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Abstract

For a graph class G, a graph G has G-width k if there are k independent

sets N1, . . . ,Nk inG such that G can be embedded into a graphH ∈ G such

that for every edge e in H which is not an edge in G, there exists an i such

that both endpoints of e are in Ni. For the class TH of threshold graphs

we show that TH-width is NP-complete and we present fixed-parameter

algorithms. We also show that for each k, graphs of TH-width at most k

are characterized by a finite collection of forbidden induced subgraphs.
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1 Introduction

Definition 1 Let G be a class of graphs which contains all cliques. The G-width
of a graph G is the minimum number k of independent sets N1, . . . ,Nk in G such
that there exists an embedding H ∈ G of G such that for every edge e = (x, y)
in H which is not an edge of G there exists an i with x, y ∈ Ni.

We restrict the G-width parameter to classes of graphs that contain all cliques
to ensure that it is well-defined for every (finite) graph.

In this paper we investigate the width-parameter for the class TH of threshold
graphs and henceforth we call it the threshold-width or TH-width. If a graph
G has threshold-width k then we call G also a k-probe threshold graph. Note
that graphs of threshold-width one are the graph class called probe threshold
graphs (1-probe threshold graphs) introduced in [1]. A linear time algorithm
was given in [1] for the recognition of those graphs of threshold-width one. Here
we generalize this graph class of threshold-width one, we study the recognition
problem of graphs having threshold-width k. We refer to the partitioned case
of the problem when the collection of independent sets Ni, i = 1, . . . , k, which
are not necessarily disjoint, is a part of the input. A collection of independent
sets Ni, i = 1, . . . , k, is a witness for a partitioned graph. For historical reasons
we call the set of vertices P = V −

⋃k

i=1 Ni the set of probes and the vertices of
⋃k

i=1 Ni the set of nonprobes .
Threshold graphs are a well-known graph class. They play an important

role on computer science, e.g., graph theory and schedule theory. Threshold
graphs were discovered independently by researchers working in different areas.
Chvátal and Hammer coined the name ‘threshold graphs’ [4, 5]. They introduced
threshold graphs using a concept called ‘threshold dimension’ and studied these
graphs for their application in set packing problems [4]. It is known that many
NP-hard problems are solvable in polynomial time on threshold graphs [16].
There is a lot of information about threshold graphs in the book [16], and there
are chapters on threshold graphs in the book [7] and in the survey [2].

There are many ways to define threshold graphs. We choose the following
way [4, 2]. An isolated vertex in a graph G is a vertex without neighbors. A
universal vertex is a vertex that is adjacent to all other vertices.

Theorem 1 ([5, 9, 17, 20]) A graph is a threshold graph if and only if every
induced subgraph has an isolated vertex or a universal vertex.

Remark 1 Any threshold graph G has an elimination ordering (v1, v2, . . . , vn)
of the vertex set of G such that for all i = 1, . . . , n, vi is either an isolated vertex
or a universal vertex of G[{vi, . . . , vn}], the induced graph of G by {vi, . . . , vn}.

We may take the following characterization as a definition [4, 2].

Definition 2 A graph G is a threshold graph if G and its complement Ḡ are
trivially perfect. Equivalently, G is a threshold graph if G has no induced P4,
C4, nor 2K2.
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Figure 1: C4, P4 and 2K2

We end this section with some notational conventions. For two sets A and
B we write A+B and A−B instead of A∪B and A \B. We write A ⊆ B if A
is a subset of B with possible equality and we write A ⊂ B if A is a subset of
B and A 6= B. For a set A and an element x we write A+ x instead of A+ {x}
and A−x instead of A−{x}. In those cases we will make it clear in the context
that x is an element and not a set. We use 0 to denote a vector of all zeros.

A graph G is a pair G = (V,E) where the elements of V are called the
vertices of G and where E is a set of two-element subsets of V , called the edges.
We denote edges of a graph as (x, y) and we call x and y the endvertices of the
edge. For a vertex x we write N(x) for its set of neighbors and for W ⊆ V
we write N(W ) =

⋃

x∈W N(x) −W for the neighbors of W . A module X is a
vertex set of G such that N(x) − X is the same for every x ∈ X . We write
N [x] = N(x) + x for the closed neighborhood of x. For a subset W we write
N [W ] = N(W ) + W . Usually we will use n = |V | to denote the number of
vertices of G and we will use m = |E| to denote the number of edges of G.

