
Journal of Graph Algorithms and Applications
http://jgaa.info/ vol. 15, no. 4, pp. 533–549 (2011)

On Planar Supports for Hypergraphs

Kevin Buchin 1 Marc van Kreveld 2 Henk Meijer 3

Bettina Speckmann 1 Kevin Verbeek 1

1Department of Mathematics and Computer Science,
TU Eindhoven, The Netherlands

2Department of Information and Computing Sciences,
Utrecht University, The Netherlands

3Roosevelt Academy, Middelburg, The Netherlands

Abstract

A graph G is a support for a hypergraph H = (V,S) if the vertices of G
correspond to the vertices of H such that for each hyperedge Si ∈ S the
subgraph of G induced by Si is connected. G is a planar support if it
is a support and planar. Johnson and Pollak [11] proved that it is NP-
complete to decide if a given hypergraph has a planar support. In contrast,
there are lienar time algorithms to test whether a given hypergraph has a
planar support that is a path, cycle, or tree. In this paper we present an
efficient algorithm which tests in polynomial time if a given hypergraph
has a planar support that is a tree where the maximal degree of each
vertex is bounded. Our algorithm is constructive and computes a support
if it exists. Furthermore, we prove that it is already NP-hard to decide if
a hypergraph has a 2-outerplanar support.

Submitted:

January 2010
Reviewed:

January 2011
Revised:

June 2011

Accepted:

August 2011

Final:

September 2011
Published:

September 2011

Article type:

Regular Paper
Communicated by:

M. Kaufmann

E-mail addresses: k.a.buchin@tue.nl (Kevin Buchin) m.j.vankreveld@uu.nl (Marc van Kreveld)

h.meijer@roac.nl (Henk Meijer) speckman@win.tue.nl (Bettina Speckmann) k.a.b.verbeek@tue.nl

(Kevin Verbeek)

mailto:k.a.buchin@tue.nl
mailto:m.j.vankreveld@uu.nl
mailto:h.meijer@roac.nl
mailto:speckman@win.tue.nl
mailto:k.a.b.verbeek@tue.nl

534 Buchin et al. On Planar Supports for Hypergraphs

1 Introduction

A hypergraph H = (V,S) is a generalization of a graph, where V is a set of ele-
ments or vertices and S is a set of non-empty subsets of V , called hyperedges [3].
The set S of hyperedges is a subset of the powerset of V . Hypergraphs are not
as common as graphs, but there are several application areas where they oc-
cur. For example, there is a natural correspondence between hypergraphs and
database schemata in relational databases, with vertices corresponding to at-
tributes and hyperedges to relations (e.g., see [2]). Further applications include
VLSI design [15], computational biology [14], and social networks [7].

There is no single “standard” method of drawing hypergraphs, comparable
to the point-and-arc drawings for graphs. In this paper we focus on a set of
decision problems which are motivated by subdivision drawings of hypergraphs
as proposed by Kaufmann et al. [12]. In a subdivision drawing each vertex
corresponds uniquely to a face of a planar subdivision and, for each hyperedge,
the union of the faces corresponding to the vertices incident to that hyperedge
is connected. For example, vertex-based Venn diagrams [11] and concrete Euler
diagrams [9] are both subdivision drawings.

A graph G is a support for a hypergraph H = (V,S) if the vertices of
G correspond to the vertices of H such that for each hyperedge Si ∈ S the
subgraph of G induced by Si is connected. We say that Si is connected in G. G
is a planar support if it is a support and planar. Intuitively, a planar support is
a subgraph of the dual graph of a subdivision drawing of H . Subdivisions and
their dual graphs have been studied extensively and there are several methods
that can turn a planar support into a dual subdivision.

Johnson and Pollak [11] proved that it is NP-complete to decide if a given
hypergraph has a planar support. In contrast, there are linear time algorithms
that decide whether a given hypergraph has a planar support that is either a
path, a cycle, or a tree. We discuss these results in some detail in Section 2.
Brandes et al. [5] show how to test in polynomial time whether a given hyper-
graph has a cactus support, that is, a support that is a tree of edges and cycles.
The authors also show how to test in polynomial time whether a hypergraph
that is closed under intersections and differences has an outerplanar or a planar
support. Furthermore, Brandes et al. [6] consider so-called path-based supports

5 2 1 4 6 3

12

5

3 6

4

2

5

3 6

4

1

Figure 1: Subdivision drawings for H = (V,S) with V = {1, . . . , 6}; with S =
{(2, 5), (1, 2, 4, 6), (3, 4, 6)} H has a path support (left) and with S = {(2, 3, 5),
(1, 2, 4, 6), (3, 4, 6)} H has a cycle support (right).

JGAA, 15(4) 533–549 (2011) 535

1 2

3

4

5

6
7

Figure 2: Subdivision drawings for H = (V,S) with V = {1, . . . , 7} and
S = {(1, 3, 6), (1, 2, 3, 4), (1, 5, 6, 7)}.

of hypergraphs where each hyperedge induces a Hamiltonian subgraph in the
support. They show how to test in polynomial time whether a hypergraph has
a path-based tree support.

