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On a Tree and a Path with no Geometric

Simultaneous Embedding
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Universität Tübingen, Germany

Abstract

Two graphs G1 = (V,E1) and G2 = (V,E2) admit a geometric si-
multaneous embedding if there exist a set of points P and a bijection
M : V → P that induce planar straight-line embeddings both for G1

and for G2. The most prominent problem in this area is the question
of whether a tree and a path can always be simultaneously embedded.
We answer this question in the negative by providing a counterexample.
Additionally, since the counterexample uses disjoint edge sets for the two
graphs, we also negatively answer another open question, that is, whether
it is possible to simultaneously embed two edge-disjoint trees. Finally, we
study the same problem when some constraints on the tree are imposed.
Namely, we show that a tree of height 2 and a path always admit a geo-
metric simultaneous embedding. In fact, such a strong constraint is not
so far from closing the gap with the instances not admitting any solution,
as the tree used in our counterexample has height 4.
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1 Introduction

Embedding planar graphs is a well-established field in graph theory and algo-
rithms with a great variety of applications. Keystones in this field are the works
of Thomassen [17], of Tutte [18], and of Pach and Wenger [16], dealing with
planar and convex representations of graphs in the plane.

Recently, motivated by the need of concurrently representing several differ-
ent relationships among the same elements, a major focus in the research lies
on simultaneous graph embedding. In this setting, given a set of graphs with the
same vertex-set, the goal is to find a set of points in the plane and a mapping
between these points and the vertices of the graphs that yield a planar embed-
ding for each of the graphs, when displayed separately. Problems of this kind
frequently arise when dealing with the visualization of evolving networks and
with the visualization of huge and complex relationships, such as the graph of
the Web.

Among the many variants of this problem, the most important and natural
one is the geometric simultaneous embedding problem. Given two graphs G1 =
(V,E′) and G2 = (V,E′′), the task is to find a set of points P and a bijection
M : V → P that induce planar straight-line embeddings for both G1 and G2.

In the seminal paper on this topic [2], Brass et al. proved that geometric
simultaneous embeddings of pairs of paths, pairs of cycles, and pairs of cater-
pillars always exist. A caterpillar is a tree such that deleting all its leaves yields
a path. On the other hand, many negative results have been shown. Brass
et al. [2] presented a pair of outerplanar graphs not admitting any geometric
simultaneous embedding and provided negative results for three paths as well.
Erten and Kobourov [5] proved negative results for a planar graph and a path,
while Geyer et al. [13] proved the same for two edge-disjoint trees. Finally,
Cabello et al. [3] showed a planar graph and a matching that do not admit
any geometric simultaneous embedding and presented algorithms to obtain a
geometric simultaneous embedding of a matching and a wheel, an outerpath, or
a tree. An outerpath is an outerplanar graph whose weak dual is a path. The
most important open problem in this area is the question of whether a tree and
a path always admit a geometric simultaneous embedding or not, which is the
subject of this paper.

Many variants of the problem, where some constraints are relaxed, have been
studied. In the simultaneous embedding setting, where the edges do not need to
be straight-line segments, any number of planar graphs admit a simultaneous
embedding, since any planar graph can be planarly embedded on any given set of
points in the plane [15, 16]. However, the same result does not hold if the edges
that are shared by the two graphs have to be represented by the same Jordan
curve. In this setting the problem is called simultaneous embedding with fixed
edges [10, 12, 7]. Finally, the research on this problem opened a new exciting
field of problems and techniques, like ULP trees and graphs [6, 8, 9], colored
simultaneous embedding [1], near-simultaneous embedding [11], and matched
drawings [4], deeply related to the general fundamental question of point-set
embeddability.
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In this paper we study the geometric simultaneous embedding problem of
a tree and a path. We answer the question in the negative by providing a
counterexample, that is, a tree and a path that do not admit any geometric
simultaneous embedding. Moreover, since the tree and the path used in our
counterexample do not share any edge, we also negatively answer the question
on two edge-disjoint trees.

The main idea behind our counterexample is to use the path to enforce a
part of the tree to be in a certain configuration which cannot be drawn planar.
Namely, we make use of level nonplanar trees [6, 9], that is, trees not admitting
any planar embedding if their vertices have to be placed inside certain regions
according to a particular leveling. The tree of the counterexample contains
many copies of such trees, while the path is used to create the regions.

To prove that at least one copy has to be in the particular leveling that
determines a crossing, we need quite a huge number of vertices. However, such
a number is often needed just to ensure the existence of particular structures
playing a role in our proof. A much smaller counterexample could likely be
constructed with the same techniques, but as the end result would be the same,
we opted not to minimize the size.

The paper is organized as follows. In Section 2 we give preliminary definitions
and we introduce the concept of level nonplanar trees. In Section 3 we describe
the tree T and the path P used in the counterexample. In Section 4 we give
a proof that T and P do not admit any geometric simultaneous embedding,
leaving some of the more complex proofs for Section 5. In Section 6 we give an
algorithm to construct a geometric simultaneous embedding of a tree of height
2 and a ()path and in Section 7 we make some final remarks.

2 Preliminaries

An (undirected) k-level tree T = (V,E, φ) is a tree T ′ = (V,E), called the
underlying tree of T , together with a leveling φ : V 7→ {1, . . . , k} of its vertices
such that for every edge (u, v) ∈ E, it holds φ(u) 6= φ(v) (See [6, 9]). A drawing
of T is a level drawing if each vertex v ∈ V is placed on a horizontal line
lφ(v) = {(x, φ(v)) | x ∈ R}. A level drawing of T is planar if no two edges
intersect except, possibly, at common end-points. A k-level tree T = (V,E, φ)
is level nonplanar if it does not admit any planar level drawing.

We extend this concept to the one of a region-level drawing by enforcing the
vertices of each level to lie inside a certain region rather than on a horizontal line.
Let l1, . . . , lk be k non-crossing straight-line segments and let r1, . . . , rk+1 be the
regions of the plane such that any straight-line segment connecting a point in
ri and a point in rh, with 1 ≤ i < h ≤ k + 1, cuts all and only the segments
li, li+1, . . . , lh−1, in this order. We say that regions r1, . . . , rk+1 are linearly-
separated. A drawing of a k-level tree is a region-level drawing if each vertex
v ∈ V is placed inside region rφ(v). A k-level tree is region-level nonplanar if it
does not admit any planar region-level drawing for any set of linearly-separated
regions. The 4-level tree T whose underlying tree is shown in Fig. 1(a) is level
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nonplanar [9] (see Fig. 1(b)). We show that T is also region-level nonplanar.
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Figure 1: (a) A tree Tu. (b) A level nonplanar tree T whose underlying tree is
Tu. (c) A region-level nonplanar tree T whose underlying tree is Tu.

Lemma 1 The 4-level tree T whose underlying tree is shown in Fig. 1(a) is
region-level nonplanar.

Proof: Refer to Fig. 1(c). First observe that, in any possible region-level planar
drawing of T , there exists a polygon Q2 inside region r2 delimited by paths
p1 = {5, 2, 8} and p2 = {6, 3, 9}, and by segments l1 and l2, and a polygon Q3

inside region r3 delimited by paths p1 and p2, and by segments l2 and l3. We
have that vertex 1 is inside Q2, as otherwise one of edges (1, 2) or (1, 3) would
cross one of p1 or p2. Hence, vertex 4 is inside Q3, as otherwise edge (1, 4) would
cross one of p1 or p2. However, in this case, there is no placement for vertex 7
that avoids a crossing between edge (4, 7) and one of the other edges.

Lemma 1 will be vital for proving that there exist a tree T and a path P not
admitting any geometric simultaneous embedding. In fact, T contains many
copies of the underlying tree of T , while P connects vertices of T in such a
way as to create the regions satisfying the above conditions and to enforce at
least one of these copies to lie inside these regions according to the leveling that
makes it nonplanar.

3 The Counterexample

In this section we describe a tree T and a path P not admitting any geometric
simultaneous embedding.

3.1 Tree T

The tree T contains a root r and q vertices j1, . . . , jq at distance 1 from r, called
joints. Each joint jh, with h = 1, . . . , q, is connected to (s− 1)4 · 32 · b vertices
of degree 1, called stabilizers, and to b subtrees B1, . . . , Bb, called branches,
each one consisting of a root ri, (s − 1) · 3 vertices of degree (s − 1) adjacent



JGAA, 16(1) 37–83 (2012) 41

to ri, and (s − 2) · (s − 1) · 3 leaves at distance 2 from ri. See Fig. 2(a) for a
schematization of T and Fig. 2(b) for a schematization of a branch. Vertices
belonging to branches are called B-vertices and denoted by 1-, 2-, or 3-vertices,
according to their distance from their joint.
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Figure 2: (a) A schematization of T . Joints and stabilizers are small circles. A
solid triangle represents a branch, while a dashed triangle represents the subtree
connected to a joint. (b) A schematization of a branch Bi. Vertices are labeled
with their distance from the joint to which the branch is connected.

Because of the huge number of vertices, in the rest of the paper, for the
sake of readability, we use variables q, s, and b as parameters describing the
size of certain structures. Such parameters will be given a value when the
technical details are described. At this stage we just claim that a total number

n ≥
(

27·3·b+2
3

)

of vertices (see Lemmata 4 and 5) suffices for the counterexample.

As a first observation we note that, despite the oversized number of vertices,
tree T has limited height, that is, every vertex is at distance from the root at
most 4. This leads to the following property:

Property 1 Any simple path of tree-edges starting at the root has at most 3
bends.

3.2 Path P

Path P is given by describing some basic and recurring subpaths on the ver-
tices of T and how such subpaths are connected to each other. The idea is to
partition the set of branches adjacent to each joint jh into subsets of s branches
each and to connect the vertices of each set with path-edges, according to some
features of the tree structure, so defining the first building block, called a cell.
Then, cells belonging to the same joint are connected to each other to create
structures, called formations, for which we can ensure certain properties regard-
ing the intersection between tree- and path-edges. Further, different formations
are connected to each other by path-edges in such a way as to create bigger
structures, called extended formations, which in turn are connected to create
sequences of extended formations.
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All of these structures are constructed in such a way that there exists a
set of cells, connected to the same joint and being part of the same formation
or extended formation, such that any four of these cells contain a copy of a
region-level nonplanar tree, where the level of a vertex is determined by the
cell it belongs to. Hence, proving that four of such cells lie in different regions
satisfying the properties of separation described above is equivalent to proving
the existence of a crossing in T . This allows us to consider only bigger structures
instead of dealing with single copies of the region-level nonplanar tree.

In the following we define such structures more formally and state their
properties.

Cell: The most basic structure is defined by determining how P connects
the vertices of a set of s branches connected to the same joint of T .

For each joint jh, h = 1, . . . , q, we partition the set of branches connected
to jh into sets of s + 3 · s · (s− 1)2 branches each. Then, for each such set, we
construct a set of s cells as follows.

Each cell ci(h), i = 1, . . . , s, is composed of its head, its tail, and a number
of stabilizers to be determined later.

Let Bi, i = 1, . . . , s, be s branches of the considered set of s+ 3 · s · (s− 1)2

branches. The head of ci(h) consists of the unique 1-vertex of Bi, the first three
2-vertices of each branch Bk, with 1 ≤ k ≤ s and k 6= i, not belonging to any
other cell and, for each 2-vertex in ci(h) that belongs to branch Bm, the first
3-vertex of each branch Bk, with 1 ≤ k ≤ s and k 6= i,m, not connected to
a 2-vertex in ci(h) and not belonging to any other cell. The tail of ci(h) is
created by considering the remaining 3 · s · (s− 1)2 branches of the set, and by
distributing their vertices to the cells in the same way as for the vertices of the
head.

Path P visits the vertices of ci(h) in the following order: It starts at the
unique 1-vertex of the head, then it reaches all the 2-vertices of the head, then
all the 3-vertices of the head, then all the 2-vertices of the tail, and finally all the
3-vertices of the tail, visiting each set in arbitrary order. After each occurrence
of a 2- or 3-vertex of the head, P visits a 1-vertex of the tail, and after each
occurrence of a 2- or a 3-vertex of the tail, it visits a stabilizer of joint jh (see
Fig. 3(a)).

