
Journal of Graph Algorithms and Applications
http://jgaa.info/ vol. 15, no. 6, pp. 753–776 (2011)

FP-GraphMiner – A Fast Frequent Pattern
Mining Algorithm for Network Graphs

R. Vijayalakshmi 1 R. Nadarajan 1 John F. Roddick 2 M. Thilaga 1

P. Nirmala 1

1Department of Mathematics and Computer Applications,
PSG College of Technology,

Coimbatore 641004, Tamil Nadu, India
2School of Computer Science, Engineering and Mathematics,

Flinders University,
PO Box 2100, Adelaide, SA 5001, South Australia.

Abstract

In recent years, graph representations have been used extensively for
modelling complicated structural information, such as circuits, images,
molecular structures, biological networks, weblogs, XML documents and
so on. As a result, frequent subgraph mining has become an important
subfield of graph mining. This paper presents a novel Frequent Pattern
Graph Mining algorithm, FP-GraphMiner, that compactly represents a set
of network graphs as a Frequent Pattern Graph (or FP-Graph). This graph
can be used to efficiently mine frequent subgraphs including maximal fre-
quent subgraphs and maximum common subgraphs. The algorithm is
space and time efficient requiring just one scan of the graph database for
the construction of the FP-Graph, and the search space is significantly
reduced by clustering the subgraphs based on their frequency of occur-
rence. A series of experiments performed on sparse, dense and complete
graph data sets and a comparison with MARGIN, gSpan and FSMA us-
ing real time network data sets confirm the efficiency of the proposed
FP-GraphMiner algorithm.

Keywords: frequent pattern mining, frequent subgraph, graph database,
graph mining, maximal frequent subgraph, maximum common subgraph.

Submitted:
February 2011

Reviewed:
May 2011

Revised:
May 2011

Reviewed:
August 2011

Revised:
August 2011

Accepted:
October 2011

Final:
October 2011

Published:
November 2011

Article type:
Regular paper

Communicated by:
G. Liotta

E-mail addresses: rv@mca.psgtech.ac.in (R. Vijayalakshmi) rn@mca.psgtech.ac.in (R. Nadara-

jan) john.roddick@flinders.edu.au (John F. Roddick) mta@mca.psgtech.ac.in (M. Thilaga)

pna@mca.psgtech.ac.in (P. Nirmala)

mailto:rv@mca.psgtech.ac.in
mailto:rn@mca.psgtech.ac.in
mailto:john.roddick@flinders.edu.au
mailto:mta@mca.psgtech.ac.in
mailto:pna@mca.psgtech.ac.in

754 Vijayalakshmi, Nadarajan, Roddick, Thilaga & Nirmala FP-GraphMiner

1 Introduction

The increasing use of large communication, financial, telecommunication and
social networks is providing a substantial source of problems to the graph data
mining community. These differ from many traditional data mining problems
in that the data records representing transactions between set of entities are not
considered independent, and the inter-transaction dependencies can be repre-
sented as trees, lattices, sequences and graphs. As a result, there has been an
increasing interest in studying the properties, models and algorithms applicable
to graph-structured data to address these issues.

Much current research in graph based data mining focuses on estimating
the reputation and/or popularity of items in a network, mining query logs,
performing query recommendations, web and social network applications, and
so on. As such, the frequent subgraph discovery problem occupies a significant
position among the various graph based data mining algorithms.

The problem of discovering frequent patterns can be stated as follows. Given
a transaction database D consisting of a set of transactions t1, t2, . . . , tn and a
user-specified minimum support (or threshold) σ, the frequent pattern mining
problem is to discover the complete set of patterns with a minimum support
σ in D. The support σ for a given frequent pattern is defined as the ratio of
the number of graphs containing the pattern to the total number of graphs.
Depending on the specific problem formulation, the input transactions and pat-
tern specification can be an itemset, a sequence, a tree, or a graph. Frequent
subgraph mining is a demanding problem as there are an exponential number
of subgraphs contained in a graph. For a graph with e edges, the number of
possible frequent subgraphs could be as large as 2e. As the core operation
of subgraph isomorphism testing is NP-complete, it is critical to minimise the
number of subgraphs that need to be considered [9].

Although the ideas in the paper are widely applicable, in this paper we base
our examples and experiments on the discovery of interesting frequent patterns
from a large communication network. This has a wide range of applications
such as network traffic analysis, detection of node failures in a network, routing
algorithms, and so on. For example, to maximise the efficiency of a network,
managing network traffic is essential. Once the most frequently used paths are
identified better routing algorithms can be devised. To achieve this, a com-
munication network can be modelled as either an undirected or directed graph
with the clients and servers (labelled by their IP addresses) as nodes and the
communication channels between them as edges. Since the IP addresses in a
network are unique, no two nodes have the same label.

The focus of this work is the frequent pattern mining of graphs to discover
all frequent subgraphs contained in at least σ of the graphs in the database. The
proposed Frequent Pattern Miner (FP-GraphMiner) algorithm calculates the fre-
quent edges present in various graphs efficiently creating a special undirected
graph called a Frequent Pattern-Graph (or FP-Graph). Once the graph is con-
structed, all frequent subgraphs can be determined for any given support. The
experimental results validate the effectiveness of the proposed algorithm.

JGAA, 15(6) 753–776 (2011) 755

The rest of the paper is organised as follows. The remainder of this section
presents the formal definitions and notations used. Section II discusses related
work in the area of frequent subgraph mining while Section III describes the
proposed FP-GraphMiner algorithm. Section IV provides correctness proofs of
the technique while Section V provides a complexity analysis of the algorithms.
Section VI deals with the empirical performance evaluation of the algorithm
using synthetic datasets consisting of sparse, non-sparse (dense) and complete
graph datasets, and a comparative study with MARGIN, gSpan and FSMA
using real time data sets. Some conclusions are provided in Section VII. The
algorithms themselves are given in an Appendix.

1.1 Definitions and Notations

The definitions and notations used in this paper are described below [3].

Labeled Graph
A labeled graph G is a 4-tuple, G = (V,E, α, β) where V is a finite set
of vertices, E ⊆ V × V is a set of edges, α : V → L denotes a vertex
labeling function and β : E → L denotes a edge labeling function. Edge
(u, v) originates from node u and terminates at node v. For an undirected
graph, (v, u), and (u, v) denote the same edge, thus β(u, v) = β(v, u).

