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Abstract

Upward planar drawings of digraphs are crossing free drawings where
all edges flow in the upward direction. The problem of deciding whether
a digraph admits an upward planar drawing is called the upward pla-

narity testing problem, and it has been widely studied in the literature.
In this paper we investigate a new upward planarity testing problem, that
is, deciding whether a digraph admits an upward planar drawing hav-
ing some special topological properties: such a drawing is called switch-

regular. Switch-regular upward planar drawings have practical algorithmic
impacts in several graph drawing applications. We provide characteriza-
tions for the class of directed trees that admit a switch-regular upward
planar drawing. Based on these characterizations we describe an optimal
linear-time testing and embedding algorithm.
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1 Introduction

An upward drawing of a digraph is a drawing such that each vertex is mapped
to a distinct point of the plane and all edges are drawn as simple Jordan curves
monotonically increasing in the vertical direction. Upward drawings have a
long tradition in Graph Drawing and they are commonly adopted for the visual
representation of acyclic digraphs that model hierarchical structures, like PERT
diagrams or class inheritance diagrams. A digraph is said to be upward planar
if it admits an upward planar drawing, i.e., a crossing free upward drawing.

Although it is immediate to see that every acyclic digraph has an upward
drawing, it is well known that not all acyclic planar digraphs are upward planar.
Since edge crossings negatively affect the readability of a drawing, a very rich
body of research has been devoted so far to the so called upward planarity testing
problem (i.e., the problem of deciding whether or not a planar digraph admits
an upward planar drawing), and many combinatorial and algorithmic results
have been described (see, e.g., [8]). In particular, Bertolazzi et al. proved that
given an embedded planar digraph G with n vertices, it is possible to decide in
O(n2) time if G admits an embedding preserving upward planar drawing [2].
Conversely, Garg and Tamassia proved that the upward planarity testing prob-
lem in the variable embedding setting is NP-complete [12]. In the middle of
these two results, polynomial-time upward planarity testing algorithms have
been described for specific sub-families of planar digraphs [3, 11, 14, 15] and
more general exponential-time algorithms can be found in [1, 6, 13].

Concerning the topological properties of upward planar drawings, Di Bat-
tista and Liotta discovered and characterized a meaningful sub-family of upward
planar drawings whose embedding has some special properties of “regularity” [9].
Namely, an upward planar drawing has a switch-regular embedding if: (i) the
boundary of each internal face contains at most one maximal subsequence of
“small” angles (i.e., angles smaller than π) of length greater than one; (ii) the
external boundary does not contain two consecutive “small” angles. Figure 1
shows examples of switch-regular and non switch-regular embeddings.

From a practical point of view, finding switch-regular upward planar embed-
dings is relevant for two main applications:� Design of Efficient Checkers. A checker is an algorithm that efficiently

checks the correctness of the output produced by another algorithm (see,
e.g., [7]). Di Battista and Liotta showed that it is possible to design an
optimal linear-time checker that verifies the correctness of a computed
upward planar drawing, provided that its embedding is switch-regular.
Namely, suppose we are given an algorithm that takes as input a planar
digraph G and that computes, if any, an upward planar drawing Γ of
G; if the embedding of Γ is switch-regular, the checker described by Di
Battista and Liotta efficiently verifies the correctness of Γ in terms of
upward planarity.� Effective Drawing Compaction. Area and aspect ratio are considered two
of the most important aesthetic requirements for the readability of a draw-
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ing. There are works that experimentally show how, starting from a
switch-regular embedding of a digraph or augmenting a non-switch regu-
lar embedding to a switch-regular one, it is possible to design heuristics
that compute drawings with compact area and that dramatically improve
aspect ratio with respect to previous drawing approaches [10]. We also
remark that similar heuristics, based on a analogous concept of “regu-
larity”, were previously adopted and successfully experimented for the
computation of orthogonal drawings [5].

These applications naturally motivate the following new upward planarity
testing problem: “Given a planar digraph G, is it possible to test in polynomial
time whether G admits a switch-regular upward planar embedding?”. In this
paper we solve the problem for digraphs whose underlying undirected graph
is a tree (we call such a digraph a directed tree for short). We remark that a
directed tree always admits an upward planar embedding, but it may not admit
a switch-regular one. Also, since an embedding of a tree has only one face (i.e.,
the external one) the switch-regularity reduces to the requirement that there
are no two consecutive “small” angles along the face boundary. For example,
Figure 7(a) shows a tree that does not admit a switch-regular embedding. Our
results are as follows:� We provide three equivalent characterizations of switch-regular directed

trees, i.e., directed trees that admit a switch-regular upward planar em-
bedding.� By exploiting the above characterizations, we describe an optimal linear-
time algorithm that tests whether a directed tree is switch-regular and
that computes a switch-regular upward planar embedding of the tree in
the affirmative case.

We remark that, besides their practical relevance, our techniques make use of
new theoretical ingredients that are interesting in their own right. The outline
of the paper is as follows. In Sections 3-5 we investigate the structure of switch-
regular trees. Namely, in Section 3 we show that a switch-regular tree does not
contain subdivisions of a special graph that we call a 3-hook (see Lemma 1). In
Section 4, we introduce red-blue decompositions of trees and we show that if a
tree does not contain 3-hook subdivisions then it has a special kind of red-blue
decomposition, which we call regular (see Lemma 5). In Section 5, we show that
a regular red-blue decomposition of a tree T implies that T is switch-regular
(see Lemma 10). In Section 6, we give different characterizations of switch-
regular trees and describe a linear-time algorithm to test if a directed tree is
switch-regular and, in positive case, to compute a switch-regular upward planar
embedding of it. Conclusions and open problems can be found in Section 7.
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2 Basic Definitions

We assume familiarity with the basic concepts of graph drawing and graph
planarity [8]. Let G be an embedded planar digraph. A vertex v of G is bimodal
if all incoming edges of v (and hence all outgoing edges of v) are consecutive
in the circular clockwise order around v. G is called bimodal if all its vertices
are bimodal. Acyclicity and bimodality are necessary conditions for the upward
planar drawability of an embedded planar digraph, but they are not sufficient
conditions [2].

Let f be a face of G and suppose that the boundary of f is traversed coun-
terclockwise. If e1 = (u1, v) and e2 = (v, u2) are two edges encountered in this
order along the boundary of f , the triplet s = (e1, v, e2) is called an angle of f .
Note that, e1 and e2 may coincide if G is not biconnected. Angle s is called a
switch of f if e1 and e2 are both incoming edges or both outgoing edges of v: in
the first case s is also called a sink-switch of f , while in the second case it is a
source-switch of f . Observe that the number of source-switches of f equals the
number of sink-switches of f . We denote by 2nf the total number of switches
of f . The capacity of f is denoted by cf and it is defined by cf = nf − 1 if f is
an internal face and by cf = nf +1 if f is the external face. If G is bimodal an
assignment of the sources and sinks of G to the faces of G is called an upward
consistent assignment of G if, for each face f exactly cf sources and sinks on the
boundary of f are assigned to f . The following theorem gives a characterization
of the class of embedded planar digraphs that admit an upward planar drawing.

Theorem 1 [2] An acyclic embedded planar bimodal digraph is upward planar
if and only if it admits an upward consistent assignment.

The upward planar embedding of G corresponding to an upward consistent
assignment of G is a planar embedding of G with labels at the switches of every
face. Namely, a switch s = (e1, v, e2) of f is labeled L when v is a source or
a sink assigned to f and s is labeled S otherwise. If f is a face of an upward
planar embedding, the circular list of labels of f is denoted by σf . Also, Sσf

and Lσf
denote the number of S and L labels of f , respectively.

Property 1 [2] If f is a face of an upward planar embedding then Sσf
= Lσf

+2
if f is internal, and Sσf

= Lσf
− 2 if f is external.

An upward planar drawing of a digraph G can be constructed for a given
upward planar embedding of G; this drawing is such that each switch angle
labeled L forms a geometric angle larger than π, while each switch angle labeled
S forms a geometric angle smaller than π.

An internal face f of an upward planar embedding is called switch-regular if
σf does not contain two distinct maximal subsequences σ1 and σ2 of S labels
such that Sσ1 > 1 and Sσ2 > 1. The external face f is switch-regular if σf does
not contain two consecutive S labels.

An upward planar embedding is switch-regular if all its faces are switch-
regular. We say that a digraph G is switch-regular if it admits a switch-regular
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Figure 1: (a) and (b) show two different embeddings of the same digraph G,
while (c) and (d) show two different embeddings of the same directed tree T .
Dark angles are switches labeled L, light angles are switches labeled S. In
(a) the embedding of G is not switch-regular because the circular list of labels
along the boundary of face f has two distinct subsequences, each containing
two consecutive S labels (the labels at vertices 3 and 2 in a subsequence, and
the labels at vertices 1 and 4 in the other subsequence). In (b) the embedding
of G is switch-regular because all its faces are switch-regular. Similarly, in (c)
the embedding of T is not switch-regular because the external face (which is the
unique face of T ) is not switch-regular; for example there are two consecutive S
labels at vertices 15 and 9 or at vertices 15 and 20. In (d) the external face does
not contain consecutive S labels, and thus the embedding is switch-regular.
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upward planar embedding. Examples of switch-regular and non switch-regular
upward planar embeddings are depicted in Figure 1. Roughly speaking, a
switch-regular embedding does not have a pair of vertices that are “facing”
one each other in some face (like the vertices 6 and 7 in face f of Figure 1(a) or
the vertices 4 and 5 in Figure 1(c)).

If e = (u, v) is a directed edge of a digraph G, a subdivision of e is a path
of directed edges (u,w1), (w1, w2) . . . (wk, v) that replaces e (k > 0). A digraph
obtained from G by subdividing some edges (possible none) of G is called a
subdivision of G.

In the next sections we investigate the structure of switch-regular trees in
order to characterize them. Intuitively speaking, throughout the paper we will
prove that a tree is switch-regular if it admits an embedding like that schemat-
ically depicted in Figure 2. Namely, if a tree is switch-regular it should be
possible to select a vertex v such that: (i) there are vertices that can either be
reached from v or reach v by means of a directed path (they induce the blue
portions of the tree shown in the figure, and form a kind of “hourglass” shape);
(ii) the remaining vertices form components attached to paths of blue vertices
(the red components in the figure); (iii) all the red components can be exter-
nally embedded as shown in Figure 2(a) or in Figure 2(b) (or other symmetric
fashions).

v

(a)

v

(b)

Figure 2: Schematic illustration of switch-regular embedded trees. The blue
portions represent vertices that can either be reached from v or reach v by
means of a directed path. The remaining vertices form components (in red)
that can be externally embedded in a fashion like those depicted in the two
subfigures.

3 Switch-regularity and 3-hooks

In this section we introduce a special graph that we call 3-hook and we show
that a switch-regular directed tree cannot contain subdivisions of this graph.
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A hook is a digraphH whose underlying undirected graph is a path consisting
of three vertices such that the middle vertex is either a source or a sink of H .
A 3-hook is a directed tree consisting of three hooks sharing an endvertex.
The vertex shared by the three hooks is called the center of the 3-hook ; the
middle vertex of each hook is called a middle vertex of the 3-hook ; the unshared
endvertex of a hook is called a leaf of the 3-hook. Figure 3 shows 4 different
3-hook graphs. A subdivision of a hook is called a hook subdivision and a
subdivision of a 3-hook is called a 3-hook subdivision. The center, the middle
vertices, and the leaves of a 3-hook subdivision are the vertices corresponding
to the center the middle vertices, and the leaves of the 3-hook. Note that,
by definition, a subdivision does not create new sources and sinks, and hence
there is no ambiguity about the location of the middle vertices. In any upward
embedding of a 3-hook, every middle vertex of the 3-hook defines 2 switches,
one of which is labeled L. Every leaf of the 3-hook defines one switch that is
always labeled L.