This implies that each cell contains one 1-vertex, 3 · (s − 1) 2-vertices, and
3 · (s − 2) · (s − 1) 3-vertices of the head, an additional 3 · (s − 1)2 1-vertices,
32 ·(s−1)3 2-vertices, and 32 ·(s−2)·(s−1)3 3-vertices of the tail, plus 32 ·(s−1)4

stabilizers.
Note that each set of s cells constructed as above is such that each subset

of size 4 contains a region-level nonplanar tree, where the levels correspond to
the membership of the vertices to a cell. Namely, consider four cells c1, . . . , c4
belonging to the same set, leveled in this order. A region-level nonplanar tree
as in Fig. 1(c) is illustrated in Fig. 3(b) and consists of the unique 1-vertex v of
the head of c2, the three 2-vertices of c3 connected to v and, for each of them,
the 3-vertex of c1 and the 3-vertex of c4 connected to it.

Formation: In the definition of cells we described how the path traverses
one set of s + 3 · s · (s − 1)2 branches connected to the same joint. Now we
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Figure 3: (a) An illustration of how path P traverses the vertices of a cell. Ver-
tices of the head are white, vertices of the tail are grey, and stabilizers are black.
Throughout the paper, tree-edges are (black) solid segments and path-edges are
(red) dashed segments. (b) The region-level nonplanar tree (represented by solid
fat lines) as in Fig. 1(c) contained in a set of four cells c1, . . . , c4 belonging to
the same set.

describe how cells from four different sets are connected to each other.
A formation F (H), whereH = (h1, h2, h3, h4) is a 4-tuple of indices of joints,

consists of 592 cells. Namely, for each joint jhi
, 1 ≤ i ≤ 4, F (H) contains 148

cells belonging to the same set of cells connected to jhi
. Path P connects these

cells in the order ((h1h2h3)
37h37

4 )4, that is, P repeats four times the following
sequence: It connects c1(h1) to c1(h2), then to c1(h3), then to c2(h1), and so
on until c37(h3), from which it then connects to c1(h4), to c2(h4), and so on
until c37(h4) (see Fig. 4(a)). A connection between two consecutive cells c(ha)
and c(hb) is done with an edge between the end vertices of the subpaths of P
induced by the vertices of c(ha) and c(hb), respectively.

Since, by construction, the cells of F (H) that are connected to the same
joint belong to the same set of cells, and since, by construction, any four cells
belonging to the same set contain a region-level nonplanar tree, the following
property holds:

Property 2 For any formation F (H) and any joint jh, with h ∈ H, if four
cells c(h) ∈ F (H) lie in a set of linearly-separated regions, then there exists a
crossing in T .

Extended Formation: Formations are connected by the path in a special
sequence, called an extended formation and denoted by EF (H), where H =
(H1 = (h1, . . . , h4), H2 = (h5, . . . , h8), . . . , Hx = (h4x−3, . . . h4x)) is an x-tuple
of 4−tuples of disjoint indices of joints. For each 4−tuple Hi, EF (H) contains
y − y

x
formations F1(Hi), . . . , Fy− y

x
(Hi) not belonging to any other extended

formation and composed of cells of the same set of s cells connected to the
same joint (see Fig. 4(b)). Formations inside EF (H) are connected in P in the
order (H1, H2, . . . , Hx)

y , that is, P connects F1(H1) to F1(H2), then to F1(H3),
and so on until F1(Hx), then to F2(H1), to F2(H2), and so on until Fy− y

x
(Hx).

However, in each of these y repetitions one Hi is missing. Namely, in the k-th
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Figure 4: (a) A subsequence (h1h2h3)
37h37

4 of a formation. (b) A subsequence
(H1, . . . , Hx)

2x of an extended formation, with x = 8. Formations are placed
inside a table in such a way that formations belonging to the same 4-tuple are
in the same column and repetitions (H1, . . . , Hx) in which the same 4-tuple is
missing because of a defect are in the same row.

repetition the path does not reach any formation at Hm, with m ≡ k mod x.
We say that the k-th repetition has a defect atm. Observe that in a subsequence
(H1, H2, . . . , Hx)

x, that we call full repetition, there is one defect at each tuple.
Thus, after y repetitions, there are y(x− 1)/x formations used per tuple.

Note that the size of s can now be fixed as the number of formations creating
repetitions inside one extended formation times the number of cells inside each
of these formations, that is, s := (y − y

x
) · 37 · 4. We claim that x = 7 · 32 · 223

and y = 72 · 33 · 226 is sufficient throughout the proofs. However, for readability
reasons, we will keep on using variables x and y in the remainder of the paper.

Sequence of Extended Formations: Extended formations are connected
by the path in a special sequence, called a sequence of extended formations and
denoted by SEF (H), where H = (H∗

1 , . . . , H
∗
12) is a 12−tuple of x-tuples of

4−tuples of disjoint indices of joints. For each x-tuple H∗
i , with i = 1, . . . , 12,

consider 105 extended formations EFj(H
∗
i ), with j = 1, . . . , 105, not already

belonging to any other sequence of extended formations. These extended for-
mations are connected by P in the order (H∗

1 , . . . , H
∗
12)

120, that is, P connects
EF1(H

∗
1 ) to EF1(H

∗
2 ), then to EF1(H

∗
3 ), and so on until EF1(H

∗
12), then to

EF2(H
∗
1 ), to EF2(H

∗
2 ), and so on until EF105(H

∗
12).

There exist two types of sequences of extended formations, that are alter-
nated in SEF . In the first type, in each repetition (H∗

1 , . . . , H
∗
12) one extended

formation EF (Hm) is missing, as in the case of extended formations. In this
case, we say that the repetition has a defect at m. In the second type, in
each repetition (H∗

1 , . . . , H
∗
12) two consecutive extended formations are missing.

Namely, in the k-th repetition the path skips the extended formations EF (H∗
m)

and EF (H∗
m+1), with m ≡ k mod 12 and m+1 = 1 when m = 12. In this case,
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we say that the repetition has a double defect at m. Thus, after 24 repetitions
there are 21 formations used per tuple, which implies that after 120 repetitions
each tuple has 105 formations.

Since we need a 12−tuple of x-tuples of 4−tuples of disjoint indices of joints,
we can fix the number q of joints of T as q = 48x.

4 T and P do not Admit any Geometric Simul-

taneous Embedding

In this section we present the main arguments leading to the final conclusion that
the tree T and the path P described in Section 3 do not admit any geometric
simultaneous embedding. For the sake of readability, we decided to give the
outline of the proof in this section and to defer some of the longest proofs to
Section 5.

The main idea in this proof scheme is to use the structures given by the
path to fix a part of the tree in a specific shape creating restrictions for the
placement of the further substructures of T and of P attached to it. Then, we
show that such restrictions lead to a crossing in any possible drawing of P and
T . In the following, we will perform an analysis of the geometrical properties of
all possible embeddings in order to show that none of them is feasible. Hence,
throughout the proof, we will assume that an embedding of the graph has been
fixed and show that such an embedding determines a crossing.

We first give some further definitions and basic topological properties on
the interaction among cells that are enforced by the preliminary arguments
about region-level planar drawings and by the order in which the subtrees are
connected inside one formation.

A tree-route is a path composed of edges of T , while a path-route is a subpath
of P . We say that two cells c and c′ are separated by a polyline l if l crosses all
the tree-edges connecting vertices of c to vertices of c′.

Passage: Consider two cells c1(h) and c2(h) connected to a joint jh that
cannot be separated by a straight line. Further, consider a cell c′(h′) connected
to a joint jh′ , with h′ 6= h. We say that c1 and c2 create a passage P with
c′ if the polyline given by the path-route connecting vertices of c′ separates c1
and c2 (see Fig. 5). Alternatively, we also say that joints jh and j′h create a
passage. Observe that, since c1(h) and c2(h) cannot be separated by a straight
line, there exists at least one vertex of c′ inside the convex hull of the vertices of
c1 ∪ c2, and there exist at least two path-edges e1, e2 of c′ that are intersected
by tree-edges connecting vertices of c1 to vertices of c2.

Let c1(h1) and c2(h1) be two cells creating a passage P1 with a cell c′(h′
1),

and let c3(h2) and c4(h2) be two cells creating a passage P2 with a cell c′(h′
2),

with h1, h
′
1 6= h2, h

′
2. We distinguish three different configurations. Consider

any linear order of the joints around the root, and restrict such an order to
h1, h

′
1, h2, and h′

2:

• If h1 and h′
1 are the first and the second elements in such an order, then
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Figure 5: Two cells c1 and c2 creating a passage with a cell c′.

P1 and P2 are independent ;

• if h1 and h′
1 are the first and the last elements in such an order, then P2

is nested into P1; and

• if h1 and h′
1 are the first and the third (or the second and the fourth)

elements in such an order, then P1 and P2 are interconnected (examples
of interconnected passages are in Fig. 6).

In the following, in order to determine whether two passages are indepen-
dent, nested, or interconnected, we will either explicitly describe the linear order
of the joints around the root or, when presenting argumentations about some
structures (formations, extended formations, and sequences of extended forma-
tions), we will implicitely assume the linear order given by such structures.

Doors: Let c1(h) and c2(h) be two cells creating a passage with a cell c′(h′).
Consider any triangle given by a vertex v′ of c′ inside the convex hull of c1 ∪ c2
and by any two vertices of c1 ∪ c2. This triangle is a door if it encloses neither
any other vertex of c1, c2 nor any vertex of c′ belonging to the tree-route between
v′ and jh′ . A door is open if no tree-edge incident to v′ crosses the opposite side
of the triangle, that is, the side between the vertices of c1 and c2 (see Fig. 6(a)),
otherwise it is closed (see Fig. 6(b)).

Observe that, if two passages P1 and P2 are interconnected, then either all
the doors of P1 are traversed by a tree-route composed of edges of P2 or all
the doors of P2 are traversed by a tree-route composed of edges of P1. Suppose
the former (see Figs. 6(a) and (b)). Then, as the polyline determined by the
tree-route of P2 traversing all the doors of P1 can not cross tree-edges, it must
traverse each door by crossing both the sides adjacent to v′. As shown in
Fig. 6(b), if a door is closed then such a polyline has to bend after crossing one
side adjacent to v′ and before crossing the other one.

In the rest of the argument we will show that a closed door is present in each
passage, which implies that the tree-route of P1 traversing all the doors of P2

creates at least one bend. Then, we will use further properties to show that a
large part of T has to create more than one bend. In view of this, we state the
following lemmata relating doors, passages, and formations.
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Figure 6: Two interconnected passages P1, between jh1
and j′h1

, and P2, between
jh2

and j′h2
. Doors are represented as dotted lines. (a) The door of P1 is open.

(b) The door of P1 is closed and a bend is needed in the polyline determined by
the tree-route of P2 traversing all the doors of P1.

Lemma 2 For each formation F (H), with H = (h1, . . . , h4), there exist two
cells c1(ha), c2(ha) ∈ F (H) creating a passage with a cell c′(hb) ∈ F (H), with
1 ≤ a, b ≤ 4.

Lemma 3 Each passage contains at least one closed door.

Proof: Refer to Fig. 7. Let c1(h) and c2(h) be two cells creating a passage
P1 with a cell c′(h′). Consider any vertex v of c′ inside the convex hull of
C := c1 ∪ c2. Further, consider all the triangles △(v, v1, v2) created by v with
any two vertices v1, v2 ∈ C such that △(v, v1, v2) does not enclose any other
vertex of C. The tree-route connecting v to jh′ enters one of the triangles. Then,
either it leaves the triangle on the opposite side, thereby creating a closed door,
or it encounters a vertex v′ of c′. Since at least one vertex of c′ lies outside the
convex hull of C, otherwise c1(h) and c2(h) would not be separated by c′(h′), it
is possible to repeat the argument on triangle △(v′, v1, v2) until a closed door
is found.

v

h’
j

v’

Figure 7: There exists a closed door in each passage.
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Hence, each formation contains at least one closed door. In the following
we prove that the effects of closed doors belonging to different formations can
be combined to obtain more restrictions on the shape of the tree. First, we
exploit a combinatorial argument based on the Ramsey Theorem [14] to state
that there exists a set of joints such that any two joints in this set contain cells
creating a passage.

Lemma 4 Given a set of joints J = {j1, . . . , jq}, with |J | =
(

27·3·b+2
3

)

, there
exists a subset J ′ = {j′1, . . . , j

′
k}, with |J ′| ≥ 27 · 3 · b, such that for each pair of

joints j′i, j
′
h ∈ J ′ there exist two cells c1(i), c2(i) creating a passage with a cell

c(h).