Graph Isomorphism
Two graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic if they are
topologically identical to each other, that is, there is a mapping from G1

to G2 such that each edge in E1 is mapped to a single edge in E2 and vice
versa. In the case of labeled graphs, this mapping must also preserve the
labels on the vertices and edges.

Subgraph
A graph G2 = (V2, E2) is a subgraph of another graph G1 = (V1, E1) iff
V2 ⊆ V1, and E2 ⊆ E1 ∧ ((v1, v2) ∈ E2 =⇒ v1 ∈ V2 and v2 ∈ V2).

Induced Subgraph
Let G1 = (V1, E1, α1, β1) and G2 = (V2, E2, α2, β2) be graphs. G2 is an
induced subgraph of G1, (G2 ⊆ G1), if V2 ⊆ V1, α1(v) = α2(v) for all
v ∈ V2, E2 = E1 ∩ (V2 × V2), and β1(e) = β2(e) for all e ∈ E2. Given a
graph G1 = (V1, E1, α1, β1), if any subset V2 ⊆ V1 of its vertices uniquely
defines a subgraph, this subgraph is called the subgraph induced by V2.

Subgraph Isomorphism
Given two graphs G1 = (V1, E1) and G2 = (V2, E2), the problem of sub-
graph isomorphism is to find an isomorphism between G2 and a subgraph
of G1, that is, to determine whether or not G2 is included in G1.

Frequent Subgraph
Given a labeled graph dataset GD = {G1, G2, . . . , Gk}, support or fre-

756 Vijayalakshmi, Nadarajan, Roddick, Thilaga & Nirmala FP-GraphMiner

quency of a subgraph g is the percentage (or number) of graphs in GD
where g is a subgraph. A frequent subgraph is a graph whose support is
no less than a minimum user-specified support threshold.

2 Related Work

Graphs serve as a promising means of generically modelling a variety of rela-
tions among data [4]. They can be used to effectively model the structural
and relational characteristics of a variety of datasets arising in the areas of
physical sciences and chemistry such as fluid dynamics, astronomy, structural
mechanics, and ecosystem modelling, life sciences such as genomics, proteomics,
health informatics, and information security such as information assurance, in-
frastructure protection, and terrorist-threat prediction/identification. Much re-
search has focused on finding patterns from a single large network [10], mining
patterns using domain knowledge from bioinformatics [6], and finding frequent
subgraphs [5, 9, 12]. A strong interdisciplinary research area in graph mining
is the problem of finding frequent subgraphs present in huge graph databases.
This has application in different fields including network intrusion [11], semantic
web [16, 1], behavioural modelling [13] and link analysis [8, 15].

A number of algorithms have used a depth-first search to enumerate candi-
date frequent subgraphs [22]. The gSpan algorithm builds a new lexicographic
order among graphs, and maps each graph to a unique minimum DFS code as its
canonical label. Based on this lexicographic order, gSpan adopts a depth-first
search strategy to mine frequent connected subgraphs efficiently [21]. Other
subgraph mining algorithms focus on a level wise search scheme based on the
Apriori property to enumerate the frequent subgraphs that propose an efficient
frequent subgraph mining algorithm [7, 14].

There are two common problems underpinning subgraph mining work such
as this. First, the maximum common subgraphs (or MCS) problem often pro-
vides a suite of benchmarking activities for assessing the performance of widely
used algorithms. These include measuring the similarity between two graphs,
finding maximum common edge subgraphs (MCES), and the McGregor, Durand
and Pasari algorithms for determining MCS of two given graphs [3]. Second,
maximal frequent subgraph mining finds all frequent subgraphs gi such that no
frequent subgraph gj exists where gi is a subgraph of gj . A typical approach to
the maximal frequent subgraph mining problem is to modify the Apriori based
approach with additional pruning steps. An approach to find the maximal fre-
quent subgraphs from graph lattices has been discussed using the MARGIN
algorithm [17, 18]. It represents the search space as a graph lattice and mines
the maximal frequent subgraphs while pruning the lattice space considerably.
The ExpandCut algorithm recursively finds the candidate subgraphs. MARGIN
explores a much smaller search space by visiting the lattice around the f-cut
nodes.

The Frequent Subgraph Mining Algorithm (FSMA) finds all the subgraphs
with a given minimum support in a given graph data set [20]. It uses the

JGAA, 15(6) 753–776 (2011) 757

normalized incidence matrix to present the subgraphs. By scanning the graph
database, FSMA first finds all the frequent edges, termed 1-edge frequent sub-
graphs, which are then extended by adding frequent edges to get 2-edge frequent
subgraphs. This procedure of subgraph extension is repeated until no more
frequent subgraphs can be generated. The algorithm extends the frequent sub-
graphs by adding only the frequent edges instead of enumerating all subgraphs
which greatly reduces the time complexity.

3 The FP-GraphMiner Algorithm

Many currently proposed algorithms for mining frequently occurring patterns
scan the graph database more than once during the mining process. Since in
practice it is commonly disk I/O that most increases response times [2], for large
graph databases, multiple scans can increase the time complexity substantially.
The proposed study focuses on finding frequent subgraphs in a graph database
containing a huge number of related graphs using a single database pass. The
objective of this algorithm is to store the details of all frequent subgraphs into
a single compact undirected graph by scanning the graph database once and to
mine all the frequent subgraphs with any support σ.

As discussed above, a communication network graph with unique node labels
is considered for the study. A communication network can be characterised as
a time series of graphs, with IP addresses (clients or servers) as nodes and the
connection between them as edges. An edge-based array representation, which
is more efficient compared to the vertex-based adjacency matrix representation,
is used. The memory requirement of this representation is half that of the
adjacency list format since it does not store an edge twice.

Each edge of the graph is represented as the 3-tuple 〈S,D,EL〉, where S
is the source node, D is the destination node, and EL is the edge label. Each
tuple is read into an Edge Array, EA, which is a collection of all the edges of
the graph. For an undirected graph, the edge array has the tuples arranged
in lexicographic order of source, destination and edge label. Since no edges
are repeated (edges are distinct), the number of tuples in the edge array is the
number of edges in the graph. The various definitions and notations used in the
proposed algorithm are as follows.

