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Abstract

This paper focuses on the centdian problem in a cactus network where

a cactus network is a connected undirected graph, and any two simple

cycles in the graph have at most one node in common. The cactus net-

work has important applications for wireless sensor networks when a tree

topology might not be applicable and for extensions to the ring architec-

ture. The centdian criterion represents a convex combination of two QoS

requirements: transport and delay. To the best of our knowledge, no effi-

cient algorithm has yet been developed for constructing a centdian node

in a cactus graph, either sequential or distributed. We first investigate

the properties of the centdian node in a cycle graph, and then explore

the behavior of the centdian node in a cactus graph. Finally, we present

new efficient sequential and distributed algorithms for finding all centdian

nodes in a cycle graph and a cactus graph.
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1 Introduction

A wireless sensor network contains a number of sensor nodes, limited in power
and memory, distributed across an area using wireless communication links to
deliver information between nodes. In some sensor network applications the
nodes are barely changed [45]. In recent years, the wireless sensor network has
attracted attention [38,40,47] since this type of network can be used in a variety
of applications, such as health, military, and emergency response.

A wireless ring is a structure for applications running on wireless sensor
networks that provide quality of service [13, 30–32, 34]. Wireless Token Ring
Protocol (WTRP) is a medium-access-control (MAC) protocol with advantages
such as robustness against single node failure, and support for flexible topologies,
in which nodes may be partially connected [13–15, 30, 31]. Lee et al. [30, 31]
presented aWTRP for ad hoc networks and an intelligent transportation system.
Xianpu et al. [44] showed a dynamic token protocol for Mobile Ad Hoc Network
(MANET) where all nodes in the network are clustered into several subnets,
whose functions are the same as the logic token rings in WTRP. Ergen [13]
showed a number of topologies extended to the WTRP protocol:

• Hierarchical hybrid schemes – combination of star/tree and ring topolo-
gies.

• Token chain – combination of several rings.

• Data forwarding – clustering stations into multiple rings.

• Sensor networks – hierarchical clustering by rings, where ring leaders are
connected by tree topology.

Cactus graphs are motivated by models where a tree topology would be
irrelevant in telecommunications [8, 28, 42, 46]. Moreover, the above extensions
to the architectures form a cactus graph, which is why practical communication
networks may have cactus graph topology (Figure 1). A cactus graph is also a
planar graph, enabling us to transmit between nodes without having to consider
cross-transmissions, and improving the delivery rate by using the two available
paths in each cycle. Wang et al. [42] presented a robust and energy efficient
routing scheme using a backup path; therefore, considering all the solutions
that use a tree topology as intra-topology and merging them with [42], will lead
to cactus topology.

1.1 Cactus Graph in Wireless Sensor Networks - Motiva-

tion

An overview of sensor network applications can be seen in Figure 2. One generic
type of application for these networks is monitoring, where all the sensors pro-
duce relevant information by sensing the area and transmitting the information
to a central node called a sink node. In some applications, namely data ag-
gregation, performing in-network fusion of data packets is a useful paradigm.
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Figure 1: Wireless token ring extension to a cactus graph [13].

However, it is not applicable in all sensing environments. For military appli-
cations, such as receiving an image of a battlefield, the data being transmitted
by the nodes provide an important point of view. In such situations, it might
not be feasible to aggregate the data from different sensors into a single data
packet. In those applications all the information is sent to the sink node.

We are assuming that the sink node has the ability to change its position
[27,37,40] to improve the performance of the network and does not have energy
limitations. For example, a group of soldiers (considered a sink node) collects
information from other units in a battlefield. The soldiers may move around,
but have to be able to continuously receive data reports [33].
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Figure 2: Overview of sensor applications [45].

1.2 Model and Definitions

In general, a network topology is defined by an undirected connected graph
G(V,E,W ), where V is the node set, E the set of edges between neighbor-
ing nodes, and W is a function from E to R, which takes on positive values
only. Note that the present paper deals only with unweighted nodes. For each
edge e(u, v) ∈ E, 0 < we < ∞ represents edge weight or length, where a
length/weight value represents the amount of energy required to transmit one
packet from node v to node u along the edge e(v, u). Note that the edges rep-
resent logical connectivity between nodes, i.e., there is an edge between the two
nodes u and v if they can hear one another.

For a given pair of nodes u and v, P (u, v) denotes a simple path in G

connecting u and v, and its length, d(P (u, v)), is defined as the sum of weights
(lengths) of the edges on P (u, v). Define d(u, v) as the length of a shortest path
between u and v, the minimum of the lengths of all paths connecting u and v.
For each v ∈ V , define dist(v) = maxu∈V d(u, v), and sum(v) =

∑
u∈V d(v, u).

A node c is a center of the graph if dist(c) = minv∈V dist(v), and a node m is
a median of the graph if sum(m) = minv∈V sum(v).

Consider a node v′ of the network G. Let T be a spanning tree of G rooted
at some node v′. The transport of tree network T is defined as the total length
of packet transmissions required to deliver packets from all nodes to node v′ by
a convergecast process on the tree. The maximum delay of tree network T is



JGAA, 16(2) 199–224 (2012) 203

the maximum length to be traversed by any packet when traveling from node v′

to other nodes. The corresponding solution concepts for convergecast and delay
constraints have been considered in the literature as median and center [4].
Since the goal is to minimize the transport and delay, we assume without loss
of generality that packets follow shortest routes, i.e., T is a tree consisting of
shortest paths from v′ to all other nodes in G. Hence, we can ignore T and refer
to the terms transport and delay of v′ in G.