It is easy to see that any 3-hook is not switch-regular, because in any given
embedding of a 3-hook there are always two consecutive S-labels. In the next
lemma we prove that if a directed tree is switch-regular, then it does not contain
a 3-hook subdivision. For the proof it is sufficient to show that every 3-hook
subdivision induces two consecutive S-labels.

w3 w1v

w2
u2

u1u3

(a)

v

u1
u2

w2
u3

w3
w1

(b)

u2

w1
vw3

u3

w2

u1

(c)

w3

u2

v w1

u1u3

w2

(d)

Figure 3: Four different 3-hooks. In each of them, v is the center, vertices ui are the
middle vertices, and vertices wi are the leaves (i ∈ {1, 2, 3}).

Lemma 1 A switch-regular directed tree does not contain 3-hook subdivisions.

Proof: We assume by contradiction that T contains a subtree T ′ that is a 3-
hook subdivision. We will show that T is not switch-regular in this case. Let
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ψ be an upward planar embedding of T , and let v be the center of T ′. Assume
that H is any of the three subgraphs of T ′ that are hook subdivisions, and let
u denote the middle vertex of H . We say that H is an incoming hook (outgoing
hook) if there is a directed path from u to v (v to u). Let ψ′ be the upward
planar embedding of T ′ induced by ψ; one of the two switches at u is labeled
S in ψ′ while the other is labeled L. We say that H is a left hook if walking
counterclockwise around T ′, starting from v, the switch labeled L incident to u
is encountered before the switch labeled S, while H is a right hook otherwise.

One of the two following cases always holds for ψ′:

Case 1. There is an incoming and an outgoing hook such that one is a left hook
and the other one is a right hook. Let us assume that H1 is an outgoing
left hook and H2 is an incoming right hook (see Figure 4(a)). The other
cases are symmetric. Let u1 and u2 be the middle vertices of H1 and H2,
respectively. Also let e1 be the edge incident to u1 in the path from v to
u1, and let e′1 be the other edge of H1 incident to u1. Since H1 is a left
hook, ŝ = (e′1, u1, e1) is labeled S. Analogously, let e2 be the edge incident
to u2 in the path from u2 to v, and let e′2 be the other edge of H2 incident
to u2. Since H2 is a right hook, s̄ = (e2, u2, e

′

2) is labeled S.

Case 2. There are two incoming or two outgoing hooks, such that both are
either left hooks or right hooks. We consider the case when there are two
outgoing hooks H1 and H2 that are both left hooks (see Figure 4(b)). The
other cases are symmetric. Let ei be the edge of Hi (i = 1, 2) incident
to v, and let e′i be the edge that follows ei in the counterclockwise order
around v. One between H1 and H2 is such that (ei, v, e

′

i) is labeled S.
Assume without loss of generality that such a hook is H1 and denote as
s̄ the switch (e1, v, e

′

1). Let u be the middle vertex of H1 and let e be
the edge incident to u in the path from v to u. Let e′ be the edge of H1

incident to u and distinct from e. Since H1 is a left hook, ŝ = (e′, u, e) is
labeled S.

Both Case 1 and Case 2 have four subcases. Let Π = H1 ∪H2 in Case 1

and let Π = H1 in Case 2.

Sub-Case 1. No switch is encountered when walking counterclockwise around
T from ŝ to s̄. In this case ŝ and s̄ form a sequence of two consecutive S
labels and therefore T is not switch-regular.

Sub-Case 2. Walking counterclockwise from ŝ to s̄ the first switch s3 = (e3, w, e
′

3)
encountered after ŝ is such that e3 is an edge of Π, w is a vertex of Π, and
e′3 leaves w. The switches ŝ and s3 form a sequence of two consecutive S
labels because s3 is also labeled S.

Sub-Case 3. Walking counterclockwise from ŝ to s̄ the last switch s3 = (e′3, w, e3)
encountered before s̄ is such that e3 is an edge of Π, w is a vertex of Π,
and edge e′3 enters w. The switches s3 and s̄ form a sequence of two
consecutive S labels because s3 is also labeled S.
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Figure 4: Illustration for Lemma 1: (a) Case 1. Starting from v, H1 is an outgoing
left hook because the switch labeled L at vertex u1 is encountered before the switch ŝ

labeled S; conversely, H2 is an incoming right hook because the switch s̄ labeled S is
encountered before the switch labeled L at vertex u2; (b) Case 2: Both H1 and H2

are left outgoing hooks.

Sub-Case 4. Walking counterclockwise from ŝ to s̄ there are two switches s3 =
(e′3, w3, e3) and s4 = (e4, w4, e

′

4) such that ei is an edge of Π (i = 3, 4), wi is
a vertex of Π (i = 3, 4), e′3 is an edge entering w3 and e′4 is an edge leaving
w4. Both s3 and s4 are labeled S. If they are consecutive they form a
sequence of two consecutive S labels, otherwise walking counterclockwise
from s3 to s4 there are two consecutive switches with the same properties
as s3 and s4. These switches form a sequence of two consecutive S labels.

2

Observe that if T has vertex degree at most 2 then T is a path, which always
admits a switch-regular embedding. Thus, from now on we concentrate on trees
with at least one vertex with degree larger than 2.

4 3-hooks and Red-blue Decompositions

In this section we introduce the concept of red-blue decomposition of a directed
tree and we show the relationship between it and 3-hook subdivisions. In par-
ticular, we show that if a tree does not contain 3-hook subdivisions then it has
a special kind of red-blue decomposition, which we call regular (see Lemma 5).
To this aim we describe three properties that a red-blue decomposition must
satisfy in order to be regular (see Lemmas 2, 3, 4).

An hourglass tree T is a directed tree with a vertex v such that for each
vertex u of T (u 6= v) either there is a directed path from v to u or there is a
directed path from u to v. The vertex v is called the center of the hourglass.
See Figure 5(a) for an example of an hourglass tree.

Property 2 Every upward planar embedding of an hourglass tree is switch-
regular.
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v
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u3

u4

u1
w1

w2w3

u2

v

(c)

Figure 5: (a) An hourglass tree with center v: Each vertex “above” v is reachable
from v with a directed path and each vertex “below” v can reach v with a directed
path; (b) A tree T that is not an hourglass tree. Indeed, for any selected vertex v of
T , there exists at least one vertex that cannot reach v or that it is not reachable from
v by means of a directed path. (c) A red-blue decomposition of a tree T with respect
to v; the directed blue path from u1 to v is an incoming attaching path of RB(T, v)
and w1 is its last attaching vertex. The directed blue paths from v to u2 and from v to
u3 are both outgoing attaching paths of RB(T, v); w2 and w3 are their corresponding
last attaching vertices.

Let T be a directed tree and let v be a vertex of T with deg(v) ≥ 3. A
red-blue decomposition of T with respect to v is a coloring of the vertices and
edges of T such that: (i) a vertex u of T is colored blue if there exists a directed
path either from u to v or from v to u, and u is colored red otherwise; (ii) an
edge e of T is colored blue if both its endvertices are blue, and e is colored red
otherwise. We denote by RB(T, v) such a decomposition. If e is a red edge of
RB(T, v), then either both end-vertices of e are red or one is red and the other
is blue. By definition the subgraph consisting of all blue vertices is an hourglass
tree.

Let u and w be a red and a blue vertex of RB(T, v), respectively. We say
that u is attached to w if there exists a (non-directed) path from u to w whose
vertices are all red vertices except w. We also say that w is the attaching vertex
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of u.

An outgoing (incoming) attaching path of RB(T, v) is a directed blue path
Π from v to a leaf of T (from a leaf of T to v) such that at least one vertex
of Π is an attaching vertex (see Figure 5(c)). An attaching path of RB(T, v) is
either an outgoing or an incoming attaching path with respect to v. Given an
attaching path Π we call last attaching vertex of Π the attaching vertex that
has maximum distance from v. Let Π1 and Π2 be two attaching paths. We say
that Π1 and Π2 are distinct if their last attaching vertices are distinct and none
of them is shared by Π1 and Π2. For example, the two attaching paths from v

to u3 and from v to u4 in Figure 5(c) are not distinct because they share the
last attaching vertex w3. Clearly, an outgoing and an incoming attaching paths
are always distinct. We say that Π1 and Π2 are equally oriented if they are both
incoming or both outgoing.

Concerning the number of distinct attaching paths of RB(T, v) we give the
following result.

Lemma 2 Let T be a directed tree having a vertex v with deg(v) ≥ 3 such that
RB(T, v) has more than two distinct attaching paths. Then T contains a 3-hook
subdivision.

Proof: Let Π1, Π2, and Π3 be three distinct attaching paths of RB(T, v). Let
ui be an attaching vertex of Πi not shared with another attaching path Πj and
let ei be a red edge incident to ui (1 ≤ i 6= j ≤ 3). Let wi be the last vertex
(i.e., the farthest from v) of Πi shared with another attaching path Πj and let
Π′

i be the portion of Πi from wi to ui (1 ≤ i 6= j ≤ 3). We have the following
cases. For an illustration see Figure 6.
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Figure 6: Illustration for Lemma 2. (a) Case 1: w1 = w2 = w3; there exists a
3-hook subdivision with center w1. (b)-(c) Case 2: In (b) Π1, Π2 and P3 are equally
oriented; (c) Π3 is not equally oriented with Π1 and Π2. In both cases there is a 3-hook
subdivision with center w1.

Case 1: w1 = w2 = w3. Notice that w1 = w2 = w3 may coincide with v. In
this case Π′

i∪ei is a hook subdivision with wi as an end-vertex (1 ≤ i ≤ 3).
Hence, there is a 3-hook subdivision with center w1.
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Case 2: w1 = w2 Notice that w1 = w2 does not coincide with v and therefore
Π1 and Π2 are equally oriented. In this case Π′

i ∪ ei is a hook subdivision
with wi as an end-vertex (1 ≤ i ≤ 2). Let Π∗ be the path from w1 to w3.
If Π3 is equally oriented with Π1 and Π2, let e be the edge of Π′

3 incident
to w3. Then Π∗ ∪ e is a hook subdivision with w1 as an endvertex and
therefore we have a 3-hook subdivision. If Π3 is not equally oriented with
Π1 and Π2, then Π∗ ∪ e3 is a hook subdivision with w1 as an endvertex
and therefore we have a 3-hook subdivision.

2

From Lemma 2 we know that RB(T, v) must contain at most two distinct
attaching paths, otherwise T contains a 3-hook subdivision. This condition is
necessary but not sufficient to avoid the presence of 3-hook subdivisions. Now
we describe a second condition that is related with the concept of regular red
component.

Let C′ = (VC′ , EC′) be any connected component obtained by removing
the blue vertices. Note that all vertices of C′ have the same attaching vertex
w. Let e be the (unique) edge of T that connects w to C′. The subtree C =
(VC′ ∪ {w}, EC′ ∪ {e}) is called a red component of RB(T, v) and vertex w is
called the attaching vertex of the red component C (see Figure 7(a)). We say
that C is regular if it contains a (non-directed) path Π having w as an endvertex
and such that C minus the edges of Π is a forest of hourglass trees whose centers
belong to Π. If C is regular, we call Π a backbone of C. We say that C is strongly
regular if the path consisting of the only vertex w is a backbone of C (in this
case no edge is removed from C). In other words, C is strongly regular, if either
all vertices of C are reachable with a directed path from w, or w is reachable
with a directed path from all vertices of C. If C is regular but not strongly
regular, it is said to be weakly regular. Figure 7(a) shows examples of regular
and non-regular red components in a red-blue decomposition of a directed tree.