For a graph G = (V,E) and a subset S ⊆ V of vertices we write G[S] for the
subgraph induced by S, that is the graph with S as its set of vertices and with
those edges of E that have both endvertices in S. For a subset W ⊆ V we will
write G − W for the graph G[V −W ] and for a vertex x we will write G − x
rather than G− {x}. A vertex x of a graph G is isolated if its neighborhood is
the empty set.

2 A finite characterization

In this section we show that the class of graphs with TH-width at most k is
characterized by a finite collection of forbidden induced subgraphs.

Lemma 1 A graph G is a threshold graph if and only if it has a binary tree-
decomposition (T, f), where f is a bijection from the vertices of G to the leaves
of T . Every internal node of T , including the root is labeled either as a join– or
a union-node. For every internal node the right subtree consists of a single leaf.
Two vertices are adjacent in G if and only if their lowest common ancestor in
T is a join-node.

Proof: According to Theorem 1 a graph is a threshold graph if and only if every
induced subgraph has either an isolated vertex or a universal vertex. Given
a threshold graph G, G has either an isolated vertex or a universal vertex.
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Figure 2: A threshold graph and its binary tree-decomposition where ⊗ denotes
a join-node and ⊕ denotes a union-node.

Let the isolated vertex or the universal be v. We may recursively construct a
decomposition tree (T, f) for G by the following approach. First create the root
r of T , make a copy of v, say v′ and attach v′ as the right child of r. If v is an
isolated vertex, label r as a union-node. Otherwise label r as a join-node. Let
the left child of r be the root of the decomposition tree of G− v. By induction,
this shows that if G is a threshold graphs, it has a binary tree-decomposition.
Now suppose that a graph G has a binary tree-decomposition (T, f) defined as
above. For any induced subgraph G′ of G, we obtain tree-decomposition (T ′, f ′)
of G′ by the following steps. Remove all leaves of T that are not mapped from
vertices in G′, and then remove all internal nodes that have no right subtree
and add an edge between its parent and its left child. It is easy to see that the
vertex mapped to the leaf adjacent to the root of T ′ is either an isolated vertex
or a universal vertex. This shows that if G has a tree-decomposition tree (T, f)
as defined above, G is a threshold graph. Suppose that u and v are two vertices
in a threshold graph G. Let (T, f) be a tree-decomposition of G. Let u′ (resp.
v′) be a copy of u (resp. v) in T . Let ru (resp. rv) be the internal node in T
that u′ (resp. v′) is adjacent to. Assume that ru is an ancestor of rv. We see
that ru is the lowest common ancestor of u′ and v′. Node ru is a join-node if
and only if u is a universal vertex in the graph G′ induced by the set of vertices
mapped to the leaves in the right subtree of ru, u and v are adjacent in G′ and
G. Similarly ru is a union-node if and only if u is an isolated vertex in G′, u
and v are not adjacent in G′ and G. This proves the lemma. �

Remark 2 Note that the tree-decomposition used here is not the same as those
“tree-decomposition” defined for the well-known notion of treewidth.

In the next theorem, we will prove that for every k the class of graphs with
TH-width at most k has finite forbidden induced subgraphs. To prove it we first
review the technique introduced by Pouzet [24].

Let T1, T2, . . . be a collection of rooted binary trees with nodes labeled from
some finite set. We write Ti ≺ Tj if there exists an injective map h from the
nodes of Ti to the nodes of Tj such that

1. the label of a node a in Ti is equal to the label of the node h(a) in Tj, and

2. for every pair of nodes a and b in Ti, their lowest common ancestor is mapped
to the lowest common ancestor of h(a) and h(b) in Tj, and
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3. if a and b are nodes of Ti with lowest common ancestor c such that a is in
the left subtree of c and b is in the right subtree of c then h(a) is in the left
subtree of h(c) and h(b) is in the right subtree of h(c) in Tj.

