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Abstract

Constant-work-space algorithms model computation when space is at
a premium: the input is given as a read-only array that allows random ac-
cess to its entries, and the algorithm may use constantly many additional
registers of O(logn) bits each, where n denotes the input size.

We present such algorithms for two restricted variants of the shortest
path problem. First, we describe how to report a simple path between
two arbitrary nodes in a given tree. Using a technique called “computing
instead of storing”, we obtain a naive algorithm that needs quadratic
time and a constant number of additional registers. We then show how
to improve the running time to linear by applying a technique named
“simulated parallelization”. Second, we show how to compute a shortest
geodesic path between two points in a simple polygon in quadratic time
and with constant work-space.
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1 Introduction

We consider two restricted variants of the shortest path problem in a compu-
tational model that we call constant-work-space computation. In this model,
which is also known as “log-space” [1], the input is given as a read-only array.
Each cell of the array stores O(log n) bits and can be accessed in constant time.
Additionally, the algorithm may use constantly many registers, each of which
stores O(log n) bits and can be read and written in constant time. These reg-
isters are referred to as the work-space of the algorithm, and the number of
registers is the size of the work-space.

This model has been investigated before. One of the most important re-
sults in this area is the selection algorithm by Munro and Raman [22] which
runs in O(n1+ε) time using work-space O(1/ε), for any small constant ε > 0.
More recently, a constant-work-space algorithm by Reingold [23] for determin-
ing whether there exists a path between two arbitrary vertices in an undirected
graph solved a long-standing open problem in complexity theory. Asano [2–5]
describes applications to image processing. Constant-work-space algorithms for
some geometric problems are also known: Several authors describe algorithms
for enumerating the vertices and facets of geometric arrangements without addi-
tional space [7,9,10,16,17,24]. Bose and Morin [11] describe how to find a path
between two given vertices in a planar triangulation in an online setting that
allows only constant space. Asano et al [6] give efficient constant-work-space
algorithms for drawing the Delaunay triangulation and the Voronoi diagram of
a planar point set, and they also show how the Euclidean minimum spanning
tree for a planar point set can be constructed quickly in this model. They also
show a different algorithm for geodesic shortest paths in polygons.

Our setting is similar to the strict data-streaming model, where the algorithm
also has only a restricted amount of work-space at its disposal. However, in the
streaming model the input can be read only once in a sequential manner. Chan
and Chen [12] give algorithms in different computational models varying from
a multipass data-streaming model to the random access constant-work-space
model considered here.

In this paper, we focus on the design of fast algorithms in the constant-
work-space model. Using two restricted versions of the shortest path problem,
we showcase some techniques for designing such algorithms. The first technique,
named “computing instead of storing”, is applied to the problem of finding
a simple path between two nodes in a given tree. A simple solution using linear
work-space goes as follows: compute an Eulerian path between the two nodes
and count how often each edge appears on the path. Then remove those edges
that appear twice. This gives the desired simple path. We can implement this
idea using only constantly many registers: instead of storing a count in each
edge, we compute it directly whenever we need to decide whether to include
an edge in the path or not. This takes linear time per edge, so we obtain a
quadratic-time constant-work-space algorithm for the problem.

Another important technique is called “simulated parallelization”. It
may be considered as a generalization of the “baby-step, giant-step” method [19,
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25], which uses two pointers with different speeds to detect a loop in a given
linked list. In simulated parallelization, we proceed as follows: given a vertex
u on the simple path, we want to determine which edge to follow toward the
target vertex t. For this, we use two pointers for scanning the subtrees of u
for t. We alternately advance these pointers until one of them exhausts its
subtree or encounters t. If a pointer exhausts its subtree, we move it to the
next remaining subtree of u. If no subtree is left, we can conclude that the
subtree searched by the other pointer must contain t. Simulated parallelization
is quite powerful. In fact, just by incorporating this technique into the naive
quadratic-time algorithm we can improve its running time to linear.