Let GD = {G1, G2, . . . , Gk} be a graph database with k graphs. Each Dis-
tinct Edge, DE is represented as DE = 〈S,D,EL〉.

BitCode of a Distinct Edge
Let m be the number of distinct edges of k graphs. The BitCode of a
distinct edge DEi denoted as BitCode(DEi), 1 ≤ i ≤ m, is a k length bit
string, each bit corresponding to a graph in GD, consisting of 1’s in the
positions of the graphs in which the edge is present and 0’s if it is absent.
The BitCode gives information about the graphs in which the distinct
edge is present.

758 Vijayalakshmi, Nadarajan, Roddick, Thilaga & Nirmala FP-GraphMiner

Weight of a BitCode
The weight of a BitCode of an edge DEi, denoted as WT (DEi), is the
count of 1’s in it, (i.e. the number of graphs in which the edge appears).
Since the weight of all edges in a given Node or a given Cluster are
the same (see below), the term weight can also be applied to Nodes and
Clusters.

Frequency Table
A Frequency Table FT is defined as a collection of distinct edges of k
graphs in GD in decreasing order with respect to the binary encoding
of the BitCodes. Each row in the frequency table contains a 2-tuple
〈DEi, BitCode(DEi)〉, where DEi and BitCode(DEi) represent the dis-
tinct edge and the graphs in which the edge is present respectively.

Frequent Pattern Graph
A Frequent Pattern Graph, FP-Graph = {Node,Edge} is a special type of
undirected graph constructed as a collection of Nodes and Edges where
a Node is a collection of distinct edges with a common property and an
Edge is a link between two Nodes. The FP-Graph constructed from the
frequency table has the following properties.

1. Each Node in the FP-Graph is a collection of subgraphs with the same
BitCode (common features). The maximum number of Nodes in an
FP-Graph of k graphs is 2k − 1.

2. Each Edge(U, V) originates from Node U and terminates at Node
V with an edge label as decimal equivalent of the BitCode of Node V
whereNode V is the immediate superset ofNode U , i.e., WT (Node U)
< WT (Node V). The FP-Graph construction algorithm outlined in
Section 3.1.1 shows how the Nodes are linked.

3. TheNodes with the same BitCode weights are grouped into Clusters.
Each Cluster is identified by its unique weight. The maximum num-
ber of Clusters in the FP-Graph is k.

To summarize, each Node contains the subgraphs with the same Bit-
Code and each Cluster contains the Nodes with the same BitCode
weight.

4. The HeaderNode is an empty Node pointing to the Nodes in a
Cluster with maximum weight (highest support).

DFS Walk in Frequent Pattern Graph
A DFS walk in an FP-Graph is defined as a walk (search) starting from the
Node U in a Cluster with a given support (σ) to the HeaderNode with no
backtracking through a sequence of Nodes U1, U2, . . . , Uk, such that U =
U1 and HeaderNode = Uk, where all Ui are Nodes in the path satisfying
the following condition, WT (BitCode(U1)) < WT (BitCode(U2)) < . . . <
WT (BitCode(Ui)) < . . . < WT (BitCode(Uk)). The DFS walk from each

JGAA, 15(6) 753–776 (2011) 759

Node in the Cluster to the HeaderNode yields all the subgraphs with
the given support.

3.1 The Algorithm

FP-GraphMiner takes the edges of k graphs represented as Edge Arrays as input
and constructs the Frequency Table FT with the distinct edges of all graphs
stored only once. An important property of the proposed algorithm is that the
graph database is scanned only once to construct the frequency table. From the
frequency table, the FP-Graph is constructed. The FP-GraphMiner algorithm has
two phases.

3.1.1 Phase I: FP-Graph construction

In Phase I, the distinct edges DE are obtained by performing a union operation
on the k graphs in the database and are stored in the Frequency Table FT . The
distinct edges are arranged in the descending order of their BitCodes. By group-
ing the edges with the same BitCodes, it is possible to obtain the subgraphs
and the details about the graphs in which they are present. As it is difficult
to retrieve all the frequent subgraphs for a given support from the frequency
table, the FP-Graph is constructed. The Nodes with the same BitCode weight
are grouped into Clusters. Each Cluster is a collection of the subgraphs in GD
with a unique support. The Nodes in each Cluster are linked to obtain the
FP-Graph according to the two step algorithm below.

1. Clustering the Nodes.
The Nodes with same BitCode weights are grouped into Clusters. Thus
each Cluster is a collection of subgraphs with the same support. At the
worst case, the maximum number of Clusters would be the number of
graphs.

2. Connecting the Nodes in different Clusters.
The Clusters are arranged in the hierarchy of increasing order of the
support values. Let Ci, Cj be two successive Clusters with σ(Ci) < σ(Cj).
Cluster Cj is termed the nearest superset of Cluster Ci. A Node p1 in
Cluster Ci can be linked to the Node(s) p2 in Cluster Cj by undirected
edge(s) if the distance measure d(p1, p2), d(p1∈Ci,p2∈Cj)p1 ∩ p2 = p1 is
satisfied. This means that Node p2 in one Cluster is a superset of p1 in
another Cluster only if the distance between them is p1 itself. Any Node
in a Cluster can be linked to one or more superset Nodes. If d(p1, p2) 6= p1
for all the Nodes in Cj , the Nodes in the next higher level Cluster are
examined to find the nearest superset Node(s) of p1.

For instance, given the example described below, if p2 is the node contain-
ing edges {ab, ac, bc, bd, df} (in Figure 3 the Cluster with 100% support)
and p1 contains edges {de, ef, eg, fg} (the lefthand Cluster with 80% sup-
port), then d(p1, p2) = BitCode(p1) ∩ BitCode(p2) = 11101 ∩ 11111 =
11101 = BitCode(p1). Thus p2 is a superset of p1.

760 Vijayalakshmi, Nadarajan, Roddick, Thilaga & Nirmala FP-GraphMiner

Both the parameters used in the proposed algorithm and the algorithms
themselves are given in the appendix.