Using the median approach to select the best core node (sink) v′, often pro-
vides a solution overlooking the nodes at the end of the network (the farthest
leaf). The alternative center approach may therefore be applied; that is, choos-
ing the core to be at the center of a spanning tree where the farthest length is
the minimum among the nodes. However, locating a core at the center might
entail a large increase in length. The problems with using only the center or
median as a core have led to a search for a compromise solution concept called
centdian, where a centdian function at a node is a convex combination of the
corresponding median and center functions [18]. The centdian function for node
v (given a fixed λ ∈ [0, 1]) in the network is defined by

Dv(λ) = λ · dist(v) + (1− λ) · sum(v) ; 0 ≤ λ ≤ 1 (1)

Another possible definition for the centdian function is:

Dv(α) = α · dist(v) + sum(v), α =
λ

1− λ
, 0 ≤ λ < 1 (2)

Although the two functions differ by a factor of (1 − λ), a point that mini-
mizes Dv(λ) also minimizes Dv(α). For each nonnegative α, the centdian value,
Cent(α), is defined by

Cent(α) = min
v∈V

Dv(α) (3)

Lemma 1 Given a general network G(V,E,W ), the function Cent(α), defined
over the range α ≥ 0, is a monotone, piecewise linear and concave function with
at most n = |V | breakpoints. Moreover, when all the terms {(dist(v), sum(v)) :
v ∈ V } are given, the sorted sequence of breakpoints of Cent(α) can be generated
in O(n logn) (sequential) time.

Proof: By definition Cent(α) is the lower envelope (minimum function) of a col-
lection of n linear functions (see Figure 3 for example). To find the breakpoints
of Cent(α) in O(n log n) time, use a standard divide and conquer algorithm,
e.g., Sharir and Agarwal [39]. 2

The case when the underlying network is a tree has been studied in the
literature [18, 19]. First, we note that a tree network has at most two center
and two median nodes. Wherever there are two median or center nodes, they
are neighbors. For the sake of the next lemmata proved by [18], if there is more
than one center or more than one median we select a center c and a median m

such that there is no other center or median on the unique path connecting c

and m.
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Figure 3: Example of a lower envelope function of the centdian functions. Note
that in the small frame the centdian functions of node 0 and node 8 intersect.

Lemma 2 [18] Suppose that the network G is a tree, given α, a centdian is
located at one of the nodes along the unique path P (m, c) connecting the median,
m, and the center, c.

Lemma 3 [18] Suppose that the network G is a tree, given α, the centdian
function, defined on the sequence of nodes along P (m, c), is (discrete) convex,
i.e., its sequence of slopes between adjacent nodes is increasing.

The proof of the lemmata 2 and 3 can be found in [18].
Consider a general network G(V,E,W ) and assume that it is connected,

have no parallel edges and self-loops. A node v of G is a cut node if after
removing v and all edges incident to it the resulting graph is not connected. A
graph without a cut node is called nonseparable. A block of G is a maximal
nonseparable subgraph. A cycle is a connected graph (or subgraph) in which
every node is of degree two [46]. G is called a cactus graph if every block with
three or more nodes is a cycle. Equivalently, every pair of cycles has at most
one common node.

In this paper we model the network topology as a connected cactus graph
CG = (V (CG), E(CG),W ) (sometimes called a cactus tree). The node set
V (CG) of the cactus graph is partitioned into three subsets. The first is the
subset of C-nodes, where a C-node is a node of degree two included in exactly
one cycle. The second is the subset of NCG-nodes, where an NCG-node is a
node not included in any cycle. The remaining nodes, if any, are referred to as
H nodes, or hinges [5].
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A cycle block (CB), i.e., a block that is a cycle consisting of say, p nodes, will
be denoted by a clockwise sequence of its nodes, i.e., R = (r0, r1, r2, ..., rp−1).
A subtree is a connected subgraph induced by a subset of NCG- and H-nodes
only. A maximal subtree is a subtree for which the subset of NCG- and H

nodes defining it cannot be extended. A graft is a maximal subtree with no
two H nodes belonging to the same cycle [5]. For convenience we will view each
graft of a cactus graph as a block. Hence, each block is either a cycle or a graft.
A cycle/graft block containing only one H node is defined as a ”leaf” of the
cactus graph. A k-cactus graph is a cactus graph with each block containing at
most k edges. It is not difficult to see that a cactus graph consists of blocks,
where each block is either a cycle or a graft [5], and the blocks are glued by H

nodes [5].
We will use the following lemma, which follows from the general results in

Chen et al. [6, 7].

Lemma 4 Let CG = (V (CG), E(CG),W ) be a cactus graph. There exist a
pair of blocks of CG, Bc and Bm, such that if v ∈ V (CG) is a center node, then
v ∈ Bc and if v is a median node, then v ∈ Bm.

We define an H node radius as its dist value, and a cycle block radius as the
maximum between the dist values (radii) of its H nodes and the longest dist

value in the cycle block itself.
A common way to deal with a cactus graph is to construct a tree TCG =

(V ′

CG, E
′

CG), each block of G and each H node of G are uniquely represented by
some node of TCG. Two nodes of TCG are connected by an edge if and only if
one of them represents an H node and the other represents a block containing
this H node [2, 5, 6]. Figure 4 shows an example for constructing a tree from a
cactus graph.