The above algorithms can be extended to an algorithm for finding shortest
geodesic paths in a simple polygon. Given a simple polygon P with n vertices
and two points s and t in its interior, we would like to find the shortest path
between s and t that stays within P . A naive approach leads to a cubic-time
algorithm, but a more careful implementation yields a quadratic-time algorithm.
See also Asano et al [6] for a different approach that also yields a quadratic time
algorithm.

What about general weighted graphs? Of course, in the linear-work-space
model there is the classic and popular shortest path algorithm by Dijkstra [15,
Chapter 24], which can be implemented in O(n2) time using very simple data
structures. Is it still possible to find an analogous algorithm in the constant-
work-space model? Unfortunately, no such algorithm is known, and it is unlikely
to exist, since the shortest path problem for general weighted graphs is NL-
complete [18].

2 Simple Paths in Trees Using Eulerian Tours

As our first problem, we consider the following question: let T be a tree with
n nodes. Given two distinct nodes s and t in T , find a simple path from s to t
with no node visited more than once.

Here is a simple algorithm using O(n) time and space: it is well known that
every tree has an Eulerian tour, i.e., a closed walk that visits every edge exactly
twice. Compute such a tour and take a subtour E that goes from s to t. Remove
from E all edges that occur twice. This yields a simple path between s and t.
Unfortunately, in our constant-work-space model no extra array can be used for
storing the tour and finding the duplicate edges.

To obtain a constant-space algorithm, we apply the technique “computing
instead of storing”, where we recompute a subtour of the Eulerian tour when-
ever we need it. We assume that the tree is given by adjacency lists stored in a
read-only array. Let Adj(u) be the adjacency list of a node u ∈ T . The following
two functions suffice to generate an Eulerian tour.

FirstNeighbor(u): given a node u, return the first node in the adjacency list
Adj(u).
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NextNeighbor(u, v): Given a node u and an adjacent node v, return the suc-
cessor of v in the adjacency list Adj(u). If v is the last node, return the
first node in the list.

The function FirstNeighbor can easily be performed in constant time,
but the time required for NextNeighbor depends on which data structure we
assume. More precisely, when generating the Eulerian tour, after following an
edge from a vertex v to a vertex u, we need to find the entry for v in Adj(u)
so that we can execute NextNeighbor(u, v). If the tree is given by a doubly-
connected edge list (DCEL) [8, Chapter 2], this can be done in constant time.
On the other hand, if we represent Adj(u) as a simple list, we may need to
search the whole list for the successor of v, which takes time O(∆), where ∆ is
the maximum degree of a node in the tree.

Given a tree T , a starting node s, and a target node t, an algorithm that finds
the shortest path from s to t is shown in Algorithm 1. The algorithm repeatedly
calls the function FindFeasibleSubtree to obtain the next edge on the shortest
path by determining the subtree of the current node that contains t. In Find-
FeasibleSubtree, we use a function SubtreeSearch to determine whether a
given subtree contains t: SubtreeSearch starts from an edge (u, v) incident
to u and follows the Eulerian path by applying the function NextNeighbor.
If we encounter the twin edge (v, u) before t, then t is not contained in the
corresponding subtree, i.e., (u, v) and all edges in the subtree appear twice in
the tour and can be omitted (see Figure 1).

s

t
u

v1

v2

vi

vk

T1

T2

Ti

Tk

Figure 1: Which subtree of u contains the target node t?

Theorem 1 Given a tree T with n nodes, a starting vertex s and a target vertex
t, let ` be the length of the shortest path from s to t. There is an algorithm that
reports the path from s to t in O(`nd) time and with constant work-space. Here,
d depends on which data structure is used: if T is given by a DCEL, then
d = O(1). If T is given by mere adjacency lists, then d = O(∆), where ∆ is the
maximum node degree in T . The running time is always O(n2d).
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Algorithm 1: Finding a simple path from s to t.