To illustrate the construction of an FP-Graph consider a network communi-
cation database GD, as shown in Figure 1, consisting of a time series of graphs
obtained by measuring the state of connectivity of the network at regular time
intervals1.

Figure 1: A Communication Network Graph Database GD with 5 graphs

The input to FP-Graph construction algorithm is the edge arrays of these
graphs as given below.

EA(G1) = {abe1, ace3, ade5, bce4, bde2, bee6, bhe12, cde2,
cee4, dee1, dfe8, dge5, dhe10, efe3, ege2, fge6,

ghe6, hie3}
EA(G2) = {abe1, ace3, ade5, bce4, bde2, bee6, cde2, dee1,

dfe8, efev3, ege2, fge6}
EA(G3) = {abe1, ace3, bce4, bde2, dee1, dfe8, dge5, efe3,

ege2, ehe12, fge6, fhe10, ghe6}
EA(G4) = {abe1, ace3, bce4, bde2, bhe12, cde2, dfe8, dhe10}
EA(G5) = {abe1, ace3, ade5, bce4, bde2, cde2, cee4, dee1,

dfe8, dge5, efe3, ege2, fge6}

Since the edge labels are not significant in the process, they are not consid-
ered further. From the edge arrays the Frequency Table FT is constructed as
shown in Figure 2.

1This example is from the experimental data outlined in Section 6 with each graph obtained
by aggregating ten one-second graphs through a UNION operation.

JGAA, 15(6) 753–776 (2011) 761

Figure 2: Frequency table of GD

762 Vijayalakshmi, Nadarajan, Roddick, Thilaga & Nirmala FP-GraphMiner

Each row in the frequency table is a distinct edge obtained by performing
a UNION operation on the edge arrays EA(G1), EA(G2), . . . , EA(G5). These
edge arrays are then sorted in descending order of their BitCodes, with the
FP-Graph then constructed from this frequency table. The distinct edges with
the same BitCode are grouped into a Node in the FP-Graph. For instance, the
distinct edges 〈ab, ac, bc, bd, df〉 form a Node with BitCode 11111. The solid
and the dotted rectangles in Figure 2 show the Nodes and Clusters respec-
tively. The Nodes in the various Clusters are linked to form the FP-Graph as
shown in Figure 3. The graphs in which these edges are present are also listed
for ease of understanding. The links of a Node to various other Nodes are es-
tablished by finding its superset Nodes. Any Node in FP-Graph can have one
or more superset Nodes. This graph can be now mined for various tasks such
as finding frequent subgraphs, maximum common subgraphs, maximal frequent
subgraphs, the graphs containing the given query graph and its support, and so
on.

Figure 3: FP-Graph of the graphs in GD

3.1.2 Phase II: FP-GraphMiner

The objective of the FP-GraphMiner algorithm is as follows. Given a support
σ, all the frequent subgraphs with at least that support can be determined

JGAA, 15(6) 753–776 (2011) 763

efficiently from FP-Graph by performing DFS walks starting from each Node in
the Cluster with the given support σ to the HeaderNode. The collection of
all the edges of the Nodes in the DFS path constitutes a frequent subgraph.
The number of DFS walks from a Cluster with the given support is the number
of frequent subgraphs. If the input graphs are highly dissimilar, the resulting
frequent subgraphs are not connected. By clustering all the Nodes with the
same support within the same Cluster the time taken to perform the search is
significantly reduced.

In the case of a communication network, analyzing the frequent subgraphs
with various support values provides information about how efficiently the net-
work is utilized. Conversely, the nodes with lower support values are those
communication paths that are used less frequently. This knowledge facilitates
improvement in the performance of the overall network by efficiently utilising
channels and for devising more effective routing algorithms. Thus, the proposed
algorithm serves both as an efficient tool for communication network analysis
and for detection of failure nodes.

Finding all frequent subgraphs with a given support σ.
The FP-GraphMiner algorithm (see Appendix A) performs DFS walks
starting from the Cluster having the specified support to the HeaderNode
to obtain all frequent subgraphs. For instance, the frequent subgraphs
with 60% support are shown in Figure 4.

Figure 4: All Frequent Subgraphs with support 60%

The frequent subgraphs extracted from the FP-Graph for a given support
need not be induced. Preserving the induced nature of frequent subgraphs
obtained by the above algorithm is application dependent. The induced
frequent subgraph with 100% support is the maximum common subgraph.
In a communication network, finding the frequent subgraphs representing
communication paths for a given support need not be induced. On the
other hand, if the problem is to find the sub network resulting after node
failures, then induced subgraph mining is essential.

Finding graphs in GD containing the Query Graph Q.
Given a query graph Q, the graphs in GD containing it can be easily
identified by performing a Breadth First Search BFS starting from the
HeaderNode till all the edges of Q are obtained. The BitCodes of these
Nodes are collected into an array BFS(Q). An AND operation on the

764 Vijayalakshmi, Nadarajan, Roddick, Thilaga & Nirmala FP-GraphMiner

BitCodes in BFS(Q) gives a BitCode and the position of 1’s in the result-
ing BitCode shows the graphs containing Q. For instance, given a query
graph Q as shown in Figure 5(a), the algorithm performs a BFS starting
from the HeaderNode to the node containing the last edge. The edges
found as a result of BFS on the FP-Graph to find the edges of Q are shown
in Figure 5(b).

BFS(Q)={11111,11101,11011,11000,10001}
By performing an AND operation on the BitCodes, the query graph
code of Q, QGraphCode(Q) is obtained. Thus, for the given exam-
ple, QGraphCode(Q) is equal to {10000}. The positions of 1’s in the
QGraphCode show the graphs in which Q is contained. Hence in the ex-
ample, Q is present only in Graph 1. The support of Q in GD is computed
as σ(Q) = 1/5 = 20%.

Figure 5: (a) Query Graph Q (b) BFS of FP-Graph for finding Q

The FP-Graph could be efficiently mined for detecting outliers also. For instance,
node i in graph 1 has only a single data transfer with node h (with frequency
of utilization (support) = 1/5). If this is a server failure, necessary action could
be taken to identify and remedy the problem.