For our cactus network we assume that all the nodes share the same fre-
quency band, and time is divided into equal size slots that are grouped into
frames. Thus, the study is conducted in the context of TDMA (Time Division
Multiple Access). In TDMA wireless sensor networks, a transmission scenario
is valid if and only if it satisfies the following three conditions: First, a node
is not allowed to transmit and receive simultaneously. Second, a node cannot
receive from more than one neighboring node at the same time, and a node
receiving from a neighboring node should be spatially separated from any other
transmitter by at least some distance D. However, if nodes use unique signa-
ture sequences (i.e., a joint TDMA and CDMA (Code Division Multiple Access)
scheme), then the second and third conditions may be dropped, and the first
condition only characterizes a valid transmission scenario. Thus, our MAC layer
is based on TDMA scheduling [9, 12, 43], such that collisions and interferences
do not occur. In the case where we are using Aloha, CSMA/CA (Carrier Sense
Multiple Access with Collision Avoidance) or 802.11 as the MAC layer, we are
assuming that after a finite number of tries (in case of collision, error, failure)
the node will succeed in transmitting the message.

The entities in the network communicate with each other by message passing.
Message passing is the paradigm of communication where messages are sent
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Figure 4: A cactus graph and its corresponding tree structure [2]. The cactus
graph has three H nodes (H1, H2, H3), six blocks (B1, ..., B6), where B1, B5, B6

are graft blocks and B2, B3 and B4 are cycle blocks, nine C nodes (the nodes
of B2, B3 and B4, excluding the H nodes), and ten NCG nodes (the nodes of
B1, B5, B6 excluding the H nodes).

from a sender to one or more recipients. Forms of messages include (remote)
method invocation, signals, and data packets. Synchronous message passing
systems require the sender and receiver to wait for each other to transfer the
message. That is, the sender will not continue until the receiver has received
the message. Asynchronous message passing systems deliver a message from
sender to receiver, without waiting for the receiver to be ready [25]. Therefore,
we also assume the following: The network is asynchronous, where each node
can start the algorithm at any time or upon receiving a message. Messages
are guaranteed to be received within some predefined delay and processes have
comparable computational speeds. In a time unit a node can receive messages,
perform local computation, and send some messages (broadcast for example).
Each node has a unique ID in range [0, 1, . . . n − 1]. The computation time
of each node is negligible compared to the send/receive times [35]. The ”free”
calculation is bounded in time; the nodes cannot calculate the entire topology
of the network free but can do some calculations such as calculate its sum
and dist value. When a node is sending a message to its neighbors (using the
wireless link), it will use broadcast transmission. Moreover, when a node is
sending a message to one of its neighbors it will use the unicast transmission
and the ID of the neighbor as the MAC address. Moreover, leader election is the
process of designating a single process as the organizer of some task distributed
among several computers (nodes). Before the task is begun, all network nodes
are unaware of which node will serve as the ”leader,” or coordinator, of the
task. After a leader election algorithm has been run, each node throughout the
network recognizes a particular, unique node as the task leader [1, 16].
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1.3 Related Work

As defined above, a center node in a cactus graph minimizes the function dist(v).
Lan et al. [29] studied the center problem on general cactus graphs and showed
a linear time algorithm (linear time algorithms for 3-cactus graphs are reported
in [22]). Recently, Ben-Moshe et al. [2] studied a more general model of general
cactus graphs where nodes are associated with nonnegative weights. For this
general model, they [2] presented an O(n log n) time algorithm to solve the
node weighted 1-center problem, and an O(n log3 n) time algorithm to solve
the continuous node weighted 2-center problem. Zmazek and Zerovnik [46]
presented a linear algorithm estimating the traffic on a cactus graph, computing
the sum of all delays on cactus graphs. Das and Pal [8] found the maximum
and minimum heights spanning trees on a cactus graph in linear time. Note,
however, that all the algorithms above cannot be applied directly for wireless
sensor networks since these algorithms are sequential and not based on local
updates.

A median problem in a cactus graph seeks a node minimizing the function
sum. Similarly to the case of the center, there are linear time algorithms for
solving the median problem on 3-cactus graphs [23]. Lan and Wang [28] showed
that the median problem in 4-cactus graphs can be solved as efficiently as on
trees. Burkard and Krarup [5] presented a linear time algorithm for the median
problem in a cactus graph with positive and negative node weights. Recently,
Hatzl [21] presented a linear time algorithm for the median problem on wheel
graphs and cactus graphs, where a wheel graph is a graph consisting of a cycle
of order p−1 and an additional node that is connected by an edge to each of the
cycle nodes. For more information on median and center problems in cactus
graphs see [2, 21, 29].

The centdian problem is well known in the context of the facility location
problem, see [17–19, 36]. Dvir et al. [3, 10, 11] were the first to deal with the
centdian function as expressed by Eq. (1) in the context of wireless ad hoc
networks and wireless sensor networks.

1.4 Our Contributions

As mentioned, all existing cactus graph algorithms may not be applied directly
to sensor networks since they are not based on local updates. To the best of
our knowledge, no sequential or distributed algorithm presented so far has been
shown to construct a centdian node in a cactus graph. We investigate the prop-
erties of a centdian node in a cycle graph and present interesting observations
on the behavior of a centdian using a lower envelope [24, 39] of the centdian
functions of the nodes. Moreover, we show algorithms to determine centdian
nodes for all λ values (α values) in a cycle graph (this algorithm is later used
to solve the problem on cactus graphs) that work in O(n log n) time (sequential
solution) and O(n) time with O(n log n) messages (distributed solution). We
then consider the behavior of a centdian node in a cactus graph, and present
new efficient algorithms for constructing all centdian nodes in cactus graphs
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that run in O(n log n) time (sequential solution) and O(n) time with O(n log n)
messages (distributed solution).