Input: A tree T , two nodes s and t in T .
Output: A simple path from s to t.
begin

currentNode = s; startNeighbor = FirstNeighbor(s);
repeat

report currentNode;
u = currentNode;
currentNode = FindFeasibleSubtree(u, startNeighbor, t);
startNeighbor = NextNeighbor(currentNode, u) :

until currentNode == t

// returns a child of u whose subtree contains t
function FindFeasibleSubtree(u, v, t)
begin

for each node w in Adj(u), in order starting from v do
if SubtreeSearch(u,w, t) then return w;

// checks whether the subtree of u rooted at v contains t
function SubtreeSearch(u, v, t)
begin

currentNode = u; neighbor = v;
repeat

nextNode = NextNeighbor(neighbor, currentNode);
currentNode = neighbor; neighbor = nextNode;

until (currentNode == t or (currentNode == v and
neighbor == u))
return (currentNode == t);

Proof: Refer to Algorithm 1. The algorithm starts from s and checks for each
neighbor of s whether the corresponding subtree contains t. Then it proceeds
to the appropriate neighbor and continues. Thus, it suffices to show correctness
of the function SubtreeSearch(u, v, t) which checks whether the subtree of u
rooted at v contains t. This is proved by induction on the height of the subtree.

This algorithm runs in O(`nd) time, as FindFeasibleSubtree is called at
most ` times, and each such call takes O(nd) time. Since ` ≤ n, it follows that
this is always O(n2d). �

Figure 2 illustrates how the search proceeds.

A Linear Time Algorithm. We now improve the running time of Algo-
rithm 1 to O(n), using “simulated parallelization”.

Consider Algorithm 1. The worst case happens when each call to Find-
FeasibleSubtree(u, v, t) takes almost linear time. In other words, the subtrees
containing t are large. Consider the edge (u, v). If t is in the subtree rooted at
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Figure 2: Canonical traversal of a tree given by adjacency lists.

v and if this subtree is large, SubtreeSearch(u, v, t) could take a long time.
However, if instead we call SubtreeSearch(u,w, t), for all other children of u,
we can quickly conclude that t is in the subtree for child v, with running time
proportional to the size of those other subtrees. If we could guarantee that all
subtrees not containing t are cut off from the search space at most once, we
could safely charge the running time to the nodes in those subtrees, resulting in
a linear-time algorithm.

The only apparent difficulty is that we do not know which subtree contains t.
Let us start with a trivial solution that runs SearchSubtree(u, v, t) in parallel,
one process for each subtree of u except the one containing s, such that the steps
of the parallel processes are synchronized. Let N(u, t) be the total number of
nodes in the subtrees of u which do not contain s or t. We claim that we can
find the subtree with t in O(N(u, t)) steps, where we sum the number of steps
over all parallel processes. For this, we stop all parallel processes as soon as
one of the following conditions is satisfied: (a) one process returns true; (b) all
processes but one return false. Clearly, the total number of steps in all processes
is at most 2N(u, t), as claimed.

Since we are working with a sequential machine, we must simulate the par-
allel execution by iteratively advancing each process in turn. However, if the
maximum degree is linear, we cannot afford to simulate O(n) processes since
we have to store the internal states for all of them. Instead, we only maintain
two copies of SubtreeSearch(u, v, t) at a time. We start another copy if one
process finishes and if there are more subtrees to explore. Remember that we
can stop if there is only one process left. In this way, we can find the simple
path from s to t in linear time. For completeness, we present pseudocode for
FindFeasibleSubtree(u, v, t) in Algorithm 2.

Theorem 2 Given two nodes s and t in a tree T represented by a DCEL, there
is an algorithm that finds the simple path from s to t in T in O(n) time using
O(1) additional space.

Proof: In Algorithm 2, FindFeasibleSubtree(u, v, t) takes time linear in the
number of nodes in the subtrees of v which do not contain t. Notice that every
subtree that does not contain t is explored at most once, due to our setting
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of numOfNeighbors in the algorithm. Therefore, Algorithm 1 takes linear time
with the new implementation of FindFeasibleSubtree(u, v, t) in Algorithm 2,
as claimed. �

3 Geodesic Shortest Paths in Polygons

We now turn to the problem of finding a shortest path between two arbitrary
points s and t within a given polygon P . If linear work-space is allowed, there
is a classic linear-time algorithm due to Lee and Preparata [20].