Let T1, T2, . . . be an infinite sequence of rooted binary trees with nodes la-
beled from some finite set. Kruskal’s theorem [15] states that there exist integers
i < j such that Ti ≺ Tj.

Theorem 2 For every k the class of graphs with TH-width at most k is char-
acterized by a finite collection of forbidden induced subgraphs.

Proof: The class of graphs with TH-width at most k is hereditary, i.e., a graph
has TH-width at most k, any its induced subgraph also has TH-width at most
k. Let k be fixed. Assume that the class of TH-width at most k has an infinite
collection of minimal forbidden induced subgraphs, say G1, G2, . . .. In each
Gi single out one vertex ri and let G′

i = Gi − ri. Then G′
i has TH-width at

most k, thus there are independent sets N
(i)
1 , . . . ,N

(i)
k in G′

i such that G′
i can be

embedded into a threshold graph Hi by adding certain edges between vertices

that are pairwise contained in some N
(i)
ℓ . For each i consider a binary tree-

decomposition (Ti, fi) for Hi as stipulated in Lemma 1. Each leaf is labeled
by a 0/1-vector with k entries. The jth entry of this vector is equal to 0 or 1

according to whether the vertex is contained in N
(i)
j or not. Thus two vertices

are adjacent in G′
i if and only if their lowest common ancestor is a join-node

and their vectors are disjoint.
We give each leaf an additional 0/1-label that indicates whether the vertex

that is mapped to that leaf is adjacent to ri or not.
When we apply Kruskal’s theorem [15] to the labeled binary trees Ti that

represent the graphs G′
i we may conclude that there exist i < j such that G′

i is
an induced subgraph of G′

j . But then we must also have that Gi is an induced
subgraph of Gj . This is a contradiction because we assume that the graphs Gi

are minimal forbidden induced subgraphs. This proves the theorem. �

Remark 3 Higman’s lemma [10] preludes Kruskal’s theorem. It deals with fi-
nite sequences over a finite alphabet instead of trees. Instead of Kruskal’s theo-
rem we could have used Higman’s lemma to prove Theorem 2.

3 TH-width is NP-complete

Let T be the class of complete graphs (cliques). The following theorem is proved
in [3] that T-width is NP-complete. We apply it to prove that TH-width is also
NP-complete.

Theorem 3 ([3]) T-Width is NP-complete.

Theorem 4 TH-width is NP-complete.
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Proof: Assume there is a polynomial-time algorithm to compute TH-width. We
show that we can use that algorithm to compute T-width. Let G be a graph for
which we wish to compute T-width. Construct a graph G′ by adding a clique
C with n2 vertices. Make all vertices of C adjacent to all vertices of G. Add
one more vertex ω and make ω also adjacent to all vertices of G. Consider
two nonadjacent vertices x and y of G. We see that for any z ∈ C, {ω, x, y, z}
induces a C4 in G′. Note that C4 is a forbidden induced subgraph of threshold
graphs. In any embedding of G′ into a threshold graph, either x and y are
adjacent or ω is adjacent to all vertices of C. However, to make ω adjacent
to all vertices of C, we need at least n2 independent sets. Obviously, making
a clique of G embeds G′ into a threshold graph, namely the complement of a
star and a collection of isolated vertices. This embedding needs less than n2

independent sets. This proves the theorem. �

Remark 4 The above theorem can be extended to that for the graph class G of
graphs having no induced C4, G-width is also NP-complete.

4 TH-width is fixed-parameter tractable

A problem is called fixed-parameter tractable (FPT) if it can be solved in f(k) ·
nO(1) time, where n denotes the size of the instance and f(k) is any function
of the parameter k. We call algorithms which run in f(k) · nO(1) time fixed-
parameter algorithms [19]. In this section we show that for constant k, k-probe
threshold graphs can be recognized in O(n3) time.

The most natural way to express and classify graph-theoretic problems is by
means of logic. In monadic second order logic a (finite) sentence is a formula
that uses quantifiers ∀ and ∃. The quantification is over vertices, edges, and
subsets of vertices and edges. Relational symbols are ¬, ∈, =, ∧, ∨, ⊆, ∪, ∩,
and the logical implication ⇒. Some of these are superfluous. Although the
minimization or maximization of the cardinality of a subset is not part of the
logic, one usually includes them.