2 Centdian in Cycle Graph

The purpose of this section is to explore the centdian nodes’ behavior in a cycle
graph. We present algorithms to determine centdian nodes for all λ values (α
values) in a cycle graph that works in O(n logn) time (sequential solution) and
O(n) time with O(n log n) messages (distributed solution). These algorithms
are later used to solve the problem on cactus graphs.

2.1 Finding a Centdian Node in a Cycle Graph: Sequen-

tial Algorithm

We first compute the values of sum(v) for all nodes v of the cycle graph in linear
time based on the algorithm in [5]. Then, we compute the values of dist(v) for
all nodes of the cycle graph in linear time based on the algorithm in [29].

It is well known that in the case of a tree topology both the dist and sum

functions are convex. In particular, every local minimum solution of the dist

(sum) function is a global minimum. Also, the set of nodes minimizing the dist
(sum) function consists of at most a pair of nodes. Moreover, these nodes are
neighbors, i.e., they induce a connected subgraph (edge). In contrast, in the
case of cycle topology, local solutions are not necessarily global and the set of
minimizers of the dist (sum) function does not necessarily induce a connected
subgraph, as illustrated in Figures 5 (a) and 5 (b).

Thus, contrary to the case of tree topology, where we can find the centdian
node by starting from the median node and searching for the optimal node with
the minimum centdian function on the path between the median and center
nodes [11], we cannot apply the same technique to cactus graphs. In [18],
Halpern proved that while λ < 0.5, the centdian node coincides with the median
node in a tree network. As can be seen in Figure 5 (c), this no longer holds
for a cycle graph, which leads us to the conclusion that in a cycle graph a node
t 6= m, c can be a centdian node in some range of λ, 0 < λ < 1.

Figure 5 (d) is an example of a cycle graph with ten nodes (The centdian
functions of the nodes can be seen in Figure 3). The edge length is depicted on
the edge, and the nodes are indexed. The node is shown as black in the figure
if for a certain value of λ it serves as the centdian of the cycle graph. Moreover,
the largest such λ value is associated with a node. Nodes without a small circle
(gray color) do not serve as centdian nodes for any range of λ. For example,
node 7 is the centdian node when 0.84 < λ < 0.87, but node 4 is not a centdian
node for any range of λ. The center node is node 1 and the median node is node
9. Finally, given a cycle graph with n nodes, we give an O(n log n) algorithm to
construct the centdian nodes for all values of α (α = λ

(1−λ) ).



JGAA, 16(2) 199–224 (2012) 209

Lemma 5 For any range of α, all the centdian nodes can be found in O(n log n)
time in a cycle graph.

Proof: Using the algorithms by Burkard and Krarup [5], and Lan et al. [29], in
O(n) time we can compute sum(v) and dist(v) for all nodes. Thus, the result
follows from Lemma 1 in the previous section. 2

(a) (b)

(d)(c)

7

5

8

4

5

0 c

1

2 c
3

4 c

dist=13

dist=12dist=13

dist=12

dist=12

0

1

2 m

3

4
5 m

6

7

8

sum=80

sum=88

sum=81sum=82

sum=87

sum=86 sum=83

sum=81

sum=80

1

3

4

46

10052

87

91

9 m

0 [0.84]

1 c

2

3

45

6

7

8 m

96.54

52.80
91.25

70.63

26.36

33.40

32.33

42.50

43.77

53.97

[0.87]

[0.29]

[1.0]

[0.0]

[0.29]

2 c

0 m

Figure 5: (a,b) An example presenting the non-convex property of the dist and
sum functions and the non-connected center/median nodes in a cycle graph. (c)
An example of λ < 0.5. (d) An example of a zigzag centdian behavior in a cycle
graph.

Remark: A centdian node in a cycle graph can zigzag between upper
and lower paths P (m, c) for various values of λ, see Figure 5 (d). Meaning,
for various λ values the centdian node is not in the same path between the
median and the center (λ = 0, λ = 1). For example, in Figure 5 (d) we can see
that the centdian node starts at node number 9, then moves to node 8, jumps
to 0 and then to 7. The line between node numbers 9, 8, 0, 7 creates a zigzag
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line. However, in some cases, we found that the order behavior might be self
intersecting, such example is shown in Figure 6. �
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Figure 6: The centdian node is 9 while 0 ≤ λ < 0.4, node 0 is a centdian,
while 0.4 ≤ λ < 0.48, node 10 is a centdian, while 0.48 ≤ λ < 0.99, node 4 is
a centdian while 0.99 ≤ λ < 1. The centdian node does not creates a regular
zigzag movement, as in Figure 5 (d), where the centdian creates regular zigzag
movement.
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2.2 Finding a Centdian Node in a Cycle Graph: Dis-

tributed Algorithm

In the following section we present a distributed algorithm to find centdian nodes
in a cycle graph in O(n) time with O(n log n) messages. In order to do this, we
have to find a way to provide distributed solutions for each of the algorithms in
Section 2.1. Algorithm 1 summarizes the distributed algorithms and presents
details (lines 2–15) about one of the distributed algorithms that finds the sum

and dist values for each of the nodes in the cycle graph.

