
Journal of Graph Algorithms and Applications
http://jgaa.info/ vol. 15, no. 1, pp. 97–126 (2011)

More Canonical Ordering

Melanie Badent Ulrik Brandes Sabine Cornelsen

Department of Computer & Information Science
University of Konstanz

Box 67, 78457 Konstanz, Germany

Abstract

Canonical ordering is an important tool in planar graph drawing and
other applications. Although a linear-time algorithm to determine canon-
ical orderings has been known for a while, it is rather complicated to
understand and implement, and the output is not uniquely determined.
We present a new approach that is simpler and more intuitive, and that
computes a newly defined leftist canonical ordering of a triconnected graph
which is a uniquely determined leftmost canonical ordering. Further, we
discuss duality aspects and relations to Schnyder woods.

Submitted:
December 2009

Reviewed:
August 2010

Revised:
September 2010

Accepted:
November 2010

Final:
November 2010

Published:
February 2011

Article type:
Regular paper

Communicated by:
D. Eppstein and E. R. Gansner

E-mail addresses: melanie.badent@uni-konstanz.de (Melanie Badent) ulrik.brandes@uni-konstanz.de

(Ulrik Brandes) sabine.cornelsen@uni-konstanz.de (Sabine Cornelsen)

mailto:melanie.badent@uni-konstanz.de
mailto:ulrik.brandes@uni-konstanz.de
mailto:sabine.cornelsen@uni-konstanz.de

98 Badent et al. More Canonical Ordering

1 Introduction

Canonical vertex orderings were introduced by de Fraysseix, Pach, and Pol-
lack [14, 15] and are the backbone of several algorithms for planar graphs.

De Fraysseix, Pach, and Pollack [14, 15] introduce an O(n log n)-time algo-
rithm that embeds a maximal planar graph with n vertices on a (2n−4)×(n−2)
integer grid by computing a canonical ordering of the vertices and then insert-
ing them on a grid using this ordering. Later, Chrobak and Payne show how to
execute this algorithm in linear time [11].

Kant [34] generalizes canonical orderings to triconnected graphs and presents
a linear-time algorithm to construct a straight-line convex grid embedding of
a triconnected graph on a (2n − 4) × (n − 2) grid. This grid size is improved
by Chrobak and Kant [9] to (n − 2) × (n − 2). More about grid embeddings
that are associated with canonical orderings can be found in [4, 9, 10, 11, 14,
15, 27, 28, 32, 33, 34]. Further, canonical vertex orderings are used to create
visibility representations [24, 35, 36, 37], curve embeddings [18, 19], and other
drawings [2, 3, 4, 17, 20, 24, 27, 28]. They are found in graph encoding [1,
12, 31], used for the construction of realizers, spanners, or orderly spanning
trees [6, 7, 8, 16, 38, 39, 40], and more [13, 30, 42].

Kant [34] shows constructively that every triconnected planar graph has a
canonical ordering and presents a linear-time algorithm. While several imple-
mentations of this algorithm of Kant are available, it is neither trivial to code,
nor is its correctness easily understood. Based on a simple and intuitive cri-
terion, we present a new algorithm that might further broaden the scope of
adoption and ease teaching.

Since a triconnected graph can have many canonical orderings, we introduce
the leftist (and rightist) canonical ordering that is uniquely determined. The
leftist canonical ordering is in particular a leftmost canonical ordering.

The main advantage of our algorithm compared to the one in [34] is that we
do not use the dual graph nor any face labels. Further, we compute the unique
leftist canonical ordering from scratch, i. e., without any reordering, and we
compute it from the low numbers to the high numbers contrary to the previous
algorithm that builds the canonical ordering from the end by shelling off paths
from the outer face. A similar approach for biconnected canonical orderings can
be found in [29]. We also give a detailed pseudocode such that it can be easily
implemented. Our proof of correctness includes a new proof of the existence of
a canonical ordering for triconnected graphs. Finally, we show that the leftist
canonical ordering induces the leftist canonical ordering of the dual graph.

