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Abstract

We present a system for the visualization of information modeled in
terms of a graph on a smartphone. First, we show the adopted visu-
alization paradigm, that allows the user to navigate the graph using a
focus-based approach. Second, we tackle the algorithmic challenges posed
by the new visualization paradigm, introducing and experimenting effec-
tive heuristics. Finally, we show several customizations of the system
aimed at exploring and at visualizing popular Web contents like social
networks and Wikipedia. Current implementations include the iPhone
and the Google Android platforms.
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1 Introduction

Millions of people in the world have in their pocket a smartphone and such a
number is rapidly increasing [3]. Such a widely used device is exploited to quickly
access, from almost everywhere, different types of data on different subjects and
a large amount of such data is relational information. For example, smartphones
are used to access social networks like Facebook or Twitter, ontologies like the
Wikipedia network of concepts, or technical information related to the job of the
smartphone’s owner like the connections of a computer network or the delivery
routes of a product distribution system.

Graph Drawing can play an important role in supporting information visual-
ization on the smartphones, provided that the methodologies and the tools that
are typical of this research area are recast to meet the needs of such a challeng-
ing device. Indeed, different information contexts have already changed their
visualization methods in this direction. For instance, on-line newspapers have
special visualization formats that are designed for the smartphone. However, as
far as we know, the only previous attempt to draw graphs on smartphones [8]
uses traditional Graph Drawing techniques.

Dealing with smartphones, the main challenge that visualization applications
have to face is, of course, the small screen size. On the other hand, such a
strong limitation comes together with new technological opportunities that can
be exploited to support the interaction. They are the multi-touch screen that is
able to capture commonly used gestures like pinch, flick, and slide, sensors like
the accelerometer and the compass, and sounds and vibrations.

Since any graph is too large for the little screen of the smartphones, a pivotal
reference point for designing interfaces and algorithms for drawing graphs on
such a device is the literature on drawing very large graphs. One, for example,
could use the fish-eye approach [9] where the details of the drawing decrease
according to the distance that separates them from a point chosen by the user.
However, using Shneiderman’s information visualization mantra [10] (overview
first, zoom and filter, then details-on-demand) in this context seems to be un-
feasible. In fact, it is unclear how to provide, on such a small screen, a suitable
overview of the information.

In this paper we present a system for the visualization and navigation of
relational information on the smartphones. Section 2 illustrates the visualization
and interaction paradigm we devised, that (i) is based on showing to the user
only a small subgraph defined by a focus vertex and its neighborhood and (ii)
exploits smartphone-specific interaction primitives to explore the graph. The
paradigm is inspired by the navigation approach of [2]. Section 3 shows how
even such a simple visualization paradigm can originate interesting algorithmic
issues. Section 4 presents the Graph Drawing algorithms that we adopted and
implemented into the system. Section 5 discusses experimental results that put
in evidence the effectiveness of such algorithms. Section 6 gives technical details
on the implementation and presents challenging case studies.
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2 A Visualization and Interaction Paradigm

The paradigm is based on a navigation approach. The user selects a focus

vertex v of the graph of interest. This is done with some selection criteria that
depends on the application context. Let N(v) be the set of neighbors of v, that
is assumed circularly ordered, the drawing contains vertices and edges as follows
(Fig. 1 shows an example of visualization).

(a) Focus vertex 11 with lobe

{4, 9, 22, 0, 10}.

(b) Visualization of the focus vertex and of a lobe on a

smartphone.

Figure 1: An example of visualization.

Vertices: the drawing contains v and a subset ωL
i , called lobe, of N(v), where L

(lobe size), is the size of the lobe and the elements of ωL
i have consecutive

positions i, . . . , (i+ L− 1) mod |N(v)| in N(v).

Edges: the drawing contains the edges from v to the vertices of ωL
i (radial

edges), the edges between vertices of ωL
i (inner edges), the edges that

have one end-vertex in ωL
i and one end-vertex in N(v) \ωL

i (outer edges),
and the edges that have one end-vertex in ωL

i and one end-vertex that is
not in N(v) (external edges).