A restricted form of this logic is where one does not allow quantification
over subsets of edges. The C2MS-logic is such a restricted monadic second-
order logic where one can furthermore use a test whether the cardinality of a
subset is even or odd.

Courcelle proved that problems that can be expressed in C2MS-logic can be
solved in O(n3) time for graphs of bounded rankwidth [6].

The following theorem is a monadic second-order characterization. We will
show that k-probe threshold graphs have bounded rankwidth shortly.

Theorem 5 A graph G = (V,E) has threshold-width at most k if and only if
there exist k independent sets Ni, i = 1, . . . , k, such that for every W ⊆ V ,
G[W ] has an isolated vertex or a vertex ω such that for every y ∈ W −ω either
ω is adjacent to y or there exists i ∈ {1, . . . , k} with {ω, y} ⊆ Ni.

Proof: This is inferred by Theorem 1 and Definition 1. �
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Remark 5 According to the above theorem, given a graph G = (V,E), G has
threshold-width at most k if and only if the following monadic second order logic
formula is satisfied.

∃N1, . . .Nk

(
∧

1≤i≤k((Ni ⊆ V ) ∧ (∀u, v ∈ Ni(¬edg(u, v))))
∀W.W ⊆ V ∧ ∃w.w ∈ W∧
((∀y.y ∈ W ∧ ((y = w) ∨ ¬edg(w, y))∨
(∀y.y ∈ W ∧ ((y = w) ∨ (edg(w, y) ∨ (

∨

1≤i≤k(w ∈ Ni ∧ y ∈ Ni)))))
)

where edg(u, v) is true if and only if u and v are adjacent in G.

Definition 3 ([23, 21]) A rank-decomposition of a graph G = (V,E) is a pair
(T, τ) where T is a ternary tree and τ a bijection from the leaves of T to the
vertices of G. Let e be an edge in T and consider the two sets A and B of leaves
of the two subtrees of T − e. Let Me be the submatrix of the adjacency matrix
of G with rows indexed by the vertices of A and columns indexed by the vertices
of B. The width of e is the rank over GF (2) of Me. The width of (T, τ) is the
maximum width over all edges e in T and the rankwidth of G is the minimum
width over all rank-decompositions of G.

Computing the rankwidth of a graph is NP-complete [11] but it is fixed-
parameter tractable. This can be seen in various ways: Oum proved that there
is a finite obstruction set for fixed-parameter rankwidth [22]. Now, note that
Schrijver gave a general algorithm to minimize a class of submodular functions
which uses the ellipsoid method [26, Chapter 45]. He turns this into a ‘combi-
natorial algorithm’ for a seemingly larger class of submodular functions, in [25].
Using this result, in [11] a combinatorial fixed-parameter algorithm was devel-
oped for computing the rankwidth of matroids.

Lemma 2 Threshold graphs have rankwidth at most one.

Proof: The class of graphs with rankwidth at most 1 is exactly the class of
distance-hereditary graphs [21]. Every threshold graph is distance hereditary
(see, e.g., [2, 9, 17]). �

Theorem 6 k-Probe threshold graphs have rankwidth at most 2k.

Proof: Suppose that G is a k-probe threshold graph and H is an embedding
of G, i.e., H is a threshold graph. Consider a rank-decomposition (T, τ) with
width 1 for H . Consider an edge e in T and assume that Me is an all-1s-matrix.
Each independent set Ni creates a 0-submatrix in Me. If k = 1 this proves that
the rankwidth of G is at most 2. In general, for k ≥ 0, note that there are
at most 2k different neighborhoods from one leaf-set of T − e to the other. It
follows that the rank of Me is at most 2k. �

Remark 6 Note that the matrix Me has indeed rank 2k in the worst case.
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Theorem 7 For each k ≥ 0 there exists an O(n3) algorithm which checks
whether a graph G with n vertices is a k-probe threshold graph. Thus TH-width
∈ FPT .

Proof: k-Probe threshold graphs have bounded rankwidth. C2MS-Problems
can be solved in O(n3) time for graphs of bounded rankwidth [6, 12, 21]. By
Theorem 5, the recognition of k-probe threshold graphs is such a problem.