Proof: By construction of the tree, for each 4-tuple of indices of joints, there
exist formations that visit only cells of these joints. By Lemma 2, there exists a
passage inside each of these formations, which implies that for each set of four
joints there exists a subset of two joints creating a passage.

The number of joints needed to ensure the existence of a subset of joints J ′

of size k such that passages exist between each pair of joints is given by the
Ramsey Number R(k, 4). This number is defined as the minimal number of
vertices of a graph G such that G either has a complete subgraph of size k or an
independent set of size 4. Since in our case we can never have an independent
set of size 4, we conclude that a subset of size k exists with the claimed property.
The Ramsey number R(k, 4) is not exactly known, but we can use the upper
bound directly extracted from the proof of the Ramsey theorem [14] to obtain
the stated bound.

Then, we give further definitions concerning the possible shapes of the tree.

Enclosing bendpoints: Consider two tree-routes p1 = {u1, v1, w1} and
p2 = {u2, v2, w2}. The bendpoint v1 of p1 encloses the bendpoint v2 of p2 if v2
is internal to triangle △(u1, v1, w1). See Fig. 8(a).

Channels: Consider a set of joints J = {j1, . . . , jk} in clockwise order
around the root. The channel chi of a joint ji, with i = 2, . . . , k − 1, is the
region defined by a pair of tree-routes starting at r, one containing ji−1 and one
containing ji+1, with the maximum number of enclosing bendpoints with each
other. We say that chi is an m-channel if the number of enclosing bendpoints
is at least m. Observe that, by Prop. 1, m ≤ 3. A 3-channel is depicted in
Fig. 8(b). Note that, given an m-channel chi of ji, all the vertices of the subtree
rooted at ji that are at distance at most m from the root lie inside chi.

Channel segments: An m-channel chi is composed of m+ 1 channel seg-
ments. The first channel segment cs1 is the part of chi that is visible from the
root. The h-th channel segment csh is the part of chi disjoint from csh−1 that
is bounded by the elongations of the paths of ji−1 and ji+1 after the h-th bend.
The bending area b(a, a+1) of chi is the region that is visible from all the points
of channel segments csa and csa+1.

Observe that, as the channels are delimited by tree-routes, any tree-edge
connecting vertices inside the channel has to be drawn inside the channel, while



JGAA, 16(1) 37–83 (2012) 49

u1

u2

v1

v2

w1

w2

1 cs2

cs
43cs

cs

ua
v

w

ua+1

csa csa+1

(a) (b) (c)

Figure 8: (a) An enclosing bendpoint. (b) A 3-channel and its channel segments.
(c) A blocking cut (ua, ua+1) where a = 1. As in Property 4, a vertex in a
different channel segment is needed.

path-edges can cross the boundaries of the channel, hence possibly crossing
other channels. We study the relationships between path-edges and channels.

The following property descends from the fact that, by construction, every
second vertex reached by P in a cell is either a 1-vertex or a stabilizer.

Property 3 For any path-edge e = (a, b), at least one of a and b lies inside
either cs1 or cs2.

Blocking cuts: A blocking cut is a path-edge connecting two consecutive
channel segments by cutting some of the other channels twice. See Fig. 8(c).

Property 4 Let ch be a channel that is cut twice by a blocking cut. If ch has
vertices in both the channel segments cut by the blocking cut, then it has some
vertices in a different channel segment.

Proof: Consider the vertices ua and ua+1 lying in the two consecutive channel
segments csa and csa+1 of ch cut by the blocking cut. Observe that, at least
one vertex v of the tree-route connecting ua and ua+1 lies inside bending area
b(a, a+1). Also, at least one vertex w of the tree-route connecting v to the root
r of T has to lie in the bending area b(a − 1, a) (note that, if a = 1, w can be
the root itself). Hence, v and w are separated by the blocking cut in csa. Since
the path-route between v and w cannot cross the blocking cut, it has to pass
through at least a vertex lying in a different channel segment.

Now we are ready to prove that the subtrees connected to most of the joints
create the same shape.

From now on, we identify a joint with the channel it belongs to. Then, when
dealing with a passage between two joints jh and jh′ , we might also say that
there is a passage between the channels of jh and jh′ .

First, based on Prop. 4, we show that any set of joints as in Lemma 4 contains
a particular subset, composed of joints creating interconnected passages, such
that each pair of tree-routes starting at r and containing such joints has at least
two common enclosing bendpoints, which implies that most of them create 2-
channels.
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Lemma 5 Consider a set of joints J = {j1, . . . , jk} such that there exists a
passage between every two joints ji, jh, with 1 ≤ i, h ≤ k. Let P1 = {P |
P is a passage between ji and j 3k

4
+1−i, for i = 1, . . . , k

4} and P2 = {P | P is a

passage between j k
4
+i and jk+1−i, for i = 1, . . . , k

4} be two sets of passages be-

tween pairs of joints in J (see Fig. 9). Then, for at least k
4 of the joints of

one set of passages, say P1, there exist tree-routes with at least 2 and at most
3 bends, starting at the root and containing these joints, which traverse all the
doors of P2. Also, at least k

8 joints create a 2-channel.

j j
3k/4

2
1

k
k/2k/4

1

r

j
jj

Figure 9: Two sets of passages P1 and P2 as described in Lemma 5.

By Lemma 5, any formation attached to a certain subset of joints creates
channels with at least three channel segments. In the remainder of the argument
we focus on this subset of joints and give some properties holding for it, in terms
of interaction between different formations with respect to channels.

Since we need a full sequence of extended formations attached to these joints,
k has to be at least eight times the number of channels inside a sequence of
extended formations, that is, k ≥ 8 · 48b = 27 · 3b.

Nested formations A formation F is nested in a formation F ′ if there exist
four path-edges e1, e2 ∈ F and e′1, e

′
2 ∈ F ′ cutting a boundary cb of a channel

ch such that all the vertices of the path-route in F between e1 and e2 lie inside
the region delimited by cb and by the path-route in F ′ between e′1 and e′2 (see
Fig. 10(a)). Since F ′ can also be nested in F , we say that two formations F1

and F2 are nested if F1 is nested in F2 or F2 is nested in F1 (or both hold).
A set of pairwise nested formations F1, . . . , Fk have a nesting of depth d

if there exist d formations Fq1 , ..., Fqd , with 1 ≤ q1, . . . , qd ≤ k, such that the
4-tuples of Fq1 , ..., Fqd have at least one common joint j, and such that for each
pair Fqp , Fqp+1

, with 1 ≤ p < d, there exists at least one formation Fz, with
1 ≤ z ≤ k, such that the 4-tuple of Fz does not contain j, Fqp is nested in
Fz and Fz is nested in Fqp+1

. A set of formations with a nesting of depth 4 is
depicted in Fig. 10(b).

Independent sets of formations Let S1, . . . , Sk be sets of formations of
one extended formation EF (H) such that each set Si, for i = 1, . . . , k, contains
formations Fi(H1), . . . , Fi(Hq), with (H1, . . . , Hq) ⊂ H . Let Fa(Hc) and Fb(Hd)
be not nested, for each 1 ≤ a, b ≤ k, a 6= b, and 1 ≤ c, d ≤ q. Let csy and csy+1
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be two consecutive channel segments. If for every two sets Sa, Sb there exists a
line ly separating the vertices of Sa from the vertices of Sb inside csy and a line
ly+1 separating the vertices of Sa from the vertices of Sb inside csy+1, then sets
S1, . . . , Sk are independent (see Fig. 10(c)).

cb
e
′

1 e1 e2 e
′

2

ch j

Fb(H1)

Fb(H3)

Fa(H1)

Fb(H2)

Fa(H3)

Fa(H2)

H1H2H3 H1

l1

l2

Sa
Sb

cs1

cs2

(a) (b) (c)

Figure 10: (a) A formation F nested in a formation F ′. (b) A set of formations
having a nesting of depth 4. (c) Two independent sets Sa and Sb.

In the following lemmata we prove that in any extended formation there
exists a nesting of a certain depth (Lemma 8). This important property will
be the starting point for the final argument and will be deeply exploited in
the rest of the paper. We get to this conclusion by first proving that in an
extended formation the number of independent sets of formations is limited
(Lemma 6) and then by showing that, although there exist formations that
are neither nested nor independent, in any extended formation there exists a
certain number of pairs of formations that have to be either independent or
nested (Lemma 7).

Lemma 6 No extended formation contains 222 · 14 independent sets of for-
mations such that each set Si contains formations Fi(H1), . . . , Fi(Hq), where
q ≥ 22.

Lemma 7 Let EF be an extended formation and let Q1, . . . , Q4 be four subse-
quences of EF , each consisting of a whole repetition (H1, H2, . . . , Hx). Then,
either there exists a pair of nested formations or two subsequences Qi and Qj,
i, j ∈ {1, . . . , 4}, are independent sets of formations.

Lemma 8 For every extended formation EF there exists a nesting of depth d,
with d ≥ 6, among the formations of EF .

Once the existence of 2-channels (Lemma 5) and of a nesting of a certain
depth in each extended formation (Lemma 8) have been shown, we turn our
attention to study how such a deep nesting can be performed inside the channels.
In our discussion, we will get to the conclusion that, in any possible shape of
the tree, either it is not possible to draw the formations creating the nesting
without crossings, or that any planar drawing of such formations induces further
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geometrical constraints that do not allow for a planar drawing of the rest of the
tree.

We give some more formal definitions about the shapes of the channels. Let
csa and csb, with 1 ≤ a, b ≤ 4, be two channel segments of the same channel. If
it is possible to connect from csa to csb by cutting either side of csb, then csa
has a 2-side connection to csb (see Fig. 11(b)). Otherwise, if only one side of csb
can be used, then csa has a 1-side connection to csb (see Fig. 11(a)). Note that,
csa has a 2-side connection to csb if and only if csa and csb are not consecutive,
and the elongation of csb intersects csa.

csa csb

csa

csb

(a) (b)

Figure 11: (a) Channel segment csa has a 1−side connection to csb. (b) Channel
segment csa has a 2−side connection to csb.

We split our proof into three cases, based on whether only 1-side connections
are possible (Proposition 1), at most one 2-side connection is possible (Propo-
sition 2), or two 2-side connections are possible (Proposition 3). In all of such
cases, we prove that a crossing is found in either T or P.

Proposition 1 If every two channel segments have a 1−side connection, then
T and P do not admit any geometric simultaneous embedding.

Observe that an example of a shape in which only 1-side connections are
possible is provided by the M -shape, depicted in Fig. 8(b).

We prove this proposition by showing that, in this configuration, the ex-
istence of a deep nesting in a single extended formation, proved in Lemma 8,
results in a crossing in either T or P.

Lemma 9 If all the vertices of an extended formation lie inside channel seg-
ments that have only 1-side connections with each other, then T and P do not
admit any geometric simultaneous embedding.

Proof: First observe that, by Lemma 8, there exists a nesting of depth d,
with d ≥ 6, in any extended formation EF . Consider two nested formations
F, F ′ ∈ EF belonging to the nesting and the formation F ′′ ∈ EF not sharing
any joint with F and F ′ such that F is nested in F ′′ and F ′′ is nested in F ′.
Since each pair of channel segments have a 1-side connection, F ′′ blocks visibility
for F ′ on the channel segment used by F for the nesting (see Fig. 12). Hence, F ′

has to use a different channel segment to perform its nesting, which increments
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the number of used channel segments for each level of nesting. Since the tree
supports at most 4 channel segments, the statement follows.

F

F
′′

F
′

Figure 12: Illustration for the case in which only 1-side connections are possible.

Next, we study the case in which there exist 2-side connections. We dis-
tinguish two types of 2-side connections, based on whether the elongation of
channel segment csa intersecting channel segment csb starts at the bendpoint
that is closer to the root, or not. In the first case we have a low Intersection
I l(a,b) (see Fig. 13(a)), while in the second case we have a high Intersection Ih(a,b)
(see Fig. 13(b)). We use notation I(a,b) to describe both Ih(a,b) and I l(a,b). We say

that two intersections I(a,b) and I(c,d) with a < c are disjoint if a, d ∈ {1, 2} and
b, c ∈ {3, 4}. For example, I(1,3) and I(4,2) are disjoint, while I(1,3) and I(2,4) are
not.

r r
(a) (b)

Figure 13: (a) A low Intersection I l(3,1). (b) A high Intersection Ih(3,1).