Path or cycle supports naturally lend themselves to the creation of pleasing
and easily readable subdivision drawings which are simple and compact [12] (see
Fig. 1). However, not many hypergraphs admit a path or a cycle support. Tree
supports, on the other hand, can have vertices of arbitrarily high degree and
hence may not result in easily interpretable subdivision drawings. Therefore
we consider tree supports of bounded (constant) vertex degree. For example,
a binary tree support can be interpreted as the dual graph of a triangulation
of a (convex) polygon and as such can be used to create a simple and compact
subdivision drawing where each face of the subdivision is a triangle (see Fig. 2).
Generally speaking, tree supports of constant vertex degree allow for subdivision
drawings where each vertex region has constant complexity (the maximum of
3 and the vertex degree). Furthermore, each hyperedge can be drawn as a
convex polygon of complexity linear in its number of vertices (generalizing the
construction in Fig. 2).

Results. In Section 3 we give an O(n3 + kn2) time constructive algorithm
based on a flow formulation that solves the following decision problem: given a
hypergraph H , with n vertices and k hyperedges, together with degrees di for
each vertex i, is there a tree support for H such that the corresponding vertex i

of the tree has degree at most di? Additionally, in Section 4 we strengthen the
result by Johnson and Pollak by proving that it is even NP-complete to decide if
a hypergraph has a 2-outerplanar support. Our construction also gives a much
simpler proof of Johnson and Pollak’s original result.

Notation and Definitions. Our input is a hypergraph H = (V,S) with n

vertices and k hyperedges. The total size of the input is N :=
∑k

i=1
|Si|. We

interpret H as a set system S = {S1, . . . , Sk} on a base set V = {1, . . . , n} of n
elements. Two elements h and j of V are equivalent with respect to S if every
set Si ∈ S contains either none or both of h and j. To simplify the discussion
we assume that no two elements of V are equivalent. Note that we can easily
construct a hypergraph with this property by replacing equivalent elements by
a single element. We also assume that each element of the base set occurs in at

536 Buchin et al. On Planar Supports for Hypergraphs

least one set (hence N ≥ n) and that the elements within each set are sorted.
The vertices of a planar support G correspond to the elements of V . We often
directly identify a vertex with “its” element and use the same name to refer to
both. Furthermore, for each hypergraph H = (V,S) we consider a graph G(H)
on V . Two elements u and v of V are connected by an edge in G(H) if there is a
hyperedge Si ∈ S that contains both u and v. This means that every hyperedge
forms a complete subgraph of G(H). We define the connected components of
H as the connected components of G(H). Finally, a graph G is k-outerplanar if
for k = 1, G is outerplanar and for k > 1, G has a planar embedding such that
if all vertices on the exterior face are deleted, the connected components of the
remaining graph are all (k − 1)-outerplanar.

2 Path, Cycle, and Tree Supports

In this section we summarize previous work on path, cycle and tree supports.
A graph G is a path support for a hypergraph H if G is a support and a path.
Similarly, G is a cycle or tree support for H if G is a support and a cycle or
tree, respectively. For all three classes of graphs one can decide whether a given
hypergraph has such a support in linear time.

Path support. Korach and Stern [13] observed that the decision problem
for path supports is equivalent to finding a permutation π of {1, . . . , n} such
that, for every set Si, the elements of Si are consecutive in π. This problem
in turn is directly related to the consecutive ones property: a matrix of zeroes
and ones is said to have the consecutive ones property if there is a permutation
of its columns such that the ones in each row appear consecutively. Let M be
a matrix with n columns and m rows such that entry (i, j) is 1 if j ∈ Si, and
0 otherwise. H has a path support if and only if M has the consecutive ones
property (see Fig. 3). There are algorithms [4, 10] that can test the consecutive
ones property and produce a corresponding permutation in O(m+ n+ r) time,
where m× n is the size of M , and r is the number of ones in M . Hence a path
support for a given hypergraph can be found in O(N) time.

Cycle support. Finding a cycle support for a hypergraph H can be reduced
to finding a path support for an auxiliary hypergraph H ′. For a cycle support,
a set Si is connected if and only if its complement Sc

i is connected. For some
j ∈ V , let H ′ be the hypergraph obtained by replacing the sets Si for which

1 0 1 1 0 1

0 1 0 0 1 1

1 1 1 0 0 1

0 1 1 0 0 1

1 2 3 4 5 6

{1, 3, 4, 6}
{2, 5, 6}
{1, 2, 3, 6}
{2, 3, 6}

1 1 1 1 0 0

0 0 0 1 1 1

0 1 1 1 1 0

0 0 1 1 1 0

4 1 3 6 2 5

1 234 56

{2, 5}

Figure 3: Finding a path support via the consecutive ones property.

JGAA, 15(4) 533–549 (2011) 537

j ∈ Si with Sc
i . As no set of H ′ contains j, H has a cycle support if and only

if H ′ has a path support. By choosing j as the element that occurs in the
minimum number of sets, one can reduce the problem of finding a cycle support
for H to finding a path support for a hypergraph H ′ of size O(N). This can be
found in O(N) time as described above. Finding a cycle support is also directly
related to testing matrices for the circular ones property [18].

Tree support. Johnson and Pollak [11] argued that one can efficiently decide
whether a hypergraph has a tree support by considering its dual. The dual of a
hypergraph H = (V,S) is the hypergraph H∗, such that each hyperedge of H
corresponds to a vertex of H∗, and each vertex v ∈ V of H corresponds to a
hyperedge of H∗ that contains all hyperedges of H (vertices of H∗) that contain
v. The dual of a hypergraph with a tree support is an acyclic hypergraph [2],
and acyclicity can be tested in linear time [17].