Input: Cycle Graph
Output: All centdian nodes

1 Find a leader in the cycle graph based on [1]
2 foreach u ∈ V do

3 if leader then

4 send to both neighbors
info(leader = id, tempDistV ector = [e], nodes = 1)

5 else

6 if received info message then

7 tempDistV ectoru = [tempDistV ector, e]
8 forwards info(leader = id, tempDistV ectoru, nodes++)

9 end

10 end

11 end

12 foreach u ∈ V do

13 Calculate the sum and dist values
14 Calculate the centdian function

15 end

16 Find the medians and centers of the cycle
17 Find the lower envelope of the centdian function
18 Find all centdian nodes of the cycle graph

Algorithm 1: Cycle Graph Algorithm

As the basic step of our algorithm, we find a leader and the size of the cycle
graph by using the distributed algorithm given by Awerbuch [1] in O(n) time
and O(n log n) messages.

To find the median and center nodes in a distributed manner [26], the
leader sends info(leader = id, tempDistV ector = [e], nodes = 1)messages to its neigh-
bors, where id is the unique ID of the leader and e the length of the edge be-
tween the leader and its neighbor. When node u receives a info message from
one of its neighbors, it saves the tempDistVector and nodes′ values, and sends a
info(leader = id, tempDistV ector = [tempDistV ector, e], nodes++)message to another
neighbor. The tempDistV ector holds the edge lengths between the nodes receiving
the info message. When node z receives info messages from both its neighbors
it has complete knowledge of the cycle graph. Using the vectors from both mes-
sages, node z can calculate its dist and sum values in the cycle graph. After
the calculation, node z sends the info messages to its neighbors. Thus, at the
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end of this process each node knows its dist and sum values.

We then need to choose the nodes with the minimum dist values to be the
centers of the cycle graph and the nodes with the minimum sum values to be
the medians of the cycle graph. Therefore, the leader needs to send a message
to the cycle graph to collect the dist and sum values and to recognize the
median/center nodes. By receiving a median/center message from the leader of
the cycle graph, each node knows whether it serves as a median/center node.
From all the median nodes, the leader chooses the median with the minimum
ID as the new leader (median leader) of the cycle graph.

Finally, the median leader starts the following operation of computing the
lower envelope for finding the centdian nodes of the cycle graph, using the
knowledge that each node has its own dist and sum values. The median leader
starts a procedure to build the lower envelope centdian functions of the cycle
graph by sending a LowerEnv(LF ) message to one of its neighbors, where the
LF = Dleader(α) . When node u receives a LowerEnv(LF ) message it merges
its centdian function with the current lower envelope, calculates the new lower
envelope function, and propagates a LowerEnv(LF )message to another neighbor.
At the end of this process the leader has obtained the lower envelope function
and can find all the centdian nodes in the cycle graph. Note that, instead of
involving the entire network in the operation of computing the lower envelope
centdian functions, the leader can compute the entire lower envelope by himself
and broadcast the information.

It is easy to see that our distributed algorithm, in fact, emulates the execu-
tion of the sequential solution. Thus, the correctness of this distributed solution
follows immediately. The running time of the different parts of the algorithm
that finds the centdian nodes in a cycle graph is O(n) that uses O(n logn) mes-
sages. First, we start with finding a leader in the cycle graph and the cycle graph
size using algorithm in [1] in O(n) time and O(n logn) messages. In order to
find the centdian nodes in a cycle graph, each node calculates its dist and sum

values; this can be done in O(n) time using O(n) messages when the computed
leader sends the required information to all nodes as explained above. As the
result, a new, median leader is elected. Then, to calculate the lower envelope of
the centdian functions of the nodes in the cycle graph, we need additional O(n)
time using O(n) messages by sequential scanning all the nodes starting from
median leader and merging their centdian functions. From the computed lower
envelope function the centdian nodes for a given α range can be calculated.

3 Centdian in Cactus Graph

The purpose of this section is to explore the behavior of the centdian nodes
in a cactus graph, and design an algorithm to find them. Specifically, we will
extend the results on tree graphs in [18], and present new efficient algorithms
for constructing all centdian nodes in cactus graphs that use the cycle graph
algorithm as its last step, run in O(n logn) time (sequential solution), and in
O(n) time with O(n logn) messages (distributed solution).
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3.1 Finding a Centdian Node in a Cactus Graph: Sequen-

tial Algorithm

In what follows we present a number of observations and then explain the se-
quential algorithm for finding the block containing the centdian nodes (centdian
block) for a given α, in a cactus graph and finding all centdian nodes in the cac-
tus graph in O(n log n) time.

As stated in Lemma 4 there exists a single block of the cactus graph con-
taining all the median nodes (median block). Similarly, from Lemma 4 , there
exists a single block of the cactus graph containing all the center nodes (center
block). The effort to find the median and center block is linear [2, 6, 7].

Suppose, first, that the median block and the center block coincide. From
the definition of centdian function it follows that for each α, all the respective
centdian nodes are also in the common block. We can then apply the above
results to construct the centdian function in O(n logn) time.

Suppose next that the median block and the center block do not coincide.

Definition 3.1 Let P be the unique path connecting the pair of nodes of TCG

corresponding to the median block and center block. The set of blocks of the
cactus graph corresponding to the nodes of P , including the median and the
center blocks, is called the sausage (S) of the cactus graph (as depicted in
Figure 7).

Lemma 6 For any α value, the set of centdian nodes of the cactus graph is
located on the sausage subgraph.

Proof: Consider a node v not in a block belonging to S, then there is a block
B′ ∈ S and H node v′ ∈ B′ such that v′ is on every path connecting v to
the median block or the center block. In particular, from [6, 29], dist(v′) <

dist(v), sum(v′) < sum(v), and from the definition of the centdian function
α · dist(v) + sum(v) > α · dist(v′) + sum(v′). 2

The previous result implies that all centdian nodes are in the sausage. Al-
though not all nodes of the sausage are centdian nodes, the next theorem states
that each H node of the sausage is a centdian for some nonempty range range
of α.