Schnyder [40] develops the concept of Schnyder labelings (normal labelings)
and Schnyder woods (realizers) for triangulated graphs. Di Battista, Tamassia,
and Vismara [16] generalize Schnyder woods to triconnected graphs and show
how to construct one from a canonical ordering. Felsner [21] constructs Schny-
der labelings for triconnected graphs and proves that they are equivalent to
Schnyder woods [22] and to α0-orientations [23]. Recently, Gonçalves, Lévêque,
and Pinlou [26] proved that there is a bijection between Schnyder woods and
special contact triangle representations.

JGAA, 15(1) 97–126 (2011) 99

The minimal Schnyder wood is the Schnyder wood that is associated with the
α0-orientation without clockwise cycles [23]. Brehm [7] introduces an algorithm
that directly constructs the minimal Schnyder wood for a triangulated graph.
Fusy, Schaeffer, and Poulalhon [25] show how to construct the minimal α0-
orientation of a triconnected planar graph in linear time. Their algorithm works
similar to the algorithm of Kant [34] for constructing a canonical ordering.

We discuss why there does not exist a reasonable one-to-one correspondence
between canonical orderings and Schnyder woods and generalize this concept
to ordered path partitions. Then, we give a bijection between the equivalence
classes of ordered path partitions and Schnyder woods. Using the construction
of Fusy, Schaeffer, and Poulalhon [25], we show that the leftist ordered path
partition corresponds to the minimal Schnyder wood. We finally adapt our
algorithm for the leftist canonical ordering such that it directly outputs the
leftist ordered path partition.

The paper is organized as follows. Canonical orderings are defined in Sec-
tion 2. The new algorithm and its linear-time implementation are described
in Sections 3 and 4, respectively. In Section 5 we show how to find the left-
ist canonical ordering by the algorithm of Kant [34] and that the dual of the
leftist canonical ordering corresponds to the leftist canonical ordering of the
dual graph. Section 6 is dedicated to Schnyder woods and their bijection to
equivalence classes of ordered path partitions.

2 Preliminaries

Throughout this paper, let G = (V,E) be a simple undirected graph with n
vertices, n ≥ 3, and m edges. A graph G is k-connected if the removal of k − 1
vertices does not disconnect the graph. A set of two vertices whose removal
disconnects the graph is called a separation pair. We assume that G is planar
and triconnected, hence it has a unique planar embedding up to the choice of
the outer face.

For a subset V ′ ⊆ V we denote by G[V ′] the subgraph of G induced by V ′.
By degG(v) we denote the number of edges of G that contain v. A path is a
sequence P = 〈z0, . . . , z`〉 of distinct adjacent vertices, i. e., {zi, zi+1} ∈ E. We
also denote the set {z0, . . . , z`} by P .

Canonical orderings were introduced originally for triangulated graphs by
de Fraysseix et al. [14, 15]. The following rephrases Kant’s generalization to
triconnected graphs [34].

Definition 1 (canonical ordering) Let Π = (P0, . . . , Ps) be a partition of V
into paths and let P0 = 〈v1, v2〉, Ps = 〈vn〉 such that 〈v2, v1, vn〉 is a path on
the outer face of G in clockwise direction. For k = 0, . . . , s let Gk = G[Vk] =
(Vk, Ek) be the subgraph induced by Vk = P0 ∪ · · · ∪ Pk, let Ck be the outer face
of Gk. Partition Π is a canonical ordering of (G, v1) if for each k = 1, . . . , s−1:

1. Ck is a simple cycle.

2. Each vertex zi in Pk has a neighbor in V \ Vk.

100 Badent et al. More Canonical Ordering

3. |Pk| = 1 or degGk
(zi) = 2 for each vertex zi in Pk.

Pk is called a singleton if |Pk| = 1 and a chain otherwise.

A canonical ordering Π is refined to a canonical vertex ordering v1, . . . , vn by
ordering the vertices in each Pk, k > 0, according to their clockwise appearance
on Ck (see Figures 1(a)-1(c)).

The following observations help build an intuitive understanding of canonical
orderings. Each path Pk encloses an interval of consecutive faces of Gk adjacent
to Ck−1 on the outside of Gk−1. This interval consists of exactly one face if Pk

is a chain and of one or more faces if Pk is a singleton. Iterative application of
Condition 2 guarantees that for each zi ∈ Pk there is a path to vn in G[V \Vk]∪
{zi}, i. e., a path not using a vertex in Vk \ {zi}.