The following lemma shows that a non-regular red component in RB(T, v)
induces a 3-hook subdivision in T .

Lemma 3 Let T be a directed tree having a vertex v with deg(v) ≥ 3 such
that RB(T, v) has a non-regular red component. Then T contains a 3-hook
subdivision.

Proof: Let C be a red component of RB(T, v) that is not regular. We observe
that the following property holds:

Property 3 Let T be a tree and let z be a vertex of T . If T is not an hourglass
with center z, then T has a subtree that is a hook subdivision with z as an
endvertex.

Let w be the attaching vertex of C. Let Π be any (non-directed) path of
C having w as an endvertex. Since C is not regular, removing the edges of Π
we obtain at least one tree that is not an hourglass with its center on Π; we
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Figure 7: (a) A red-blue decomposition of a tree T with respect to v; C1, C2, and C3

are red components of RB(T, v) and w1, w2, and w3 are their corresponding attaching
vertices. C1 is strongly regular: Its backbone Π1 consists only of the attaching vertex
w1. C2 is weakly regular with Π2 as backbone: The removal of the edges of Π2 will keep
alive the two hourglass trees T1 and T2 with centers on Π2. C3 is not regular, because
there is no directed path having w3 as an endvertex that can be the backbone of C3.
For example, the path from w3 and x is not a backbone, because y is not reachable
with a directed path from z; similarly the path from w3 and x is not a backbone
because x is not reachable from z. (b) Illustration for Lemma 3: A red component
C of RB(T, v) that has w as attaching vertex and that is not regular. Bold red lines
represent the path Π of C having w as an endvertex.

call such a tree a candidate tree. Let T ′ be the first candidate tree encountered
while walking along Π from w. Let z be the vertex shared by T ′ and Π; we call
this vertex the reference vertex. Since T ′ is not an hourglass with center z, by
Property 3 T ′ contains a hook subdivision H1 with z as an endvertex. Let e1 be
the edge of Π incident to z encountered first when walking along Π starting from
w and let e2 be the other edge of Π incident to z (refer to Figure 7(b)). Also,
let e0 denote the edge of Π incident to w (note that e0 and e1 may coincide).
Let Ti be the connected subtree of C obtained by removing all edges incident
to z except ei (i = 1, 2) and containing z. Since w is a blue vertex of RB(T, v),
then there exists a blue edge eb of RB(T, v) incident on w having the same
orientation as e0. Let w′ be the other vertex incident to eb. Tree T1 ∪ eb is
not an hourglass with center z because otherwise there would be a directed
path from w′ to z, which is impossible because z is a red vertex of RB(T, v).
Therefore T1 ∪ eb contains a hook subdivision H2 with z as an endvertex. If T2
is not an hourglass with center z then it contains a hook subdivision H3 with
z as an endvertex and therefore T has a subgraph that is a 3-hook subdivision.
If T2 is an hourglass with center z, consider the path Π = Π′ ∪ H1 where Π′

is the portion of Π with endvertices w and z. Removing the edges of Π we
obtain a new set of candidate trees. Let T ′ be the first candidate tree of this
new set. Let z be the new reference vertex, i.e., the vertex shared by Π and
T ′. If z = z, then T ′ has a hook-subdivision H3 with z as an endvertex that is
distinct from H1 and H2, i.e., T has a 3-hook subdivision. If z 6= z, then z is
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farther from w than z. We can apply the same argument used for Π and T ′ to
Π and T ′. Clearly, it may happen that we are in this case again and therefore
we have to repeatedly consider new paths and new sets of candidate trees and
a vertex farther from w becomes the reference vertex. It follows that either at
some point we are no longer in this case and there is a 3-hook subdivision, or a
leaf becomes the reference vertex. However, a leaf cannot be a reference vertex
because otherwise it should have more than one incident edge. 2

Unfortunately, even when RB(T, v) has at most two distinct attaching paths
and all its red components are regular, there are cases in which T may still
contain a 3-hook subdivision. To introduce these cases we need some further
definitions.

Let u be a vertex of an attaching path Π of RB(T, v); we say that u is:� a k-regular vertex (k > 0), if it is the attaching vertex of at least k regular
red components; a k-regular vertex is also called regular.� a k-weak-regular vertex (k > 0), if it is the attaching vertex of at least
k weakly regular red components; a k-weak-regular vertex is also called
weak-regular.� a branch vertex, if it has two incident blue edges such that they are both
entering/leaving u and one of them belongs to Π.� a branch attaching vertex, if it is a branch shared by two distinct attaching
paths.

Note that a k-weak-regular vertex is also k-regular and that a branch at-
taching vertex is also a branch vertex. Figure 8(a) shows examples of k-regular
and k-weak-regular vertices. Figure 8(b) shows examples of branch or branch
attaching vertices.

u2

u1

v

Π2

u3
u4

Π1

(a)

u2

u1

v

Π1 Π2

(b)

Figure 8: Π1 and Π2 are two distinct attaching paths. (a) u1, u2, u3, and u4 are
regular vertices; also, u2 and u4 are weak-regular vertices. (b) u1 is a branch attaching
vertex and u2 is a branch vertex.

We say that v is internal attaching if it is shared by two attaching paths
that are one incoming and one outgoing. In Figure 8(a) v is internal attaching.
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LetRB(T, v) be a red-blue decomposition of T with respect to v, such that all
red components of RB(T, v) are regular. A forbidden configuration of RB(T, v)
is one of the following configurations:

FC1. There exists an attaching path Π of RB(T, v) such that walking along Π
starting from v we encounter three not necessarily consecutive vertices u1,
u2, u3 (where u1 may coincide with v) such that: u1 is either weak-regular
or branch or internal attaching, u2 is weak-regular or branch attaching,
and u3 is regular or branch attaching. Figure 9 shows some examples of
this forbidden configuration.

u3

u2

v = u1

Π

(a)

Π
u3

u2

u1

v

(b)

u1

v

u2

u3

Π

(c)

Figure 9: Examples of forbidden configurations of type FC1: (a) u1 coincides with v

and is internal attaching, u2 is branch attaching and u3 is regular; (b) u1 is branch,
u2 is weak-regular and u3 is regular; (c) u1 is weak-regular, u2 is branch attaching and
u3 is regular.

FC2. There exists an attaching path Π of RB(T, v) such that walking along
Π starting from v we encounter two not necessarily consecutive vertices
u1, u2 (where u1 may coincide with v) such that u1 is either weak-regular
or branch or internal attaching, and u2 is either 2-weak-regular or weak-
regular and branch attaching at the same time. Figure 10 shows some
examples of this forbidden configuration.

FC3. There exists an attaching path Π of RB(T, v) such that walking along
Π starting from v we encounter two not necessarily consecutive vertices
u1, u2 (where u1 may coincide with v) such that u1 is either 2-weak-regular
or weak-regular and branch attaching at the same time, and u2 is either
regular or branch attaching. Figure 11 shows some examples of this for-
bidden configuration.

FC4. There exists one vertex that is either 3-weak-regular or 2-weak-regular
and branch attaching at the same time. Figure 12 shows some examples
of this forbidden configurations.

Lemma 4 Let T be a directed tree having a vertex v with deg(v) ≥ 3 such that
RB(T, v) has a forbidden configuration. Then T contains a 3-hook subdivision.
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Figure 10: Examples of forbidden configurations of type FC2: (a) u1 coincides with
v and is internal attaching, u2 is 2-weak-regular; (b) u1 is weak-regular and u2 is
weak-regular and branch attaching at the same time; (c) u1 is branch and u2 is 2-
weak-regular.
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Figure 11: Examples of forbidden configurations of type FC3: (a) u1 is 2-weak-
regular and u2 is regular; (b) u1 is weak-regular and branch attaching at the same
time and u2 is branch attaching; (c) u1 is 2-weak-regular and u2 is branch attaching.

u

v

Π

(a)

u

v

Π
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Figure 12: Examples of forbidden configurations of type FC4: (a) u is 3-weak-regular;
(b) u is 2-weak-regular and branch attaching at the same time.
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Proof: We start the proof by proving the following three facts. Let Π1 be an
attaching path. Assume that Π1 is an outgoing attaching path, the other case
is analogous.

Fact 1. If u is a vertex of Π1 that is either weak-regular or branch attaching,
then there exists a hook subdivision H having u as an endvertex and such
that no edge is shared between H and Π1. Refer to Figure 13(a) and 13(b).
If u is weak-regular, let C be the weakly regular red component having
u as its attaching vertex. C is not an hourglass with center u because
otherwise it would be strongly regular. By Property 3, C contains a hook
subdivision with u as an endvertex. If u is branch attaching, let Π2 be
the attaching path that shares u with Π1. Let e be the edge incident to u
that belongs to Π2 but not to Π1, and let T ′ be the connected subtree of
T containing u and obtained by removing all edges incident to u except
e. T ′ is not an hourglass with center u. Namely, consider the portion Π′

of Π2 that is contained in T ′. Since Π1 and Π2 are distinct, there exists
an attaching vertex u′ that belongs to Π′ and therefore to T ′. Let u′′ be
a vertex of a red component attached to u′. There is not a directed path
from u to u′′ or from u′′ to u because otherwise u′′ would be blue. Hence,
T contains a hook subdivision with u as an endvertex.

Fact 2. Let u and u1 be two vertices of Π1 such that u1 is encountered before
u when walking along Π1 starting from v. If u1 is either weak-regular,
or branch, or internal attaching, then there exists a hook subdivision H

having u as an endvertex. Refer to Figure 13(c) and 13(d). Let T ′ be
the connected subtree of T containing u and obtained by removing all
edges incident to u except the one entering u and belonging to Π1. If u1
is either weak-regular, or branch, or internal attaching, then T ′ is not an
hourglass with center u. If u1 is weak-regular then there exists a vertex
u′ of the weakly regular red component C attached to u1 such that there
is no directed path from u′ to u because otherwise C would be a strongly
regular red component. If u1 is branch, then there is an outgoing edge
e = (u1, u

′) incident to u1 that does not belong to Π1. Also in this case
there is no directed path from u′ to u. If u1 is internal attaching, i.e.,
u1 = v, there is an incoming attaching path Π2. Let u′ be a vertex of
a red component attached to Π2; there is no directed path from u′ to
u because otherwise u′ would be blue. Hence in all the three cases T ′

contains a hook subdivision with u as an endvertex.

Fact 3. Let u and u2 be two vertices of Π1 such that u2 is encountered after u
when walking along Π1 starting from v. If u2 is either regular or branch
attaching, then there exists a hook subdivision H having u as an endvertex.
Refer to Figure 13(e) and 13(f). Let T ′ be the connected subtree of T
containing u and obtained by removing all edges incident to u except the
one leaving u and belonging to Π1. We prove that if u2 is either regular or
branch attaching, then T ′ is not an hourglass with center u. If u2 is regular
then there exists a vertex u′ of the regular red component C attached to
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u2 such that there is no directed path from u to u′ because otherwise u′

would be blue. If u2 is branch attaching, then let Π2 be the attaching
path that shares u2 with Π1. Since Π2 and Π1 are distinct, there exists an
attaching vertex u′′ that belongs to Π2 but not to Π1. Let u

′′′ be a vertex
of a regular red component C attached to u′′. There is no directed path
from u to u′′′ because otherwise u′′′ would be blue. Hence, in both cases
T ′ contains a hook subdivision with u as an endvertex.