Korach and Stern [13] considered the following generalization of finding a
tree support: assume that for a hypergraph H a real weight is given for every
pair of different numbers in the vertex set V , i.e., for each potential edge in the
tree. They showed that the tree support with minimum total edge weight (if it
exists), can be found in polynomial time.

3 Bounded-Degree Tree Supports

We describe an algorithm that solves the following decision problem: given a
hypergraph H = (V,S) together with degrees di for each element i of the base
set V , is there a tree support for H such that each vertex i of the tree has
degree at most di? Our algorithm is constructive and computes a support if it
exists. To simplify the discussion we assume that V ∈ S. This enforces that
any support is connected and does not influence the outcome of the decision
problem.

1

23

4

4

23

1

2

3

2

3

14

4 1

Figure 4: All tree supports.

To construct a bounded-degree tree support
we need to know our choices when connecting
vertices. Consider the sets S1 = {1, 2, 3} and
S2 = {2, 3, 4}, all tree supports are shown in
Fig. 4. Each support has an edge connecting 2
to 3, but 1 and 4 can be connected to either 2 or
3. So it appears that the intersection {2, 3} of S1

and S2 must be connected in any tree support.
Korach and Stern proved this observation in [13]
in the context of matroid theory, for completeness we include a simple direct
proof.

Observation 1 The intersection A∩B of two sets A,B ∈ S must be connected
in every tree support.

Proof: Since A ∩B is always connected if it contains zero or one elements, we
assume that |A ∩B| ≥ 2. Let T be a tree support for H . So A and B are both

538 Buchin et al. On Planar Supports for Hypergraphs

4 0

4 5 1 4 7 1

1 2 3 4 1 2 3 4 7 02 3 4 5 0 4 5 6 7 1

2 3 4 2 4 5 1 4 7 1

1 2 3 4 1 4 5 6 7 1

2 3 4 2

1 2 3 4 5 6 7 0

Figure 5: The intersection structure for {{1, 2, 3, 4}, {2, 3, 4, 5}, {4, 5, 6, 7},
{2, 3, 4, 7}, {1, 2, 3, 4, 5, 6, 7}} (with the demands next to the sets) and the cor-
responding connectivity structure.

connected in T . Let x ∈ A∩B and y ∈ A∩B. Since A is connected in T , there
is a path in T from x to y using only vertices from A. Also there is a path in
T from x to y using only vertices from B. Since paths in trees are unique it
follows all vertices on the path from x to y are in A∩B. So A∩B is connected
in T . �

Let S∗ denote the set of all possible sets that can be obtained by intersecting
any number of sets from S. Clearly S∗ is closed under intersection and S ⊆ S∗.
Observation 1 implies that H has a (bounded-degree) tree support if and only if
H∗ = (V,S∗) does. We now define the intersection structure I as follows. I is
a directed acyclic graph whose vertices are the sets in S∗. I has a directed edge
(S1, S2) if and only if S1 ⊂ S2 and for no set S3 ∈ S∗, we have S1 ⊂ S3 ⊂ S2.
That is, edges are directed from smaller to larger sets and represent direct
containment—I does not contain transitive edges (see Fig. 5 (left)).

The minimum number of edges of any support of a hypergraph H can be de-
duced directly from its intersection structure. Let B and A1, . . . , Ah be vertices
of I such that (Aj , B), 1 ≤ j ≤ h, are incoming edges of B in I and there are
no further incoming edges of B. We call the sets Aj the children of B, and B is
a parent of each Aj . Let us assume that the sets Aj are connected in a support
G of H and that G has the fewest edges among all supports with that property.
Let c be the number of connected components implied by the sets Aj , i.e., the
number of connected components of the hypergraph (B, {A1, . . . , Ah}). To con-
nect B we need to add at least c− 1 additional edges to G—the demand of B.
For example, take B = {4, 5, 6, 7} (and A1 = {4, 5}, A2 = {4, 7}) as shown in
Figure 5 (left). Although B contains 4 elements, the sets A1 and A2 imply that
{4, 5, 7} is one connected component of B. The other connected component of
B is the singleton {6}. As a result, the demand of B is c− 1 = 1. The sum of
the demands of all sets in S∗ is the total demand.

Lemma 1 The total demand of the sets in S∗ equals the minimum number of
edges required for any support of H.

JGAA, 15(4) 533–549 (2011) 539

1 2 1 1 3 1 1 4 1 1 5 1

1 2 3 0 1 2 4 0 1 3 4 0 1 2 5 0 1 3 5 0 1 4 5 0

1 2 3 4 0 1 2 3 5 0 1 2 4 5 0 1 3 4 5 0

1 0

Figure 6: The intersection structure for {{1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2, 4, 5},
{1, 3, 4, 5}}.

Proof: By definition, the demand of a set B is the number of edges required to
connect B, given that its children in I are connected. It remains to argue that
no edge of a support G can simultaneously connect two sets B and B′. Assume
that |B′| ≤ |B|. The statement is obviously true if B ∩ B′ = ∅. If B′ ⊂ B

then B′ is part of a single connected component of B and hence no edge that
is used to connect B connects two elements of B′. Finally, if B ∩ B′ = A 6= ∅,
then, because S∗ is closed under intersection, A must be a vertex of I as well.
If an edge e of G is used to connect simultaneously both B and B′, then e must
connect two elements of A. But then e counts towards the demand of A. �

Recall that we assume that the base set V is an element of S. Then, by
Lemma 1, a hypergraph H has a tree support if and only if the total demand
equals n − 1. I also indicates between which vertices the edges of a support
should be. As described above, the set {4, 5, 6, 7} in Figure 5 has a demand
of 1. Since the connected components are {4, 5, 7} and {6}, the support must
contain an edge between 6 and either 4, 5, or 7.