Since consecutive channel segments cannot create 2-side connections, in or-
der to explore all the possible shapes we consider all the combinations of low
and high intersections created by channel segments cs1 and cs2 with channel
segments cs3 and cs4.

With the intent of proving that intersections of different channels have to
maintain certain consistencies, we state the following lemma.

Lemma 10 Consider two channels chp, chq with the same intersections. Then,
none of channels chi, where p < i < q, has an intersection that is different from
the intersections of chp and of chq.
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Proof: The statement follows from the fact that the channel boundaries of chp

and chq delimit the channel for all the joints between p and q. Hence, if any
channel chi, with p < i < q, had an intersection different from the ones of chp

and chq, either it would intersect with one of the channel boundaries of chp

or chq or it would have to bend around one of the channel boundaries, hence
crossing twice a straight line.

As with Proposition 1, in order to prove that 2-side connections are not suf-
ficient to obtain a simultaneous embedding of T and P, we exploit the existence
of the deep nesting shown in Lemma 8.

Observe that every extended formation that uses a channel segment to place
the nesting has to place vertices inside the adjacent bending area. In the fol-
lowing lemma we prove that not many of the formations involved in the nesting
can use the part of the path that creates the nesting to do it, and hence they
have to reach the bending area in a different way.

Lemma 11 Consider a nesting of formations of depth d ≥ 6 inside a sequence
of extended formations on an intersection I(a,b), with a ≤ 2. Then, one of
the nesting formations contains a pair of path-edges (u, v), (v, w), with v lying
inside channel segment csa, that separates some of the formations in csa from
the bending area b(a, a+ 1) or b(a− 1, a) (see Fig. 14).

v

u

w

csa

Figure 14: A situation as in Lemma 11. Inner and outer areas are represented
by a light grey and a dark grey region, respectively.

Let the inner area and outer area of csa be the two parts in which csa is
split by edges (u, v), (v, w), as described in Lemma 11. Since in every extended
formation EF there exists a path connecting the inner and the outer area by
going around either vertex u or vertex w, we can infer that the extended forma-
tions using such paths create a structure that is analogous to the one created
by the nested formations. Hence, because of the presence of a defect in every
repetition of an extended formation, if only 1-side connections are available to
host the vertices of such paths, then a crossing in T or P is created.
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Lemma 12 Let csa be a channel segment that is split into its inner area and
outer area by two edges in such a way that every extended formation of a se-
quence of extended formations SEF has vertices in both areas. If the only
possibility to connect vertices from the inner to the outer area is with a 1-side
connection, then T and P do not admit any geometric simultaneous embedding.

From Lemma 12 we conclude that having one single 2-side connection is not
sufficient to obtain a geometric simultaneous embedding of the tree and the
path. In the following we prove that a further 2-side connection is not useful if
it is not disjoint from the first one.

Proposition 2 If there exists no pair of disjoint 2-side connections, then T
and P do not admit any geometric simultaneous embedding.

Observe that, in this setting, it is sufficient to restrict the analysis to cases
I(1,3) (see Figs. 15(a)–(b)) and I(3,1) (see Figs. 16(a)–(b)), since the cases in-
volving 2 and 4 can be reduced to them.

Lemma 13 If a shape contains an intersection I(1,3) and does not contain any
other intersection that is disjoint with I(1,3), then T and P do not admit any
geometric simultaneous embedding.

cs1
cs4

cs2
cs3

b(2, 3) cs1cs4

cs2

cs3

b(2, 3)

b(3, 4)

(a) (b)

Figure 15: (a) Case I(1,3) Ih(2,4). Since a nesting at I(1,3) has to reach bending

area b(2, 3), it crosses any nesting at Ih(2,4). (b) Case I(1,3) I l(2,4). A nesting

at I(1,3) crosses any nesting at I l(2,4). Also, if there exist extended formations
nesting at I(1,4), then they create a nesting also at I(1,3), as they have to reach
b(2, 3) and b(3, 4).

Lemma 14 If there exists a sequence of extended formations in any shape con-
taining an intersection I(3,1), then T and P do not admit any geometric simul-
taneous embedding.

Observe that, in the latter lemma, we proved a property that is stronger
than the one stated in Proposition 2. In fact, we proved that a simultaneous
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cs1

cs2

cs3 cs1

cs2

cs3

(a) (b)

Figure 16: (a) Case I l(3,1). (b) Case Ih(3,1). In both cases, if cs4 is not on the
convex hull, then either cs1 or cs2 is on the convex hull. The possible placements
of cs4 are represented by dotted lines.

embedding cannot be obtained in any shape containing an intersection I(3,1),
even if a second intersection that is disjoint with I(3,1) is present.

Finally, we tackle the general case where two disjoint intersections exist.

Proposition 3 If there exist two disjoint intersections, then T and P do not
admit any geometric simultaneous embedding.

Since the cases involving intersection I(3,1) were considered in Lemma 14, we
only have to consider the eight different configurations where one intersection
is I(1,3) and the other is one of Ih,l(4,{1,2}). In the next three lemmata we cover

the cases involving Ih(1,3) and in Lemma 18 the ones involving I l(1,3).
Consider two consecutive channel segments csi and csi+1 of a channel ch

and let e be a path-edge crossing the boundary of one of csi and csi+1, say
csi. We say that e creates a double cut at ch if the line through e cuts ch in
csi+1. A double cut is simple if the elongation of e cuts csi+1 (see Fig. 17(a))
and non-simple if e itself cuts csi+1 (see Fig. 17(b)). Also, a double cut of an
extended formation EF is extremal with respect to a bending area b(a, a + 1)
if there exists no double cut of EF that is closer than it to b(a, a+ 1). We can
state for double cuts a property that is analogous to the one stated for blocking
cuts.

Property 5 Any edge e creating a double cut at a channel chk in channel
segment csi blocks visibility to the bending area b(i, i + 1) for a part of csi in
each channel chh with h > k (with h < k).

In the following lemma we show that a particular ordering of extremal double
cuts in two consecutive channel segments leads to a non-planarity in T or P .
Note that an ordering of extremal double cuts corresponds to an ordering of the
connections of a subset of extended formations to the bending area. Then, we
will show that all shapes Ih(1,3) I

h,l

(4,{1,2}) induce this order (Lemma 17).
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c

e

csi

csi+1

c

e

csi

csi+1

(a) (b)

Figure 17: (a) A simple double cut. (b) A non-simple double cut.

Lemma 15 Let csi and csi+1 be two consecutive channel segments. If there
exists an ordered set S := (1, 2, . . . , 5)3 of extremal double cuts cutting csi and
csi+1 in such a way that the order of the intersections of the double cuts with
csi (with csi+1) is coherent with the order of S, then T and P do not admit any
geometric simultaneous embedding.

First, we state the existence of double cuts in these shapes. While the
existence of double cuts in shape Ih(1,3) I

l
(4,{1,2}) can be easily seen (see Fig 18(a)),

in order to prove it in shape Ih(1,3) I
h
(4,{1,2}) we state the following lemma.

cs1

cs4

cs2

cs3 cs1

cs4

ch1

cs2

cs3

(a) (b)

Figure 18: (a) Shape Ih(1,3) I l(4,{1,2}) creates double cuts at b(2, 3). (b) Shape

Ih(1,3) I
h
(4,{1,2}) creates double cuts.

Lemma 16 Each extended formation in shape Ih(1,3) Ih(4,{1,2}) creates double
cuts in at least one bending area.

Proof: Refer to Fig. 18(b). Assume, without loss of generality, that the first
bendpoint of channel ch1 encloses the first bendpoint of all the other chan-
nels. This implies that the second and the third bendpoints of channel ch1

are enclosed by the second and the third bendpoints of all the other channels,
respectively.
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Suppose, for a contradiction, that there exists no double cut in b(2, 3) and
in b(3, 4). Hence, any edge e connecting to b(2, 3) (to b(3, 4)) is such that e and
its elongation cut each channel once. Consider an edge connecting to b(2, 3) in
a channel chi. Such an edge creates a triangle together with channel segments
cs3 and cs4 of channel chi which encloses the bending areas b(3, 4) of all the
channels chh with h < i by cutting such channels twice. Hence, a connection to
such a bending area in one of these channels has to be performed from outside
the triangle. However, since in shape Ih(1,3) I

h
(4,{1,2}) both b(2, 3) and b(3, 4) are

on the convex hull, this is only possible with a double cut, a contradiction.

Then, we show that the existence of a double defect in every repetition of an
extended formation leads to the existence of the undesired ordering of extremal
double cuts in shape Ih(1,3) I

h,l

(4,{1,2}).

Lemma 17 Every sequence of extending formations in shape Ih(1,3) Ih,l(4,{1,2})

contains an ordered set (1, 2, . . . , 5)3 of extremal double cuts with respect to
bending area either b(2, 3) or b(3, 4).

Finally, we consider the configurations where one intersection is I l(1,3) and

the other is one of Ih,l(4,2). We solve this cases by exploiting a geometrical property

they exhibit, that is, that channel segment cs2 is on the convex hull of all such
configurations.

Lemma 18 If channel segment cs2 is part of the convex hull, then T and P do
not admit any geometric simultaneous embedding.

Based on the above discussion, we state the following theorem.

Theorem 1 There exist a tree and a path that do not admit any geometric
simultaneous embedding.

Proof: Let T and P be the tree and the path described in Section 3. Then,
by Lemma 5, Lemma 10, and Property 1, a part of T has to be drawn inside
channels having at most four channel segments. Also, by Lemma 8, there exists
a nesting of depth at least 6 inside each extended formation.

By Proposition 1, if there exist only 1-side connections, then T and P do not
admit any simultaneous embedding. By Proposition 2, if there exists no pair of
disjoint intersections, then T and P do not admit any simultaneous embedding.
By Proposition 3, even if there exist two disjoint intersections, then T and P do
not admit any simultaneous embedding. Since it is not possible to have more
than two disjoint intersections, the statement follows.

5 Detailed Proofs

In this section we give the details of the proofs of some of the lemmas and
properties stated in Section 4.
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5.1 Proof of Lemma 2

Lemma 2. For each formation F (H), with H = (h1, . . . , h4), there exist two
cells c1(ha), c2(ha) ∈ F (H) creating a passage with a cell c′(hb) ∈ F (H), with
1 ≤ a, b ≤ 4.

Proof: First observe that, by Property 2, there exists no set of four cells con-
nected to the same joint inside F (H) that can be separated by straight lines
creating linearly-separated regions. Hence, the cells of F (H) connected to the
same joint, say jha

, can be grouped into at most 3 different sets S1
ha
, S2

ha
, and

S3
ha

such that cells from different sets can be separated by straight lines, but
cells from the same set cannot. As any two cells c1(ha), c2(ha) ∈ F (H) can only
be separated either by a straight-line or by a cell c3(ha) of the same joint jha

,
every two cells inside one of these sets can only be separated by other cells of
the same set.

Consider the connections of the path through F (H) with regard to these
sets of cells. Observe that, for any two joints jhq

, jhq+1
, with 1 ≤ q ≤ 4, there

are nine possible ways to connect between a set Sp
hq
, with 1 ≤ p ≤ 3, and a set

Sp′

hq+1
, with 1 ≤ p′ ≤ 3. Then, since the part of P through F (H) visits 37 times

cells from jh1
, jh2

, jh3
, in this order, there exist at least two sets Sp

h1
and Sp′

h2
,

with 1 ≤ p, p′ ≤ 3, that are connected by at least five path-edges e1, . . . , e5 (see

Fig.19). Observe that edges e1, . . . , e5, together with the cells of Sp
h1

and of Sp′

h2
,

subdivide the plane into five connected regions. Since the path is continuous in
F (H), it connects from the end of e1 (a cell of joint jh2

) to the beginning of e2
(a cell of joint jh1

), from the end of e2 to the beginning of e3, and so on. If in
the region between two edges es and es+1, with 1 ≤ s ≤ 4, there exists no cell
of joint jh3

, then the path through F (H) will not traverse such a region in the
opposite direction, since P contains no edges going from a cell of jh2

to a cell

of jh1
. Since there exist five edges between Sp

h1
and Sp′

h2
but at most 3 sets of

cells on joint jh3
, there exist at least two empty regions, which implies that the

part of the path connecting es and es+1 in a certain repetition of the formation
creates a spiral, in the sense that it separates the cells connected to joint jh4

in
the previous repetitions from the analogous cells in the following repetitions.