Π1

u

v

H

(a)

Π1 Π2

u′

u′′

u
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He

(b)

Π1
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u′

v

H

(c)

Π1
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v = u1

u′

H

(d)

u2

u
u′

H

Π1

v

(e)

Π1 Π2

v

H

u2

u

u′′

u′′′
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Figure 13: Configurations described in Fact 1, Fact 2 and Fact 3. All these config-
urations induce a hook subdivision H having u as an endvertex. (a) and (b) refer to
Fact 1: In (a) u is weak-regular, while in (b) u is branch attaching. (c) and (d) refer
to Fact 2: In (c) u1 is branch, while in (d) u1 is internal attaching and coincides with
v. (e) and (f) refer to Fact 3: In (e) u2 is regular, while in (f) it is branch attaching.

If we have a forbidden configuration FC1, walking along Π1 we encounter
three vertices v1, v2 and v3, in this order, such that v1 corresponds to vertex
u1 in Fact 2, v2 corresponds to u in Fact 1, Fact 2, and Fact 3, and v3
corresponds to u2 in Fact 3. Therefore there exist three hook subdivisions with
v2 as an endvertex, i.e., T contains a 3-hook subdivision.

If we have a forbidden configuration FC2, then we have two vertices v1 and
v2, in this order, such that v2 is either 2-weak-regular or weak-regular and branch
attaching at the same time. By Fact 1 there exists two hook subdivisions with
v2 as an endvertex. Also, v1 corresponds to u1 in Fact 2 and v2 corresponds to
u in Fact 2. This implies that there is another hook subdivision with v2 as an
endvertex, i.e., T contains a 3-hook subdivision also in this case.

If we have a forbidden configuration FC3, then we have two vertices v1 and
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v2, in this order, such that v1 is either 2-weak-regular or weak-regular and branch
attaching at the same time. By Fact 1 there exists two hook subdivisions with
v1 as an endvertex. Also, v2 corresponds to u2 in Fact 3 and v1 corresponds to
u in Fact 3. This implies that there is another hook subdivision with v1 as an
endvertex. Hence, T contains a 3-hook subdivision also in this case.

If we have a forbidden configuration FC4, then we have one vertex v1 that is
either 3-weak-regular or 2-weak-regular and branch attaching at the same time.
By Fact 1 there exists three hook subdivisions with v1 as an endvertex, i.e., T
contains a 3-hook subdivision also in this case. 2

The next definition is motivated by Lemmas 2, 3, 4. Let T be a directed
tree and let v be a vertex of T with deg(v) ≥ 3. RB(T, v) is said to be regular
if the following conditions hold:

RB1. RB(T, v) has at most two distinct attaching paths;

RB2. Every red component of RB(T, v) is regular;

RB3. RB(T, v) has no forbidden configuration.

The following lemma summarizes the main result of this section.

Lemma 5 Let T be a directed tree with at least one vertex whose degree is larger
than two. If T does not contain 3-hook subdivisions, then for every vertex v with
deg(v) ≥ 3 RB(T, v) is regular.

Proof: Assume by contradiction that there exists a vertex v with deg(v) ≥ 3
such that RB(T, v) is not regular. This implies that at least one of conditions
RB1-RB3 is violated. By Lemmas 2, 3, 4, it follows that T contains a 3-hook
subdivisions, a contradiction. 2

5 Red-blue Decompositions and Switch-regularity

So far we have proved that if T is switch-regular, then RB(T, v) is regular, for
any vertex v with deg(v) ≥ 3. We now prove that the converse is also true;
namely if RB(T, v) is regular (for any chosen vertex v with deg(v) ≥ 3), then T
is switch-regular (Lemma 10). In order to prove Lemma 10, we describe a linear-
time algorithm that computes a switch-regular embedding of T from RB(T, v).
Intuitively, since RB(T, v) is regular, then it has at most two distinct attaching
paths; the algorithm embeds one of the two attaching paths as the leftmost one
and the other as the rightmost one. Then it adds all red components to their
attaching paths while maintaining switch-regularity.

More in details, the embedding algorithm works in three phases:

Phase 1: Compute an upward planar embedding of the blue subtree Tb of
RB(T, v)

Phase 2: Add the weakly regular red components.
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Phase 3: Add the strongly regular red components.

We prove that the computed embedding is switch regular after each phase
(Lemma 8, Lemma 9, Lemma 10). We start by proving two lemmas that will
be useful in order to simplify the description of the algorithm. In Lemma 6, we
prove that RB(T, v) has at most two weakly regular red components. Moreover,
we prove that if RB(T, v) has two distinct attaching paths, then an attaching
path can not have two weak-regular vertices. In Lemma 7, we prove that a
weakly regular red component always admits a switch-regular upward planar
embedding.

Lemma 6 Let T be a directed tree and let v be a vertex of T with deg(v) ≥ 3
and such that RB(T, v) is regular. If RB(T, v) has only one attaching path, then
it has at most two weak-regular vertices. If RB(T, v) has two distinct attaching
paths, then each of them can have at most one weak-regular vertex. Moreover,
there cannot be a weak-regular vertex shared by two distinct attaching paths.

Proof: First, suppose that there is one attaching path Π and assume by con-
tradiction that it contains the attaching vertices of at least three weakly regular
red components. If the three attaching vertices are distinct, then there would be
three weak-regular vertices on Π, i.e., a forbidden configuration of type FC1.
If two of the attaching vertices coincide, then, there is a weak-regular vertex
on Π followed by a 2-weak-regular vertex, or viceversa; this implies a forbidden
configuration of type FC2 or FC3. If the three attaching vertices all coincide,
then there is a 3-weak-regular vertex, i.e., a forbidden configuration of type
FC4. Consider now the case when RB(T, v) has two distinct attaching paths
Π1 and Π2 and assume that one of them, say Π1, has two weak-regular ver-
tices. If Π1 and Π2 are equally oriented, then walking along Π1 starting from
v we encounter a branch attaching vertex (possibly v itself) followed by two
weak-regular vertices or a 2-weak-regular vertex, i.e. a forbidden configuration
of type FC1 or FC2. If Π1 is incoming and Π2 is outgoing, then walking along
Π1 starting from v we encounter v which is internal attaching followed by two
weak-regular vertices or a 2-weak-regular vertex, i.e., a forbidden configuration
of type FC1 or FC2. Finally, consider the case when Π1 and Π2 share a subpath
and the weak-regular vertex is on this subpath. The last vertex shared by Π1

and Π2 is branch attaching and there must be an attaching vertex in the portion
of Π1 not shared with Π2 because Π1 and Π2 are distinct. Thus, walking along
Π1 starting from v we encounter a weak-regular vertex, followed by a branch
attaching vertex followed by a regular vertex, i.e., a forbidden configuration of
type FC1, which is impossible. 2

Let s be an angle of a tree T , prev(s) and next(s) denote the switches that
precede and follow s in the counterclockwise order around T , respectively.

Lemma 7 Let T be a directed tree with a vertex v, such that deg(v) ≥ 3. A
weakly regular red component C of RB(T, v) admits a switch-regular upward
planar embedding.
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Proof: Let Π be the backbone of C, and let T1, T2, . . . , Tk be the hourglass trees
obtained by removing the edges of Π in the order their centers are encountered
walking along the backbone of C starting from w. Let ci be the center of
Ti, where i = 1, 2, . . . , k. Refer to Figure 14(a) for an illustration of these
definitions. Without loss of generality, we may assume that none of c1, c2, · · · , ck
is an endvertex of Π because otherwise Π can be extended up to a leaf of an
hourglass tree. We denote by W0 the backbone Π of C and by Wi the subtree
Π ∪ T1 ∪ T2 · · · ∪ Ti, where 1 ≤ i ≤ k.

The switch-regular upward planar embedding of C is constructed in k + 1
steps. At Step 0, a switch-regular upward planar embedding of Π is chosen.
At Step i > 0, a switch-regular upward planar embedding of Wi is computed
by adding Ti to the switch-regular upward planar embedding of Wi−1. We
let σi denote the counterclockwise sequence of switches in the upward planar
embedding of Wi. Each vertex cj with j > i has only two incident edges in Wi,
we denote by e1,j the edge incident to cj that is traversed first when walking
along Π starting from the attaching vertex of C and by e2,j the other one. Let
s1,j = (e1,j , cj , e2,j) and s2,j = (e2,j , cj , e1,j) be the two angles at cj in Wi. We
assume that the following invariant holds at Step i ≥ 0 for vertices cj with j > i:
if cj is neither a source nor a sink, at least one of two pairs 〈prev(s1,j), prev(s2,j)〉
and 〈next(s1,j), next(s2,j)〉 has both switches labeled L. This invariant holds for
Step 0 because we choose an upward planar embedding of Π that is switch-
regular. We now describe how to add tree Ti at Step i. In the description we
denote with σTi

the counterclockwise sequence of switches in the upward planar
embedding of Ti, we denote with s′1,i = prev(s1,i) and s

′′

1,i = next(s1,i), and we
denote with s′2,i = prev(s2,i) and s

′′

2,i = next(s2,i). We distinguish the following
two cases:

Edges e1,i and e2,i are equally oriented. We add Ti toWi−1 such that edges
e1,i and e2,i separate the edges entering ci from those leaving ci. We prove
now that the computed upward planar embedding ofWi is switch-regular.
Notice that the upward planar embedding of Ti is switch-regular by Prop-
erty 2. Since e1,i and e2,i are equally oriented, one of the two switches s1,i
and s2,i of Wi−1 is labeled S and the other one is labeled L. We assume
that both e1,i and e2,i enter ci, the case when they leave ci is analogous. In
this case s1,i = (e1,i, ci, e2,i) is labeled S and s2,i = (e2,i, ci, e1,i) is labeled
L. The addition of Ti to ci will create two new switches, we denote these
switches by sa and sb (see Figures 14(b) and 14(c)).

The subsequence s′1,is1,is
′′

1,i of σi−1 is replaced in σi by a sequence s
′

1,isaσ
′sb

s′′1,i where σ′ ⊂ σTi
. The switches sa and sb are labeled S and the first

and the last switch in σ′ are labeled L. Also, since the embedding of Ti
is switch-regular there are no two consecutive switches in σ′ labeled S.
Hence the only possible pairs of consecutive switches labeled S are s′1,isa
or sbs

′′

1,i. However, this only possible if the sequence s′1,is1,is
′′

1,i has a pair
of consecutive switches labeled S, which is impossible because the upward
planar embedding of Wi−1 is switch-regular. The subsequence s′2,is2,is

′′

2,i

of σi−1 is replaced in σi by a sequence s′2,iσ
′′s′′2,i where σ

′′ ⊂ σTi
. The first
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Figure 14: (a) A weakly red component with backbone Π. T1 and T2 are two hourglass
trees with centers c1 and c2, respectively. Dark angles are switches labeled L, light
angles are switches labeled S. Figures (b) and (c) (resp. (d) and (e)) show the
sequences of the switches before and after the insertion of T1 (resp. T2). As shown
in the figures, adding Ti (i ∈ {1, 2}) does not create any pair of consecutive switches
labeled S. In (b) and (c) edges e1,i and e2,i (i = 1) are both entering ci, while in (d)
and (e) edge e1,i enters ci and edge e2,i leaves ci (i = 2).

and the last switch in σ′′ are labeled L and there are no two consecutive
switches in σ′′ labeled S. Hence, there is not a pair of consecutive switches
labeled S in the subsequence s′2,iσ

′′s′′2,i.