JGAA, 15(6) 753–776 (2011) 765

The MARGIN and FSMA algorithms scan the graph database more than
once by following an incremental edge growing methods while finding the max-
imal frequent subgraphs and all the frequent subgraphs respectively. The FP-
GraphMiner algorithm scans the graph database once only to construct the FP-
Graph. This FP-Graph represents all frequent subgraphs in a single data struc-
ture. The frequent subgraphs with any given support can be mined simply by
performing DFS walks in the FP-Graph. The maximum number of Clusters
scanned during each DFS walk would be the number of Clusters in the FP-
Graph. Thus the proposed algorithm is efficient.

4 Proofs of Correctness

In this section, the correctness of the proposed algorithm is shown. First the
essential claim that the maximum number of different weights of distinct edges
of k network graphs is proved as k.

Claim 1 For a graph database GD with k network graphs, the maximum num-
ber of different weights of distinct edges DEi, 1 ≤ i ≤ m is k.

Proof: Each distinct edge DEi has a BitCode for which the number of 1’s in
the BitCode is termed its weight. For k graphs, each BitCode has k bits. Hence,
given k length BitCodes, the weight of the BitCode can range from 1 to k. �

Claim 2 The maximum number of Clusters and Nodes in an FP-Graph of k
graphs in a graph database GD in the worst case are k and 2k − 1 respectively.

Proof: From Claim 1, it follows that k different combinations of weights of
BitCodes are possible with k graphs and hence, by the definition of Cluster
formation, there is a maximum of k Clusters. Each Node in an FP-Graph has
distinct edges with the same BitCode. The length of the BitCode of each edge is
k. As k bits are used for representing one Node, in the worst case, 2k−1 distinct
combinations are possible excluding the BitCode {000}. Hence, there can be a
maximum of 2k− 1 Nodes. For instance, given k = 3, all possible 2k− 1 combi-
nations of BitCodes of the distinct edges are {001,010,100,011,110,101,111}.
Grouping these codes based on weights would yield only 3 groups {001,010,100},
{011,110,101}, {111}. �

Claim 3 A DFS walk starting from the Nodes in the Cluster with a given
support σ to the HeaderNode results in all the frequent subgraphs with support
σ.

Proof: The FP-Graph is a collection of all distinct edges of k graphs arranged
in order of their frequencies into various Clusters. Performing a DFS walk from
any Node to the HeaderNode gives a frequent subgraph of Nodes with at least
the given support. The DFS walks starting from each Node in the Cluster with
the given support σ to the HeaderNode results in all the frequent subgraphs
with σ, 1 ≤ σ ≤ 100. �

766 Vijayalakshmi, Nadarajan, Roddick, Thilaga & Nirmala FP-GraphMiner

Claim 4 The number of frequent subgraphs obtained by a DFS walk from any
Node with a given support depends on its links with its superset Nodes.

Proof: There are a number of DFS walks starting from a Node and proceeding
to the HeaderNode via superset Nodes. This produces a number of frequent
subgraphs. For instance, in Figure 3, the links of the Node with subgraph ad
with its superset Nodes are two. Hence, performing DFS traversals shows two
different paths from the Node containing the subgraph ad to the HeaderNode,
the two frequent subgraphs with the 60% support are obtained as shown in
Figure 6. �

Figure 6: Two Frequent subgraphs of a Node containing subgraph (ad) with
the 60% support

5 Computational Complexity Analysis

In this section we provide an analysis of the time complexity of FP-Graph con-
struction and the FP-GraphMiner algorithm.

5.1 FP-Graph Construction

The construction of FP-Graph includes constructing a frequency table and sys-
tematically linking the Nodes in various Clusters.

Constructing Frequency Table (FT).
All the edges in the Edge Array of k graphs are scanned once to construct
FT . Let the total number of edges in the k graphs be NE and the number
of Distinct Edges be m. All distinct edges along with their BitCodes,
are stored in FT in descending order of BitCode. The time required for
arranging the rows in FT is mlogm using a hash-based implementation.
The total time complexity for constructing FT is O(NE +mlogm).

Constructing FP-Graph.
Each group of edges with the same BitCode comprises one Node in the FP-
Graph. As the edges are stored in the decreasing order of their BitCodes,
the number of comparisons to group the edges into Nodes is m. Let
the number of Nodes be N, (N ≤ 2k − 1 from Claim 2). To link any

JGAA, 15(6) 753–776 (2011) 767

Node i, 1 ≤ i ≤ N , to its immediate superset Node(s), the BitCodes of
Nodes from Node i−1 to Node 1 are compared by performing i−1 AND
operations. The Nodes within the same Cluster need not be compared.
The number of comparisons needed at the worst case to link the Nodes in
FP-Graph is 0 + 1 + 2 + . . .+ (N − 1) is N(N − 1)/2. Thus the complexity
of O(N2).

5.2 FP-GraphMiner

The FP-Graph is mined to obtain all frequent subgraphs with the given support.

Finding all Frequent subgraphs for a given support.
Given a specific support, the maximum number of Nodes visited to find
a frequent subgraph using a DFS walk in the FP-Graph is 2k − 1. So, in
the worst case, to find all frequent subgraphs with a given support, the
number of Nodes visited is the number of Clusters ∗ links of the Node
with its superset Node(s).

Finding graphs containing a given query graph Q.
Given a query graph Q, the number of Nodes visited to find the edges of
Q by performing BFS is N . The time needed for AND operation on the
BitCodes of resulting Nodes to find the graphs in which Q is present is
m. Thus the complexity is O(Nm).

Finding significant nodes in the network.
The edges of the graphs are taken into account in constructing the FP-
Graph. From the FP-GraphMiner algorithm and the experimental study, it
is difficult to analyze the efficiency of the nodes where different nodes of
the network have different degrees (number of nodes to which a node estab-
lishes communication links) at different support values. This means that
the nodes with different support values have different significance values.
Thus to calculate the utilization of the various nodes of the network, some
statistical measure is needed to find the contribution of each. The consis-
tency of each node can be measured using a statistical weighted average
which takes into account the proportional relevance of each component.