The focus vertex is placed in the center of the bottom side of the drawing, while
the vertices of the lobe lie on an half-ellipse centered at the focus vertex. This
pattern, together with other graphical features, suggests to the user that ωL

i is
only a subset of N(v) and that the vertices of N(v) \ ωL

i (outer vertices) are
under the bottom side of the screen. This approach both allows to deal with
large degree focus vertices and supports visualization of very large graphs. In
fact vertices whose distance from the focus vertex is bigger than 3 do not enter
the screen. Therefore those vertices and their incident edges can be loaded on
demand without the need for the whole graph to be stored in the main memory
of the device.

External edges exit the drawing from the left, top, right borders of the screen,
giving the impression that the rest of the graph is outside the screen. Their
external end-vertices are not represented. Outer edges are directed downward,
leading to vertices of N(v) that are not represented and that “are under the
bottom side of the screen”.



112 Da Lozzo et al. Drawing Graphs on a Smartphone

Different types of edges have different thicknesses. Radial edges, that do
not give additional information, are thin, while inner edges, that represent rela-
tionships between vertices of the lobe, are emphasized. External edges could be
too many to be represented explicitly, hence they are drawn with straight-lines
only up to a certain number. Over that number they are shown with a shadow
exiting the drawing (see vertex 0 of Fig. 1). Essentially, the information given
to the user is if they are 0, a few, or a lot. Similar graphic features are used for
outer edges.

There are several possibilities to help the user in perceiving the number of
outer vertices. In iPhone implementations (see Fig. 1) we did the choice of
adding to the bottom of the screen a cloud of small points whose number is a
function of |N(v) \ ωL

i |. In Android applications (see Fig. 8(b)) we surrounded
the focus vertex with a half ellipsis again with size proportional to |N(v) \ ωL

i |.
The user interacts with the graph according to the following primitives.

There are vertex oriented primitives like focus change, navigation backtrack,
and execution of actions associated with vertices (e.g., open a browser or send
an sms) and lobe oriented primitives like lobe shift, lobe resize, and lobe layout
temporary optimization.

The focus change primitive substitutes the currently visualized subgraph
with the subgraph induced by a new focus vertex and its neighborhood. See
Figs. 2(a) and 2(b). The gesture used to change the focus consists of dragging
the vertex of the lobe that will be the new focus towards the focus position.

(a) A focus change starts. (b) Focus change result.

Figure 2: Usage of the focus change primitive.

The backtrack primitive shows the previously displayed lobe. The user can
navigate the sequence of the explored focus vertices by performing a double
fingers flick towards the bottom or top side of the screen. A side feature of our
framework is the capability of extending the interaction experience by executing
an action related to a selected vertex. For example, if the input graph is a social
network, possible actions are: showing more information about the individual,
sending an e-mail or an sms, deleting him/her from the graph, etc. The gesture
associated with this action is a double tapping or a pressure on the vertex.

A primitive that changes the lobe is lobe shift. Let ωL
i be the visualized

lobe, the effect of lobe shifting is to substitute ωL
i with ωL

k where k = i ±
1 mod |N(v)|. Sliding a finger on the screen is the natural way to do this.
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However, if |N(v)| is very large this interaction can be unsuitable to reach
vertices of N(v) that are far from the current lobe. Hence, the user needs a
single gesture to skip a large portion of the subgraph. This is obtained with
a flick of finger on the screen. The number of the vertices that are skipped is
proportional to the speed of the gesture. Alternatively, the same primitive can
be invoked using the accelerometer by changing the slope of the device or using
the compass by changing the orientation of the device.

Zooming is a quite common functionality offered by smartphone applications.
In our paradigm this function corresponds to a lobe resize. Let ωL

i be the
visualized lobe, the effect of this function is to show the lobe ωM

k where k = i
if (M = L) ∨ (M = L + 1) or k = i − 1 mod |N(v)| if M = L + 2. The
gesture used to resize the current lobe is a multi-touch gesture called pinch, this
consists of moving together two fingers on the screen, increasing or decreasing
their distance. Although in our implementations (see Par. 6) the size of vertices
does not change when the lobe size increases or decreases, it’s likely that some
application contexts could also get benefit from scalable representations of the
vertices.

The current order of the vertices of a lobe could lead to a drawing that
is unpleasant. Hence, we provide a local optimization feature that temporary
reorders the vertices of the lobe in such a way to increase the readability of the
drawing. This local optimization is invoked by performing a double tap on the
screen.