We prove now that the invariant holds for Wi. First observe that we only
need to consider the vertices cj (j > i) while walking counterclockwise
around Wi, between ci and next(s1,i). Namely, these vertices are the only
ones for which the invariant might not be true due to the addition of Ti.
Consider a vertex cj (j > i). We have that next(s1,j) in Wi coincides with
next(s1,i) in Wi−1 and next(s2,j) in Wi coincides with the first switch of
σ′′. The switch next(s1,i) in Wi−1 is labeled L, because otherwise s1,i and
next(s1,i) would be a pair of consecutive switches labeled S. Also, the
first switch of σ′′ is labeled L in the upward planar embedding of Wi. It
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follows that the invariant holds for cj in Wi.

Edge e1,i enters ci and edge e2,i leaves ci. In this case none of the two an-
gles s1,i and s2,i is a switch. By the invariant one of the two pairs
〈prev(s1,i), prev(s2,i)〉 and 〈next(s1,i), next(s2,i)〉 has both switches labeled
L in Wi−1. If prev(s1,i) and prev(s2,i) are labeled L, we add Ti to Wi−1

in such a way that e1,i is the first incoming edge in the counterclockwise
order around ci and e2,i is the first outgoing edge in the counterclockwise
order around ci (see Figures 14(d) and 14(e)). If next(s1,i) and next(s2,i)
are labeled L, we add Ti to Wi−1 in such a way that e1,i is the last in-
coming edge in the counterclockwise order around ci and e2,i is the last
outgoing edge in the counterclockwise order around ci. We prove now that
the computed upward planar embedding of Wi is switch-regular. Notice
that the upward planar embedding of Ti is switch-regular by Property 2.

Assume that prev(s1,i) and prev(s2,i) are labeled L, the other case can be
proved symmetrically. The subsequences s′1,is

′′

1,i and s′2,is
′′

2,i of σi−1 are
replaced in σi by a sequence s′1,isaσ

′s′′1,i and s′2,isbσ
′′s′′2,i where σ′, σ′′ ⊂

σTi
. It is easy to see that sa and sb are labeled S and that the first and

the last switch in σ′ and in σ′′ are labeled L. Also, since the embedding of
Ti is switch-regular there are no two consecutive switches in σ′ and in σ′′

labeled S. Hence the only possible pairs of consecutive switches labeled S
are s′1,isa or s′2,isb. Since s

′

1,i and s
′

2,i are labeled L, this case is impossible.

We prove now that the invariant holds for Wi. We still assume that
prev(s1,i) and prev(s2,i) are labeled L, the other case can be proved sym-
metrically. The only vertices cj with j > i that we must consider are
those that, walking counterclockwise aroundWi, are encountered between
ci and next(s1,i).

Consider a vertex cj with j > i. We have that prev(s1,j) in Wi coincides
with the last switch of σ′ and prev(s2,j) in Wi coincides with prev(s2,i) in
Wi−1. The switch prev(s2,i) in Wi−1 is labeled L. Also, the last switch of
σ′ is labeled L in the upward planar embedding of Wi. It follows that the
invariant holds for cj in Wi.

Edge e1,i leaves ci and edge e2,i enters ci. This case is symmetric to the
previous one.

2

We now describe how to construct a switch-regular upward planar embedding
of T . We construct such an embedding by starting from an upward planar
embedding of the blue subtree Tb of RB(T, v) and then inserting the regular red
components in such a way that the resulting embedding is also switch-regular.
The description of the algorithm is simplified by adding a dummy edge and a
dummy vertex at the end of each attaching path to guarantee that the endvertex
of each attaching path is not an attaching vertex.

Phase 1: Computing an upward planar embedding of Tb.
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Tb is an hourglass tree, hence every upward planar embedding of Tb is switch-
regular because of Property 2. We choose an embedding of Tb that allows red
components to be added while maintaining switch-regularity. Refer to Figure 15.
Let Π be an outgoing (incoming) attaching path of RB(T, v). Let u1, w, u2 be
three vertices encountered consecutively in this order when walking along Π
starting from v. We say that Π is left externally embedded if: (i) the edge e of Π
incident to v is the last outgoing (incoming) edge in the counterclockwise order
around v; (ii) for every pair of edges e1 = (u1, w) and e2 = (w, u2) on Π, the
triplet (e2, w, e1) is an angle of Tb. Angle (e2, w, e1) is said to be the external
angle of w. We say that Π is right externally embedded if: (i) the edge e of Π
incident to v is the first outgoing (incoming) edge in the counterclockwise order
around v; (ii) for every pair of consecutive edges e1 = (u1, w) and e2 = (w, u2)
on Π, the triplet (e1, w, e2) is an angle of Tb. Angle (e1, w, e2) is said to be the
external angle of w. If Π is left (right) externally embedded we say that the
external angle of w is a left (right) angle. We say that Π is externally embedded
if it is either left externally embedded or right externally embedded. When an
attaching path Π is externally embedded, each attaching vertex of Π has at least
one external angle. An attaching vertex w may have both left angle and a right
angle if all paths leaving (entering) v have a common subpath Πs and w ∈ Πs.
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Figure 15: Embedding of the attaching paths. Shaded regions show external angles.
(a) Π1 (Π2) is an outgoing (incoming) attaching path and it is left externally embed-
ded. (b) Π1 (Π2) is an outgoing (incoming) attaching path and it is right externally
embedded. (c) Π1 and Π2 are both outgoing and share a subpath: w has two external
angles.

We describe how to construct an embedding of Tb by distinguishing the
following cases:

Case 1: RB(T, v) has one attaching path. We choose an upward planar em-
bedding of Tb such that the attaching path is externally embedded.

Case 2: RB(T, v) has two distinct equally oriented attaching paths. We
choose an upward planar embedding of Tb, such that both attaching paths
are externally embedded.
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Case 3: RB(T, v) has one incoming and one outgoing attaching path.

We choose an upward planar embedding, such that both attaching paths
are either right externally embedded or both are left externally embedded.

Case 4: RB(T, v) has two distinct attaching paths that share a subpath.

The two attaching paths Π1 and Π2 are equally oriented. Assume they are
outgoing, the other case is analogous. Since Π1 and Π2 share a subpath,
there is a branch attaching vertex which is the last vertex shared by Π1

and Π2. Also, there must be an attaching vertex in the portion of Π2 not
shared with Π1 because Π1 and Π2 are distinct. If there is a branch ver-
tex in the subpath shared by Π1 and Π2, then RB(T, v) has a forbidden
configuration of type FC1 which is impossible. It follows that, for each
vertex u shared by Π1 and Π2 that is not branch attaching there is no
outgoing incident edge except the one belonging to Π1 and Π2. Therefore
it is possible, also in this case, to choose an upward planar embedding
such that the two attaching paths are externally embedded.

Lemma 8 Let T be a directed tree with a vertex v, such that deg(v) ≥ 3.
Moreover, let RB(T, v) be regular. Let Tb be the blue subtree of T . The upward
planar embedding of Tb computed by Phase 1 is switch-regular and for each
external angle s, prev(s) and next(s) are labeled L.

Proof: Since Tb is an hourglass tree, every upward planar embedding of Tb is
switch-regular by Property 2. Let Π be the attaching path containing s and
assume that Π is an outgoing attaching path, the other case is analogous. If s
is a left angle, prev(s) is the switch at the leaf of the attaching path Π, which
is a sink of Tb. Switch next(s) is either v (if there are no paths entering v) or
a leaf of Tb that is a source of Tb. It follows that prev(s) and next(s) are both
labeled L. 2

Phase 2: Adding the weakly regular red components.

We know from Lemma 6 there are at most two weakly regular red com-
ponents. We assume that there is at least one weakly regular red component
because otherwise this phase is not executed. We know from Lemma 7 that each
weakly regular red component C has a switch-regular upward planar embedding.
Let s∗ be the only switch of C at the attaching vertex of C. A switch-regular
upward planar embedding of C is a left embedding if prev(s∗) is labeled L, and a
right embedding otherwise. Note that, in a right embedding next(s∗) is labeled
L (see Figure 16). Given any switch-regular upward planar embedding of C,
it is possible to make this embedding a left embedding or a right embedding.
When we add a weakly regular red component to Tb we say that C is left (right)
embedded to mean that C is added inside the left (right) angle of its attaching
vertex and a left (right) embedding is chosen for C.

The weakly regular red components are added to the embedding of Tb as
follows. If the attaching vertex w of C has only one external angle s, then C

will be left or right embedded depending on the fact that s is a left or a right
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next(s∗)

s∗

prev(s∗)

(a)

prev(s∗)

next(s∗)

s∗

(b)

Figure 16: Two switch-regular upward planar embeddings of a weakly regular red
component. Dark angles are switches labeled L, light angles are switches labeled S.
(a) A left embedding: prev(s∗) is labeled L. (b) A right embedding: next(s∗) is labeled
S.

angle. If w has two external angles, C is left or right embedded according to
the following cases. Refer to Figure 17 for an illustration of these cases.

There is only one attaching path Π. Assume that Π is left externally em-
bedded, the other case is symmetric. If there is only one weakly regular
red component, then it is right embedded. If there are two weakly regu-
lar red components attached to distinct attaching vertices, then the first
attaching vertex w on Π has two external angles (otherwise there is a for-
bidden configuration of type FC1), while attaching vertex w′ has either
one or two external angles. If w′ has only one external angle then this is a
left angle because Π is left externally embedded. The weakly regular red
component attached to w will be right embedded, the other one will be
left embedded. If w = w′, then w has two external angles; in this case one
of the two components is left embedded and the other is right embedded.

There are one incoming and one outgoing attaching paths. Assume the
two attaching paths are left externally embedded, the other case is sym-
metric. If there is only one weakly regular red component, then it is left
embedded. If there are two weakly regular red components, then they are
attached to distinct attaching paths by Lemma 6. By hypotheses, one of
the two attaching vertices has two external angles, while the other one,
call it w′, can have one or two external angles. If w′ has only one external
angle, then this is a left angle because the two attaching paths are left
externally embedded. In both cases it is possible to guarantee that both
weakly regular red components will be left embedded.

There are two equally oriented attaching paths. An attaching vertex w
with two external angles can exist in this case only if the two attaching
paths Π1 and Π2 share a subpath and w belongs to this subpath. However,
by Lemma 6, w cannot be the attaching vertex of a weakly regular red
component.
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Figure 17: The figure shows how a weakly regular red component whose attaching
vertex w has two external angles is added to the embedding of Tb. In (a), (b) and (c)
Π is the only attaching path: In (a) there is only one weakly regular red component C,
which is right embedded. In (b) and (c) there are two weakly regular red components
C and C′. Namely, in (b) w 6= w′, then C is right embedded and C′ is left embedded;
in (c) w = w′, then it suffices that one red component is right embedded and the other
is left embedded. In (d) there are two attaching paths Π1 and Π2 and two weakly red
components. In this case both C and C′ are left embedded.

Lemma 9 Let T be a directed tree with a vertex v, such that deg(v) ≥ 3.
Moreover, let RB(T, v) be regular. Let TW be the subtree of T induced by Tb and
the weakly regular red components of RB(T, v). The upward planar embedding
of TW computed by Phase 2 is switch-regular.