Their algorithm works as follows: We first partition the interior of P into
triangles using Chazelle’s method [13]. Then, we compute the dual graph G∗ of
the triangulation: the vertices of G∗ correspond to the triangles, and two vertices
are adjacent precisely if their corresponding triangles share an edge. We locate
the points s and t in the triangulation. Since G∗ is a tree, any two vertices in G∗

are connected by a unique simple path. Consider the path between the triangle
containing s and the triangle containing t. It defines a sequence (e0, e1, . . . , em)
of diagonals hit by the path. The algorithm walks along this sequence while
maintaining a funnel. The funnel consists of a cusp p, initially set to s, and
of two concave chains from p to the two endpoints of the current diagonal ei.
In each step, there are two cases: (i) if the next diagonal remains visible from
the cusp, we just update the appropriate concave chain, similar to Graham’s
scan; (ii) if the next diagonal is not visible from the cusp, we proceed along the
appropriate chain until we find the cusp for the next funnel, and we output the
vertices encountered along the way as part of the shortest path. Implemented
properly, all this can be done in linear time (see Lee and Preparata [20] for
details).

3.1 A Shortest-Path Algorithm Using the Dual Graph

We adapt the algorithm by Lee and Preparata [20] to use constant work-space.
For this, we need to solve two problems: (i) we need to develop an algorithm for
triangulating a given simple polygon and then finding a simple path in the dual
graph; and (ii) we must maintain the funnel during the traversal. The difficulty
here is, of course, that we cannot store any intermediate results.

Computing the triangulation. In order to maintain the triangulation of our
polygon P efficiently, we need a canonical triangulation of P . This means that
for every triple of vertices in P , there should be an easily checkable condition
to determine whether the triple defines a triangle or not. This allows us to
recompute the individual triangles encountered on the path as needed.

Specifically, our canonical triangulation will be the constrained Delaunay
triangulation [14]. For a point set S, three points of S determine a Delaunay
triangle if and only if the circle defined by the three points contains no point of
S in its proper interior. Such a circle is called an empty circle. The Delaunay
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triangles partition the convex hull of the set S, and the resulting structure is
called the Delaunay triangulation of S [8, Chapter 9].

Constrained Delaunay triangulations offer a way to extend this notion to a
simple polygon P [14].1 The vertices of P define a point set V and the edges
define a set E of line segments. Constrained Delaunay edges are defined using
the notion of a diagonal. A diagonal is an open line segment between two
polygon vertices that does not intersect the boundary of P . A pair (p, q) of
vertices defines a constrained Delaunay edge if and only if there is a third point
r in V such that (i) (p, q) is a diagonal; (ii) (p, r) and (q, r) are diagonals polygon
edges; and (iii) the circle through p, q, r does not contain any other point s ∈ V
that is visible from r, i.e., for no other point s in the circle does (r, s) define a
diagonal.

p

q

r

(a) (b) (c)

Figure 3: An example of a constrained Delaunay triangle. (a) The Delaunay
triangulation of a planar point set; (b) the overlay of a polygon with the Delau-
nay triangulation of its vertex set; and (c) a Delaunay triangle (p, q, r) and its
associated empty circle. Note that the vertex in the circle is not visible from r.

It is known that there is a unique constrained Delaunay triangulation DT(P )
for any simple polygon whose vertices are in general position. We denote the
dual graph by DT(P )∗. Recall that since a simple polygon is simply connected,
DT(P )∗ is a tree.