In order to help the user in maintaining the mental map during the naviga-
tion, a mechanism for morphing between successive drawings, supported by a
smooth movement of edges and vertices, is provided. Hence, for all primitives,
vertices move slowly towards their final positions. In lobe oriented primitives,
vertices entering (exiting) the current lobe come in (out) from the bottom side
of the screen. Also, inner edges can become external or outer and vice-versa,
and their representation features change coherently. The flick function is ac-
companied by an inertial rotation of the neighborhood of the focus vertex. The
morphing features of the focus change primitive are more complex than those
described above. Since they depend on the order of the lobes, they are discussed
in Section 4. With the purpose of helping the user interaction experience, sounds
and vibration events are associated with the primitives. They are selected in
such a way to be consistent with the effects of the corresponding primitives.

3 Choosing a Lobe Order

A central aspect of the visualization paradigm is the left-to-right order of the
vertices of the lobe. The specific choice of this order may depend on the specific
application. However, the need of preserving the user’s mental map implies that
the orderings of contiguous lobes of a focus vertex v are consistent. Since this
constraint holds for all the lobes of v, this implies the need of choosing a unique
order for all the vertices of N(v).

Trivial choices are possible, like using the alphabetical order, that can be
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suitable for some applications. On the other hand, it is also possible to make
different choices, according to aesthetics that are related to the selected visu-
alization paradigm. We deepen two alternatives corresponding to two aspects
of the paradigm. The first is the one of displaying the relational information
as clean as possible, while the second is the one of showing as much relational
information as possible. The two choices conflict each other.

The first choice is the one of selecting an order that tries to minimize the
visible crossings. Given a focus vertex and a lobe, a visible crossing is a crossing
between two inner edges. We concentrate only on visible crossings because the
only edges that are completely visible for a certain lobe are the inner edges
and the radial edges. Also, crossings with radial edges do not compromise
readability. More precisely, we try to minimize the average number of visible
crossings for all the lobes of a focus vertex.

The problem of minimizing the visible crossings has similarities with a clas-
sical Graph Drawing problem, called circular crossings minimization problem.
In that problem, the vertices lie on a circumference, the edges are straight line
segments, and a circular order is searched that minimizes the total number of
crossings. See, e.g. [6, 11, 1, 4]. However, as shown in Fig. 3, the two problems
are different. Namely, an ordering that minimizes the circular crossing number
not necessarily minimizes the number of visible crossings for a given lobe size.
The converse is also true.

Figure 3: Circular crossings and visible crossings of N(v). (a) Order with
minimum total number of crossings. (b) Order with minimum number of visible
crossings if the lobe size is equal to 4. (c)–(e) Lobes with 0 visible crossings.

Observe that minimizing the visible crossings with a lobe whose size equals
|N(v)| is equivalent to solving the circular crossings minimization problem for
the subgraph induced by N(v). Unfortunately, such a problem has been proved
to be NP-complete [7]. Hence, solving in practice the minimization of the visible
crossings requires the usage of heuristics.

Even if the two problems are different, one may ask whether heuristics for
the circular crossings minimization are effective also for our problem. Our ex-
periments show that this is not the case (see Section 5). Hence, we used in our
system a special purpose algorithm that is described in Section 4.

A second alternative for choosing an order is to select one that tries to
maximize the visible edges, that is to minimize the number of edges that are
not inner edges in any lobe. This corresponds to minimizing the information
that is lost for a certain focus vertex. Let L be the lobe size and let v be the
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Algorithm 1 Lobe Ordering Algorithmic Framework

N ← |N(v)|
S ← N(v)
while S 6= ∅ do
Nexts← select a start vertex s ∈ S
while Nexts 6= ∅ do
1. extract a vertex u ∈ Nexts according to the adopted processing policy

2. S ← S \ {u}
3. assign priority pu(x) to each position x ∈ {0, ..., N − 1}
4. place u at position x so that minx pu(x)
5. Nexts ← Nexts ∪ {unplaced vertices of N(u) ∩N(v)}

end while

end while

focus vertex. Observe that it might not exist an order for N(v) in which every
edge with end-vertices in N(v) is an inner edge for at least one lobe of size L.
As an example, consider the case when the subgraph induced by N(v) contains
the clique KM with M ≥ 2L. Of course, this information is not lost. In fact,
such edges will be visible selecting one of the end-vertices of the missing edges
as focus vertex.

The visible edges problem has been studied (with the name circular band-

width problem) and shown NP-complete in [5]. Hence, even for this second
problem the usage of heuristics is required.