Alternatively, the theorem is also proved by using the finite collection of
forbidden induced subgraphs. Note however that this proof is non-constructive;
Kruskal’s theorem does not provide the forbidden induced subgraphs. �

A fortiori , Theorem 7 holds as well when the collection of independent sets
N1, . . . ,Nk is a part of the input. Thus for each k there is an O(n3) algorithm
that checks whether a graph G, given with k independent sets Ni, can be em-
bedded into a threshold graph.

There are a few drawbacks to this solution. First of all, Theorem 7 only
shows the existence of an O(n3) recognition algorithm; a priori , it is unclear
how to obtain an algorithm explicitly. Furthermore, the constants involved in
the algorithm make the solution impractical; already there is an exponential
blow-up when one moves from threshold-width to rankwidth.

5 Recognition of Partitioned k-probe threshold

graphs

In this section we show that there exists an explicit, linear-time algorithm for
the recognition of partitioned k-probe threshold graphs.

Let (G,N ) be a partitioned k-probe threshold graph, consisting of a graph
G and a witness N with k independent sets N1, . . . ,Nk of G.

Lemma 3 If G has an isolated vertex x then G is partitioned k-probe threshold
if and only if G−x is partitioned k-probe threshold with the same induced collec-
tion of independent sets. The same statement holds as well for the unpartitioned
case.

Proof: Assume G is k-probe threshold. Consider an embedding H of G. Then
H − x is an embedding of G− x. Thus G− x is k-probe threshold.
Assume G − x is k-probe threshold. Let H ′ be an embedding of G − x. Then
we obtain an embedding of G by adding x as an isolated vertex to H ′. �

Theorem 8 For every k there exists a linear-time algorithm to check whether
a pair (G,N ), where G is a graph and N a collection of k independent sets in
G, is a partitioned k-probe threshold graph.

Proof: Assume that (G,N ) is a partitioned graph and let H be an embedding
of G. If H has an isolated vertex x, then x is also isolated in G since H is
an embedding of G. By Lemma 3 any isolated vertex may be safely removed
from G.
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Figure 3: A partitioned 3-probe threshold graph (G,N ) where N =
{N1,N2,N3}, N1 = {v1, v3, v4}, N2 = {v1, v4, v5}, and N3 = {v2, v5}. H is
a threshold embedding of G where the thin lines in H are those edges in G and
those thick lines in H are new edges being added.

Now we may assume that any embedding H has no isolated vertices. Since H is
a threshold graph, it has no induced 2K2, H is connected. By Theorem 1 H has
a universal vertex ω. We call ω a ‘probe universal vertex’ of (G,N ) if for every
nonneighbor z there is an independent set in N which contains both ω and z.
Thus any partitioned k-probe threshold graph has an isolated vertex or a probe
universal vertex. Finally, observe the following: if ω is a probe universal vertex
then G is k-probe threshold if and only if G − ω is k-probe threshold, since
we may add ω as a universal vertex to any embedding of G − ω and obtain an
embedding of G. Let (ω1, ω2, . . . , ωn) be an elimination ordering such that ωi

is either an isolated vertex or a probe universal vertex of G[{ωi, ωi+1, . . . , ωn}].
Since k is a constant, such an elimination ordering can be obtained in linear
time. �

Remark 7 Note that the algorithm described in Theorem 8 is fully polynomial.
This proves that the ‘sandwich problem,’ studied by Golumbic et al., in [8], is
polynomial for threshold graphs. Given G1 = (V,E1) and G2 = (V,E2) where
E1 ⊆ E2, the sandwich problem asks whether there exists a graph G = (V,E),
E1 ⊆ E ⊆ E2, where G is in a specific graph class G.

6 A fixed-parameter algorithm to compute

TH-width

Assume that (G,N ) is a connected partitioned k-probe threshold graph with
witness

N = {Ni | i = 1 . . . , k}

and let H be an embedding. The label L(x) of a vertex x is the 0/1-vector of
length k with the ith entry L(x)[i] equal to 1 if and only if x ∈ Ni. We write
L(x) ≤ L(y) if L(x)[i] ≤ L(y)[i] for all i = 1, . . . , k. We write L(x) ⊥ L(y) if
there is no i with L(x)[i] = L(y)[i] = 1.
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Definition 4 A witness N is well-linked if for every i = 1, . . . , k, every vertex
x 6∈ Ni has a neighbor in Ni.