Theorem 1 Each H node on a shortest path in the sausage connecting the
median block with the center block is a centdian for some value of α.

Proof: We use the notation in Figure 7, where H1 is the hinge node in the
median block, say B0, H1 and H2 are connected via block B1, etc., and Ht is
the hinge node contained in the center block, say Bt as presented in Figure 7.
Let P = {(dist(v), sum(v)) : v ∈ G}, and let LCH(P ) be the lower convex hull
of the set P in the (dist, sum) plane.

Let V ′ be the set of all nodes in the sausage.
Observation 1: Let v′ ∈ V ′ be in Bi, the block of the sausage connecting

Hi with Hi+1. If d(v′, Hi+1) ≥ d(Hi, Hi+1), then dist(Hi) ≤ dist(v′) and
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sum(Hi) < sum(v′). If v′ ∈ Bi contributes a point to LCH(P ), then dist(Hi) ≤
dist(v′) ≤ dist(Hi+1), and dist(v′) = d(v′, Hi+1) + dist(Hi+1).

Let V ′

i be the set of nodes in Bi, and let Pi be the respective points in the
(dist, sum) plane.

Suppose by contradiction that someH node does not contribute to LCH(P ).
For convenience of notation, suppose without loss of generality that this node
is H2 (Figure 7). Then there are nodes u′ ∈ V ′

1 and u” ∈ V ′

2 , such that u′

contributes to LCH(P1), u” contributes to LCH(P2), and

(sum(u”)− sum(H2))

(dist(H2)− dist(u”))
<

(sum(H2)− sum(u′))

(dist(u′)− dist(H2))

Let n1 be the number of nodes which are connected to H2 (only) via H1.
Let B1 be the block containing H1 and H2. Let V1 be the set of all nodes in G,
which are connected to H1 and H2 via some node of B1, which is neither H1

nor H2. (Note that V1 does not include H1 and H2.)
Let n2 be the number of nodes which are connected to H1 (only) via H2.

Let B2 be the block containing H2 and H3. Let V2 be the set of nodes in G,
which are connected to H2 and H3 via some node of B2, which is neither H2

nor H3.
With the above notation we have

sum(H2)−sum(u′) = n1d(H1, H2)−n1d(u
′, H1)−n2d(u

′, H2)+
∑

v∈V1

(d(v,H2)−d(v, u′)) ≤

n1d(u
′, H2)− n2d(u

′, H2) +
∑

v∈V1

d(u′, H2) =

(n1 − n2 + |V1|)d(u
′, H2) = (n1 − n2 + |V1|)(dist(u

′)− dist(H2)).

The inequality follows from the triangle inequality, and the last equality follows
from Observation 1. Next,

sum(u”)− sum(H2) = (n1 + |V1|+ 1)d(u”, H2) + (n2 − 1− |V2|)d(u”, H3)−

(n2 − 1− |V2|)d(H2, H3) +
∑

v∈V2

(d(v, u”)− d(v,H2)) ≥

(n1 + |V1|+ 1)d(u”, H2)− (n2 − 1− |V2|)d(u”, H2)+
∑

v∈V2

(−d(u”, H2)) = [(n1 + |V1|+ 1)− (n2 − 1− |V2|)]d(u”, H2)+

|V2|(−d(u”, H2)) = (n1 − n2 + |V1|+ 2)d(u”, H2) ≥

(n1 − n2 + |V1|+ 2)(d(H2, H3)− d(u”, H3)) =

(n1 − n2 + |V1|+ 2)(dist(H2)− dist(u”)).

All the inequalities follow from the triangle inequality, and the last equality
follows from Observation 1. Note that since H1 is on the path connecting H2 to
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the median block, sum(H2) ≥ sum(H1), which implies that n1 − n2 + |V1| ≥ 0.
Finally, from the above, we have

(sum(u”)− sum(H2))

(dist(H2)− dist(u”))
≥ (n1 − n2 + |V1|+ 2) >

(n1 − n2 + |V1|) ≥
(sum(H2)− sum(u′))

(dist(u′)− dist(H2))
.

The proof shows that the slope sequence is actually increasing at eachH node
by an additive term which is at least 2. From the above proof we can actually
compute the α range for each hinge node Hi. Specifically, it is sufficient to

calculate (sum(Hi)−sum(v))
(dist(Hi)−dist(v)) , for all nodes in Bi−1 ∪Bi, i ∈ 1, ...Ht. 2

H1

B0 B1 B2

H3
Ht

Bt

H2

B3

CG2

CG1

u

v

H4m c

The Sausage

Figure 7: Example of a sausage in a cactus graph, B0 is the median block, Bt

is the center block, the blocks in dashed circle the are the sausage, H1 is a H

node between B0 and B1, H2 is a H node between B1 and B2, H3 is a H node
between B2 and B3.

Remark: The above proof can also be used to conclude that if Bi is a
graft block of the sausage, then each node of the graft which is on the unique
simple path connecting the two adjacent hinges, Hi and Hi+1 is also a centdian
for some value of α. �

Let Hi be an hinge node on (any) simple path in the sausage connecting the
median block with the center block. We let [α′

i, α
′′
i+1] denote the range of α

for which Hi is a centdian node of the cactus graph.

Lemma 7 For each i, 1 ≤ i < t and α′

i < α < α′′
i+1, the centdian block

corresponding to α is the single block in S containing both Hi and Hi+1.
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Lemma 8 For any range of α, all the centdian nodes can be found in O(n log n)
time in a cactus graph.