We would like to use Theorem 2 to find the shortest path from s to t in
DT(P )∗. For this, we need to implement the function NextNeighbor(). By
the definition of the dual graph and the fact that each DT(P )∗ has maximum
degree at most three, the next neighbor is determined by the clockwise or coun-
terclockwise next Delaunay edge, as shown in Figure 5. Hence, we need to find
the third vertex of a Delaunay triangle for a given edge. More precisely, given a
Delaunay edge (u, v), we want to find a vertex w such that (i) w is visible from
the edge (u, v); and (ii) the circle defined by u, v, and w is empty, that is, it does
not contain any other vertex visible from the edge (u, v). Thus, it takes O(n2)
time to find a vertex which completes a Delaunay edge to a Delaunay triangle,
and this is also the time for an invocation of NextNeighbor(). We emphasize

1More generally, constrained Delaunay triangulations allow us to define a triangulation
that contains a prespecified set of edges and is as close to the usual Delaunay triangulation
as possible.



JGAA, 15(5) 569–586 (2011) 577

s
t

(a) (b) (c)

Figure 4: The unique path on the dual graph and its corresponding sequence of
Delaunay edges. (a) The constrained Delaunay triangulation of a given simple
polygon; (b) the dual graph of the triangulation (a tree); and (c) the unique
path between s and t.

that we never store DT(P )∗ explicitly, but we only access it on the fly by direct
computation. This is another application of the “computing instead of storing”
principle.

(a) (b)

Figure 5: Finding a shortest path between two points within a simple poly-
gon. (a) Walking along a path in the dual graph while finding the clockwise or
counterclockwise next triangular edge; (b) the evolution of the visibility angles.

Maintaining the funnel. During the walk in DT(P )∗ from s to t, we need to
maintain the current funnel. Unfortunately, we do not have space to store the
two concave chains. Therefore, we proceed as follows: while walking, we only
maintain the cusp p of the funnel and the two vertices a and b that determine
the visibility angle from p (a, b are the first vertices on the two concave chains).
We initialize p to the starting point s and a, b to the endpoints of the first
diagonal intersected by the shortest path, e0. In order to process a new diagonal
ei, we take the intersection of the current visibility angle with that defined
by ei. If the new visibility angle is nonempty, we do nothing. See Figure 6.
Otherwise, we must update the cusp of the current funnel. For this, we start
from a or b, depending on whether ei lies above or below the old visibility angle.
Then, we perform a Jarvis march (i.e., a sequence of gift-wrapping steps [15,
Chapter 33.3]) along the boundary of the polygon, outputting the vertices of
the concave chain, until we find a vertex from which ei is visible again (this
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can be checked in O(n) time per vertex). This vertex becomes our new cusp p,
and a, b are set to the highest and lowest point on ei that is visible from p; see
Figure 7 for an example.

ei

ei+1

θi

θi+1

Figure 6: Angle changes while walking along the edge sequence.

Since every step in Jarvis’s march needs O(n) time, and since there are O(n)
such steps overall, the total running time for maintaining the funnel is O(n2).
We have thus shown:

Theorem 3 There is a constant-work-space algorithm for finding a shortest
path between any two points inside a simple n-gon P in time O(n3).

Proof: By Theorem 2, the shortest path in DT(P )∗ can be found by O(n)
applications of the function NextNeighbor(). Since each such call takes O(n2)
time, and since the total running time for maintaining the funnel as described
above is O(n2), we obtain the bound in the theorem. �

3.2 A Shortest-Path Algorithm Using Point Location

The algorithm from Theorem 3 comes from a direct adaptation of the algorithm
by Lee and Preparata [20]. The dual graph gives us the correct direction toward
a given target point. In this section we show that there is a more direct way to
find this direction, see also Asano et al [6] for another approach.

We assume without loss of generality that polygon vertices are numbered
sequentially 0 through n − 1 around the boundary (since the vertices of the
polygon are given sequentially in our input array, these numbers could corre-
spond to the addresses of the cells storing the vertices). Suppose we are in some
triangle A in DT(P ). Removing A divides P into at most three parts, and we
need to find the part that contains t. To do this, we use the indices associated
with the polygon edge et just above t. The part of the polygon that contains t
is the part whose boundary contains the edge et, unless the upward vertical line
segment from t to et crosses A before reaching et. The process of finding the
part of the polygon that contains t is called point location. Since we just need
to compare indices and check for intersection with A, point location takes just
O(1) time once we have precomputed et.