Lemma 4 Every k-probe threshold graph has a witness with k independent sets
which is well-linked.

Proof: Starting with any witness, repeatedly add a vertex x to an independent
set Ni if it has no neighbor in that set. �

Consider the equivalence relation ≡ defined by x ≡ y if N(x) = N(y).
Denote the equivalence class of a vertex x by (x). Define the partial order �
by:

(x) � (y) if N(x) ⊆ N(y).

Likewise, we consider the equivalence relation ≡′ defined by x ≡′ y if N [x] =
N [y]. The equivalence class of a vertex x under this relation is denoted by [x].
We consider the partial order defined by:

[x] � [y] if N [x] ⊆ N [y].

Lemma 5 Assume (G,N ) is a k-probe clique with a well-linked witness N .
Then

(x) � (y) ⇔ L(x) ≥ L(y) 6= 0.

Proof: Since (G,N ) is a k-probe clique, there exists an embedding H of G with
respect to the witness N , H is a clique. Note that any probe w in a k-probe
clique must be with L(w) = 0.

Assume L(x) ≥ L(y) 6= 0. Both x and y are nonprobes and if y is in Ni for
some i, so is x, that is, they are not adjacent in G. Let z ∈ NG(x). Since x and
y are not adjacent, z 6= y. If z 6∈ NG(y), there exists a j with {z, y} ⊆ Nj . Now
L(x) ≥ L(y) implies x ∈ Nj , which contradicts that z is adjacent to x. Hence
(x) � (y).
Assume (x) � (y) in G. Thus NG(x) ⊆ NG(y) and x and y are not adjacent in
G. Since H is a clique, x and y are adjacent in H , both x and y are nonprobes.
Assume that ¬(L(x) ≥ L(y)). There exists an i with y ∈ Ni and x 6∈ Ni.
Since N is well-linked there exists a vertex z ∈ NG(x) ∩ Ni. Since (x) � (y),
z ∈ NG(y). But this contradicts {y, z} ⊆ Ni. �

Note that Definition 2 is equivalent to the following characterization.

Theorem 9 ([5, 16]) A graph H is a threshold graph if and only if for every
pair of vertices x and y, N(x) ⊆ N [y] or N(y) ⊆ N [x].

In other words, a graph G = (V,E) is a threshold graph if and only if there is
a total order of the vertices [x1, . . . , xn], i.e., a chain, such that:

1 ≤ i < j ≤ n ⇒ N(xi) ⊆ N [xj ].
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Theorem 10 Let (G,N ) be a k-probe threshold graph with a well-linked witness
N and let H be an embedding of G with respect to the witness N , H is a threshold
graph. For every nonadjacent pair x and y in G with NH(x) ⊆ NH [y]:

(x) � (y) ⇔ L(x) ≥ L(y).

Proof: Assume L(x) ≥ L(y). Let z ∈ NG(x). Then z ∈ NH [y]. If L(y) = 0, y
is a probe, NG[y] = NH [y], z ∈ NG[y]. Since NG(x) ⊆ NH(x) ⊆ NH [y] = NG[y],
(x) � (y). Now assume that L(y) 6= 0, both x and y are nonprobes. Since x and
y are not adjacent, z 6= y. Thus z ∈ NH(y). If z 6∈ NG(y), then there exists an i
with {z, y} ⊆ Ni. Now L(x) ≥ L(y) implies that also x ∈ Ni, which contradicts
that z is adjacent to x. Hence (x) � (y).
Assume (x) � (y), that is, NG(x) ⊆ NG(y). If y is a probe, L(y) = 0. It is true
that L(x) ≥ L(y). Suppose that y is a nonprobe. A fortiori , x and y are not
adjacent in G. Assume ¬(L(x) ≥ L(y)). Then there exists an i with y ∈ Ni

and x 6∈ Ni. Since N is well-linked, there exists a vertex z ∈ NG(x) ∩Ni. Since
(x) � (y), z ∈ NG(y), contradicting that z and y are both in Ni. �

For completeness sake we note the following.