We summarize the above observations in Propositions 2 and 3 of Lemma 1.
Propositions 4 and 5 of Lemma 1 are part of Kant’s original definition.

Lemma 1 For k = 1, . . . , s− 1:

1. Pk has no chord.

2. For each vertex z in Pk there is a z-vn-path z = zk0
, . . . , zkp

= vn where
each zki

is in Pki
and ki < kj for 0 ≤ i < j ≤ p. Especially:

(a) G[V \ Vk] is connected.

(b) If degGk
(z) = 2, then v is in Ck.

(c) Pk is on Ck.

3. (a) A singleton Pk+1 and a path of Ck bound some faces or

(b) a chain Pk+1 and a path of Ck bound one face.

4. Gk is biconnected.

5. If v, w is a separation pair of Gk, then both are on Ck.

Proof: The properties are directly implied by the fact that G is triconnected
and by the definition of a canonical ordering. �

Remark 1 Two incident faces of a triconnected planar graph share one vertex
or one edge. Especially, no face has a chord.

2.1 Leftmost Canonical Ordering

In general, a canonical ordering of (G, v1) is not uniquely defined. Therefore,
Kant [34] introduced a leftmost and rightmost canonical ordering of (G, v1). Let
P0, . . . , Pk be a sequence of paths that can be extended to a canonical ordering
of G. A path P of G is a feasible candidate for the step k+1 if also P0, . . . , Pk, P
can be extended to a canonical ordering. Let v1 = c1, c2, . . . , cq = v2 be the
vertices from left to right on Ck. Let c` be the neighbor of P on Ck such that
` is as small as possible and let cr be the neighbor of P on Ck such that r is as
large as possible. We call c` the left neighbor and cr the right neighbor of P .

JGAA, 15(1) 97–126 (2011) 101

Definition 2 (leftmost canonical ordering) A canonical ordering
P0, . . . , Ps is called leftmost (rightmost) if for k = 0, . . . , s − 1 the following is
true. Let c` be the left neighbor of Pk+1 and let Pk′ , k+1 ≤ k′ ≤ s, be a feasible
candidate for the step k+1 with left neighbor c`′ . Then either (1) ` ≤ `′ (` ≥ `′)
or (2) there is an edge between Pk+1 and Pk′ (see Figure 1(b)).

Note that once a canonical ordering is known a simple linear-time algorithm
can be used to rearrange its paths so that it becomes leftmost [34]. Also note
that Kant did not use Condition 2 of a leftmost canonical ordering in his def-
inition, however, he used it in his reordering algorithm. More precisely, let
P0, . . . , Ps be a canonical ordering of (G, v1) and let e = {u1, u2} be an edge of
G such that there are k1 < k2 with ui ∈ Pki

, i = 1, 2. Then e is an outgoing
edge of u1 and an incoming edge of u2.

Kant [34] required that a leftmost canonical ordering may be constructed by
reordering a given canonical ordering only if the incoming and outgoing edges
are maintained.

While leftmost canonical orderings are particularly useful for many applica-
tions, we stress that the rearrangement is applicable to any canonical ordering
and that a leftmost canonical ordering is only unique with respect to a given
partition.

2.2 Leftist Canonical Ordering

In the leftist canonical ordering we add in each step the leftmost possible path
where the choice is not only within an already given partition.

Definition 3 (leftist canonical ordering) A canonical ordering P0, . . . , Ps

is called leftist (rightist) if for k = 0, . . . , s − 1 the following is true. Let c` be
the left neighbor of Pk+1 and let P be a feasible candidate for the step k+1 with
left neighbor c`′ . Then ` ≤ `′ (` ≥ `′) (see Figures 1(c) and 1(a)).

Note that a feasible candidate for the step k + 1 needs not to be a feasible
candidate for the step k + 2 anymore. Also note that the leftist canonical
ordering is unique irrespective of a given partition and it is a leftmost canonical
ordering. A similar concept related to Schnyder labelings without clockwise
cycles was defined for triangulated graphs in [7].