Note that, having four repetitions would create a separation of four cells
in jh4

inside linearly-separated regions, hence determining, by Property 2, a
crossing in T . Therefore, at least two of such cells are not separated by a
straight line, but are separated by the path. Hence, since the path of the spiral
separating them can only consist of a cell belonging to joint jh3

, a passage inside
F (H) is created.

5.2 Proof of Lemma 5

Lemma 5. Consider a set of joints J = {j1, . . . , jk} such that there exists
a passage between every two joints ji, jh, with 1 ≤ i, h ≤ k. Let P1 = {P |
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jh1

r

jh2jh3

S1

h1

S2

h1

S3

h1

S3

h2

S1

h2
S2

h2

S3

h3

S2

h3

S1

h3

e1
e2

e3
e4

e5

Figure 19: The five path-edges e1, . . . , e5 connecting five cells of set Sa
h1

with

five cells of set Sb
h2
.

P is a passage between ji and j 3k
4
+1−i, for i = 1, . . . , k

4} and P2 = {P | P is a

passage between j k
4
+i and jk+1−i, for i = 1, . . . , k

4} be two sets of passages be-

tween pairs of joints in J (see Fig. 9). Then, for at least k
4 of the joints of

one set of passages, say P1, there exist tree-routes with at least 2 and at most
3 bends, starting at the root and containing these joints, which traverse all the
doors of P2. Also, at least k

8 joints create a 2-channel.

Proof: First observe that each passage of P1 is interconnected with each passage
of P2 and that all the passages of P1 (all the passages of P2) are nested.

By Lemma 3 and Property 1, for one of P1 and P2, say P1, either for every
joint of P1 between the joints of P2 in the order around the root or for every
joint of P1 not between the joints of P2, there exists a tree-route pi, starting
at the root and containing these joints, that has to traverse all the doors of P2

by making at least 1 and at most 3 bends. Also, tree-routes p1, . . . , p k
4
can be

ordered in such a way that a bendpoint of pi encloses a bendpoint of ph for each
h > i. It follows that each joint has a 1-channel. Consider now the set of joints
J ′ ⊂ J visited by these paths. We assume the joints of J ′ = {j′1, . . . j

′
q} to be in

this order around the root.

Consider the path p1 whose bendpoint encloses the bendpoint of each of all
the other paths and the path pq whose bendpoint encloses the bendpoint of
none of the other paths (see Figs. 20(a) and 20(b)). Please note that either p1
visits j′1 and pq visits j′q or vice versa, say p1 visits j′1. By construction, there
exists a passage between cells from j′1 and cells from j′q. In this passage there
exist either two path-edges e1, e2 of a cell c′(1) separating two cells c1(q), c2(q),
thereby crossing the channel of j′q, or two edges of a cell c′(q) separating two
cells c1(1), c2(1), thereby crossing the channel of j′1. We show that 1-channels
are not sufficient to draw these passages.
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p1

e1
e2

pq

p1

e1

e2

pq

(a) (b)

Figure 20: (a) The separating cell c′ is in the outermost channel. (b) The
separating cell c′ is in the innermost channel.

In the first case (see Fig. 20(a)), both separating edges e1, e2 cross the path
pq before and after the bend, thereby creating blocking cuts separating vertices
of the same cell, say c1. By Property 4, an additional bend is needed.

In the second case (see Fig. 20(b)), no edge connecting vertices of c′(j′q)
crosses edges of p1, and therefore at least another bend is needed.

Hence, at least one of the channels needs an additional bend. Since there are
passages between each pair of joints in J ′, all but one joint j∗ have a path that
has to bend an additional time. We note that the additional bendpoint of each
path pk aside from p1, pr, and p∗ has to enclose all the additional bendpoints
either of p1, . . . , pk−1 or of pk+1, . . . , pq. It follows that, for at least half of the
k
4 joints, there exist 2-channels.

5.3 Proofs of Lemmata 6, 7, and 8

Lemma 6. No extended formation contains 222 · 14 independent sets of for-
mations such that each set Si contains formations Fi(H1), . . . , Fi(Hq), where
q ≥ 22.

Proof: Suppose that such independent sets S1, . . . , Sz exist. We show that this
induces a crossing in either T or P . By Lemma 2, each formation contains a
passage, and thereby an edge cutting the boundary of a channel. By Property 3,
every edge has an end-vertex either in channel segment cs1 or in cs2. Hence, for
each 4-tuple t, the formations placed in t in at least z/2 sets of formations have
a common connection, that is, they have connections to vertices in the same
channel segment, either cs1 or cs2. Let S1 = {Sp, . . . , Sq}, with 1 ≤ p < q ≤ z
and q − p ≥ z/2, be the set of set of formations containing such independent
sets.

By using the same argument we can find a subset S2 ⊂ S1 of size z
4 such

that, for each pair of 4-tuples t, t′, the sets belonging to S2 have at least two
common connections. By continuing this procedure we arrive at a subset Sq
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containing at least z
2q sets having at least q common connections. Since all these

common connections have to connect to either cs1 or cs2, we have identified a
set S = {S′

1, . . . , S
′
z
2q
} of size z

2q of sets of formations of size at least q

2 that has

all its connections to the same channel segment cs.

We now consider, for each of the formations of S, the edges cutting the
boundary of cs. Since any of those edges can intersect the channel boundary on
two different sides, for every formation F q

4
in each set S′

i, at least half of such
edges cut the same side of the channel, thereby crossing either all the channels
1, . . . , q

4 − 1 or all the channels q

4 + 1, . . . , q

2 , say the former.

Consider now the formations F q

8
in each of the sets. These formations in the

sets S′
2, S

′
4, . . . , S

′
z

2q+1
are separated in cs by the edges of the formations F q

4
of the

sets S′
3, S

′
5, . . . , S

′
z
2q

−1. To avoid a linearly-separated ordering of the separated

formations and thereby the existence of a region-level nonplanar tree, formations
F q

8
have to place vertices in an adjacent channel segment cs′. However, in this

way they create blocking cuts for either all the channels 1, . . . , q

8 − 1 or all the
channels q

8 + 1, . . . , q
4 , say the former.

Consider now the formations F1 in each of the sets. These formations in
the sets S′

3, S
′
5, . . . , S

′
z
2q

−2 are separated in CS by the edges of the formations

F q

8
of the sets S′

4, S
′
6, . . . , S

′
z
2q

−3. By the same argument as above, also these

formations have to place vertices in an adjacent channel segment that is visible
from some of the separated areas of cs. Since the connections of the forma-
tions F q

8
block visibility for the connections to cs′, the formations F1 have to

use the other adjacent channel segment cs′′, thereby blocking all the channels
ch1, . . . chq2 .

Finally, consider the formations F2 in the sets S′
4, S

′
6, . . . , S

′
10. These for-

mations are now separated in cs by the edges connecting formations F q

8
to cs′

and by the edges connecting formations F1 to cs′′. Therefore, these forma-
tions cannot use any channel segment other than cs, which implies that they
are linearly-separated inside such a channel segment. So, by Property 2, there
exists a region-level nonplanar tree.

Lemma 7. Let EF be an extended formation and let Q1, . . . , Q4 be four
subsequences of EF , each consisting of a whole repetition (H1, H2, . . . , Hx).
Then, either there exists a pair of nested formations or two subsequences Qi

and Qj, i, j ∈ {1, . . . , 4}, are independent sets of formations.

Proof: Assume that no pair of nested formations exists. We show that there
exists two subsequences that are independent sets.

First, consider how Q1, . . . , Q4 use the first two channel segments cs1 and
cs2 to place their formations. Each of these subsequences uses either only cs1,
only cs2, or both. Observe that, if a subsequence uses only cs1 and another one
uses only cs2, then such subsequences are clearly independent sets. So, at least
one channel segment, say cs2, is used by all of Q1, . . . , Q4.

Then, we show that if there exist three subsequences that use only cs2, then
at least two of them are separated in cs2. In fact, consider two subsequences



JGAA, 16(1) 37–83 (2012) 63

chc chbcha

F
′F

′′

Figure 21: If three subsequences use the same channel segment cs, then at least
two of them are either nesting or separated in cs.

using cs2 that are not independent. Since, by assumption, no two formations of
such subsequences are nested, there exist a formation F ′ in a channel cha and
a formation F ′′ in a channel chb such that the path-route through F ′ cuts chb

separating vertices of F ′′, and the path-route through F ′′ cuts cha separating
vertices of F ′. Let chc be any channel between cha and chb. Then, any formation
of a different subsequence that intersects a boundary of chc is either nested
with one of F ′ and F ′′ or is such that there exists clear separation between its
subsequence and the subsequence containing either F ′ or F ′′ (see Fig. 21).

From this and from the fact that all the subsequences use cs2, we derive
that two subsequences, say Q1, Q2, are separated in cs2. Assume that they
are not separated in cs1, as otherwise they would be independent. Then, the
third subsequence Q3 can be placed in such a way that it is not separated from
Q1 and Q2 in cs2, but it is separated from one of them in cs1. However, this
implies that Q4 is separated in cs1 from two of Q1, Q2, Q3 and in cs2 from two
of Q1, Q2, Q3, and hence Q4 is separated in both channel segments from one of
Q1, Q2, Q3.

Lemma 8. For every extended formation EF there exists a nesting of depth
d, with d ≥ 6, among the formations of EF .

Proof: Suppose that there is no nesting of depth d ≥ 6 among the formations
in EF . We show that there exist more than z sets of independent formations
in EF from the same set of channels CH , where z ≥ 222 · 14 and |CH | ≥ 22.
By Lemma 6, this gives a contradiction and implies the statement.

Observe that, by Lemma 7, there exist at most (z − 1) · 3 different nestings
of repetitions (H1, H2, . . . , Hx) of formations in EF such that there are less
than z independent sets of subsequences. Also note that, if some formations
belonging to two different repetitions are nesting, then all the formations of these
repetitions have to be part of some nesting. However, this does not necessarily
mean for all the formations to nest with each other and to build a single nesting.
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Since the number of channels used inside EF is greater than (z − 1) · 3 · 3,
where z ≥ 222 · 14, we have a nesting consisting of repetitions of formations in
EF with at least 3 different defects.

Let the nesting consist of repetitions Q1
1, . . . , Q

q
1, Q

1
2, . . . , Q

q
2, . . . , Q

1
k . . . , Q

q
k,

where Qh
i denotes the h-th occurrence of a repetition of EF with a defect at

the 4-tuple Hi. Further, let P connect such repetitions in the order Q1
1, Q

1
2, . . . ,

Q1
k, Q

2
1, . . . , Q

2
k, . . . , Q

q
k. We show that there exists a pair of independent forma-

tions within this nesting.
Consider now the first two nesting repetitions Q1

1 and Q1
2. Let the nesting

consist of a formation F (Hk) from Q1
1 nesting in a formation F ′(Hs) from Q1

2,
where 1 ≤ k, s ≤ x. Consider the edges e1, e2 ∈ F (Hk) and e′1, e

′
2 ∈ F ′(Hs)

determining the nesting. Assume, without loss of generality, that the path-route
p between e′2 and e2 does not contain e′1 and e1. Consider the two parts a and
b of the channel boundary that is cut by all such edges, where a is between e1
and e′1 and b is between e2 and e′2. Consider now the closed region delimited by
the path-route through F ′(Hs), path-route p, the path-route through F (Hk),
and a. Such a region is split into two closed regions Rin and Rnest by b (see
Fig. 22).

e
′

1 e1 e2 e
′

2

Rin

Rnest

a b

F

F
′

Figure 22: Regions Rin and Rnest.

Observe that, in order to go from Rin to the outer region, any path-route
has to cross both a and b by using a vertex inside Rnest. We note that the part
of P starting at e′1 and not containing F (Hk) is either completely contained
in the outer region or has to cross over between Rin and the outer region by
traversing Rnest. Similarly, the part of P starting at e1 and not containing
F ′(Hs) either does not reach the outer region or has to cross over between Rin

and the outer region by traversing Rnest. Furthermore, any formation F ′′ using
such a path-route either crosses over, thereby cutting both a and b, or it does
not enter Rin at all. Observe that, in the first case, F is nested in F ′′ and F ′′

is nested in F ′.
Consider now the third nesting repetition Q1

3 of sequence (H1, H2, . . . , Hx)
(see Figs. 23(a) and 23(b)). It is easy to see that, if Q1

3 is nested between
Q1

1 and Q1
2, then there exists a nesting of depth 1, as Q1

3 contains a defect at
a different 4-tuple. Hence, we have only to consider the cases in which the
remaining repetitions create the nesting by creating a spiral, that is, by strictly
going either outward or inward. By this we mean that the i-th repetition Q1

i
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has to be placed such that either Q1
i is nested inside Q1

i−1 (inward) or vice versa
(outward). Without loss of generality, we assume the latter (see Fig. 23(c)).