Lemma 6 Let (G,N ) be a k-probe threshold graph with a well-linked witness N
and let H be an embedding of G with respect to the witness N , H is a threshold
graph. For every adjacent pair x and y in G with NH(x) ⊆ NH [y], if [x] � [y]
and x 6= y, then

∀i : L(y)[i] = 1 ⇒ NG(x) ∩ Ni = {y}.

Proof: Since x and y are adjacent, we have that L(x) ⊥ L(y). Assume that
y ∈ Ni for some i ∈ {1, . . . , k}. Thus x 6∈ Ni. Since N is well-linked, there exists
a vertex z ∈ N(x) ∩ Ni. Since NG[x] ⊆ NG[y], z ∈ NG[y]. But then we must
have z = y, otherwise z and y are nonadjacent. �

Definition 5 A true – or false module is a set of vertices such that every pair is
a true – or false twin, respectively.1 A k-probe module is either a false module
with at least 3 vertices or a true module with at least k + 3 vertices.

Lemma 7 Let S be a k-probe module. Then G has TH-width at most k if and
only if G− x has TH-width at most k for any x ∈ S.

Proof: If G is k-probe threshold then so is G− x for any vertex x. Let x ∈ S
and assume that G − x is a k-probe threshold graph. Let H be an embedding
of G − x. First assume that S is a false module with at least three vertices.
Let y ∈ S − x. If y is in the independent set, then we can let x be a copy of
y. Assume that all vertices of S − x are in the clique of H . Since S − x has at
least two vertices, they must be nonprobes. We can let x be a copy of either of
them.

1A true twin is a pair of vertices x and y with N [x] = N [y]. A false twin is a pair of
vertices x and y with N(x) = N(y).
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Assume S is a true module with at least k + 3 vertices. Then at least k + 1
vertices are in the clique C of H . Let z be a vertex of S ∩ C with a minimal
closed neighborhood in H . Assume that z has a neighbor u in H which is not a
neighbor of z in G. Then u is a neighbor of every vertex of S∩C in H , but not in
G. Since every pair of vertices a, b ∈ S is adjacent in G, L(a) ⊥ L(b). It follows
that u must be in at least k+1 independent sets, which is a contradiction. Thus
NH(z) = NG(z), and we can let x be a copy of z. �

Definition 6 A vertex x is maximal if there exists no (y) 6= (x) with (x) � (y)
and there exists no [y] 6= [x] with [x] � [y].

Lemma 8 Assume that G is a k-probe threshold graph without k-probe module.
Then there are at most 2k+1 + k maximal vertices.

Proof: Consider a well-linked embedding H . By Theorem 9 there is a chain
order of its vertices. Let M0,M1, . . . be the equivalence classes in H of vertices
with the same open or closed neighborhoods. Assume they are ordered such that
N [xi] ⊇ N(xi+1) for each xi ∈ Mi and xi+1 ∈ Mi+1, for i = 0, 1, . . . . Thus if H
is connected, M0 is the set of universal vertices in H . We call these equivalence
classes M0,M1, . . . the levels of the embedding. Thus a level contained in the
clique induces a k-probe clique in G and a level contained in the independent
set induces an independent set in G.
Consider the partition of each level Ms into sets of vertices with the same label.
We call the sets of the partition of a level Ms the label-sets of Ms. Notice that
each label-set is a module in G. Since there is no k-probe module, each label-set
of nonprobes has at most 2 vertices and the label-set of probes has at most k+2
vertices. Thus

|Ms| ≤ 2(2k − 1) + (k + 2) = 2k+1 + k.

By Theorem 10 a vertex x ∈ Ms is maximal if it has a label L(x) such that
all other label-sets L′ ≤ L(x) in M0, . . . ,Ms are empty. It follows that there

are at most
∑k

i=0

(

k
i

)

= 2k label-sets of maximal vertices, at most 2k − 1 of
maximal nonprobes, each containing at most 2 elements, and at most one label-
set of maximal probes, containing at most k + 2 elements. Thus the number of
maximal elements is bounded by 2k+1 + k. �

Lemma 9 Assume G is a k-probe threshold graph without isolated vertices and
without k-probe module. There exists a set Υ, of size |Υ| ≤ 22(k+1) such that
any well-linked embedding of G has its set of universal vertices M0 ⊆ Υ. This
set Υ can be computed in linear time.