I contains all necessary information to answer our decision problem, but it
can have exponential complexity even if H has a tree support (see Figure 6).
Consider the set S of all but one subsets of size n− 1 of V = {1, . . . n}. There
must be one element j that is contained in each set of S. The star graph
with j as center is a tree support for H = (V,S). However S∗ is nearly the
complete powerset of V and exponential in size. Hence we restrict ourselves
to the connectivity structure, a limited version of the intersection structure for
which we prove that it still carries all necessary information.

Connectivity structure. We say that sets with zero demand are implied. We
remove all sets with zero demand from S∗ and call the resulting set S−. The
connectivity structure C is built on S− in the same manner as the intersection
structure on S∗ (see Fig. 5 (right)). The demand of a set in C equals its demand
in I. If H has a tree support then S− contains at most n − 1 sets. One can
easily construct examples where also in this case C has Ω(n2) edges.

Clearly we do not want to compute S− and the connectivity structure by first
constructing S∗ and the intersection structure and pruning sets with zero de-

540 Buchin et al. On Planar Supports for Hypergraphs

2 3 4 2

1 2 3 4 1 2 3 4 5 1

1 2 3 4 5 6 7 2

{4, 5}
2 3 4 2

1 2 3 4 1

1 2 3 4 5 6 7 2

4 5 1

1 2 3 4 1

2 3 4 2

2 3 4 5 0

1 2 3 4 5 6 7 2

4 5 1

Figure 7: Incremental construction of the connectivity structure.

mand. Instead we incrementally compute a graph that is the connectivity struc-
ture if H has a tree support. Let S = {S1, . . . , Sk} with S1 = V = {1, . . . n}.
We incrementally compute the connectivity structures Ci (1 ≤ i ≤ k) for the
sets S1, . . . , Si. To compute Ci+1 from Ci, we first compute all intersections
between the new set Si+1 and all sets in Ci. We then add those intersections
which are not implied to the connectivity structure, starting with the smallest
set by inclusion (see Fig. 7). If as a result any previous sets become implied,
then we remove them. If at any point the total demand exceeds n− 1, then we
directly stop and conclude that the hypergraph has no tree support. We argue
in the lemmas below that this approach is indeed correct.

The graph computed by this incremental construction might conceivably be
missing sets since the intersection of a new set with a (removed) implied set
might not be implied itself and hence should have been included. However, we
can argue that for hypergraphs with a tree support this incremental approach
indeed computes the correct connectivity structure (Lemma 2). But, if a hyper-
graph has no tree support, then the algorithm computes a total demand greater
than n − 1. Equivalently, if the total demand determined by the algorithm is
n− 1, then the hypergraph has a tree support (Lemma 3).

Lemma 2 The incremental approach described above correctly computes the
connectivity structure C if the hypergraph H has a tree support.

Proof: We could use a similar approach to compute the complete intersection
structure. So it remains to argue that removing implied sets in an intermediate
stage does not influence the final result for hypergraphs with a tree support.

Assume that we have removed an implied set S from Ci. Hence there must
be sets A1, . . . , Ah in Ci that imply that S is connected. Note that Aj ⊂ S for
all 1 ≤ j ≤ h. Let S′ be a new set that is added to Ci. We have to argue that
S′ ∩S is implied if H has a tree support. In fact we show that S′ ∩S is implied
by the sets A′

j = S′∩Aj . Assume for contradiction that this is not the case and
hence the sets A′

j form at least two connected components in S′ ∩ S. Because
S′∩S must be connected, these connected components are directly connected by
edges in a tree support. However, because the sets Aj imply the connectedness
of S, these connected components are also connected in a different manner in
the tree support, introducing a cycle, which contradicts the assumption that H
has a tree support. Since the total demand of a hypergraph with a tree support
is n− 1, the algorithm does not terminate early for such hypergraphs. �

JGAA, 15(4) 533–549 (2011) 541

Lemma 3 If the total demand during the incremental construction is n−1 then
H has a tree support.

Proof: [by induction] S1 = {1, . . . n} has a demand of n− 1 and clearly has a
tree support. Now assume that the sets S1, . . . , Si have a tree support T . In
the inductive step we add the set Si+1 to Ci, that is, we add the non-implied
intersections of Si+1 with the sets in Ci starting with the smallest by inclusion.
Let S be one of these intersections. After S has been added to Ci, it has exactly
one parent P . If it had two or more parents then it would be the non-implied
intersection of at least two sets in Ci and as such already be contained in Ci. If
S had no parent then its demand would have to be zero for the total demand
not to exceed n− 1. Hence S would be implied.

Let P be the parent of S and let A1, . . . , Ah be the children of P before
adding S. Assume that (P, {A1, . . . , Ah}) had c connected components before
S was added and that S connects x of these components into one connected
component. Then the demand of P becomes c − x. Since the total demand
remains n − 1, the demand of S becomes x − 1. Since all children of S are
former children of P none of the demand of S can be subsumed by its children.
Let B1, . . . , Bx be the connected components of (P, {A1, . . . , Ah}) that were
connected by S. We change the tree support T as follows. Disconnect the
connected components of P in T . Let B′

j = S ∩ Bj for 1 ≤ j ≤ x. All B′

j are
connected in T , because these intersections have already been added. Now use
the x− 1 edges covering the demand of S to connect the B′

j into a tree. Finally
we connect S with the remaining connected components of (P, {A1, . . . , Ah}),
using the c− x edges covering the demand of P . By construction the new tree
still connects all sets of Ci, all intersections already added, and S. �

Lemma 3 directly implies that if H does not have a tree support then the
total demand necessarily exceeds n− 1 at some point during the construction.