Let the maximum degree of each node in the graph database be D and
σ(nodei) be the support of the cluster containing (nodei), 1 ≤ i ≤ D. In
the given example, the number of nodes in GD is 9. As each node can
be connected to a maximum of 8 other nodes D = 8. From the FP-Graph
given in Figure 3, the weighted average (WA) of each node is computed
by considering the nodes in all the clusters using the equation:

WA(nodei) = bΣ(Degree(nodei) ∗ σ(nodei))/Dc, 1 ≤ i ≤ D

768 Vijayalakshmi, Nadarajan, Roddick, Thilaga & Nirmala FP-GraphMiner

Table 1: Weighted Averages of nodes in FP-Graph of Figure 6

σ a b c d e f g h i

100 2 3 2 2 0 1 0 0 0

80 0 0 1 2 3 2 2 0 0

60 1 0 0 2 0 0 1 0 0

40 0 3 1 1 2 0 0 3 0

20 0 0 0 0 1 1 0 3 1

The weighted averages of all the nodes are computed as follows.

WA(a) = b((2 ∗ 100)/8) + ((1 ∗ 60)/8)c = 32

WA(b) = b((3 ∗ 100)/8) + ((3 ∗ 40)/8)c = 53

WA(c) = b((2 ∗ 100)/8) + ((1 ∗ 80)/8) + ((1 ∗ 40)/8)c = 40

...

WA(i) = b(1 ∗ 20)/8c = 2

The degrees of the nodes present in the subgraphs of FP-Graph with var-
ious support values are computed as above and are listed along with the
weighted averages in Table 1.

After finding the weighted averages, the nodes can be ranked based on
their frequency of usage. The node with highest WA is the most frequently
used node. In our example, it might be found that server d has been used
more compared to others and thus the failure of server d would affect the
functioning of the network.

6 Experimental Analysis

The experiments were conducted on a 2.8 GHz Intel Pentium Dual Core machine
with 504MB RAM using Microsoft Windows XP with the algorithms coded
in C. A synthetic Graph Database GD consisting of sparse, non-sparse and
complete graphs was generated to analyse the behaviour of the FP-GraphMiner
algorithm and to investigate the time complexities. The time taken for detecting
all frequent subgraphs in GD with k=100, 500 and 1000 is shown in Table 2.
Synthetic data sets containing a maximum of 100, 500, and 1000 nodes for
various support values of 25%, 50%, 75% and 100% were analysed.

The experimental study shows that the time taken to detect all frequent
subgraphs is inversely proportional to the support of frequent subgraphs. If the
graphs in the database are more related, the time taken to detect the frequent
subgraphs is lower. On the other hand, when the support of a subgraph is less,
the length of the DFS path starting from the HeaderNode to the last edge of
the subgraph is higher.

JGAA, 15(6) 753–776 (2011) 769

No. of
Nodes

Max.
No. of
Edges

No. of
Graphs
in GD

Time taken in Seconds
% of FSG

25 50 75 100

SPARSE GRAPH DATA SET

100 1237
100 0.60 0.28 0.16 0.09
500 13.95 7.03 4.29 3.57
1000 55.69 27.96 18.24 14.06

500 31187
100 22.69 15.71 13.58 12.19
500 360.31 185.48 115.40 97.94
1000 1442.38 724.17 472.42 364.16

1000 124875
100 748.76 349.88 199.93 115.57
500 2350.98 1098.58 627.76 369.27
1000 10698.17 4992.48 2846.56 1601.19

NON-SPARSE GRAPH DATA SET

100 3712
100 1.87 1.04 0.60 0.55
500 42.02 21.20 12.85 10.77
1000 167.14 83.93 54.81 42.30

500 93562
100 894.74 721.4 390.85 152.28
500 14208.18 12238.86 7236.77 6664.08
1000 56877.67 35548.54 10156.72 2901.92

1000 374625
100 4673.28 2610.7 1635.87 984.51
500 80130.12 48283.96 24164.08 16736.67
1000 280455.42 165364.06 103223.52 42681.72

COMPLETE GRAPH DATA SET

100 4950
100 2.47 1.38 0.54 0.88
500 56.08 28.44 17.25 14.39
1000 222.94 111.94 73.10 56.47

500 124750
100 1221.74 943.47 585.02 398.43
500 22493.71 19631.32 17898.77 8523.22
1000 78728.83 43982.58 25423.46 23324.28

1000 499500
100 7223.73 4218.79 2509.11 1384.51
500 93908.51 51038.29 28673.20 26305.69
1000 328679.77 194484.47 113072.37 60982.83

Table 2: Analysis of FP-GraphMiner on Synthetic Datasets Consisting of Sparse,
Non-Sparse, and Complete Graphs

770 Vijayalakshmi, Nadarajan, Roddick, Thilaga & Nirmala FP-GraphMiner

Figure 7: Run Time comparison of FP-GraphMiner with MARGIN, gSpan and
FSMA

A comparative study of the FP-GraphMiner algorithm was conducted against
the MARGIN [17, 18], gSpan [22] and FSMA [20] algorithms relative to their
performance on the real time network data from a large enterprise network
using a dataset created through the Wire Shark Network Monitoring Tool2. The
network data uses static IP addresses which are unique, hence, were suitable for
our experiments. Each network graph was generated by taking the aggregate at
an interval of ten minutes. Six data sets are collected with 1,000, 2,000, 3,000,
4,000, 5,000 and 10,000 time series graphs. In these experiments, parameter
settings were minimum support values of 2%, 5%, 10%, 50%, 70% and 100%,
average number of edges, |Eavg| = 50 and number of Node, |Vavg| = 50. Figure 7

2An interesting additional point of reference is the quantitative performance comparison of
the MoFa, gSpan, FFSM, and Gaston algorithms [19] in which the gSpan algorithm performed
well.

JGAA, 15(6) 753–776 (2011) 771

shows the run time comparison of the FP-GraphMiner with MARGIN, gSpan and
FSMA algorithms under different support values for each data set.

From this analysis, it is clear that the FP-GraphMiner algorithm performs
well in comparison to MARGIN, gSpan and FSMA. As the support increases,
the FP-GraphMiner algorithm is relatively more efficient. This is because all
the frequent subgraphs are obtained by simple DFS walks from the Nodes in
the Cluster having the given support to the HeaderNode respectively. On the
other hand, FSMA extends the subgraph directly by adding one frequent edge
which requires more computational time compared to the proposed algorithm.