Proof: We consider the following cases:

T has 1 weakly regular red component C. Let Π be the attaching path of
RB(T, v) containing the attaching vertex of C and let s be the angle such
that C has been added inside s (refer to Figure 18(a)). Assume that s
is a left angle and that Π is an outgoing attaching path, the other cases
are analogous. Let s′ = prev(s) and s′′ = next(s) in the upward planar
embedding of Tb. By Lemma 8, s′ and s′′ are all labeled L in the upward
planar embedding of Tb. Let σTb

, σC , and σ be the counterclockwise
sequence of switches in the upward planar embedding of Tb, C, and Tb∪C,
respectively. We have σTb

= s′s′′σx where σx can be empty. After the
addition of C we have σ = s′σ′sas

′′σx, where σ
′ ⊂ σC . It is easy to see

that sa is labeled S. Also, σ′ = σC \ {s
∗}, where s∗ is the only switch

of C at the attaching vertex of C. Since the embedding of C is a left
embedding we have that prev(s∗) in σC is labeled L and therefore the last
switch in σ′ is labeled L. From the switch-regularity of the embedding of
C, there is no pair of consecutive switches labeled S in σ′. It follows that
the computed upward planar embedding is switch-regular.

T has 2 weakly regular red components C1 and C2. Letw1 and w2 be the
attaching vertices of C1 and C2, respectively and let s1 and s2 be the two
external angles of w1 and w2 such that C1 and C2 has been added inside
s1 and s2, respectively. Let s′1 = prev(s1), s

′′

1 = next(s1), s
′

2 = prev(s2),
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s′′2 = next(s2) in the upward planar embedding of Tb. By Lemma 8 s′1, s
′′

1 ,
s′2, and s

′′

2 are labeled L in the upward planar embedding of Tb. If there is
only one attaching path or two equally oriented attaching paths, then one
between s1 and s2 is a left angle and the other one is a right angle; if oth-
erwise the two attaching paths are one incoming and one outgoing, then
s1 and s2 are both left angles or both right angles. It follows that if we
walk counterclockwise on the boundary of Tb, the two edges that define s1
are traversed opposite to their orientation, while the two edges that define
s2 are traversed coherently to their orientation, or viceversa. Therefore at
least one switch is encountered when going counterclockwise from s1 to s2
and at lest one switch is encountered when going counterclockwise from
s2 to s1. This implies that s′1 6= s′2 and s′′1 6= s′′2 .
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Figure 18: The Figure shows the sequence of the switches after adding the weakly
regular red components. Dark angles are switches labeled L, light angles are switches
labeled S. In (a) T has 1 weakly regular red component that is left embedded: Its
insertion does not create a pair of consecutive S labels. In (b), (c) and (d) T has 2
weakly regular red components. In (b) and in (c) one weakly red component is left
embedded, while the other is right embedded: In both cases adding the weakly red
components does not create pairs of consecutive S labels. In (d) both the two weakly
red components are left embedded; also in this case adding the weakly red components
does not create pairs of consecutive S labels.

Let σTb
, σC1 , σC2 , and σ be the counterclockwise sequence of switches in

the upward planar embedding of Tb, C1, C2, and Tb∪C1∪C2, respectively.
Denote by s∗i the only switch of Ci at the attaching vertex of Ci (i = 1, 2)
and let σ′ = σC1 \ {s

∗

1} and σ
′′ = σC2 \ {s

∗

2}. Since s′1 6= s′2 and s′′1 6= s′′2 ,
we have σTb

= s′1s
′′

1σxs
′

2s
′′

2σy where σx or σy can be empty, in which case
s′′1 = s′2 or s′1 = s′′2 .

Consider first the case when there is only one attaching path or there are
two equally oriented attaching paths (refer to Figures 18(b) and 18(c)).
After the addition of C1 and C2 we have σ = s′1σ

′sas
′′

1σxs
′

2sbσ
′′s′′2σy . It is

easy to see that sa and sb are labeled S. Since the embedding of C1 is a left
embedding we have that prev(s∗1) in σC1 is labeled L and therefore the last
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switch in σ′ is labeled L. Analogously, since the embedding of C2 is a right
embedding we have that next(s∗2) in σC2 is labeled L and therefore the first
switch in σ′′ is labeled L. From the switch-regularity of the embedding
of C1 and C2, there is no pair of consecutive switches labeled S in σ′ and
σ′′. It follows that the sequence σ = s′1σ

′sas
′′

1σxs
′

2sbσ
′′s′′2σy has no pair of

consecutive switches labeled S.

Consider now the case when there are two attaching paths one incoming
and the other one outgoing (refer to Figures 18(d)). After the addition of
C1 and C2 we have σ = s′1σ

′sas
′′

1σxs
′

2σ
′′sbs

′′

2σy. It is easy to see that sa
and sb are labeled S. Since the embedding of C1 is a left embedding we
have that prev(s∗1) in σC1 is labeled L and therefore the last switch in σ′ is
labeled L. Analogously, since the embedding of C2 is a left embedding we
have that prev(s∗2) in σC2 is labeled L and therefore the last switch in σ′′

is labeled L. From the switch-regularity of the embedding of C1 and C2,
there is no pair of consecutive switches labeled S in σ′ and σ′′. It follows
that the sequence σ = s′1σ

′sas
′′

1σxs
′

2σ
′′sbs

′′

2σy has no pair of consecutive
switches labeled S.

2

Phase 3: Adding the strongly regular red components.

Let TW be the tree induced by Tb plus the weakly regular red components.
Let C1, C2, . . . , Ck be the strongly regular red components, and let wi be the
attaching vertex of Ci, where i = 1, 2, . . . , k. Since different strongly regular red
components may have the same attaching vertex, some of the vertices denoted
as wi, 1 ≤ i ≤ k, may coincide. We denote with Wi the subtree TW ∪ C1 ∪
C2, · · · ∪ Ci, where 1 ≤ i ≤ k. The switch-regular upward planar embedding of
T is constructed in k steps starting from an upward planar embedding of TW
computed according to Phases 1 and 2. We denote Tw as W0. At Step i > 0
a switch-regular upward planar embedding of Wi is computed by adding Ci to
the switch-regular upward planar embedding of Wi−1. Since Ci is an hourglass,
every upward planar embedding of Ci is switch-regular by Property 2. Hence,
we choose an arbitrary upward planar embedding for Ci. We denote with σi
the counterclockwise sequence of switches in the upward planar embedding of
Wi, and by σCj

the counterclockwise sequence of switches in the upward planar
embedding of Cj . For each Wi, each wj , where i = 0, 1, . . . , k − 1, j = 1, . . . , k,
and j > i, has at least one angle, called candidate angle, that is either an external
angle (see Figures 19(b) and 19(c)) or it is a switch formed by a blue and a red
edge (see Figure 19(a)). We assume that for each Wi and for each wj , where
i = 0, 1, . . . , k − 1, j = 1, . . . , k, and j > i, the following invariant holds: the
upward planar embedding of Wi is switch-regular and there exists a candidate
angle sj at wj such that: either sj is not external or if sj is a left (right) angle,
then next(sj) (prev(sj)) is labeled L. Angle sj is called the insertion angle for
wj . Notice that there can be more insertion angles for wj in Wi. At step i > 0
component Ci is added inside one of the insertion angles of its attaching vertex.
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Figure 19: The figure shows the three kinds of candidate angles si of the attaching
vertex wi for a strongly regular red component Ci. In (a) si is not an external angle.
Note that, si is labeled S. In (b) si is an external left angle: next(sj) is labeled L; in
(c) si is an external right angle: prev(sj) is labeled L.

Lemma 10 Let T be a directed tree with a vertex v, such that deg(v) ≥ 3. If
RB(T, v) is regular, then T is switch-regular.

Proof: We prove that the upward planar embedding of Wi (i = 1, . . . , k) is
switch-regular. Since Wk = T , this implies the statement. The upward planar
embedding of W0 = TW is switch-regular by Lemmas 8 and 9. We assume
now that the invariant holds for Wi−1 and we prove that the computed upward
planar embedding of Wi is switch-regular. Let si be the insertion angle of wi

and let s′i = prev(si) and s′′i = next(si). If si is not external, it is a switch
labeled S (because wi is neither a source nor a sink). As a consequence s′i and
s′′i are labeled L otherwise Wi−1 would not be switch-regular. The subsequence
s′isis

′′

i of σi−1 is replaced in σi by the subsequence s′isaσ
′sbs

′′

i , where σ
′ ⊂ σCi

(see Figure 20(a)). It is easy to see that sa and sb are labeled S and that the
first and the last switch of σ′ are labeled L. From the switch-regularity of the
upward planar embedding of Ci there is no pair of consecutive switches labeled
S in σ′. Then, there is no pair of consecutive switches labeled S in σi.

Assume now that si is external. If si is a left angle, then the subsequence
s′is

′′

i of σi−1 is replaced in σi by the subsequence s′iσ
′sas

′′

i , where σ
′ ⊂ σCi

(see
Figure 20(b)); If si is a right angle, then the subsequence s′is

′′

i of σi−1 is replaced
in σi by s

′

isaσ
′s′′i , where σ

′ ⊂ σCi
(see Figure 20(c)). It is easy to see that sa is

labeled S in both cases and that the first and the last switches of σ′ are labeled
L. If si is a left angle then s′′i is labeled L and therefore there is no pair of
consecutive switches labeled S in σi; If si is a right angle then s′i is labeled L
and therefore there is no pair of consecutive switches labeled S in σi also in this
case.

It remains to prove that the invariant holds for each Wi and for each wj

(i = 0, 1, . . . , k − 1, j = 1, . . . , k, j > i). We start showing that the invariant
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holds for W0 = TW . W0 is switch-regular by Lemmas 8 and 9. Let wj be the
attaching vertex of an arbitrary strongly regular red component (1 ≤ j ≤ k)
and let Π be the attaching path containing wj . Vertex wj has an external angle
in W0 unless it is the attaching vertex of a weakly regular red component. In
this case anyway, wj has a candidate angle that is not external. We prove now
that if wj has only external candidate angles, then the property stated in the
invariant holds for one of them.

Π
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s′′
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Figure 20: The sequence of switches after the insertion of the strongly regular red
component C. Dark angles are switches labeled L, light angles are switches labeled
S. In (a) si is not an external angle; in (b) si is an external left angle; in (c) si is
an external right angle. In all previous cases there is no pair of consecutive switches
labeled S after the insertion of C.

Assume that Π is an outgoing attaching path and that is left embedded.
Consider first the case when there is no weakly regular red components attached
to Π and vertex wj has a left angle sj . Then next(sj) is labeled L because it
coincides either with v (if there is no path entering v) or with a leaf of TW which
is a source of TW . Assume now that there is at least one weakly regular red
component attached to Π. Let w∗ be the attaching vertex of a weakly regular
red component that is the farthest from v along Π. We distinguish the following
cases:

Vertex wj is farther from v than w∗. This case can happen only when the
following three conditions hold simultaneously: (i) Π is the only attaching
path; (ii) w∗ has two external angles in Tb; (iii) There is only one weakly
regular red component (see Figure 21(a)).

Suppose (i) does not hold; If the two attaching paths are equally oriented,
then there exists a branch attaching vertex u (possibly coincident with v).
In this case walking along Π starting from v we would encounter either a
weak-regular vertex (i.e., w∗) followed by a branch attaching vertex (i.e.,
u), followed by a regular vertex (i.e., wj), or a branch attaching vertex
(i.e., u) followed by a weak-regular vertex (i.e., w∗) followed by a regular
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vertex (i.e., wj), or a vertex that is weak-regular and branch attaching
at the same time (in the case when w∗ = u) followed by a regular vertex
(i.e., wj). In all cases there would be a forbidden configuration of type
FC1 or FC3. If one of the attaching paths is incoming and the other one
is outgoing, then walking along Π starting from v we would encounter an
internal attaching vertex (i.e., v), followed by a weak-regular vertex (i.e.,
w∗), followed by a regular vertex (i.e., wj). Also in this case there would
be a forbidden configuration of type FC1.