Now we know which way to go from any given triangle. Unfortunately,
finding adjacent triangles in a canonical triangulation can be slow, and it turns
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Figure 7: Maintaining the funnel. Initially, the cusp of the funnel is set to s,
and a, b are the endpoints of the diagonal e0. The visibility angle needs to be
updated on encountering e1 (top). At e5, the visibility angle vanishes, and we
must advance the cusp. Now, the visibility angle is updated at e8. At e12, the
visibility angle becomes empty again, and we need to perform a Jarvis march
on the lower boundary of the polygon until we find the next cusp.
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out to be more efficient to replace the constrained Delaunay triangulation by the
trapezoidal decomposition [8, Chapter 6]. That is, we partition the interior of P
by drawing a vertical chord at each vertex toward the interior of the polygon.
This decomposition is canonical and easy to compute. Moreover, it offers the
same properties that the triangulation used to have for shortest paths.

s

t

s

t

s

t

(a) (b) (c)

Figure 8: Trapezoidal decomposition of a simple polygon for finding a shortest
path in a simple polygon. (a) A simple polygon and two internal points s and t
to be interconnected within the polygon. (b) Trapezoidal decomposition of P .
(c) A sequence of trapezoids between two containing s and t.

The trapezoidal decomposition defined above is uniquely determined for any
simple polygon. However, degeneracies can cause one trapezoid to be adjacent
to arbitrarily many other trapezoids, as shown in Figure 9. We perform a
symbolic perturbation to avoid this issue: the vertices of P and the two points s
and t all have integral coordinates with O(log n) bits. Each integral point (x, y)
is treated as a point (x + yε, y), i.e., it is shifted to the right by yε for a small
parameter ε such that y∗ε < 1 for the largest y-coordinate y∗ appearing in the
input. After this perturbation, no two vertices share the same x-coordinate, as
shown to the right in Figure 9.

Figure 9: Removing degeneracies by shifting vertices to the right. An original
polygon is given to the left. The conversion results in the right polygon in which
no two vertices share the same x-coordinate.

From now on, we assume that every trapezoid is adjacent to at most four
other trapezoids. Our first goal is to find the sequence of trapezoids between
those containing s and t. For this, it suffices to find the correct neighbor at each
trapezoid along the path.

A characterization of a trapezoid is given in Figure 10. Given an arbitrary
point q in the interior of P , we can determine the trapezoid containing q as
follows: first find the polygon edges which are hit by a vertical ray emanating
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from q upward. The one closest to q is the top edge ea(T ) of the trapezoid
T containing q. In a similar fashion we can find the polygon edge eb(T ) just
below q, which is the bottom edge of T . Then, we compute the left and right
vertical sides of the trapezoid T , denoted by vl(T ) and vr(T ), respectively. We
start with four endpoints of ea(T ) and eb(T ). vl(T ) is initially determined by
the rightmost of the two left endpoints of ea(T ) and eb(T ). The initial value
of vr(T ) is similarly determined. Then, we scan each polygon vertex. If it lies
inside the current trapezoid and its incident polygon edge enters the trapezoid
from its left, then we update the value vl(T ) to be the x-coordinate of the vertex.
If it lies in T and its incident edge enters T from the right, we update vr(T ). In
this way we can obtain the trapezoid in O(n) time.

At a trapezoid T we have to find its neighbors and determine how to proceed
toward the target point t. The first question can be solved as follows: Suppose
we want to find a trapezoid Tr which shares a right boundary with T . To do
this, take a point q which is located to the right of the side at a small enough
distance. Using the point q, the trapezoid Tr is computed in the same manner
as described above. Thus, we can find all adjacent trapezoids in O(n) time.
To determine which trapezoid to follow, simply traverse the boundaries of the
regions divided by the adjacent trapezoids to find which region contains the edge
et just above t. This is done using indices of endpoints of those subpolygons
associated with the current trapezoid.