Proof: Using the O(n) time algorithms in [5] and [29], compute sum(v) and
dist(v) for all nodes of the cactus graph. Then we need to find the (lower)
convex hull of the points (dist(v),sum(v)). The extreme points of the lower
envelope are the breakpoints of the Cent(α) function. If (dist(v∗),sum(v∗)) is
such an extreme point, then the α range connecting this extreme point to node
v∗ is the range between the two slopes connecting this breakpoint to its two
neighbors on the hull. All the extreme points on the hull correspond to nodes
in the sausage. The sequential time to find the above hull is clearly O(n log n).
In case we have given α, finding a centdian can be done by performing a binary
search in O(log n) time, over the extreme points of the hull (or the respective α
ranges). 2

3.2 Finding Centdian in a Cactus Graph: Distributed Al-

gorithm

In the following section we present a new distributed algorithm for finding cent-
dian nodes in a cactus graph in O(n) time with O(n log n) messages of size
O(log n) bits. For this purpose, we define node x as the cactus graph leader,
which can be found by using the distributed algorithm in [1]. Algorithm 2 shows
the distributed parts of the algorithm. The distributed algorithm follows the
same steps as in our sequential solution.

Input: Cactus Graph
Output: All centdian nodes

1 Find a leader in the cactus graph based on [1]
2 Each node checks whether it is an H node based on a Depth First Search
tour.

3 Have each H node identify its cycle blocks.
4 Recognize the cactus graph “leaves”.
5 Locate the median block based on [21].
6 Locate the center block based on [2].
7 Identify the cactus graph sausage.
8 Calculate the optimal λ range for each node in the sausage, finding all
the breakpoints on the convex hull.

Algorithm 2: Cactus Graph Algorithm

Each node in the cactus graph having more than two neighbors needs to
determine whether it is an H or an NCG node. The following distributed
algorithm recognizes the H nodes.

The main idea is to apply a Depth First Search (DFS) tour to the cactus
graph. Node x (leader node) sends a findH(id) message to one of its neighbors,
where id is the unique leader ID. When a node u, having only one neighbor,
receives a findH message, it sends the message back to its neighbor. When a
node v having more than one neighbor receives a findH message from one of
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its neighbors, it randomly chooses one of its unmarked edges (other than the
receiving edge), marks it, and sends the findH message from the chosen edge. If
a node has no more unmarked edges, it sends a findH message back, through the
DFS tour backtracking path.

Lemma 9 After the DFS tour, every node correctly determines whether it is
an H node.

Proof: A node that sends a findH message via one of its edges and receives a
message back can conclude that both edges are on the same cycle. Since DFS
traverses all the edges the claim follows. 2

Thus, by performing a DFS tour on the cactus graph a findH message travels
on the edges no more than 2∗ |E| times. At the end of the algorithm, each node
determines whether it is an H node, and if so, calculates the number of cycles
it belongs to and identifies the neighbors in each cycle.

After a node u identifies itself as an H node, we have to compute the number
of nodes in the cycle blocks with u and the number of H nodes in each cycle
block containing u. Each H node sends a countCycle(id, i = 1, h = 1) message to
one of its neighbors in each cycle block, where id is the unique node ID, i

represents the number of nodes so far in this cycle block, and h is the number
of H nodes detected so far in this cycle block. When a C node z receives a
countCycle message, it sends a countCycle(id, i++, h) message to another neighbor.
When an H node v receives a countCycle message it checks whether id == idv . If
so, it saves the i value as the number of nodes and the h value as the number of
H nodes in this cycle block. If not, it sends a countCycle(id, i++, h++) message
to another neighbor belonging to this cycle.

In order to find the median block in a cactus graph in a distributed manner,
each H node needs to compute the number of nodes in each of its subgraphs.
This can be computed by propagating information from the cactus graph leaves
to a root node, and then from the root back to the leaves. At the end, each node
will determine the number of nodes in each of its subgraphs. We distinguish
between the cases of NCG nodes and H nodes. Our distributed algorithm is
based on the assumptions and Lemmata of [6].

An NCG node with one neighbor sends a subGraphNodes(id, i = 1) to its
neighbor, where id is its unique node ID. Any other NCG node receiving a
subGraphNodes message waits until it receives subGraphNodes messages from all but
one of its neighbors. Then, it saves the number of nodes in each of its subgraphs
and sends a subGraphNodes(id,

∑
i+ 1) message on its last edge, with the sum of

all i values it received plus one (itself).
Each H node has to wait until receiving the information from all the H

nodes in each of its cycles and then propagate the information to the rest
of the cactus graph. Note that the neighbors of an H node in a graft block
are the closest neighbor nodes, while the neighbors of an H node in a cycle
block are the H nodes in this cycle. An H node that has a leaf cycle sends
a subGraphNodes(id, numInCycle) message under the following conditions, where
numInCycle is the number of nodes in the subgraph of H :
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• If the H node has only one additional graft or cycle (not leaf) block, it
sends a subGraphNodes(id, numInCycle = i) message to its neighbor in the
block, where i is the number of nodes in the leaf cycle.

• If the H node has more than one graft or cycle block, it waits until it
receives subGraphNodes messages from all but one of its neighbors, saves the
information about the number of nodes in each subgraph, and sends a
subGraphNodes(id, numInCycle =

∑
i+ 1) message, with the sum of all the i

values it receives plus one (itself) to its last neighbor.