4 Algorithmic Framework

The algorithmic framework that we have developed in our system is inspired
by the algorithms for the circular crossings minimization problem presented
in [6, 1, 4] and allows to tackle both the visible crossings minimization and the
visible edges maximization problems. The typical parameters of the algorithms
in [6, 1, 4] are:

1. a start vertex s of the graph to be drawn;

2. the policy which selects the next vertex to process, and

3. the position that is chosen for the selected vertex.

We make use of the same general setting. The algorithmic framework we pro-
pose is Algorithm 1. Notice that Algorithm 1 refers to a vertex processing
policy that is not specified. The main processing policies used in the literature
for determining the insertion sequence are: Random, vertices are processed in
random order; Maximum degree, at each step, a vertex with the largest number
of neighbors is placed; Minimum degree, at each step, a vertex with the least
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number of neighbors is placed; and Connectivity, at each step, a vertex with the
largest number of already placed neighbors and (in case of ties) the least number
of unplaced neighbors is selected. In our experiments we test the effectiveness
of each of them.

Observe that the inner cycle of Algorithm 1 involves vertices belonging to the
same connected component. Indeed, inside this cycle, a breadth-first scanning
of the connected component is performed. The outer cycle is used to iterate the
inner one over all the connected components of the subgraph induced by N(v),
until all vertices are placed.

In order to evaluate the impact (in terms of the qualities of interest) of the
placement of the selected vertex in each available position of the current layout,
with respect to a lobe size L, we introduce a real valued priority function. The
function pu(x) : {0 . . .N − 1} → R estimates the quality of the position x for
vertex u considering the cost associated with the edges that link u to its already
placed neighborhood Np(u). This function, in turn, relies on a cost function

ck(d, L) : {1, . . . , ⌊N/2⌋} × {1, . . . , N} → R

whose purpose is to estimate the burden produced by an edge of length d in a
layout with lobe size L.

Let s and t be two positions on the circular sequence, function length(s, t) =
min(|s− t|, N − |s− t|) computes the distance between s and t. Also, let π(w)
denote the position of a vertex w. We define:

pu(x) =











∑

w∈Np(u)
ck(length(x, π(w)), L) if x is available

∞ otherwise

Different cost functions are possible. Fig. 4 shows two possible cost functions
aimed at minimizing the number of crossings between inner edges. The former
function cL(d, L) (MinLobe) estimates the cost of an edge of length d in a lobe
of size L as the maximum number of visible crossings this edge can produce
if there were (in the lobe) all the edges that are able to cross it. The latter
function cLS(d, L) (MinLobeSum) multiplies the cost estimated by the previous
function by the number of lobes the edge will appear in. Observe that none
of the two functions implements a policy of type “the shorter a new edge the
better.”

Actually, the current implementation of the algorithm associates with each
location a list of priority values that are sequentially evaluated. This feature
makes it possible to choose the final position of a vertex using multiple selection
criteria (or, equivalently, a multi-objective function), whose relative importance
is defined by the order they are taken into account.

If we want to maximize the visible edges, a simple cost function whose pur-
pose is to maximize the number of edges that can become inner edges in some
lobe is function cI(d, L) (MaxVisibleEdge), defined as follows: cI(d, L) = −1 if
d < L and cI(d, L) = 0 if d ≥ L.
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
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Figure 4: Cost functions for minimizing visible crossings.

If we find that two positions have the same priority, we break the tie using
a cost function called MinEdgeLength, that is cD(d, L) = d ∀d ≤ ⌊N/2⌋, ∀L ≤
⌊N/2⌋+1. It is used to avoid increasing too much the distance between currently
used positions. This choice has two major benefits: (i) it produces fewer circular
crossings than a random placement and (ii) it makes it easier to reveal hidden
information by means of the zoom function.

Crossings among inner and outer edges are kept low by using as second level
priority function the MinEdgeLength cost function for all algorithms.

As observed in Section 2, special attention is needed to perform an effective
morphing procedure for the focus change primitive from the current focus v to
the new focus u. This has important effects also in the algorithmic framework.
Let ω and θ be the visible lobes of v and u, respectively.