T

ea(T )

eb(T )

vr(T )

vl(T ) t

P

s

t

et

es

(a) (b)

Figure 10: Characterization of a trapezoid T by two polygon edges bounded
from above and below and two vertical sides. (a) A trapezoid adjacent to three
trapezoids. (b) A polygon edge es just above the point s and a polygon edge et
just above t.

Hence, we can find the correct neighbor in O(n) time with constant work-
space. Since we need to traverse O(n) trapezoids, the total time is O(n2).

We still need to describe how to find the shortest path from s to t, but this
works just as in the previous algorithm: we know how to walk on the sequence
using O(n) time per step, and to find a shortest path we maintain the funnel
from the current starting point, as before.

Theorem 4 Given a simple polygon P with n vertices and two arbitrary points
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s and t in P , we can find a geodesic shortest path between s and t in O(n2) time
with constant work-space.

We have implemented our algorithm using LEDA [21] to check the details.
An experimental result is shown in Figure 11. The input configuration is shown
in (a). After finding the initial segment on the shortest path in (b), we repeat-
edly generate next trapezoids until the visibility angle vanishes, i.e., the last
vertical edge is not visible from the current cusp of the funnel. This happens
in (c), so the shortest path is extended and the cusp is moved as shown in (c).
The final result is appears in (d). The shortest path is given by bold lines in
the figure.

(a) (b)

(c) (d)

Figure 11: Experimental results. The cusp of the current funnel is shown as the
last vertex of the green path.
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4 Concluding Remarks

We have presented constant-work-space algorithms for finding shortest paths in
trees and polygons. One obvious future direction is to extend the latter algo-
rithm to the general Euclidean shortest path problem in the presence of polyg-
onal obstacles. If the number of obstacles is bounded by some small constant k,
then there are O(nk) different ways to convert the problem into one on a simple
polygon by connecting the obstacles by chords, so we can obtain a polynomial-
time algorithm. However, finding such an algorithm for an unbounded number
of obstacles, or proving that no polynomial-time constant-work-space algorithm
exists, seems more challenging.

A number of geometric problems are open in the constant work-space model.
For example, does there exist an efficient constant-work-space algorithm for
computing the visibility polygon from a point in a simple polygon. Another
interesting direction is to investigate time-space trade-offs: how much work-
space is necessary to find a shortest path in a simple polygon in linear time?
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Algorithm 2: New implementation of FindFeasibleSubtree(u, v, t).

// return a child of u whose subtree contains t.
function FindFeasibleSubtree(u, v, t)
begin

fNeighbor = v
lastNeighbor = sNeighbor = NextNeighbor(u, v)
numOfNeighbors = deg(u)− 1
// in case of s, we must explore all subtrees.
if u == s then numOfNeighbors++
if numOfNeighbors == 1 then return fNeighbor

one = u; oneNext = fNeighbor; two = u; twoNext = sNeighbor;
while true do

// advance two copies.
(sigf1, sigc1, one, oneNext) = AdvSearch(u, fNeighbor, one,
oneNext)
(sigf2, sigc2, two, twoNext) = AdvSearch(u, sNeighbor, two,
twoNext)
if sigf1 then return fNeighbor

if sigf2 then return sNeighbor

if not sigc1 then
// copy 1 finishes without finding t.
oneNext = fNeighbor = NextNeighbor(u, lastNeighbor)
lastNeighbor = fNeighbor; one = u
numOfNeighbors--
if numOfNeighbors == 1 then return sNeighbor

if not sigc2 then
// copy 2 finishes without finding t.
twoNext = sNeighbor = NextNeighbor(u, lastNeighbor)
lastNeighbor = sNeighbor; two = u
numOfNeighbors--
if numOfNeighbors == 1 then return fNeighbor

// advance the Eulerian tour in the subtree rooted at v.
function AdvSearch(u, v, u′, v′)
begin

v′′ = NextNeighbor(v′, u′); u′′ = v′;
if u′′ == v and v′′ == u then

return (found = false, continue = false, u′′,v′′)

if v′′ == t then
return (found = true, continue = false, u′′,v′′)

return (found = false, continue = true, u′′,v′′)



JGAA, 15(5) 569–586 (2011) 585

References

[1] S. Arora and B. Barak. Computational complexity. A modern approach.
Cambridge University Press, Cambridge, UK, 2009.