The MARGIN algorithm recursively invokes its ExpandCut procedure on
each newly found cut which can be a time consuming process. FP-GraphMiner
required only a graph traversal process without backtracking to find all the
frequent subgraphs with any given support. The experimental results show
that FP-GraphMiner is approximately 4 times faster than MARGIN and 1.5
times than FSMA. It can be observed that with the increase in the size of data
set, the time complexity increases slowly compared to MARGIN and FSMA,
because the distinct edges of all the graphs are stored only once in the FP-
Graph which reduces the access time.

7 Conclusions and Future Work

The FP-GraphMiner algorithm constructs an FP-Graph that stores the distinct
edges in all graphs only once thereby conserving memory space without loss of
information. This graph can be efficiently mined to obtain all frequent sub-
graphs with given support. If the first cluster is a frequent subgraph with 100%
support, it can easily be converted into the maximum common subgraph of GD
by making it induced. No other common path exists that has more communi-
cation paths or nodes than the maximum common subgraph.

The algorithm could be efficiently enhanced for any network to make use-
ful decisions. The FP-Graph constructed could be used for other mining con-
cepts like graph indexing, graph classification (such as selecting discriminating
features, transform graphs in to feature representation, learning classification
model), and so on.

The BitCode concept also lends itself to identifying temporal cliques and
alternatives. For example, a sequence of BitCodes for an edge might indicate
that one edge was only used when another was not or that the use of one edge
was dependent on another edge being used at the same time. Timestamping
the graphs might also provide useful information regarding the use of a com-
munications network at specific points in the day. These are areas for future
research.

772 Vijayalakshmi, Nadarajan, Roddick, Thilaga & Nirmala FP-GraphMiner

References

[1] B. Berendt, A. Hotho, and G. Stumme. Towards semantic web mining.
In I. Horrocks and J. Hendler, editors, The Semantic Web, ISWC 2002,
volume 2342 of LNCS, pages 264–278. Springer, 2002.

[2] B. Bouqata, C. D. Carothers, B. K. Szymanski, and M. J. Zaki. Under-
standing filesystem performance for data mining applications. In 6th In-
ternational Workshop on High Performance Data Mining: Pervasive and
Data Stream Mining (HPDM:PDS’03) at the Third International SIAM
Conference on Data Mining, San Francisco, CA, 2003.

[3] D. Conte, P. Foggia, and M. Vento. Challenging complexity of maximum
common subgraph detection algorithms: A performance analysis of three
algorithms on a wide database of graphs. Journal of Graph Algorithms and
Applications, 11(1):99–143, 2007.

[4] D. J. Cook and L. B. Holder, editors. Mining graph data. Wiley-Blackwell,
Hoboken, NJ, 2007.

[5] J. Huan, W. Wang, and J. Prins. Efficient mining of frequent subgraphs
in the presence of isomorphism. In 3rd IEEE International Conference on
Data Mining (ICDM’03), Melbourne, Florida, 2003. IEEE.

[6] J. Huan, W. Wang, A. Washington, J. Prins, R. Shah, and A. Tropsha.
Accurate classification of protein structural families using coherent sub-
graph analysis. In Pacific Symposium of Biocomputing (PSB), page 411,
Big Island, Hawaii, 2004. World Scientific.

[7] A. Inokuchi, T. Washio, and H. Motoda. An Apriori-based algorithm for
mining frequent substructures from graph data. In Principles of Data Min-
ing and Knowledge Discovery, volume 1910 of LNCS, pages 13–23. Springer,
2000.

[8] J. M. Kleinberg. Authoritative sources in a hyperlinked environment. Jour-
nal of the ACM, 46(5):604–632, 1999.

[9] M. Kuramochi and G. Karypis. Frequent subgraph discovery. In IEEE
International Conference on Data Mining, pages 313–320, San Jose, Cali-
fornia, 2001. IEEE.

[10] M. Kuramochi and G. Karypis. Finding frequent patterns in a large sparse
graph. Data Mining and Knowledge Discovery, 11:243–271, 2005.

[11] W. Lee and S. J. Stolfo. A framework for constructing features and models
for intrusion detection systems. ACM Transactions on Information and
System Security, 3(4):227–261, 2000.

[12] X. T. Li, J. Z. Li, and H. Gao. An efficient frequent subgraph mining
algorithm. Journal of Software, 18(10):2469–2480, 2007.

JGAA, 15(6) 753–776 (2011) 773

[13] R. J. Mooney, P. Melville, L. R. Tang, J. Shavlik, I. de Castro Dutra,
D. Page, and V. S. Costa. Relational data mining with inductive logic pro-
gramming for link discovery. In H. Kargupta, A. Joshi, K. Sivakumar, and
Y. Yesha, editors, Data Mining: Next Generation Challenges and Future
Directions, pages 1–19. AAAI Press, 2004.

[14] P. C. Nguyen, T. Washio, K. Ohara, and H. Motoda. Using a hash-based
method for Apriori-based graph mining. In J.-F. Boulicaut, F. Esposito,
F. Giannotti, and D. Pedreschi, editors, Knowledge Discovery in Databases:
PKDD 2004, volume 3202 of LNCS, pages 349–361. Springer, 2004.

[15] C. R. Palmer, P. B. Gibbons, and C. Faloutsos. ANF: A fast and scalable
tool for data mining in massive graphs. In 8th ACM SIGKDD Internal
Conference on Knowledge Discovery and Data Mining (KDD-2002), pages
81–90, Edmonton, Canada, 2002. ACM.

[16] G. Stumme, A. Hotho, and B. Berendt. Semantic web mining: State of the
art and future directions. Web Semantics: Science, Services and Agents
on the World Wide Web, 4(2):124–143, 2006.

[17] L. T. Thomas, S. R. Valluri, and K. Karlapalem. Margin: Maximal fre-
quent subgraph mining. In 6th International Conference on Data Mining
(ICDM’06), pages 1097–1101, Hong Kong, China, 2006. IEEE.

[18] L. T. Thomas, S. R. Valluri, and K. Karlapalem. MARGIN: Maximal
frequent subgraph mining. ACM Transactions on Knowledge Discovery
from Data, 4(3), 2010.