1 1234 2 3 4 1 1234 2 3 4 1 1234 2 3 4 1234

(a) (b) (c)

Figure 23: (a) and (b) Possible configurations for Q1
1 and Q1

2 when Q1
3 is consid-

ered. Repetition Q1
1 is represented by dotted (red) lines in order to distinguish it

from Q1
2 (dashed (red) lines). (c) The repetitions follow the outward orientation.

Consider now a defect in a 4-tuple Hc, with 1 < c < k, at a certain repetition
Qh

i . Since the path is moving outward, the connection between Hc−1 and Hc+1

blocks visibility for the following repetitions to the part of the channel segment
where vertices of Hc were placed until that repetition (see Fig. 24(a) for an
example with c = 3).

1 1234 2 3 4 1234 1 1234 2 3 4 1234

(a) (b)

Figure 24: (a) The connection between channels ch2 and ch4 blocks visibility
for the following repetitions to the part of the channel segment where vertices of
channel ch3 were placed until that repetition. (b) A shift in which the vertices
of channel ch3 (fat lines) are placed in the same part of the channel segment
where vertices of channel ch4 where placed until that repetition.

A possible placement for the vertices of Hc in the following repetitions that
does not increase the depth of the nesting could be in the same part of the
channel segment where vertices of a 4-tuple Hc′ , with c′ 6= c, were placed until
that repetition. We call shift such a move. However, in order to place vertices
of Hc and of Hc′ in the same zone, all the vertices of Hc belonging to the current
cell have to be placed there (see fat lines in Fig. 24(b), where c′ = c+1), which
implies that a further defect at Hc in one of the following repetitions encloses
all the vertices of each of the previously drawn cells, hence separating them
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with a straight line from the following cells. Hence, also the vertices of Hc′ have
to perform a shift to a 4-tuple Hc′′ , with c 6= c′′ 6= c′. Again, if the vertices
of Hc′ and of Hc′′ lie in the same zone, we have two cells that are separated
by a straight line, and hence also the vertices of Hc′′ have to perform a shift.
By repeating such an argument we conclude that the only possibility for not
having vertices of different 4-tuples lying in the same zone is to shift all the
4-tuples Hc, . . . , Hx and to go back to H1 for starting the following repetition
in a completely different region (see Fig. 25, where the following repetition is
performed completely below the previous one). However, this implies that there
exist two repetitions in one configuration that have to be separated by a straight
line and therefore are independent, in contradiction to our assumption. Hence,
after 3 · x + 1 repetitions, we arrive at a nesting of depth 1. By repeating this
argument, after 6 · 3 · x + 1 repetitions we obtain a nesting of depth 6, thus
contradicting the initial assumption.

1 1234 2 3 4 1234

Figure 25: All the channels hosting 4-tuples Hc, . . . , Hx are shifted and the next
repetition starts in a completely different region.

5.4 Proof of Lemma 11

Lemma 11. Consider a nesting of formations of depth d ≥ 6 inside a sequence
of extended formations on an intersection I(a,b), with a ≤ 2. Then, one of
the nesting formations contains a pair of path-edges (u, v), (v, w), with v lying
inside channel segment csa, that separates some of the formations in csa from
the bending area b(a, a+ 1) or b(a− 1, a) (see Fig. 14).

Proof: Consider three extended formations EF1(H1), EF2(H1), EF3(H1) lying
in a 4-tuple of channels H1 and two extended formations EF1(H2), EF2(H2)
lying in a 4-tuple of channels H2 such that all the channels of the sequence of
extended formations are between H1 and H2 and there is no formation F 6∈
EF (H1), EF (H2) nesting between EF1(H1), EF2(H1), EF3(H1) and EF1(H2),
EF2(H2). Suppose, without loss of generality, that the bending point of H1 is
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enclosed into the bending point of H2.
Refer to Fig. 26(a). Consider a formation F1 ∈ EF1(H1) nesting with a

formation F ′
1 ∈ EF1(H2). The connections from F ′

1 to channel segment csa
and back have to go around the vertex placed by F1 on channel segment csa.
Therefore, at least one of the connections of F ′

1 cuts all the channels between
H1 and H2, that is, all the channels where the sequence of extended formations
is placed. Such a connection separates the vertices of F1 from the vertices of
a formation F2 ∈ EF2(H1) in csa. Therefore, at least one of the connections
of F2 to csa cuts either all the channels in csa or all the channels in csa+1 (or
csa−1), hence becoming a blocking cut for such channels. It follows that all
the formations nesting inside F2 on such channels cannot place vertices in the
bending area b(a, a+ 1) (or b(a− 1, a)) outside F2.

H1

H2

H2 H1

F1

F
′

1

F2

csa

v

u

w

csa

(a) (b)

Figure 26: (a) The connections from F1 to csa enforce F ′
1 to cut all the channels

and the connections from F ′
1 to csa enforce F2 to cut all the channels. (b) A pair

of path-edges (u, v), (v, w), with v lying inside channel segment csa, separates
some of the formations in csa from the bending area b(a, a+1) or b(a−1, a). The
chosen turning vertex is represented by a big black circle and is in configuration
β. The inner and the outer areas are represented by a light grey and a dark
grey region, respectively.

5.5 Proof of Lemma 12

Lemma 12. Let csa be a channel segment that is split into its inner area
and outer area by two edges in such a way that every extended formation of a
sequence of extended formations SEF has vertices in both areas. If the only
possibility to connect vertices from the inner to the outer area is with a 1-side
connection, then T and P do not admit any geometric simultaneous embedding.

In order to prove Lemma 12, we first need to introduce some definitions and
to prove an auxiliary lemma.
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Refer to Fig. 26(b). Let (u, v) and (v, w) be a pair of edges separating a
channel segment csa into its inner and outer area. We call such a pair the
open triangle of the extended formation. Assume that (u, v) and (v, w) do
not cut any channel segment csb completely, since such a cut would create
more restrictions than placing u or w inside csb. For each path of an extended
formation connecting vertices in the inner area to vertices in the outer area,
consider a vertex, called turning vertex, which is placed in csb and for which no
other path in EF exists that connects the inner and the outer area by using
a channel segment csc such that the subpath to csc intersects either csc or its
elongation. If there exist more than one of such vertices, then arbitrarily choose
one of them. Observe that the path connecting from the inner area to the outer
area through the turning vertex encloses exactly one of u and w. If it encloses
u, it is in configuration α, otherwise it is in configuration β. If there exist both
paths in α and paths in β configuration, then arbitrarily consider one of them.
Finally, consider the connections between different extended formations inside
a sequence of extended formations. Consider a turning vertex v in a channel
segment csa of a channel ch such that the edges incident to v cut a channel
ch′. Then, any connection of an extended formation of ch′ from the inner to the
outer area in the same configuration as ch and with its turning vertex v′ in csa
is such that v′ lies inside the convex hull of the open triangle of the extended
formation lying in channel ch.

Lemma 19 If the connection between the inner and the outer area can be real-
ized only through a 1-side connection, then not all the extended formations in a
sequence of extended formations can place turning vertices in the same channel
segment.

Proof: Assume, for a contradiction, that all the turning vertices are in the
same channel segment. Consider a sequence of extended formations SEF (H),
where H = (H∗

1 , . . . , H
∗
12), and the extended formations EFj(H

∗
i ) ∈ SEF , with

j = 1, . . . , 110.
We first show that in SEF there exist some extended formations EFj(H

∗
i ) ∈

SEF using connections in α configuration and some using connections in β
configuration. Consider the continuous subsequence of extended formations
EF1(H

∗
1 ), . . . , EF1(H

∗
3 ) in SEF . Assume that all the turning vertices of these

extended formations are in α configuration. Consider a further subsequence
EFp(H

∗
1 ), . . . , EFp(H

∗
3 ), with 1 ≤ p < 110, of SEF with a defect at H∗

2 . Then,
the connection between EFp(H

∗
1 ) and EFp(H

∗
3 ) crosses the channels in H∗

2 ,
thereby blocking any extended formation EFq(H

∗
2 ), with p < q ≤ 110, from

being in α configuration. Hence, when considering another subsequence of SEF
on the same set of channels which does not contain defects at H∗

1 , . . . , H
∗
3 , either

the extended formation placed in H∗
2 is in β configuration or it uses another

channel segment to place the turning vertex.
Consider the open triangle of each extended formation. Note that, if an

open triangle of an extended formation EF (Hk) is inside the inner area of an
extended formation EF (Hs) and the open triangle of EF (Hs) is inside the inner
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(a) (b)

Figure 27: (a) Two triangles from the same channel have to use different channel
segments if a triangle of another channel is between them. Turning vertices
are represented by black circles. (b) When a defect at H2 is encountered, the
connection betweenEF (H1) andEF (H3) does not permit the followingEF (H2)
to respect the ordering of triangles.

area of an extended formation EF ′(Hk), with k < s, then EF (Hk) has to use a
different channel segment to place its turning vertex (see Fig. 27(a)). Hence, the
open triangles have to be ordered according to the order of the sets of channels
used by the extended formations.

We show that it is not possible for the open triangles of all the extended
formations to be nested in such an order.

First observe that, if the continuous path connecting two open triangles t1 =
(u, v, w) and t2 = (u′, v′, w′) of two consecutive extended formations EF (Hs)
and EF (Hs+1) connects vertex u to vertex w′ (or u′ to w) via the outer area
of EF (Hs+1), then an open triangle of an extended formation EF (H1) that
occurs before EF (Hs) and an open triangle of an extended formation EF ′(H1)
that occurs after EF (Hs+1) are nested with the open triangle given by the
connection of t1 and t2 in an ordering different from the order of the channels.

Further, consider two x-tuples H∗
1 and H∗

2 of 4-tuples of indices of channels
such that there exists an extended formation EFp(H

∗
1 ) in α configuration and

an extended formation EFp(H
∗
2 ) in β configuration, and consider two further

extended formations EFp(H
∗
3 ) and EFp(H

∗
4 ) directly following EFp(H

∗
1 ) and

EFp(H
∗
2 ) in SEF . Also, consider the first extended formation EFp+1(H

∗
1 ) on

the set of channels H∗
1 following EFp(H

∗
4 ) in SEF . Consider now the first rep-

etition q of SEF after repetition p+1 having a defect at H∗
2 . As EFp(H

∗
1 ) is in

α configuration and EFp(H
∗
2 ) is in β configuration, the connection of EFq(H

∗
1 )

to EFq(H
∗
3 ) in this repetition blocks access for all the extended formations

EFm(H∗
2 ), with m > q, to the area where it should place vertices in order to

respect the ordering of open triangles (see Fig. 27(b)). Therefore, after 3 full
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repetitions of the sequence in SEF , at least one extended formation has to use
a different channel segment to place its turning vertex.

Now we are ready to prove the claimed lemma.

Proof of Lemma 12 Let EFp(H
∗
12) and EFp+1(H

∗
1 ) be two extended forma-

tions that are consecutive in SEF . First note that the connection between
EFp(H

∗
12) and EFp+1(H

∗
1 ) cuts all the channels between H∗

2 and H∗
11 either in

cs1 or in cs2, say cs1. Since both of these extended formations are also con-
nected to the bending area b(3, 4) between cs3 and cs4, it is not possible for an
extended formation EFm(H∗

s ), with m > p+ 1 and s ∈ {2, . . . , 11}, to connect
from vertices above the connection between EFp(H

∗
12) and EFp+1(H

∗
1 ) to ver-

tices below it by using a path that passes through b(3, 4). Further, if all such
extended formations EFm(H∗

s ) are in cs2, then a connection is needed from cs1
to cs2 in H∗

12. However, by Lemma 19, after three defects in the subsequence
of {H∗

2 , . . . , H
∗
11} it is no longer possible for any extended formation EFm(H∗

s ),
with s ∈ {2, . . . , 11}, to place its turning vertex in the same channel segment.
Since the path is continuous and since the connection between two consecutive
extended formations EFq(H

∗
12) and EFq(H

∗
1 ) is repeated at a certain repeti-

tion q > p, we can follow that the path creates a spiral that is directed either
inward or outward. Also, in order to respect the order of the sequence, it is
not possible for the path to reverse the direction of the spiral. Hence, once a
direction of the spiral has been chosen, either inward or outward, all the follow-
ing connections use the same. This implies that, if a connection between two
consecutive extended formations EFm(H∗

s ) and EFm(H∗
s+1) is performed in a

different channel segment than the one between EFm(H∗
s−1) and EFm(H∗

s ),
then all the connections of this type have to change. However, when a defect at
H∗

s+1 is encountered, also the connection between EFm(H∗
s ) and EFm(H∗

s+2)
has to change channel segments, thereby making it impossible for any future
connection between EFm(H∗

s ) and EFm(H∗
s+1) to change channel segments. We

conclude that, after a full repetition of SEF , which contains defects at each set
of channels, all the extended formations should place their turning vertices in
the same channel segment, which is not possible, by Lemma 19, hence proving
the statement.