[2] T. Asano. Constant-work-space algorithms: how fast can we solve problems
without using any extra array? In Proc. 19th Annu. Internat. Sympos.
Algorithms Comput. (ISAAC), invited talk, volume 5369 of Lecture Notes
in Computer Science, page 1. Springer-Verlag, 2008.

[3] T. Asano. Constant-working space algorithm for image processing. In Proc.
of the First AAAC Annual meeting, page 3, Hong Kong, 2008. April 26–27.

[4] T. Asano. Constant-work-space algorithms for image processing. In
F. Nielsen, editor, Emerging Trends in Visual Computing (ETVC 2008),
volume 5416 of Lecture Notes in Computer Science, pages 268–283.
Springer-Verlag, 2009.

[5] T. Asano. Constant-working-space image scan with a given angle. In Proc.
24th European Workshop Comput. Geom. (EWCG), pages 165–168, Nancy,
France, 2009. March 18–20.

[6] T. Asano, W. Mulzer, G. Rote, and Y. Wang. Constant-working-space
algorithms for geometric problems. Journal on Computational Geometry,
page to appear, 2011. See also CCCG 2009.

[7] D. Avis and K. Fukuda. A pivoting algorithm for convex hulls and vertex
enumeration of arrangements and polyhedra. Discrete Comput. Geom.,
8(3):295–313, 1992.

[8] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. Computational
Geometry: Algorithms and Applications. Springer-Verlag, Berlin, third
edition, 2008.

[9] M. de Berg, M. J. van Kreveld, R. van Oostrum, and M. H. Overmars. Sim-
ple traversal of a subdivision without extra storage. International Journal
of Geographical Information Science, 11(4):359–373, 1997.

[10] P. Bose and P. Morin. An improved algorithm for subdivision traversal
without extra storage. Internat. J. Comput. Geom. Appl., 12(4):297–308,
2002.

[11] P. Bose and P. Morin. Online routing in triangulations. SIAM J. Comput.,
33(4):937–951, 2004.

[12] T. M. Chan and E. Y. Chen. Multi-pass geometric algorithms. Discrete
Comput. Geom., 37(1):79–102, 2007.

[13] B. Chazelle. Triangulating a simple polygon in linear time. Discrete Com-
put. Geom., 6(5):485–524, 1991.



586 T. Asano et al. Shortest Paths with Constant Work-Space

[14] L. P. Chew. Constrained Delaunay triangulations. Algorithmica, 4(1):97–
108, 1989.

[15] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
algorithms. MIT Press, Cambridge, MA, third edition, 2009.

[16] H. Edelsbrunner, L. J. Guibas, and J. Stolfi. Optimal point location in a
monotone subdivision. SIAM J. Comput., 15(2):317–340, 1986.

[17] C. M. Gold and S. Cormack. Spatially ordered networks and topographic
reconstructions. Int. J. Geographical Information Systems, 1(2):137–148,
1987.

[18] A. Jakoby and T. Tantau. Logspace algorithms for computing shortest and
longest paths in series-parallel graphs. Technical Report TR03-077, ECCC
Reports, 2003.

[19] D. Knuth. The Art of Computer Programming. Addison-Wesley, Reading,
Massachusetts, 1973.

[20] D. T. Lee and F. P. Preparata. Euclidean shortest paths in the presence of
rectilinear barriers. Networks, 14(3):393–410, 1984.
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