Efficient algorithm. The connectivity structure can easily be computed in
O(kn3) time as described above. Here we describe a more efficient algorithm
following the same incremental approach. Computing Ci+1 from Ci requires
three steps: (i) add intersections between Si+1 and all sets in Ci, (ii) compute
the demands of all sets in the new Ci, and (iii) remove all implied sets. To
perform the third step efficiently, we actually construct the transitive closure
of the connectivity structure Ci. Note that this makes the third step trivial.
We can finally obtain the correct connectivity structure Ck by computing the
transitive reduction in O(n3) time.

For the first two steps we compute the topological order of all sets in Ci in
O(n2) time. Following this order, we compute for each set S ∈ Ci the intersection
S′ = S ∩ Si+1 and add it to Ci. Next we need to add all edges incident on S′.
For the incoming edges, consider all sets B ∈ Ci such that there is an edge from
B to S in Ci (e.g. B ⊂ S). If B ⊆ Si+1, then add an edge from B to S′,
otherwise do not. If it turns out that S′ is already present in Ci, then we do not
have to add it again and we can ignore it. For the outgoing edges, simply add
an edge from S′ to S and all sets B ∈ Ci such that there is an edge from S to B

542 Buchin et al. On Planar Supports for Hypergraphs

in Ci. Note that we can check in O(1) time whether B ⊆ Si+1 by maintaining
this information for each processed set. To check if S′ is already present in Ci,
note that B = S′ if and only if B ⊆ S′ and |B| = |S′|. Hence, by maintaining
the cardinalities of each set, we can check this in O(n) time.

For the second step, again follow the topological order. We maintain a
graph T on V = {1, . . . , n} to represent the connectivity information. For a set
S ∈ Ci, consider the subgraph of T induced by S. The demand of S is exactly
the number of connected components of this subgraph minus one. Next we
arbitrarily connect these connected components in T using a number of edges
equal to the demand of S. The topological order ensures that the demands are
computed correctly.

Lemma 4 The algorithm described above correctly computes the connectivity
structure in O(n3 + kn2) time if the hypergraph H has a tree support.

Proof: For the first step we need to prove that all edges incident on S′ are
computed correctly. For the incoming edges, if B ⊂ S′, then B ⊂ S, so we
consider all candidates. Now, if B ⊆ Si+1, then B ⊆ S ∩ Si+1 = S′. On the
other hand, ifB * Si+1, then B * S′, as S′ ⊆ Si+1. For the outgoing edges, note
that all added edges must be correct, but we might be missing some. Consider
a set B ∈ Ci such that S * B and S′ ⊂ B. By the definition of the connectivity
structure, Ci must contain S′′ = S∩B, unless S′′ is implied. If S′′ is not implied,
then note that S′ = S′ ∩ B = (S ∩ Si+1) ∩ B = (S ∩ B) ∩ Si+1 = S′′ ∩ Si+1.
As S′′ comes before S in the topological order, this means that S′ was already
present in Ci. If S′′ is implied, then there must be sets A1, . . . , Ah in Ci that
imply that S′′ is connected. Note that the sets A′

j = Aj ∩ Si+1 (1 ≤ j ≤ h)
must already have been added to Ci. Using the same arguments as in the proof
of Lemma 2, we can conclude that the sets A′

j imply that S′′∩Si+1 is connected
if H has a tree support. But, as shown above, S′ = S′′ ∩ Si+1. So S′ is implied
and will be removed in the third step. This means that its outgoing edges need
not be correct.

The correctness of the second step is already argued above. All that remains
is the running time. For the first two steps, every set can be processed in O(n)
time. So every step can be computed in O(n2) time (including the topological
sorting), which means that we can compute Ci+1 from Ci in O(n2) time. Finally
we compute the transitive reduction in O(n3) time, which results in a total
running time of O(n3 + kn2). �

If the hypergraph H does not have a tree support, the efficient algorithm
will also notice this by an increase in demand. This does not change the running
time of the algorithm.

Flow formulation. Using the connectivity structure C we can formulate our
decision problem as a flow problem. To simplify matters we add some additional
sets to C. Let S be a vertex of C and let A1, . . . , Ah be children of S such that
A1, . . . , Ah form a (maximal) single connected component C of S. We say that
C is a connection set (or c-set for short) and add C to C in between A1, . . . , Ah

JGAA, 15(4) 533–549 (2011) 543

and S. By construction all c-sets have zero demand. We also add all singleton
sets. The resulting graph C∗ is called the augmented connectivity structure.
Every set in C∗ is either a singleton set, a c-set, or a normal set. Normal sets
now have the property that all their children are disjoint, hence the demand of
a normal set is the number of its children minus one. Let cS be the number of
connected components of a set S in C. The number of c-sets we add to C∗ is
kc ≤

∑
S cS ≤ (n− 1)+

∑
S(cS − 1) = 2n− 2. So C∗ has O(n) vertices as well.