When an H node u (without a leaf cycle) receives a subGraphNodes message
with id 6= idu , u decreases its h value of this cycle by one and checks whether h

equals one. If not, u saves the information about its subgraph. If yes, u sends
a subGraphNodes message under the condition of an H node with leaf cycle as
explained above. An H node z receiving subGraphNodes messages from all its
neighbors concludes that it is the root, saves the information about the number
of nodes in each subgraph, and sends its ID as the root ID and the information
about the number of nodes in each subgraph to its neighbors. Each node (H or
NCG) receiving subGraphNodes messages from all its neighbors with their root
ID, saves the information about the number of nodes in each subgraph and
sends the information to its neighbors. Therefore, at the end of this process,
each H node knows the number of nodes in each of its subgraphs. Then, using
the algorithm from [21], we can search in a distributed manner for either a cycle
block in which all its H nodes have cut(H) ≥ 0, or for an NCG node v in which
∆(v, w) ≥ 0 for all w neighbors of v are the median blocks.

The distributed algorithm for finding the center block in a cactus graph is
similar to the above algorithm and based on [2, 7](please refer to the paper for
more explanation). The main difference is that each H node propagates its
current dist value instead of the number of nodes in each block. At the end,
each H node calculates its radius. Then, in each cycle block one of the H nodes
is selected as the leader of the cycle block [1], and sends a radius message in
its cycle block to collect the radii of the H nodes. With this information, each
cycle block leader can calculate the radius of its cycle block and check whether
its block has more than one subgraph with the maximum radius [2]. Finally,
the H leader of the cactus graph can find, in a distributed manner, the cycle
block that have more than one subgraph with the maximum radius to be the
center block.

The next stage is to find the sausage of a cactus graph. Node u, which is
the H leader of the median block, sends findSausage(id, TTL=n) messages to its
neighbors. A C or NCG node receiving a findSausage message, sends it to all
its neighbors. An H node receiving the findSausage message, marks the edge
receiving the findSausage message, decreases the TLL by one, and propagates the
findSausage message to its neighbors. When the findSausage message is received by
node v, which is the H leader of the center block, it sends findSausage(id, TTL=n)

messages backward with its own ID. Each H node that receives both mes-
sages from different blocks (median and center) concludes that it belongs to the
sausage.
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Lemma 10 The algorithm correctly determines the sausage.

Proof: According to the sausage definition, we need to determine the nodes in
the blocks between the median and center blocks. Clearly, if a node receives
message from headers of both (center and median) blocks, it can conclude that
it belongs to the sausage, otherwise it does not belong. 2

Finally, we need to find the optimal α range for each node v in the sausage,
which is equivalent to find the breakpoint of the convex hull (see Lemma 8).
Therefore, after all the nodes belonging to the sausage have identified them-
selves, they need to compute a convex hull of points (dist(v),sum(v)) and not
the convex hull of themselves. Thus, each node in the sausage sends to the
leader, the H node connecting the median block (H1 in Figure 7) to the sausage,
these values, dist(v) and sum(v) (overall n messages). The leader will compute
the convex hull having these values and find the optimal α range, if any, for each
node v in the sausage. Then the leader will broadcast the entire solution to all
of the nodes in the sausage. This can be done in O(n) time with O(n log n)
messages.

The running time of the different parts of the algorithm that finds the cent-
dian nodes in the cactus graph is O(n) time and O(n logn) messages. First, each
of the algorithms starts with finding a leader in the cycle block/cactus graph and
the cycle block/cactus graph size using [1] in O(n) time and O(n logn) messages.
To find the centdian nodes in a cactus graph, each node determines whether it
is an H node, and this can be done in O(n) time using O(n) messages. Then,
each H node evaluates the number of nodes in each of its subgraphs in O(n)
time using O(n) messages, and in additional O(n) time with O(n) messages we
can find the sausage S. Finally, to calculate the α range for every node in the
sausage we need O(n) time using O(n log n) messages.

4 Conclusions

In this paper, we have investigated the properties of the behavior of centdian
nodes in a cycle graph and presented efficient sequential and distributed algo-
rithms to find centdian nodes in cactus graphs in O(n log n) time for sequential
solution and O(n) time using O(n log n) messages for distributed solution. It
is still unknown whether the O(n log n) bound for sequentially finding all the
centdian nodes, even in a cycle graph, is optimal.

The exact complexity of finding centdian nodes in a cactus graph with
weighted nodes is still open. In the following we present a short discussion
to shed light on a possible solution. Suppose that each node v is associ-
ated with 2 weights, a(v), b(v) > 0. Define, sum(v) =

∑
u∈V a(u)d(u, v) and

dist(v) = maxu∈V b(u)d(u, v) [36]. The definitions (1), (2), (3) depending only
on the dist(v) and sum(v) remain the same. If b(v) is constant for all v and equal
to 1, our results extend directly to this model, without affecting the complexity.
For general nonnegative coefficients, some of the properties still hold. There is
a unique median block and a unique center block. Cent(α) is still concave and
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piecewise linear with at most n breakpoints. We can apply our approach to
generate Cent(α), but the complexity is higher. The effort to compute sum(v)
for all v ∈ V , is still O(n) by the algorithm in [5]. However, computing dist(v)
for all v ∈ V seems to be more expensive. For a cycle there is an O(n log n) al-
gorithm in [2] for finding dist(v) for all v, in the weighted case. For a tree there
is an O(n log n) algorithm in [41]. We are not aware of any published algorithm
for a general cactus. However, we suspect that this can be done in O(n log3 n)
time, by using the above algorithms and the 2-centroid decomposition scheme
for series-parallel graphs in [20].
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