Proof: Since G has no isolated vertices, H has a set of universal vertices M0.
Start with Υ = ∅. Repeatedly compute the set of maximal vertices in G, add
them to Υ, and delete them from the graph. After at most 2k repetitions, each
label-set of M0 is contained in Υ. Since each set of maximal elements has at
most 2k+1 + k vertices,

|Υ| ≤ 2k(2k+1 + k) ≤ 22k+1 + 22k ≤ 22(k+1).

�
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Definition 7 Let (G,N ) be a partitioned k-probe graph where G = (V,E) and
N = {N1,N2, . . . ,Nk}. A vertex subset W ⊆ V is called a partitioned probe
clique if for every pair of x, y ∈ W , x 6= y, either (x, y) ∈ E or x, y ∈ Ni for
some i ∈ {1, 2, . . . , k}.

Definition 8 A probe universal set is a set U of labeled vertices such that for
every vertex x 6∈ U , there is a label for x such that U + x is a partitioned probe
clique.

Lemma 10 Let U be a probe universal set and let x 6∈ U be a vertex with
minimal neighborhood such that U ′ = U + N(x) is probe universal with the
same number of nonempty label-sets as U . Then there exists an embedding such
that U is universal if and only if there exists an embedding such that U ′ is
universal.

Proof: By definition, the label-sets of U ′ are modules that extend the label-sets
of U . This proves the lemma. �

Theorem 11 For each k, there exists an O(n2)-time algorithm for the recog-
nition of k-probe threshold graphs.

Proof: We may assume that G has no k-probe module. By Lemma 9 there
exists a constant number of feasible probe universal sets. By Lemma 10, if
there exists a vertex x that can be labeled such that N(x) extends the probe
universal set in a way that does not increase the number of nonempty label-sets
in the probe universal set, then the algorithm can greedily extend the probe
universal set with N(x). Next the algorithm removes the vertex x and tries to
find another greedy extension.

If there are no more greedy extensions, the algorithm computes the set Υ as
in Lemma 9 in the graph minus the probe universal set, and chooses one of the
constant number of subsets as an extension of the probe universal set. Notice
that there can be at most 2k extensions that increase the number of label-sets.

Since the computation of maximal vertices can be done in O(n2) time, the
algorithm can be implemented to run in O(n2) time. �

Remark 8 Perhaps it is a bit surprising that we do not have to treat the dif-
ferent components of the graph separately.

7 Concluding remarks

The recognition problem of probe interval graphs was introduced by Zhang
et al. [27, 18]. This problem stems from the physical mapping of chromosomal
DNA of humans and other species. Since then probe graphs of many other graph
classes have been investigated by various authors. In this paper we generalized
the concept to the graph-class-width parameters. So far, we have limited our
research to classes of graphs that have bounded rankwidth.
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In [14], we derived a fixed-parameter algorithm that solves a similar problem
for the class of trivially perfect graphs. It is well-known that every threshold
graph is trivially perfect. Obviously, this does not imply that the algorithm
for trivially perfect graphs can be used for threshold graphs. In fact, a similar,
elegant solution as the one that we obtained in this paper cannot work for
threshold graphs.

For the classes of blockgraphs, threshold graphs, trivially perfect graphs,
and cographs we were able to show that the width parameter is fixed-parameter
tractable [3, 14, 13]. One of the classes for which this is still open is the class of
distance-hereditary graphs. We are unaware of a monadic second-order formu-
lation that describes the distance-hereditary width. Consider a decomposition
tree of bounded rankwidth. The ‘twinset’ of a branch is defined as the subset
of vertices that are mapped to the leaves of that branch, and that have neigh-
bors in the rest of the graph (outside the branch). It is not difficult to show
that for bounded rankwidth, the graphs that arise as twinsets constitute a class
of graphs that is characterized by a finite collection of forbidden induced sub-
graphs. (For rankwidth one this is the class of cographs.) The same holds true
for graphs of bounded DH-width. So far, we have not been able to describe the
class of graphs as tree-extensions of these twinsets.
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