4 5 0 4 7 0

1 2 3 4 0 4 5 6 7 0

2 3 4 2

1 2 3 4 5 6 7 0

1 1 2 1 3 1 4 3 5 1 6 1 7 1

4 5 7 1

4 5 2 4 7 2

1 2 3 4 2 4 5 6 7 2

2 3 4 4

1 2 3 4 5 6 7 0

1 0 2 0 3 0 4 0 5 0 6 0 7 0

4 5 7 0

source 0

d1 d2 d3 d4 d5 d6 d7

source +12

d1 d2 d3 d4 d5 d6 d7

Figure 8: The original (left) and the new (right) flow network. Thick
edges denote a lower bound on the flow. In the flow networks the produc-
tion/consumption (left) or the capacity to the sink (right) is shown instead of
the demand.

We construct a flow network F from C∗ as follows. We add a source and
connect it to the singletons with edges whose capacities are the maximal degree
of each element; the edge from the source to {i} has capacity di. The capacities
of the remaining edges are unbounded. Every incoming edge of a normal set
requires at least one unit of flow, so we have a lower bound for the flow on these
edges. The source produces 2n−2 units of flow which is consumed by the normal
sets, each normal set consumes twice its demand (see Fig. 8 (left)). Intuitively
the units of flow correspond to the degrees of the vertices in the tree support.
Consider a normal set S and its children A1, . . . , Ah. Since these children are
disjoint in C∗ we need at least one unit of flow from each Ai to connect S. Also,
S has to consume exactly 2h− 2 units of flow.

Observation 2 (Tamura and Tamura [16]) For a given degree sequence
(d1, . . . , dh) with di ≥ 1 for all i, a tree exists whose vertices have precisely

these degrees if and only if
∑h

j=1
dj = 2h− 2.

Lemma 5 Every tree support T that respects the degree bounds corresponds to
a feasible flow F .

Proof: As argued in the proof of Lemma 1 each edge e = {u, v} of T can be
mapped uniquely to a normal set S of C∗. Let A1, . . . , Ah be the children of
S. We have u ∈ Ai and v ∈ Aj for some i 6= j, 1 ≤ i, j ≤ h. We choose an

544 Buchin et al. On Planar Supports for Hypergraphs

arbitrary path from the source to S through {u} and Ai and add a unit of flow
to every edge on this path. We do the same for {v} and Aj . Repeating this
procedure for every edge of T constructs a flow F . It remains to argue that
F is feasible. Consider again a normal set S and one of its children Ai. Since
S is connected in T there is at least one edge of T which is mapped to S and
contains an element of Ai. Hence the edge from Ai to S has at least one unit of
flow. By the fact that h− 1 edges are mapped to S, the number of paths from
the source to S is exactly 2h − 2, so S consumes the correct amount of flow.
Finally, we add flow exactly once for each edge in T and so the flow from the
source to a singleton {i} is at most di. �

Before we explain how to construct a valid tree support from a feasible flow,
we first discuss how to compute such a feasible flow using a standard construc-
tion (see [1], Sections 6.2 and 6.7): we transform the flow network F to a max-
flow network F ′. We remove the lower bounds and the production/consumption
restrictions. We add a sink to F and add edges from all sets to this sink. For a
set S let δS denote its demand. As capacity of the edge from a set S to the sink
we take the number of outgoing edges to a normal set (edges that had a lower
bound of one), and if S is a normal set, we further add δS − 1 to the capacity
(Fig. 8 (right)). The sum of the capacities of the incoming edges of the sink is
now exactly 2n− 2. The following is shown in [1].

Lemma 6 A feasible flow exists for F if and only if the max-flow of F ′ is
exactly 2n− 2.

Tree construction. We now describe how to construct a tree support T from
a feasible flow for F . Although the flow tells us the degrees for each vertex in
T , we need to use the entire flow to build T correctly. We handle the sets of F
in topological order. Consider a normal set S with children A1, . . . , Ah. We can
use the flow consumed by S to connect the sets Aj in T . To know which vertices
need to be connected in T , we need to know from which singletons the flow to a
set Aj originates. We maintain this information using a list Li for each set Si.
The list Li contains a vertex number for every unit of outgoing flow. Initially
the list Lj for a singleton {j} contains a number of copies of j corresponding to
the amount of outgoing flow. Now let S again be a normal set S with children
A1, . . . , Ah. First we build a tree on the components Aj depending on the flow
towards S (note that the ingoing flow of S might exceed 2h−2, but in that case

1 2 5 3 4 6 8 7

1 2 3 4 5 6 7 8

2 ⊲ 5 ⊲ 5

2123

3 ⊲ 4 6 7 ⊲ 7 1 2 5 3 4 6 8 7

1 2 3 4 5 6 7 8

1010

4 ⊲ 7

1

3 4

2

5
8

6

7

Figure 9: A step in the tree construction algorithm. The lists are shown
above/below the sets. The thick edges have been added to the tree support.

JGAA, 15(4) 533–549 (2011) 545

we can make choices as long as we use one unit of flow from each child). If we
want to connect Ai to Aj , then we simply take the first elements x of Li and y

of Lj and add an edge (x, y) to T (Fig. 9). Then we remove x and y from Li

and Lj, respectively. After the tree is built for S, we take kj elements from each
list Lj of Aj , where kj is the remaining flow from Aj to S, and merge them into
the list L of S. In case S is a c-set, we perform only this final step.