Now, our goal is not only to simplify the computation of an initial canonical
ordering but also to compute the leftist canonical ordering of (G, v1).

3 New Algorithm

Starting from P0 = 〈v1, v2〉, we build the canonical ordering by adding P1, . . . , Ps

in this order. In step k+ 1, the “belt” around Gk, i. e., the sequence of vertices
not in Gk that lie on faces of G incident to Gk is considered. Then, a candidate
not causing any “self-intersection” within the belt is chosen. Before we give the
details, we start with a recursive definition of which paths will be considered in
the step k + 1.

102 Badent et al. More Canonical Ordering

15

6 712

8
9

10

11

13

1 2

14

3
4

5

(a) Rightist

15

6
712 8

9

10

11
13

1 2

14

3
4

5

(b) Leftmost

15

9

10

11

1 2

14

131287

5
4

3

6

(c) Leftist

(1,3)(3,4)(4,5)(5,2)

Extension

candidate.Chain

Belt

(3,6)(6,15)(15,10)(10,7)(7,4) (4,7)(7,8)(8,5) (5,8)(8,9)(9,11)(11,12)(12,5)

(1,15)(15,6)(6,1)(1,6)(6,3)(3,1) (2,13)(13,14)(14,2)(2,5)(5,12)(12,13)(13,2) (2,14)(14,15)(15,1)

Figure 1: Different canonical orderings. Black paths are chains. In (c) the
light blue faces and the gray face are the belt of G0. The next candidate in
Algorithm 3 is P1 = 〈3, 4, 5〉. Algorithm 4 substitutes the gray face by the dark
blue faces, i. e., by the Extension found by Algorithm 5.

Definition 4 (cut faces and locally feasible candidates) P0 = 〈v1, v2〉 is
a locally feasible candidate. Let P0, . . . , Pk be a sequence of locally feasible can-
didates and Vk, Gk, and Ck as in Definition 1. A cut face f of Gk is an inner
face of G that is incident to some vertex on Ck but is not a face of Gk. Let
Pf be the clockwise sequence of vertices incident to f that are not in Vk. If f
is incident to an edge on Ck, then f is called a candidate face and Pf is called
a candidate for the step k + 1. A candidate face f and the candidate Pf are
locally feasible for the step k + 1 if

1. vn is not in Pf or P0, . . . , Pk, Pf is a partition of V ,

2. G[V \ (Vk ∪ Pf)] is connected, and

3. Pf is a singleton or the degree of each vertex of Pf in G[Vk ∪ Pf] is two.

In the remainder of this section, we will see that the locally feasible candidates
are exactly the feasible candidates. We start with the following lemma which is
a direct consequence of Definitions 1 and 4 and the triconnectivity of G.

Lemma 2

1. A canonical ordering is a sequence of locally feasible candidates.

2. If a sequence of locally feasible candidates partitions the whole vertex set
of a triconnected graph, it is a canonical ordering.

Proof:

1. It follows directly from Definition 1 and Lemma 1(2a) that each canonical
ordering is a sequence of locally feasible candidates.

JGAA, 15(1) 97–126 (2011) 103

2. Let P0, . . . , Ps be a sequence of locally feasible candidates partitioning
the whole vertex set of a triconnected graph G = (V,E). We show by
induction on k = 0, . . . , s that Pk fulfills the condition of a canonical
ordering. P0 = 〈v1, v2〉 and vn is in Ps. By triconnectivity and Condition 3
of a locally feasible candidate, Ps consists only of vn.

Let now 0 < k < s. Since Pk+1 is a candidate and the outer face of Gk had
been a simple cycle by the inductive hypothesis, it follows that the outer
face of Gk+1 is a simple cycle. Condition 3 of a locally feasible candidate
corresponds to Condition 3 of a canonical ordering.

By triconnectivity of G, each vertex has at least degree 3. Hence, if Pk+1 is
a chain, each vertex of Pk+1 is connected to V \Vk+1. By the connectivity
of G[V \ Vk], a singleton has to be connected to some vertex in V \ Vk+1.