It is essential, to preserve the user mental map, to order the vertices in N(u)
such that the relative order of the vertices in N(u) ∩ ω remains the same of
that of ω. Also, since a lobe has a limited size and since |N(u)| can be much
larger than the lobe size, there are degrees of freedom in selecting the vertices
that enter θ. From this point of view, it is important to place in θ at least some
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vertices that help the user not to loose the context. Let w1 (w2) be the first
vertex of ω encountered moving in ω from u to its left (right) and belonging to
N(u). Observe that one or both w1 and w2 might not exist. If they exist, θ
must contain at least one of w1 and w2.

Two cases are possible: either |N(u) ∩ ω|+ |N(u) \N(v)| ≤ L or not.
In the first case all the external edges that enter the drawing can become

radial edges (the lobe size is large enough). All their end vertices are placed in
θ after w1 and/or before w2, while possible free positions in θ are assigned to
the remaining vertices in N(u).

In the second case only a subset of the external edges entering the drawing
can become radial edges (the lobe cannot host, indeed, all their end vertices).
In order to keep at least one of w1 and w2, the number of external vertices of u
entering θ must not exceed L−min(2, |N(u)∩ω|). Again, the selected external
vertices of u are placed in θ after w1 and/or before w2.

Notice that the above algorithmic approach, since the positions are explic-
itly represented, easily integrates constraints related to the lobe ordering and
composition discussed above.

In order to give an impression of continuity, morphing from ω to θ, vertices
move as follows. The selected external vertices come from the top side of the
screen during the animation associated to the primitive, towards their final po-
sition. Context vertices move towards the lobe borders. The remaining vertices
move towards the bottom side of the screen or to their final positions in θ.

5 Experimental Analysis of the Algorithms

In order to assess the effectiveness of our algorithmic techniques we performed
several experimental tests using a suite of randomly generated connected graphs,
where each graph represents the subgraph induced by N(v) for some choice of
focus vertex v. For each test we generated an average of 5, 000 graphs according
to two modalities:

1. fixed number of vertices (100) and variable density (from 0.1% to 100%);

2. fixed density and variable number of vertices (from 10 to 100).

For both types of graphs we used a fixed lobe size L = 10. This value
represents a good compromise between the need of maximizing the number of
vertices of the lobe and the limited space available on the screen of a smartphone.

We evaluated the algorithms according to the following metrics:

1. number of visible crossings, that is the number of crossings between inner
edges;

2. visible edges ratio, that is the ratio between the number of visible edges
and the total number of edges of the graph.
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(a) |N(v)| = 100, L=10.
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(b) |N(v)| = 100, L=10.
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(c) |N(v)| = {10, ..., 100}, L=10, density=15%.
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(d) |N(v)| = 100, L=10, density=0− 30%.

 0

 50

 100

 150

 200

 250

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

N
um

be
r 

of
 v

is
ib

le
 c

ro
ss

in
gs

Density

Random (Min)

CSum (Avg)

(e) |N(v)| = 100, L=10, density=0− 100%.
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(f) |N(v)| = {10, ..., 100}, L=10, density=15%.

Algorithm Processing policy Cost functions (2: MinEdgeLength)

RSum Random 1: MinLobeSum

RLobe Random 1: MinLobe

CSum Connectivity 1: MinLobeSum

CLobe Connectivity 1: MinLobe

RVis Random 1: MaxVisibleEdge

CVis Connectivity 1: MaxVisibleEdge

CMaxSum Connectivity 1: MaxSumLobe (i.e. −cLS(d, L))

Figure 5: Experimental results.
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A selection of the obtained results is presented below.
In the experiment shown in Fig. 5(a) we compare a simple random order

with the BB algorithm [1], chosen as one of the best algorithms for computing
a circular layout with few crossings. In our implementation we decided not to
consider the biconnected components of N(v) separately, in order for BB to
exploit all available positions of the layout, as it happens for the devised algo-
rithms. Each point shows the average number (computed over all lobes) of the
visible crossings for a graph whose density is reported on the x-axis. A ran-
dom order produces fewer visible crossings than the BB algorithm. Such results
suggest that the circular approach is not a good choice for the visible crossings

minimization problem. The reason is that the tested circular algorithm tries
to minimize the total length of the edges. However, this produces many short
edges that more easily get inner edges, increasing the possibility of generating
visible crossings.