Lemma 7 The method described above correctly constructs a tree support T ,
which respects the degree bounds, from a feasible flow.

Proof: We have to show three things: (i) every set Si is connected in T , (ii) T
is a tree and (iii) the degree bounds are respected. The algorithm adds exactly
n− 1 edges to T , so (ii) follows from (i) since V is an element of S and hence
T is necessarily connected. When we handle a set Si, we make sure that it is
connected in T . Since we never remove edges from T , (i) holds. Finally, when
we add an edge incident to a vertex x to T , we remove it from a list. Note that
vertex numbers are added to the singleton lists, but after that they are only
moved from list to list. So the degree of x can be at most the size of Lx, which
is properly bounded in a feasible flow. �

Theorem 1 Given a hypergraph H, with n elements and k sets, together with
degrees di for each element i of the base set, we can construct a tree support T
for H such that each vertex i of T has degree at most di in O(n3+kn2) time—if
such a tree support exists.

Proof: The first step is to compute the connectivity structure. By Lemma 4,
this can be computed in O(n3+kn2) time. Then we can augment the connectiv-
ity structure and construct the max-flow network in O(n3) time. We compute
the max-flow using the Ford-Fulkerson algorithm [8], which runs in O(|E|f∗)
time, where |E| is the number of edges in the flow network and f∗ is the maxi-
mum flow. As f∗ is O(n), this takes at most O(n3) time. Finally we construct
the tree in O(n2) time. �

4 Hardness Results

We first show that for any instance of 3-SAT (or of SAT), we can reduce it to an
instance of finding a planar support for a hypergraph such that there is a planar
support if and only if the 3-SAT instance is satisfiable. The planar support—if
one exists—will be 3-outerplanar (or we can assume it to be so without limiting
any options in the planar support). We then modify our construction to reduce
3-SAT (or SAT) to finding a 2-outerplanar support for a hypergraph. In the
modified construction, if a 3-SAT instance is not satisfiable, the corresponding
hypergraph might still have a planar support.

The first part of the construction is the same for the reduction to planar
and to 2-outerplanar supports. Let a, b, c, . . . , y be the variables used in a 3-
SAT instance. We represent each variable, say b, by six elements b1, . . . , b6

546 Buchin et al. On Planar Supports for Hypergraphs

b1

b2 b3

b4 b5

b6

a1

a2 a3

a4
a5

a6

c1

c2 c3

c4 c5

c6

a′ b′

a′′ b′′

b′′′
a′′′

c′

c′′

c′′′

d′

d′′

d′′′

z′

z′′

z′′′

y3

y5

z7
a7

Figure 10: Construction of a hypergraph and its planar/2-outerplanar support
from a 3-SAT instance.

and some sets. Many of these sets have size two, and so any planar support
must include an edge that connects the vertices of these two elements. The
sets for b are {b1, b2}, {b2, b3}, {b1, b3}, {b2, b4}, {b3, b5}, {b4, b5}, {b5, b6}, and
{b4, b6}, see Fig. 10. We connect the variable elements into some sequence (in
any order; we assume it is a, b, c, . . .) by extra elements a′, b′, c′, . . . , y′, z′ and
a′′, b′′, c′′, . . . , y′′, z′′, and use sets {a′, a1}, {a1, b′}, {b′, b1}, etc., and {a′′, a6},
{a6, b′′}, {b′′, b6}, etc. We also use extra elements a′′′, b′′′, c′′′, . . . , y′′′, z′′′ and
sets {a′, a′′′}, {a′′′, a′′}, {b′, b′′′}, {b′′′, b′′}, etc., to separate the variables from
each other. Next, we use sets {a′′′, a2}, {a′′′, a4}, {b′′′, a3}, and {b′′′, a5} for
each variable, and four more sets {a′, a2}, {a′′, a4}, {z′, y3}, and {z′′, y5}. All
sets of cardinality two imply a 3-connected planar graph as a support, so its
embedding is fixed up to the choice of the outer face.

For the reduction to planar supports, we add one more set, namely {a′′′, z′′′}
(see Fig. 10), which ensures that no edge between any of a′, a1, b

′, b1, c
′, c1, . . .

and any of a′′, a6, b
′′, b6, c

′′, c6, . . . can exist in the planar support.
A 3-SAT clause (a ∨ c ∨ x) is represented by a set

{a1, b1, c1, . . . , a
′, b′, c′, . . . , a6, b6, c6, . . . , a

′′, b′′, c′′, . . . , a2, a5, c3, c4, x2, x5} .

In Fig. 10, these are all vertices of the top row, all vertices of the bottom row,
the subscript-2 and subscript-5 vertices of the variables that occur as a literal
in the clause, and the subscript-3 and subscript-4 vertices of the variables that
occur negated as a literal in the clause. Their connection in the fixed part of
the planar support is shown in grey in the figure.

The only way to extend the fixed part of the planar support so that the set
of a clause has a connected support is to use at least one of the edges (a2, a5),
(c3, c4), or (x2, x5). The only choices of edges in the support that can help to
give sets planar support are ones like (a2, a5) and (a3, a4) (dotted in Fig. 10).

For any variable, it is easy to see that we can only take the edge (a2, a5)
or (a3, a4), and not both, otherwise the support graph is not planar. This
corresponds to the variable assignment of a to true (take edge (a2, a5)) or false
(take edge (a3, a4)). Hence, the 3-SAT instance has a variable assignment that
makes it true if and only if the constructed hypergraph has a planar support.
It is easy to see that the planar support is 3-outerplanar. Hence, if a planar
support exists, then a 3-outerplanar support exists.