If (ii) does not hold, then there must be a branch vertex before w∗ along
Π. Thus walking along Π starting from v we would encounter a branch
vertex followed by a weak-regular vertex (i.e., w∗) followed by a regular
vertex (i.e., wj). This would be a forbidden configuration of type FC1.

Finally, if (iii) does not hold, then there is another weak-regular vertex
along Π that either precedes w∗ (because w∗ is the farthest from v) or
it coincides with w∗. Then walking along Π starting from v we would
encounter two weak-regular vertices followed by a regular vertex (i.e., wj),
or a 2-weak-regular vertex followed by a regular vertex (i.e., wj). In both
cases there would be a forbidden configuration of type FC1, or FC3.

Since Π is left externally embedded, according to the first case of Phase
2, the weakly regular red component attached to w∗ is right embedded.
On the other hand wj has a left angle sj because Π is left externally
embedded. Then next(sj) is labeled L because it coincides either with v
(if there is no path entering v) or with a leaf of TW which is a source of
TW .

Vertex wj is closer to v than w∗ or wj coincides with w∗. If w∗ has only
one external angle s∗ in Tb, then this is a left angle and wj also has a left
angle (see Figure 21(b)). Since wj is closer to v than w∗ or wj and w∗

coincide, next(sj) is labeled L because it coincides either with v (if there is
no path entering v) or with a leaf of TW which is a source of TW . Consider
now the case when w∗ has two external angles in Tb (see Figure 21(c)).
If Π is the only attaching path, then the weakly regular red component
attached to Π is either right embedded, if there is only one weakly regular
red component, or it is left embedded, if there are two weakly regular red
components (in this case the other weakly regular red components is right
embedded). In both cases wj has a left angle sj because Π is left exter-
nally embedded. Since wj is closer to v than w∗ or wj and w∗ coincide,
next(sj) is labeled L because it coincides either with v (if there is no path
entering v) or with a leaf of TW which is a source of TW .

This concludes the proof that the invariant holds forW0. We prove now that
the invariant holds forWi with i > 0. We have already proved thatWi is switch-
regular. Each attaching vertex wj distinct from wi has the same candidate
angles that it had in Wi−1. For each attaching vertex wj that coincides with
wi, one of the two angles denoted above as sa or sb is the new candidate angle.
More precisely, if the candidate angle si of wi in Wi−1 is external, then sa is
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Figure 21: Π is an outgoing attaching path and it is left externally embedded, w∗

is the attaching vertex of a weakly regular red component added during Phase 2 and
wj is the attaching vertex of a strongly regular red component that has only external
candidate angles sj . In (a) vertex wj is farther from v than w∗: The figure shows the
only possible configuration that guarantees the absence of forbidden configurations.
(b) and (c) refer to the case where either vertex wj is closer to v than w∗ or wj

coincides with w∗. In (b) w∗ has only one external left angle, while in (c) w∗ has two
external angles. In all the cases above next(sj) is labeled L.

the new candidate angle at wi; if si is not external, then sa or sb is the new
candidate angle depending on which has a blue edge (see Figure 20(a)).

We prove now that if wj has only external candidate angles, then the prop-
erty stated in the invariant holds for one of them. First of all, notice that the only
angles to be considered are the external angles sj such that prev(sj) = prev(si)
and next(sj) = next(si) in Wi−1, because these are the only angles for which
the invariant can be lost due to the addition of Ci. Assume that si is a left
angle, the other case is analogous. Clearly, sj is also a left angle. If sj is
between prev(si) and si when walking counterclockwise around Wi−1, then, in
Wi, next(sj) coincides with the first switch of σ′ which is labeled L; If sj is
between si and next(si) when walking counterclockwise around Wi−1, then in
Wi, next(sj) coincides with s

′′

i which is labeled L by induction.

We conclude the proof recalling that at the beginning of the description
of the embedding algorithm, in order to simplify the description, we extended
the attaching paths with dummy edges. We show now that the removal of
these edges does not change the property of switch-regularity of the computed
upward planar embedding. Let u∗ be the dummy vertex added at the end of
an attaching path, and let u be the last “real” vertex of the same attaching
path. Clearly, u∗ is a leaf and therefore there is only one switch at u∗, which
is labeled L. If u is not an attaching vertex, then removing u∗, u becomes a
leaf and the only switch at u is labeled L. Hence, in this case the removal of
u∗ does not change the counterclockwise sequence of switches in the computed
upward planar embedding. If u is an attaching vertex, then when we remove
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u∗, it becomes either a source or a sink. Thus, one of the switches at u must be
labeled L; on the other hand none of the switches existing before the removal
of u∗ is labeled L. Thus the switch at u labeled L can be only the one created
by the removal of u∗. It follows that also in this case the removal of u∗ does
not change the counterclockwise sequence of switches in the computed upward
planar embedding. 2

6 Characterization and Test of Switch-regular

Upward Planar Trees

In this section, we give three equivalent characterizations of switch-regular trees
and present a linear-time algorithm to test if a directed tree is switch-regular.

Theorem 2 Let T be a directed tree with at least one vertex whose degree is
larger than two. The following three statements are equivalent:

(a). T is switch-regular.

(b). T does not contain 3-hook subdivisions.

(c). There exists a vertex v with deg(v) ≥ 3 such that RB(T, v) is regular.

Proof: By Lemma 1, (a) implies (b). By Lemma 5, (b) implies (c). Finally, by
Lemma 10, (c) implies (a). 2

Based on the previous Theorem the following lemma shows that if a directed
tree T is switch-regular then RB(T, u) is regular for each vertex u of T with
deg(u) ≥ 3.

Lemma 11 Let T be a directed tree with at least one vertex whose degree is
larger than two and let v1 and v2 be any two vertices of T such that deg(v1) ≥ 3
and deg(v2) ≥ 3. If RB(T, v1) is regular, then RB(T, v2) is regular.

Proof: Since RB(T, v1) is regular, then by Theorem 2 T does not contain 3-
hook subdivisions. By Lemma 5, RB(T, v) is regular for each v with deg(v) ≥ 3.
Hence RB(T, v2) is regular. 2

Corollary 1 Let T be a directed tree and let v be any (arbitrarily chosen) vertex
of T such that deg(v) ≥ 3. T is switch-regular if and only if RB(T, v) is regular.

Based on Corollary 1, the testing algorithm arbitrarily chooses a vertex v of
T with deg(v) ≥ 3, and then verifies whether RB(T, v) is regular. RB(T, v) can
be easily computed by performing two visits of T starting from v. During the
first visit only the edges oriented away from the root are considered, while the
second visit considers only the edges oriented towards the root. The vertices
reached by one of the two visits are blue vertices, the others are red vertices.
Also, the edges traversed during the visits are blue, while the others are red. We
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also assume that, during the two visits we associate the following information
with each vertex u: the colour of u; the number degb(u) of blue edges incident
to u; the number degr(u) of red edges incident to u. The colour of each edge is
also stored. Once RB(T, v) is computed the algorithm tests whether RB(T, v)
is regular. This is done in three steps by verifying if conditions RB1, RB2,
RB3 are satisfied. In the description of the algorithms, we will assume that
T is rooted at vertex v. As a consequence each red component is rooted at its
attaching vertex. Notice that rooting T at v does not imply that all the edges
are equally oriented towards or away from the root.

We start with Algorithm 1 to test if condition RB1 holds. We recall that
the last attaching vertex of an attaching path Π is the attaching vertex that has
maximum distance from v.

Algorithm 1 Test-RB1

Input: A red-blue decomposition RB(T, v).
Output: true if RB(T, v) satisfies RB1, false otherwise.
return Test-NumberAttachingPaths(v) ≤ 2

Algorithm 2 Test-NumberAttachingPaths

Input: A blue vertex u of RB(T, v).
Output: The number of distinct attaching paths whose last attaching vertex
is a descendant of u.
index← 0
sum← 0
if degr(u) > 0 /*u is an attaching vertex*/ then

index← 1
end if

for each blue child w of u do

sum← sum+Test-NumberAttachingPaths(w)
end for

return max{index, sum}

Lemma 12 Let T be a directed tree with n vertices, let v be any (arbitrarily
chosen) vertex of T such that deg(v) ≥ 3. Algorithm Test-RB1 tests whether
RB(T, v) satisfies condition RB1 in O(n) time.

Proof: First we prove by induction that, given a blue vertex u of RB(T, v),
Algorithm 2 correctly computes the number of distinct attaching paths whose
last attaching vertex is a descendant of u. If u is a leaf, u is a descendant of
itself. Then if u is an attaching vertex the algorithm returns 1, otherwise it
returns 0. Suppose now that u is not a leaf. By the inductive hypothesis, if
sum > 0, then there exist sum distinct attaching paths whose last attaching
vertex is a descendant of u. Since in this case u can not be a last attaching
vertex, the algorithm returns sum. If sum = 0 one of the following two cases
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occur: if u is an attaching vertex, there exists 1 attaching path that has u as
last attaching vertex and then the algorithm returns 1; if u is not an attaching
vertex, there does not exist an attaching path that has a descendant of u as last
attaching vertex and then the algorithm returns 0.

Since Algorithm 2 is invoked by Algorithm 1 with v as parameter, it com-
putes the number of attaching paths whose last attaching vertex is a descendant
of v, namely the number of attaching paths of RB(T, v). Algorithm 1 correctly
returns true only if this number is at most two. The time complexity of Algo-
rithm 1 is O(n) since Algorithm 2 performs a preorder visit of the blue vertices
of RB(T, v). 2

In the description of the following algorithm, used to test condition RB2,
we assume that when algorithm Test-RB1 is executed all attaching vertices
are stored in a list. Moreover, let u be a vertex of a red component C distinct
from the attaching vertex w of C and let u′ be the parent of u, we denote by
Tu the subtree of C rooted at u and by T ′

u the subtree Tu ∪ {(u, u
′)}.

Algorithm 3 Test-RB2

Input: A red-blue decomposition RB(T, v).
Output: true if RB(T, v) satisfies RB2, false otherwise.
for each attaching vertex w of RB(T, v) do
for each red component C with attaching vertex w do

u← the unique vertex of C adjacent to w
if Test-RedComponent(u,w) > 1 then

return false

end if

end for

end for

return true

Algorithm 4 Test-RedComponent

Input: A red vertex u of a red component C of RB(T, v), and its parent vertex
u′.

Output: 0 if the subtree T ′

u of C is a strongly regular red component, 1 if T ′

u is
a weakly regular red component, k > 1 if T ′

u is a non-regular red component.
index← 0
sum← 0
for each child w of u do

if (u, u′) and (u,w) are both leaving or both entering u then

index← 1
end if

sum← sum+Test-RedComponent(w, u)
end for

return max{index, sum}
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Lemma 13 Let T be a directed tree with n vertices, let v be any (arbitrarily
chosen) vertex of T such that deg(v) ≥ 3. Algorithm Test-RB2 tests whether
RB(T, v) satisfies condition RB2 in O(n) time.