In the experiment shown in Fig. 5(c) we compare several variants of our
algorithm (see the table in Fig. 5). We changed the processing policy that selects
the next vertex to insert (Random or Connectivity) and the cost functions for
each level of priority (MinLobe or MinLobeSum). Observe that in all cases
we used, for a second priority level, cost function MinEdgeLength. Mixing
these features we obtained four different algorithms to evaluate (RLobe, RSum,
CLobe, CSum). The graphic shows the comparison between these algorithms
with a variable number of vertices and fixed density 15%. It is evident that the
choice of a good processing policy has a strong influence on the number of visible
crossings. Algorithms that use the connectivity policy perform better than those
using the random policy. For a given processing policy, the MinLobeSum cost
function is slightly better than the MinLobe.

In the experiment shown in Fig. 5(e) we compare the average number of
visible crossings of the CSum algorithm with the minimum number of visible
crossings obtained in all lobes using a Random placement. The graphic shows
that CSum has a similar trend to Random with slightly better results. Roughly,
given an unordered layout and selecting the lobe with the minimum number
of visible crossings, the algorithm generates a drawing with the same average
number of visible crossings for all the lobes.

In the experiment shown in Fig. 5(b) we compare the visible edges ratio
between Random order and BB Algorithm. Although BB is not designed for
solving this problem, drawing shorter edges decreases the number of edges hid-
den by the paradigm and therefore increases the visible edges ratio. In the
graphic we observe that BB Algorithm has a better behaviour than the one of
a Random order.

For the problem of maximizing the visible edges we follow two different ap-
proaches. The first is to reverse the cost function of CSum in order to increase
the number of crossings and consequently the number of visible edges. The
second approach is a greedy approach where a vertex is placed in the position
that generates the highest number of visible edges. This cost function is associ-
ated with a Random and Connectivity processing policy. A Random selection
decreases the effectiveness of the results of the MaxVisibleEdge cost function.
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With an equal processing policy the MaxVisibleEdge function is slightly better
than MaxSum. (See Fig. 5(d).)

In the experiment shown in Fig. 5(f) we compare CVis algorithm with BB
algorithm. CVis has better results than BB, especially with a small number of
vertices (CVis keeps visible 100% of edges for graphs with more vertices than
BB). Increasing the number of vertices both algorithms have the same trend
and CVis has generally an improvement of 2− 3%.

5.1 Zoom function evaluation

Since resizing the lobe by means of the zoom function represents one of the
most powerful primitives offered by the paradigm, tests have been performed
in order to show the effectiveness of the proposed algorithms as the lobe size
changes. The experimental analysis has been performed letting L changing
within the range [1, ⌊N/2⌋ + 1] because when L reaches the value ⌊N/2⌋ + 1
the problem of maximizing the visible edges becomes trivial and such a range
certainly covers the range that is useful in practical applications for the visible
crossing minimization problem.
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Figure 6: Zoom function evaluation.

Figure 6(a) show a comparison between Random, BB, and CVis algorithms
in terms of visible crossing as the lobe size changes. Notice that the behaviour
of BB is such that for a large range of lobe sizes it produces an higher number
of visible crossing than a Random placement of the vertices (see also Fig. 5(a)).
CSum results in a maximum number of visible crossings per lobe that is always
bounded above by the average number of visible crossings per lobe of both the
two shown algorithms.

In Fig. 6(b) we compare the growth of the number of visible edges among
Random, BB, and CVis algorithms. The uniform distribution of the edges’
length causes the Random’s curve to grow linearly in the lobe size (i.e. the
number of edges of length k is statistically independent from k), whereas CVis
follows an ideal concave behaviour. BB instead, by applying a shortest edge
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length strategy, has good results for small lobe sizes but its performance de-
creases rapidly for larger ones.

5.2 Selecting an algorithm

An experimental comparison in terms of both visible crossings and visible edges
between the main discussed algorithms is provided. Figures 7(a) and 7(b) clearly
identify the CVis algorithm as the best choice for many practical contexts. In
fact while showing more information than BB does, it also keeps the number
of visible crossings low for those lobe sizes that the user will reasonably select
during the navigation of the graph in the smartphone’s screen.
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Figure 7: Visible crossings vs visible edges.

6 Implementation and Case Studies

The project has been fully driven by the experiments performed on the devices.
This led to two software libraries, one for the iPhone OS 3.1.3 (Objective-C
language) and the other for the Google Android 2.1 (Java language) platforms.
Both the libraries were designed to have fully customizable graphical and be-
havioural components and to allow simple usage for the software developers.