[19] M. Wörlein, T. Meinl, I. Fischer, and M. Philippsen. A quantitative com-
parison of the subgraph miners MoFa, gSpan, FFSM, and Gaston. In
A. Jorge, L. Torgo, P. Brazdil, R. Camacho, and J. Gama, editors, 9th
European Conference on Principles and Practice of Knowledge Discovery
in Databases, PKDD 2005, volume 3721, pages 392–403, Porto, Portugal,
2005. Springer.

[20] J. Wu and L. Chen. A fast frequent subgraph mining algorithm. In 9th In-
ternational Conference for Young Computer Scientists, pages 82–87. IEEE,
2008.

[21] X. Yan and J. Han. gSpan: Graph-based substructure pattern mining. In
Maebashi City, Japan, page 721, Second IEEE International Conference on
Data Mining (ICDM’02), 2002. IEEE.

[22] X. Yan and J. Han. Closegraph: mining closed frequent graph patterns.
In Ninth ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 286–295, New York, NY, 2003. ACM.

774 Vijayalakshmi, Nadarajan, Roddick, Thilaga & Nirmala FP-GraphMiner

Algorithms

Table 3: Algorithm Parameters

Parameter Meaning
GD Graph Database

K Number of Graphs

Ei Number of Edges in a Graph i

m Number of Distinct Edges in k Graphs

S Source Node Label

D Destination Node Label

EL Edge Label

EA(Gi) Edge Array of Graph Gi

DE Distinct Edge

BitCode(DE) Collection of k bits of DE

WT (BitCode(DE)) Weight of BitCode of DE

MAXWT Maximum Weight of BitCode

FTRow Row in Frequency Table

Node Collection of Distinct Edges with same
BitCode

Cluster Collection ofNodes with same BitCode
Weight

HeaderNode Empty Top Node of FP-Graph

σ Support

W DFS walk from a Node in a Cluster to
HeaderNode

JGAA, 15(6) 753–776 (2011) 775

Algorithm 7.1 Frequent Pattern Graph (FP-Graph) Construction

1: Input : GD = EA(G1), EA(G2), . . . , EA(Gk)
2: Output: FP-Graph
3:
4: //Generate Frequency Table (FT)
5: for each DEi of k graphs do
6: Construct FTRowi ← {DEi, BitCode(DEi)}
7: end for
8: Sort FT in the descending order of WT (BitCode(DE))
9:
10: //Construct Nodes
11: for each Node i do
12: Construct Node[i]← ({DE1, DE2, ..., DEx}, BitCode[i]),

1 ≤ i ≤ 2k, 1 ≤ x ≤ m
13: end for
14:
15: //Group Nodes into Clusters
16: for each WT (BitCode(DEi)) in FT do
17: Cluster[j]← {(Node[1], Node[2], . . .)},

where WT (Node[1]) =WT (Node[2]) . . . ,
σ(Cluster[j]) = b(WTj/k) ∗ 100c

18: end for
19:
20: Let X=Cluster with MAXWT
21: σ(Cluster[1]) < . . . < σ(Cluster[j]) . . . <

σ(Cluster[X]), 1 ≤ j ≤ X
22:
23: //Link Nodes in Clusters
24: EL(Node[i],Node[j])=Edge Label from Node i to Node j
25: DVi=Decimal Equivalent of BitCode of Node[i], 1 ≤ i ≤ 2k

26:
27: //Link HeaderNode with all Nodes in Cluster with MAXWT
28: for each Node x in X, 1 ≤ x ≤ k do
29: Link(HeaderNode) ← Node[x]
30: EL(HeaderNode,Node[x])← DVx
31: end for
32:
33: //Link Nodes in the other Clusters
34: Let Cluster[1] = Cluster with least support
35: LABEL1:
36: for each Node x in Cluster[i], 1 ≤ i ≤ X do
37: LABEL2:
38: for each Node y in Cluster[j], i+ 1 ≤ j ≤ X do
39: if d(x∈Cluster[i],y∈Cluster[j]) BitCode(x) ∩ BitCode(y) = BitCode(x),

σ(Cluster[i]) < σ(Cluster[j]) then
40: //Node[y] is immediate superset of Node[x]
41: Node[x].link ← Node[y]
42: EL(Node[x], Node[y])← DVy
43: else
44: if (j + 1) 6= HeaderNode then
45: j ← j + 1
46: go to LABEL2
47: end if
48: end if
49: end for
50: end for
51: i← i+ 1
52: go to LABEL1

776 Vijayalakshmi, Nadarajan, Roddick, Thilaga & Nirmala FP-GraphMiner

Algorithm 7.2 Frequent Pattern Graph Mining (FP-GraphMiner) Algorithm

1: //Find all frequent subgraphs of k graphs
2: Input: FP-Graph Support σ
3: Output: All FSG in GD with given σ
4:
5: for each DFS Walk w starting from each Node i in Cluster j with σ ≈ σj , 1 ≤ j ≤ m do
6: FSGw ← Nodes in DFS path from Cluster j up to HeaderNode
7: end for
8:
9: //Find graphs in GD containing the Query Graph Q
10: Input: FP-Graph Q = QueryGraph
11: Output: Graphs in GD containing Query Graph Q, support σ of Q in GD.
12:
13: //Starting from Header, perform BFS and collect all edges of Q from various Nodes.
14: BFS(Q) = Node[1], Node[2], . . . , Node[q], 1 ≤ q ≤ 2k,
15: Collection of Nodes containing edge(s) of Q //Perform AND operation on the Node(s)

in which edges of Q are present to obtain the Query Graph Code of Q.

16: QGraphCode(Q) = ∩2ki=1BitCode(Nodei)
17: Graphs containing Q = positions of 1’s in QGraphCode(Q)
18: σ(Q)← (Q) =Number of graphs containing Q/k ∗ 100

	Introduction
	Definitions and Notations

	Related Work
	The FP-GraphMiner Algorithm
	The Algorithm
	Phase I: FP-Graph construction
	Phase II: FP-GraphMiner

	Proofs of Correctness
	Computational Complexity Analysis
	FP-Graph Construction
	FP-GraphMiner

	Experimental Analysis
	Conclusions and Future Work