Proof: First we prove by induction the correctness of Algorithm 4. Clearly, if u
is a leaf, then T ′

u is a strongly regular red component and the algorithm returns
0. Suppose now that u is not a leaf. We can have the following cases: sum = 0,
sum = 1, sum > 1. Suppose that sum = 0; then, by the inductive hypothesis,
for each child wi of u the subtree T ′

wi
is a strongly regular red component with

backbone {u}. Then if edges (u,wi) are entering u and edge (u, u′) is leaving u
(or viceversa), u′ is reachable with a directed path from all vertices of Twi

(or
all vertices of Twi

are reachable with a directed path from u′), hence T ′

u is a
strongly regular red component with backbone {u′} and the algorithm correctly
returns 0. If there exists at least one edge (u,wi) such that (u, u′) and (u,wi)
are both leaving (or both entering) u, then u′ is not reachable with a directed
path from the vertices of Twi

(or the vertices of Twi
are not reachable with a

directed path from u′). In this case the subtree T ′

u of C is a weakly regular red
component with backbone {u′, u}; Indeed, removing edge (u, u′) it remains Tu,
which is an hourglass tree with center u, and the algorithm correctly returns
1. Suppose now that sum = 1. Then there exists exactly one subtree T ′

wi

that is a weakly regular red component with backbone {u,wi, . . . , x}. In this
case Tu \ T

′

wi
is an hourglass tree with center u and the path {u′, u, wi, . . . , x}

is a backbone of T ′

u, which is a weakly regular red component. Also in this
case the algorithm correctly returns 1. Finally, suppose that sum > 1. We
have the following two subcases: (i) there exists at least one subtree T ′

wi
that

is not regular. In this case also T ′

u is not regular and the algorithm correctly
returns a value greater than 1. (ii) There exist at least two subtrees T ′

wi
and

T ′

wj
that are weakly regular red components with backbones {u,wi, . . . , x} and

{u,wj, . . . , y}, respectively. If T
′

u was regular then its backbone should contain
both {u,wi, . . . , x} and {u,wj , . . . , y} as subpaths, which is clearly impossible.
Hence T ′

u is not regular and the algorithm correctly returns a value greater than
1.

Since Algorithm 3 invokes Algorithm 4 for each red component of RB(T, v),
it returns true if all red components are regular (namely if Algorithm 4 returns
a value ≤ 1 for each red component of RB(T, v)), false otherwise. About time
complexity, Algorithm 4 performs a preorder visit of the vertices of a red compo-
nent C in O(|C|) time. This implies an O(n) time complexity for Algorithm 3.

2

In order to test condition RB3 we must verify that, for each of the attaching
paths none of the forbidden configuration FC1-FC4 holds (see Algorithm 5).
The pseudo-code of sub-routine Test-FC1 is shown in Algorithm 6, the other
sub-routines (Test-FC2, Test-FC3, and Test-FC4) are analogous. We as-
sume that the information about whether an attaching vertex is k-weak or
k-strong have been associated with each vertex during the execution of Algo-
rithm Test-RB2. We also assume that the (at most) two attaching paths of
RB(T, v) have been stored during the execution of Algorithm Test-RB1.
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Algorithm 5 Test-RB3

Input: RB(T, v).
Output: true if RB(T, v) satisfies RB3, false otherwise.
Find the unique branch attaching if it exists. Store it in ba
for each attaching path Πi do

if (¬Test-FC1(Πi, ba))∨ (¬Test-FC2(Πi, ba))∨ (¬Test-FC3(Πi, ba))∨
(¬Test-FC4(Πi, ba)) then
return false

end if

end for

return true

Algorithm 6 Test-FC1

Input: An attaching path Π of RB(T, v) and the unique branch attaching
vertex of Π, if it exists.

Output: true if Π has no forbidden configuration of type FC1, false otherwise.
fc1← 0
for each vertex u of Π do

if fc1 = 0 ∧ ((u is weak) ∨ (u is branch) ∨ (u is internal attaching)) then
fc1← 1

else if fc1 = 1 ∧ ((u is weak) ∨ (u = ba))) then
fc1← 2

else if fc1 = 2 ∧ ((u is regular) ∨ (u = ba))) then
return false

end if

end for

return true

Lemma 14 Let T be a directed tree with n vertices, let v be any (arbitrarily
chosen) vertex of T such that deg(v) ≥ 3. Algorithm Test-RB3 tests whether
RB(T, v) satisfies condition RB3 in O(n) time.

Proof: Given an attaching path Π and the unique branch attaching vertex
of Π (if it exists), it is immediate to see that Algorithm 6 correctly verifies
whether or not Π has a forbidden configuration of type FC1. It is not difficult
to see that the other sub-routines Test-FC2, Test-FC3, and Test-FC4 can
be written in such a way that they correctly verifies whether or not Π has
a forbidden configuration of type FC2, FC3, FC4, respectively. Since these
sub-routines are invoked by Algorithm 5 for each attaching path of RB(T, v),
then Algorithm 5 correctly returns true if all (at most two) attaching paths
of RB(T, v) have no forbidden configurations, false otherwise. About the time
complexity, each sub-routine (Test-FC1, Test-FC2, Test-FC3, and Test-

FC4) tests, for each vertex u of an attaching path, whether or not u has some
properties (if it is weak, strong, branch, internal attaching or branch attaching).
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We prove that each of these properties can be tested in constant time, which
implies that both Algorithm 5 and Algorithm 6 have O(n) time complexity.
Whether or not u is k-weak, k-strong, and therefore k-regular, can be tested in
O(1) time because this information have been stored, for each attaching vertex,
during the execution of Algorithm Test-RB2. If RB(T, v) has two attaching
paths Π1 and Π2 and they are one incoming and the other outgoing then v is
internal attaching; if, otherwise, Π1 and Π2 are equally oriented we can find in
linear time the unique branch attaching vertex by visiting Π1 and Π2 from v

until we find the last vertex u shared by Π1 and Π2 (possibly v itself). To test
if a vertex u distinct from v is branch we test if degb(u) ≥ 3. Finally, to test if
v is a branch vertex for an incoming (outgoing) attaching path Π we check if v
has at least two incoming (outgoing) edges. 2

Theorem 3 Let T be a directed tree with n vertices. There exists an O(n)-
time algorithm to test whether T is switch-regular and, in the affirmative case,
to compute a switch-regular upward planar embedding of T .

Proof: Given a directed tree T containing a vertex v with deg(v) ≥ 3, we
can test whether T is switch-regular by computing RB(T, v) and then invoking
Algorithm 1, Algorithm 3 and Algorithm 5. If Algorithm 1, Algorithm 3 and
Algorithm 5 return true, then T is switch-regular. By Corollary 1 and by
Lemmas 12, 13 and 14, the time complexity of the testing algorithm is O(n).

If the testing algorithm on T returns true, a switch-regular upward planar
embedding of T can be computed according to the techniques described in Sec-
tion 5. An upward planar embedding of T is completely defined when for each
vertex u of T the linear order of the incoming edges of u and the linear order of
the outgoing edges of u are specified. Observe that, since both the blue subtree
Tb of RB(T, v) and the strong regular red components are hourglass trees, every
upward planar embedding of them is switch-regular. Therefore we have to define
only the order of the edges incident to the blue vertices of T that belong to an
attaching path and the order of the edges incident to the red vertices of T that
belong to the backbone of a weakly regular red component. First we describe
how to order the edges leaving and entering a vertex that belong to an attaching
path of RB(T, v). Let Π be an attaching path of RB(T, v) and let u be a vertex
of Π distinct from v. Suppose that Π is an outgoing attaching path, the other
case is symmetric. Denote by e+u and e−u the two blue edges leaving and entering
u that belong to Π, respectively. Observe that all the edges leaving u are blue
edges, while e−u is the unique blue edge entering u. If Π is left (right) externally
embedded we order the edges leaving u such that e+u is the last (first) outgoing
edge in the counterclockwise order around u. If u is not an attaching vertex the
order of its incidents edges is completely specified, otherwise we have the fol-
lowing cases: (i) u is the attaching vertex of one weakly regular red component
and of k ≥ 0 strongly regular red components. If u has a left (right) external
angle, then we order the edges entering u such that the unique red edge of the
weakly red component that is incident to u is the first (last) incoming edge and
e−u is the last (first) incoming edge in the counterclockwise order around u (the
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others k red incoming edges of u are between these two edges). (ii) u is the
attaching vertex of two weakly regular red components and of k ≥ 0 strongly
regular red components (notice that in this case u has two external angles). We
order the edges entering u such that the two red edges of the two weakly regular
red components incident to u are the first and the last incoming edges in the
counterclockwise order around u (e−u and the others k red incoming edges of u
are between these two edges). (iii) u is the attaching vertex of only strongly
regular red components. In this case if u has a left (right) external angle, we
order the edges entering u such that e−u is the last (first) incoming edge in the
counterclockwise order around u. About vertex v, observe that it has only blue
incident edges and it belongs to each (at most two) attaching path. Then, if
the attaching path is outgoing the edge e−v does not exist, analogously if the
attaching path is incoming the edge e+v does not exist. If the attaching path
Π is outgoing (incoming) and it is left externally embedded, then we order the
edges leaving (entering) v such that e+v (e−v ) is the last outgoing (incoming) edge
in the counterclockwise order around v. If Π is outgoing (incoming) and it is
right externally embedded, then we order the edges leaving (entering) v such
that e+v (e−v ) is the first outgoing (incoming) edge in the counterclockwise order
around v. Finally we describe how to compute a switch-regular embedding for
each (at most two) weakly regular red component. Let C be a weakly regular
red component with attaching vertex w and let Π = {w = u0, u1, . . . , uh} be its
backbone. To compute a switch-regular embedding of C, for each vertex ui of Π
where 0 < i < h, we have the following cases: (i) If ui is a sink-switch (source-
switch) of Π we order the edges entering (leaving) ui such that the two edges of
Π entering (leaving) ui, namely (ui−1, ui) and (ui, ui+1), are the first (last) and
the last (first) incoming (outgoing) edges in the counterclockwise order around
ui, respectively. (ii) If ui is not a switch of Π and edge (ui−i, ui) enters (leaves)
ui, we order the edges entering and leaving ui such that edge (ui−i, ui) is the
first incoming (last outgoing) edge and edge (ui, ui+i) is the first outgoing (last
incoming) edge in the counterclockwise order around ui, respectively.

Since ordering the edges incident to a vertex u can be done in O(deg(u))
time, then computing a switch-regular embedding of T requires O(n) time. 2

An example of a switch-regular embedding of a tree computed by our algo-
rithm is shown in Figure 22.

7 Conclusions and Open Problems

We have addressed a new upward planarity testing problem, that is, the problem
of deciding whether an acyclic digraph admits a special kind of upward planar
embedding, called a switch-regular upward planar embedding. Our research has
been motivated by the practical algorithmic impact of this kind of embeddings
in several graph drawing applications. We have solved this problem for directed
trees, by describing three different characterizations of those digraphs that ad-
mit a switch-regular upward planar embedding and a linear-time testing and
embedding algorithm. Although directed trees are always upward planar, the
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(a)

v

(b)

v

(c)

Figure 22: An example of a directed tree and of its corresponding switch-regular
embedding computed by our embedding algorithm: (a) A directed tree T ; (b)
a regular red-blue decomposition of T with respect to v; (c) a switch-regular
embedding of T computed by the algorithm using the red-blue decomposition.
The algorithm embeds the two attaching paths and the regular red components
while maintaining switch-regularity.

work described in this paper shows that the design of an optimal switch-regular
upward planarity testing and embedding algorithm for this class of digraphs is
not an easy task.

The main open problem on the subject of this paper is that of proving the
complexity of testing the existence of switch-regular upward planar embeddings
for the case of general acyclic digraphs. Extensions of our results to other sub-
families of planar digraphs are also interesting in our opinion.
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