Although the two platforms are very different, we developed the software so
that both prototypes have the following common features:

1. use vector graphics;

2. build a new abstract layer over the platform to manage animations and
gestures; and

3. optimize the number of operations and edge drawings needed for each
display refresh.
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Because of the limitations of the platform, the Android release required also
to develop platform-specific functions to minimize the number of refreshes.

We implemented several case studies. Two of them, that refer to the context
of social networks, are especially interesting. Notice that, in this context, the
effectiveness of the devised algorithms is clearly visible and appreciable in the
developed applications. In fact, because of the average density of the social
networks, the placement of vertices according to a random or alphabetical order,
typically shows a minimal amount of inner edges. With respect to the relational
information represented, even the MinLobeSum cost function (that aims at
minimizing visible crossings) performs better of those orderings.

The first case study uses the Facebook API to determine the graph of the
friendships of a Facebook user (see Fig. 8(a) and 8(b)). These APIs allow
to read (and write) objects and social connections of the Facebook Graph.
The objects, that are the vertices of the graph, have a unique identifier (ID)
and their associated data can be retrieved with a simple fetch of the URL
https://graph.facebook.com/ID. All objects are linked together through re-
lationships of different types for different objects. We retrieve the connections
using URLs of the form: https://graph.facebook.com/ID/CONNECTION_TYPE.
Obviously, in order for the queries to succeed they must not violate the privacy
restrictions set by the users. The user can provide his/her personal creden-
tials (username and password) to our FacebookView Application through an
input window. The system automatically generates the necessary requests to
determine the subgraph of the Facebook Graph induced by the set of vertices
consisting of the facebook user and his/her friends. The initial focus vertex
corresponds to the user that is owner of the account. Actually, in the current
implementation the set of vertices (and relationships between them) is extended
at run-time with queries that refer to resources (events, photos, links, videos,
etc.) liked or tagged by other users.

The second case study shows the public relations exposed and available on
the Web from the Google Social Graph API (see Fig. 8(d)). This information
is declared within public profiles via XFN (XHTML Friends Network), FOAF
(Friend Of A Friend), and other declared public connections. For example, XFN
provides a simple way to define human relationships through Web links using
the rel attribute of the <a> tag (e.g. <a href=“http://pino.example.com/”
rel=“colleague met”>Pino</a>). The user can provide to our SocialView Ap-

plication the URL of a public account through an input window. The system
automatically generates a query for acquiring as much relational information as
possible. The initial focus vertex even in this case corresponds to the user that
is owner of the account.

We also implemented a case study to explore Wikipedia (see Fig. 8(c)).
A user selects a word and the smartphone shows the related concepts. For
example if the user selects Graph Drawing the device shows the Graph Theory,
Topology, Geometry, etc. The initial focus vertex corresponds to the selected
starting word. When the user finds an interesting concept, he/she can expand
the vertex and visualize the Wikipedia page.

https://graph.facebook.com/ID
https://graph.facebook.com/ID/CONNECTION_TYPE
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(a) FacebookView over iPhone (b) FacebookView over Android

(c) WikipediaView over iPhone (d) SocialView over Android

Figure 8: Application samples. The surnames of the involved people have been
erased for privacy reasons.

7 Conclusions and Future Work

We have presented a system for the visualization of graphs on a smartphone.
First, we have introduced a visualization paradigm that allows the user to navi-
gate the graph using a focus-based approach. Second, we tackled the algorithmic
challenges posed by the new visualization paradigm, introducing and experi-
menting effective heuristics. Finally, we have shown several customizations of
the system aimed at exploring and at visualizing popular Web contents like so-
cial networks and Wikipedia. Current implementations include the iPhone and
the Google Android platforms.

Several problems related to our paradigm are left open.

1. How to apply variations of our paradigm for graph visualization on hand-
held devices, like the iPad, whose screen has a size larger that a smart-
phone but smaller than a usual computer screen? Variations of the paradigms
could include: the visualization of more than one focus vertex, the place-
ment of lobe vertices on several concentric layers, or the usage of all the
sides of the screen.

2. A typical way to visualize large graphs it to use clustering techniques.
Is it possible to combine our paradigm with existing techniques for the
visualization of clustered graphs?
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3. Can the heuristics that we have presented for selecting a lobe be improved
both from the point of view of the performance and from the point of view
of the effectiveness?
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