them to fit inside P . We can then flatten them more such that
all remaining edges (between fixed vertices on the boundary of P or vertices
on the de Fraysseix-Pach-Pollack drawings) can be drawn with straight line
segments. Figure 5 shows an example.

Lemma 6. Given a river placement problem, of size s and resolution d, we can
lay out the graph with a resolution of Ω(d/n3).

Proof: The polygon P that forms a river and the graph G to be drawn in it are
formed by subdividing a bigger problem according to Lemma 5. Then, the vertices
on the boundary of P are placed during recursive calls to smaller problems. All
vertices have to be corners of the polygons of at least one such subproblem, and
by our invariant all these problems have ratio d/s, so the distance between any
two fixed vertices cannot be smaller than d/n. Furthermore, Lemma 5 tells us
that the vertices of G can be grouped into a number of subsets V1, V2, . . . , Vh
such that each Vi is internally 3-connected, and there is a sequence of at least
two vertices in Vi that is in B, so that have been fixed on the boundary of P .
Note that there will be exactly two if such a component came from a chord
on the river bank, but there can be more if it came from the river touching
a side of P multiple times. Then we can place these subgraphs using the de
Fraysseix-Pach-Pollack algorithm, starting from the vertices that are already
fixed (at distance at least d/n) and adding the remaining O(|Vi|) vertices one
by one using 45◦ edges. This results in a drawing with resolution which can be
roughly bounded by d/n2. Then, it is sufficient to squeeze them by a factor of n
to make sure that they do not block any potential edges, and a further factor
2 to make sure that the tips of the de Fraysseix-Pach-Pollack drawings are in
fact far enough away from these potential edges, guaranteeing a good resolution.
This means the final resolution of the drawing is Ω(d/n3). �

3.5 Putting it Together

To conclude, Lemmas 5 and 6 together imply:

Theorem 1. Given a plane graph G with n vertices, a convex polygon P with
k corners and potential resolution d, and a map f that maps k vertices on the
outer face of G to the k corners of P , we can draw G in P respecting f using
resolution Ω(d/n3).

Note that by Lemma 1, we can rephrase this in terms of the more standard area
of a drawing when all coordinates are integer.

Corollary 1. Given a plane graph G with n vertices, a convex polygon P with
k corners, at integer coordinates and diameter D, and a map f that maps k
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vertices on the outer face of G to the k corners of P , we can draw the graph
G in a scaled copy P ′ of P that has diameter O(D4n6), such that the drawing
respects f and uses only integer coordinates for the vertices of G.

Proof: First of all, if P has only integer coordinate vertices and diameter D,
then its potential resolution is at least 1/D. To see this, consider a triangle
formed by any three vertices of P : this triangle has area at least 1/2, and in any
direction its base is at most D so its height must be at least 1/D.

Now, by Theorem 1, we can draw G inside P with resolution Ω(d/n3) =
Ω(1/Dn3). Then we can blow up the drawing by a factor Dn3, which results
in a polygon of diameter D2n3 and at least constant resolution. By Lemma 1,
there now also exists a drawing of G in a polygon P ′ of diameter O(D4n6) in
which all vertices are drawn with integer coordinates. �

4 Application to Drawing Graphs of Genus g

As mentioned in the introduction, graphs of genus g are often drawn in the plane
by drawing their polygonal schema in a prescribed convex polygon. Using a
canonical polygon schema allows us to draw this outer face as a regular 4g-gon
that has some pairs of edges identified, and vertices on those edges duplicated.
Figure 6 shows an example for g ∈ {1, 2, 4}. Given previous work by Duncan et
al. [10], which gives us a chord-free polygonal schema derived from a graph G
combinatorially-embedded in a genus-g surface, we can complete a straight-line
drawing of G using a given regular 4g-gon as its external face, by applying
Theorem 1 and rounding the coordinates. Since a regular 4g-gon with diameter
1 has potential resolution Θ(1/g2), this results in a drawing with resolution
Ω(1/g2n3).

Of course, there is a slight issue with using a regular 4g-gon: not every regular
k-gon can be embedded with fractional coordinates. So, such a drawing will not
fit exactly on an integer grid no matter how big the integers can be. Thus, we
either have to allow for non-integer coordinates or allow for a slight (possibly
imperceptible) perturbation of the vertex coordinates.

5 Conclusion and Open Problems

We have given an algorithm to draw any combinatorially-embedded planar graph
with a prescribed convex shape as its outer face and polynomial area, with
respect to the potential resolution of that shape. That is, if the given convex
shape has a polynomially-bounded aspect ratio, then we can draw the graph G
in its interior using polynomial area. We have not made a strenuous attempt
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Figure 6. Figure taken from [10]. Top row: the polygonal schema of a surface of genus 1,
2, or 4. Bottom row: the corresponding edges are joined by “tubes”.

to optimize the exponent in this area bound. So a natural open problem is to
determine the upper and lower bound limits of this function.

In addition, with respect to drawings of genus-g graphs using a canonical polyg-
onal schema, although our construction guarantees that copies of corresponding
vertices appearing in multiple boundary paths will be drawn in the same relative
order, it does not guarantee that they will be drawn with the same inter-path
distances. So another open problem is whether one can extend our algorithm to
draw such paths with matching inter-path distances for corresponding vertices.
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