5.6 Proofs of Proposition 2

Proposition 2. If there exists no pair of disjoint 2-side connections, then T
and P do not admit any geometric simultaneous embedding.

Lemma 13. If a shape contains an intersection I(1,3) and does not contain
any other intersection that is disjoint with I(1,3), then T and P do not admit
any geometric simultaneous embedding.

Proof: First observe that the only intersections that are not disjoint with I(1,3)
and that could occur together with I(1,3) are I(2,4) and I(1,4). Consider the
nesting of depth d ≥ 6 that is present in any extended formation (Lemma 8).
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Observe that a nesting can only take place at intersections I(1,3) and either I(2,4)
or I(1,4). Recall that, by Property 3, every edge has an end-vertex in either cs1
or cs2. Also, by construction, the stabilizers are placed in cs1 or cs2. Note
that the stabilizers also work as 1-vertices in the tails of other cells. This means
that if there exist seven sets of tails that can be separated by straight lines, then
there exists a region-level nonplanar tree, by Lemma 6. Observe that, by nesting
them according to the sequence, the previous condition would be fulfilled.

This means that we have either a sorting or other nestings. We first show
that there exists at most one nesting of depth d ≥ 6.

Consider the case Ih(2,4) (see Fig 15(a)). Observe that intersections I(1,4) and
I(1,3) are either both high or both low. Also, every connection from cs1 to cs4
cuts either cs2 or cs3 and, if one of these connections cuts cs2, then every nesting
cutting cs1 closer to b(1, 2) than the previous connection has to cut cs2, as well.
Hence, we can consider all the connections to cs4 as connections to cs2 or cs3.
Also, since any connection cutting a channel segment is more restrictive than a
connection placing a vertex inside the same channel segment, the connections to
cs2 or cs3 can be considered as the same. Finally, since each extended formation
in the nesting has to connect to bending area b(2,3), it is not possible to have a

nesting at Ih(2,4) together with a nesting at I(1,3). Hence, we conclude that only
one nesting is possible in this case.

Consider the case I l(2,4) (see Fig 15(b)). Observe that 1-vertices can be
placed at most in cs2 and 2-vertices can be placed at most in cs3, and that
every extended formation belonging to a nesting has to visit these vertices.
Therefore, if there exist both a nesting at I(1,3) and a nesting at I(1,4), then the
connections to the 1- and 2-vertices in the bending areas b(2, 3) and b(3, 4) are
such that every extended formation nesting at I(1,4) makes a nesting with the
extended formations nesting at I(1,3). Hence, only one nesting is possible.

So we consider the unique nesting of depth d ≤ 6 and we show that any
way of sorting the nesting formations in the channels will cause separated cells,
hence proving the existence of a nonplanar region-level tree.

Consider four consecutive repetitions of the sequence of formations. These
formations visit areas of cs1 and are separated by previously placed formations
from other formations on the same channels. This will result in some cells to
become separated in cs1. Since, by Property 2, the number of linearly-separated
cells in cs1 cannot be larger than 3, for any set of four such separated formations
there exists a pair of formations F1, F2 that change their order in cs1 by using one
of the sides of the nesting. If between this pair of formations there is a formation
of a different channel, then this formation has to choose the other side to reorder
with a formation outside F1, F2. We further note that, if there are two such
connections F1, F4 and F2, F3 on the same side that are connecting formations
of one channel, nested in the order F1, F2, F3, F4, and another connection on the
same side between F ′

1, F
′
2 such that F ′

1 is nested between F1, F2 and F ′
2 between

F3, F4, then this creates a nesting. In the following we show that a nesting of
depth at least 6 is reached.

Assume the repetitions of formations in the extended formation to be placed
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in the order a, b, c, d, e. If this order is not coherent with the order in which the
channels appear in the sequence of formations inside the extended formation,
then we have already some connections that close both sides of the nesting for
some formations. So we assume them to be in the order given by the sequence.
Then, consider a repetition of formations with a defect at some 4-tuple Hi.
Then, there exists a connection closing off at one side all the previously placed
formations of Hi. However, there are sequences with defects also at 4-tuples
Hi+1 and Hi−1, which cannot be realized on the same side as the defects at
Hi. We generalize this by saying that all the defects at odd indices are in one
side, while the defects at even indices are in the other side. Since the path is
continuous and has to reach from the last formation in a repetition to the first
one in the following repetition, the continuation of the path can only use either
the odd or the even defects. This implies that, when considering three further
repetitions of formations, the first and the third having a defect at Hi and the
second having no defect at Hi, there exists a nesting of depth 2 between them.
Since, by Lemma 9, there cannot be a nesting of depth greater than 5 at this
place, we conclude that after six repetitions of such a triple of formations there
will be at least two formations that are separated from each other. By repeating
this argument we arrive, after 7 · 6 · 2 repetitions, either at the existence of 7
formations that are separated on cs1 and cs2 or at the existence of a nesting
of depth 6, both of which will not be drawable without the aid of another
intersection that is able to support the second nesting.

Lemma 14. If there exists a sequence of extended formations in any shape
containing an intersection I(3,1), then T and P do not admit any geometric
simultaneous embedding.

Proof: Consider a sequence of extended formations in a shape containing an
intersection I(3,1). We show that T and P do not admit any geometric simul-
taneous embedding. Observe that there exist several possibilities for channel
segment cs4 to be placed, which determine one of I(1,4), I(4,2), I(4,1), and I(2,4).

We note that, if there exists the intersection I(3,1), then at least one of cs1,
cs2, and cs4 are part of the convex hull (see Figs. 16(a) and (b)).

First, we show that there exists a nesting at I(3,1) (case I(4,1) can be consid-
ered as the same).

Consider case Ih(3,1) (see Fig. 16(b)). We have that cs1 and cs2 are on the
convex hull restricted to the first three channel segments, and cs4 can force at
most one of them out of it. Hence, one of cs1 and cs2 is part of the convex hull.
We distinguish the two cases.

Suppose that cs2 is part of the convex hull. Assume that there exists a
nesting at I(2,4). Since from cs4 the only possible connection without a 1-side
connection is the one to cs2, which is on the convex hull, an argument analogous
to the one used in Lemma 13 proves that the nesting at I(2,4) has size smaller
than 7 ∗ 12, which implies that the rest of the nesting takes place at I(3,1).

Suppose that cs1 is part of the convex hull. Assume that there exists a
nesting at I(2,4). Every connection from cs4 has to be either to cs1 or to cs2,
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by Property 3. However, a nesting is already taking place at cs2, and hence we
have connections to cs1. As cs1 is on the convex hull, an argument analogous
to the one used in Lemma 13 proves that the nesting at I(2,4) has size smaller
than 7 ∗ 12, which implies the rest of the nesting has to take place at I(3,1).

Consider case I l(3,1) (see Fig. 16(a)). Since cs2 is not part of the convex hull,
either cs1 or cs4 are. If cs1 is on the convex hull, then the same argument as
before holds, while if cs4 is on the convex hull, then no reordering is possible.

Hence, we conclude that a nesting has to take place at I(3,1).

Consider a sequence of extended formations SEF which uses only channels
in this particular shape. Then, all the extended formations in SEF have to
place a nesting at I({3,4},1) with an open triangle whose middle vertex splits
either cs3 or cs4 into an inner and an outer area. Observe that, by Lemma 11,
only a limited part of the nesting can be performed in the bending area. Also,
every extended formation EF having at least one vertex either in cs3 or in cs4
has a vertex in the bending area. Hence, every extended formation has to use
both of such areas. If cs1 is on the convex hull, then there exist only 1-sided
connections to connect such areas, which implies the statement, by Lemma 12.
On the other hand, if cs1 is not on the convex hull, then there exists intersection
I(1,4), and cs4 can be also used to perform connections from the inner to the
outer area. However, since cs4 is on the convex hull, such connections are only
1-side. Hence, by Lemma 12, the statement follows.

5.7 Proofs of Proposition 3

Proposition 3. If there exist two disjoint intersections, then T and P do not
admit any geometric simultaneous embedding.

Lemma 15. Let csi and csi+1 be two consecutive channel segments. If there
exists an ordered set S := (1, 2, . . . , 5)3 of extremal double cuts cutting csi and
csi+1 in such a way that the order of the intersections of the double cuts with
csi (with csi+1) is coherent with the order of S, then T and P do not admit any
geometric simultaneous embedding.

Proof: Assume first that csi and csi+1 are such that the bendpoint of channel
ch5 encloses the bendpoint of all the other channels. Hence, any edge creating a
double cut at a channel ch has to cut all the channels ch′ with ch′ > ch, either
in csi or in csi+1. Refer to Fig. 28.

Consider the first repetition (1, 2, . . . , 5). Let e1 be an edge creating a double
cut at channel ch1. Assume, without loss of generality, that e1 cuts channel
segment csi. Observe that, for channel ch1, the visibility constraints determined
in channels ch2, . . . , ch5 in csi and in csi+1 by the double cut created by e1 do
not depend on whether it is simple or non-simple. Indeed, by Property 5, edge
e1 blocks visibility to b(i, i+ 1) for the part of csi where edges creating double
cuts at channels ch2, . . . , ch5 following e1 in S have to place their end-vertices.

Then, consider an edge e3 creating a double cut at channel ch3 in the first



74 Angelini, Geyer, Kaufmann, Neuwirth Tree-Path Counterexample

135 1 3 5

e1

e2

csi
csi+1

e3
e
′

3

e5

135 1 3 5

e1

csi
csi+1

e3

e5

(a) (b)

Figure 28: Proof of Lemma 15. (a) e3 cuts csi. (b) e3 cuts csi+1.

repetition of (1, 2, . . . , 5).

If e3 cuts csi (see Fig. 28(a)), then it has to create either a non-simple double
cut or a simple one. However, in the latter case, an edge e′3 between csi and
csi+1 in channel ch3, which creates a blocking cut in channel ch2, is needed.
Hence, in both cases, channel ch2 is cut both in csi and in csi+1, either by e3
or by e′3. It follows that an edge e2 creating a double cut at channel ch2 in
the second repetition of (1, 2, . . . , 5) has to cut csi+1, hence blocking visibility
to b(i, i+ 1) for the part of csi+1 where edges creating double cuts at channels
ch3, . . . , ch5 following it in S have to place their end-vertices, by Property 5.
Further, consider an edge e5 creating a double cut at channel ch5 in the second
repetition of (1, 2, . . . , 5). Since visibility to b(i, i + 1) is blocked by e1 and e3
in csi and by e2 in csi+1, e2 has to create a non-simple double cut (or a simple
one plus a blocking cut), hence cutting channel ch4 both in csi and in csi+1. It
follows that, by Property 4, an edge e4 creating a double cut at channel ch4 in
the third repetition of (1, 2, . . . , 5) can place its end-vertex neither in csi nor in
csi+1.

If e3 cuts csi+1 (see Fig. 28(b)), then it has to create a simple double cut.
Again, by Property 5, edge e3 blocks visibility to b(i, i+1) for the part of csi+1

where edges creating double cuts following e3 in S have to place their end-
vertices. Hence, an edge e5 creating a double cut at ch5 in the first repetition of
(1, 2, . . . , 5) cannot create a simple double cut, since its visibility to b(i, i+1) is
blocked by e1 in csi and by e3 in csi+1. This implies that e5 creates a non-simple
double cut (or a simple one plus a blocking cut) at channel ch5, cutting either
csi or csi+1, hence cutting channel ch4 both in csi and in csi+1. It follows that,
by Property 4, an edge e4 creating a double cut at ch4 in the second repetition
of (1, 2, . . . , 5) can place its end-vertex neither in csi nor in csi+1.