JGAA, 15(4) 533–549 (2011) 547

Theorem 2 It is NP-complete to decide whether a hypergraph has a 3-outer-
planar support.

Next, we modify our construction to show that it is NP-hard to decide
whether a hypergraph has a 2-outerplanar support. Instead of the set {a′′′, z′′′}
we add the elements a7 and z7 and the sets {a′′′, a7}, {a2, a7}, {a4, a7}, {z

′′′, z7},
{y3, z7}, and {y5, z7}.

By the previous arguments, if an instance of 3-SAT is satisfiable then the
corresponding hypergraph has a 2-outerplanar support. Now, if an instance of
3-SAT is not satisfiable then the hypergraph has a planar support (with an edge
between one of the vertices a′, a1, . . . z

′ of the top row and one of the vertices
a′′, a6, . . . , z

′′ of the bottom row), but it is not 2-outerplanar: there is no face of
the support such that removing the vertices of this face would make the support
outerplanar.

Theorem 3 It is NP-complete to decide whether a hypergraph has a 2-outer-
planar support.

5 Conclusions

We described a constructive algorithm which tests in polynomial time if a given
hypergraph has a planar support that is a tree where the maximal degree of
each vertex is bounded. Furthermore, we strengthened a result by Johnson
and Pollak by proving that it is NP-complete to decide if a hypergraph has a
2-outerplanar support. It remains open whether a polynomial-time algorithm
exists to decide if a given hypergraph has an outerplanar support.

Acknowledgements

We thank the anonymous referees for pointing us to some related work. K.
Buchin, B. Speckmann, and K. Verbeek were supported by the Netherlands’
Organisation for Scientific Research (NWO) under project no. 639.022.707.

548 Buchin et al. On Planar Supports for Hypergraphs

References

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory,
Algorithms, and Applications. Prentice Hall, 1993.

[2] C. Beeri, R. Fagin, D. Maier, and M. Yannakakis. On the desirability of
acyclic database schemes. Journal of the ACM, 30:479–513, 1983.

[3] C. Berge. Graphs and Hypergraphs. North-Holland, 1973.

[4] K. Booth and G. Lueker. Testing for the consecutive ones property, interval
graphs, and planarity using pq-tree algorithms. Journal of Computer and
System Sciences, 13:335–379, 1976.

[5] U. Brandes, S. Cornelsen, B. Pampel, and A. Sallaberry. Blocks of hyper-
graphs - applied to hypergraphs and outerplanarity. In Proc. 21st Inter-
national Workshop on Combinatorial Algorithms (IWOCA 2010), volume
6460 of LNCS, pages 201–211. Springer, 2011.

[6] U. Brandes, S. Cornelsen, B. Pampel, and A. Sallaberry. Path-based sup-
ports for hypergraphs. In Proc. 21st International Workshop on Combi-
natorial Algorithms (IWOCA 2010), volume 6460 of LNCS, pages 20–33.
Springer, 2011.

[7] M. Brinkmeier, J. Werner, and S. Recknagel. Communities in graphs and
hypergraphs. In 16th ACM Conference on Information and Knowledge
Management, pages 869–872, 2007.

[8] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algo-
rithms. MIT Press, 2nd edition, 2001.

[9] J. Flower and J. Howse. Generating Euler diagrams. In Proc. Diagrams
2002, volume 2317 of LNCS, pages 61–75. Springer, 2002.

[10] W. L. Hsu. A simple test for the consecutive ones property. Journal of
Algorithms, 43(1):1–16, 2002.

[11] D. Johnson and H. Pollak. Hypergraph planarity and the complexity of
drawing Venn diagrams. Journal of Graph Theory, 11(3):309–325, 1987.

[12] M. Kaufmann, M. van Kreveld, and B. Speckmann. Subdivision drawings
of hypergraphs. In Proc. 16th International Symposium on Graph Drawing
(GD 08), volume 5417 of LNCS, pages 396–407. Springer, 2009.

[13] E. Korach and M. Stern. The clustering matroid and the optimal clustering
tree. Mathematical Programming, Series B, 98:385–414, 2003.

[14] J. R. Lundgren. Food webs, competition graphs, competition-common en-
emy graphs and niche graphs. Applications of Combinatorics and Graph
Theory to the Biological and Social Sciences, 17:221–243, 1989.

JGAA, 15(4) 533–549 (2011) 549

[15] G. Sander. Layout of directed hypergraphs with orthogonal hyperedges. In
Proc. 12th International Symposium on Graph Drawing (GD 04), volume
3393 of LNCS, pages 381–386. Springer, 2005.

[16] A. Tamura and Y. Tamura. Degree constrained tree embedding into points
in the plane. Information Processing Letters, 44:211–214, 1992.

[17] R. E. Tarjan and M. Yannakakis. Simple linear-time algorithms to test
chordality of graphs, test acyclicity of hypergraphs, and selectively reduce
acyclic hypergraphs. SIAM Journal on Computing, 13:566–579, 1984.

[18] A. Tucker. Matrix characterizations of circular-arc graphs. Pacific Journal
of Mathematics, 39(2):535–545, 1971.

	Introduction
	Path, Cycle, and Tree Supports
	Bounded-Degree Tree Supports
	Hardness Results
	Conclusions