The case in which csi and csi+1 are such that the bendpoint of ch1 encloses
the bendpoint of all the other channels can be proved analogously. Namely,
the same argument holds with ch5 playing the role of ch1, with ch1 playing the
role of ch5, with ch3 having the same role as before, with ch4 playing the role
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of ch2, and with ch2 playing the role of ch4. Observe that, in order to obtain
the needed ordering in this setting, 3 repetitions of (1, 2, . . . , 5) are needed. In
fact, we consider channel ch5 in the first repetition, channels ch3 and ch4 in the
second one, and channels ch1 and ch2 in the third one.

Lemma 17. Every sequence of extending formations in shape Ih(1,3) Ih,l(4,{1,2})

contains an ordered set (1, 2, . . . , 5)3 of extremal double cuts with respect to
bending area either b(2, 3) or b(3, 4).

Proof: First observe that shapes Ih(1,3) Ih(4,2) and Ih(1,3) I l(4,2) are similar to

shapes Ih(1,3) I
h
(4,1) and Ih(1,3) I

l
(4,1), respectively, with the only difference on the

slope of channel segment cs4, whose elongation crosses cs2 and not cs1. Hence,
it is sufficient to study only such cases. Shapes Ih(1,3) I l(4,2) and Ih(1,3) I l(4,1) are
depicted in Fig. 18.

Further, observe that bending area b(2, 3) is on the convex hull both in shape
Ih(1,3) I

h
(4,2) and in shape Ih(1,3) I

l
(4,2) and that each extended formation has some

vertices in b(2, 3) and in b(3, 4), which implies that they have to reach such
bending areas with path-edges.

In shape Ih(1,3) I
h
(4,2), by Lemma 16, there exist double cuts either in b(2, 3)

or in b(3, 4), while in shape Ih(1,3) I l(4,2) there exist double cuts in b(2, 3), since

the only possible connections to b(2, 3) are from channel segments cs1 and cs4,
both creating double cuts (see Fig. 18(b)). Hence, we consider the extremal
double cuts of each extended formation with respect to one of b(2, 3) or b(3, 4),
say b(2, 3).

Assume, without loss of generality, that the first bendpoint of channel ch1 is
enclosed by the first bendpoint of all the other channels. This implies that the
second bendpoint of ch1 encloses the second bendpoint of all the other channels.
See Fig. 29.

Consider two sets of extended formations creating double cuts in b(2, 3) at
channels ch1, . . . , ch5, respectively. Observe that the extended formations in
these two sets could be placed in such a way that the ordering of their extremal
double cuts is (1, 1, 2, 2, . . . , 5, 5). The same holds for the following occurrences
of extended formations creating double cuts in b(2, 3) at channels ch1, . . . , ch5,
respectively. Clearly, in this way an ordering (1n, 2n, . . . , 5n) could be achieved
and hence an ordered set (1, 2, . . . , 5)3 of double cuts would be never obtained
(see Fig. 29(a)).

However, every repetition of extended formations inside a sequence of ex-
tended formations contains a double defect at some channel. We show, with
an argument similar to the one used in Lemma 8, that the presence of such
double defects determines an ordering (1, 2, . . . , 5)3 of extremal double cuts af-
ter a certain number of repetitions of extended formations inside a sequence
of extended formations. Namely, consider a double defect at channel chi in a
certain repetition. The connection between channels chi−1 and chi+2 cannot be
performed in the same area as the connection between channels chi−1 and chi

and between channels chi and chi+1 was performed in the previous repetition.
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Figure 29: (a) The ordering of the extremal double cuts is (1, 1, 2, 2, . . . , 5, 5). (b)
When a double defect is encountered, the connection between channels chi−1

and chi+2 cannot be performed in the same area as the connections between
channels chi−1 and chi and between channels chi and chi+1 were performed in
the previous repetition. Hence, the connection is performed in the same area as
the connection between channels chi+1 and chi+2 was performed.

Hence, such a connection has to be performed either in the same area as the
connection between channels chi+1 and chi+2 was performed (see Fig. 29(b)),
or in cs4 (this is only possible in shape Ih(1,3) I

l
(4,2), see Fig. 30).

Observe that, if the path goes to cs4 to make the connection, then to cs1,
and finally back to b(2, 3), hence creating a spiral, then the considered double
cut is not extremal (see Fig. 30(b)). Therefore, the only possibility to consider
is to connect channels chi−1 and chi+2 in cs4 and then to come back to b(2, 3)
with a double cut (see Fig. 30(a)). Hence, independently on whether cs4 is
used or not, the connection between channels chi−1 and chi+2 blocks visibility
for the following repetitions to the areas where the connections between some
channels were performed in the previous repetition. This implies that the order-
ing (1n, 2n, . . . , 5n) of extremal double cuts cannot be respected in the following
repetitions. In fact, a partial order (i, i+1, i+2)2 is obtained in a repetition of
formations creating extremal double cuts at channels 1, . . . , 5.

Also, when two different double defects having a channel in common are
considered, the effect of such defects is combined. Namely, consider a double
defect at channel ch3 in a certain repetition. The connection between ch2 and
ch5 blocks visibility to the areas where the connection between ch2 and ch3 and
between ch3 and ch4 were performed at the previous repetitions (see Fig. 31(a)).
Then, consider a double defect at ch1 in a following repetition. We have that
the connection between channels ch0 and ch3 cannot be performed where the
connection between ch2 and ch3 was performed in the previous repetitions, since
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Figure 30: (a) When a double defect is encountered, the connection between
channels chi−1 and chi+2 is performed in cs4. (b) If cs4 is used to spiral, the
considered double cut was not extremal.

such an area is blocked by the presence of the connection between ch2 and ch5.
Hence, a double cut at ch3 has to be placed after the double cut at ch5 created
in the previous repetition (see Fig. 31(b)).

Consider now a further repetition with a defect not involving any of channels
ch1, . . . , ch5. The region where the connection from ch1 to ch2 was performed in
the previous repetitions is blocked by the connection between ch0 and ch3, and
hence a double cut at ch1 has to be placed after the one at ch3 of the previous
repetition, which in turn was created after the one at ch5 (see Fig. 32(a)). Also,
all the double cuts at channels ch2, . . . , ch5 have to be placed after the double
cut at ch1, and hence a shift of the whole sequence 1, . . . , 5 after the double cut
at ch5 is performed and an ordered set (1, 2, . . . , 5)2 is obtained (see Fig. 32(b)).
Observe that at most two repetitions of extended formation inside a sequence of
extended formations such that each set contains a double defect at each channel
are needed to obtain such a shift.

By repeating such an argument we obtain another shift of the whole sequence
(1, . . . , 5), which results in the desired ordered set (1, 2, . . . , 5)3. We have that
a set of repetitions of extended formation containing a double defect at each
channel is needed to obtain the first sequence (1, 2, . . . , 5), then two of such
sets are needed to get to (1, 2, . . . , 5)2, and two more are needed to get to
(1, 2, . . . , 5)3, which proves the statement.

Observe that, if it were possible to partition the defects into two sets such
that there exists no pair of defects involving a common channel inside the same
set, then such sets could be independently drawn inside two different areas and
the effects of the defects could not be combined to obtain (1, 2, . . . , 5)3. However,
since each double defect involves two consecutive channels, at least three sets
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Figure 31: (a) A repetition with a double defect at ch2 is considered. (b) A
repetition with a double defect at ch0 is considered.

are needed to obtain a partition with such a property. In that case, however, an
ordered set (1, 2, . . . , 5)3 could be obtained by simply considering a repetition
of (1, 2, . . . , 5) in each of the sets.

Lemma 18. If channel segment cs2 is part of the convex hull, then T and P
do not admit any geometric simultaneous embedding.

Proof: First observe that, with an argument analogous to the one used in
Lemma 13, it is possible to show that there exists a nesting at intersection
I(4,{1,2}). Then, by Property 3, every vertex that is placed in cs4 is connected
to two vertices that are placed either in cs1 or in cs2. Hence, the continuous
path-route connecting to a vertex placed in cs4 creates an open triangle, having
one corner in cs4 and two corners either in cs1 or in its elongation, which cuts
cs4 into its inner and outer area.

By Lemma 11, not all of these triangles can be placed in the bending area
b(3, 4). Hence, every extended formation, starting from the second of the se-
quence, has to place their vertices in both the inner and the outer area of the
triangle created by the first one.

Observe that, in order to connect the inner area to the outer area, the ex-
tended formations can only use 1-side connections. Namely, cs1 creates a 1-side
connection. Channel segment cs2 is on the convex hull. Since, by Property 3,
every vertex that is placed in cs3 is connected to two vertices that are placed
either in cs1 or in cs2, also cs3 creates a 1-side connection. Hence, by Lemma 12,
T and P do not admit any geometric simultaneous embedding.
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Figure 32: (a) A repetition without any double defect at channels ch1, . . . , ch5

is considered. (b) An ordered set (1, . . . , 5) is obtained.

6 Geometric Simultaneous Embedding of a Tree

of Height 2 and a Path

In this section we describe an algorithm for constructing a geometric simulta-
neous embedding of any tree T of height 2 and any path P . Refer to Fig. 33.

Draw the root r of T at the origin of a coordinate system. Choose a ray
R1 emanating from the origin and entering the first quadrant, and a ray R2

emanating from the origin and entering the fourth quadrant. Consider the
wedge W delimited by R1 and R2 and containing the positive x-axis. Split W
into t wedges W1, . . . ,Wt, in this clockwise order around the origin, where t is
the number of vertices adjacent to r in T , by emanating t − 1 equispaced rays
from the origin.

Then, consider the two subpaths P1 and P2 of P starting at r. Assign an
orientation to P1 and P2 such that the two edges (r, u) ∈ P1 and (r, v) ∈ P2

incident to r in P are exiting r.
Finally, consider the t subtrees T1, . . . , Tt of T rooted at a node adjacent to

r, such that u ∈ T1 and v ∈ Tt.
The vertices of each subtree Ti are drawn inside wedge Wi, in such a way

that:

1. vertex u is the vertex with the lowest x-coordinate in the drawing, except
for r;

2. vertices belonging to P1 are placed in increasing order of x-coordinate
according to the orientation of P1;

3. vertex v is placed on R2 and is the vertex with the highest x-coordinate
in the drawing;



80 Angelini, Geyer, Kaufmann, Neuwirth Tree-Path Counterexample

x

y

r

R1

R2

W1

W2

W3

v

u

Figure 33: Construction of a geometric simultaneous embedding of a tree with
height 2 and a path.

4. vertices belonging to P2 \ r are placed in decreasing order of x-coordinate
according to the orientation of P2, in such a way that the leftmost vertex
of P2 \ r is to the right of the rightmost vertex of P1.;

5. the drawing of each Ti is planar.

Since T has height 2, each subtree Ti, with i = 1 . . . , t, is a star. Hence, it
can be drawn inside its own wedge Wi without creating any intersection among
tree-edges.

Since P1 and P2 \ {r} are drawn in monotonic order of x-coordinate and are
separated from each other, and edge (r, v) connecting such two paths is on the
convex hull of the point-set, no intersection among path-edges is created.

From the discussion above, we have the following theorem.

Theorem 2 A tree of height 2 and a path always admit a geometric simulta-
neous embedding.

7 Conclusions

In this paper we have shown that there exist a tree T and a path P on the
same set of vertices that do not admit any geometric simultaneous embedding,
which means that there exists no set of points in the plane allowing a planar
embedding of both T and P .

We obtained this result by extending the concept of level nonplanar trees [9]
to the one of region-level nonplanar trees. Namely, we showed that there exist
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trees that do not admit any planar embedding if the vertices are forced to lie
inside particularly defined regions according to a prescribed ordering. Then, we
constructed T and P so that the path creates these particular regions and at
least one of the many region-level nonplanar trees composing T has its vertices
forced to lie inside them in the desired order. Observe that our result also
implies that there exist two edge-disjoint trees that do not admit any geometric
simultaneous embedding, which answers an open question posed in [13], where
the case of two non-edge-disjoint trees was solved.

It is important to note that, even if our counterexample consists of a huge
number of vertices, it can also be considered as “simple”, in the sense that the
height of the tree is just 4. In this direction, we proved that if the tree has
height 2, then it admits a geometric simultaneous embedding with any path.
This gives rise to an intriguing open question about whether a tree of height 3
and a path always admit a geometric simultaneous embedding or not.
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