�

In what follows, we consider the vertices on Ck to be from left to right
between v1 and v2. Accordingly, we also consider the cut faces from left to
right: A cut edge of Gk is an edge of G that is incident to one vertex in Vk and
one vertex in V \ Vk. Let f and f ′ be two cut faces. Let c and c′, respectively,
be the leftmost vertices on Ck that are incident to f and f ′, respectively. We
say that f is to the left of f ′ if c is to the left of c′ on Ck or if c = c′, then the
cut edges of f are to the left of the cut edges of f ′ in the incidence list of c.

Algorithm 1: Leftist Canonical Ordering

begin
Let v2, v1, v3, . . . , vp be the bound of the inner face incident to {v1, v2}
P0 ← 〈v1, v2〉, P1 ← 〈v3, . . . , vp〉, k ← 1
while |Vk| < n− 1 do

Let f be the leftmost locally feasible candidate face
Pk+1 ← Pf

k ← k + 1

Pk+1 ← 〈vn〉

Corollary 1 If Algorithm 1 terminates, it computes the leftist canonical order-
ing of a triconnected planar graph.

Before we prove that in each step there exists a locally feasible candidate
face, we describe locally feasible candidates in terms of “self-intersection“ of the
belt. Let P0, . . . , Pk be a sequence of locally feasible candidates. The belt of Gk

is the sequence of vertices not in Gk that are incident to the cut faces of Gk

from left to right. I. e., let f1, . . . , ft be the cut faces of Gk ordered from left to
right. Let Pf0 be the vertices in V \ Vk that are incident to the outer face in
counterclockwise order. Then, the concatenation of Pf1 , . . . , Pft and Pf0 is the
belt of Gk. Consider Figure 2. Then, P2 = 〈6, 7〉, P3 = 〈8〉, and the belt of G3

is 15, 14|14|14, 15, 13, 12|12, 10|10, 11, 9|9|9, 11, 13|13, 15|15.

104 Badent et al. More Canonical Ordering

15

6 712

8
9

10

11

13

1 2

14

3
4

5

Figure 2: Rightist canonical ordering: G3 is gray, cut faces are blue, red vertices
are forbidden.

Definition 5 (forbidden, singular, stopper) A vertex v of the belt of Gk is

• forbidden if v does not occur consecutively in the belt of Gk,

• singular if v occurs more than twice in the belt of Gk and its occurrence
is consecutive, and

• a stopper if it is forbidden or singular.

In the above example, 15, 13, and 11 are forbidden vertices and 14 and 9
are singular vertices. Note that vn is always the first and last vertex of the
belt. Hence, it remains forbidden until the end. It will turn out that the locally
feasible candidates are those that do not contain a stopper or that are singular
singletons.

Lemma 3 Let P0, . . . , Pk be a sequence of locally feasible candidates. Let f be
a candidate face for the step k + 1 and let P = Pf .

1. If a vertex v of P is adjacent to more than two vertices in Vk ∪ P , then v
occurs more than twice in the belt.

2. If G[V \ (Vk ∪ P)] is not connected, then P contains a forbidden vertex.

3. If a vertex v of P is singular, then v is a locally feasible singleton.

4. If P contains a forbidden vertex v, then G[V \ (Vk ∪ P)] is not connected
or P contains another vertex with more than two neighbors in Vk ∪ P .

Proof:

1. First, assume v 6= vn. Let e be an edge incident to v and a vertex in Vk∪P
that is not incident to f . By Remark 1, edge e is a cut edge and hence
incident to two cut faces. Thus, v is incident to at least three cut faces. If
v = vn, then v is the first and the last vertex of the belt and occurs also
in f in the belt.

2. LetW be the set of vertices in a connected component of the graph induced
by V \ (Vk ∪ P) and not containing vn. Since V \ Vk was connected, W is
adjacent to P and there is a path from P to vn not intersecting W . By the
triconnectivity of G, there is an edge between W and the part of Ck not

JGAA, 15(1) 97–126 (2011) 105

contained in f . Further, there is at least a third vertex on Ck∪P adjacent
to W . Let w be the rightmost vertex on Ck ∪ P that is adjacent to W
and let v be the leftmost such vertex. Assume that w is on Ck. Then v is
on P . Consider the face f ′ containing v and w. Then, the belt contains
some vertices of W between the occurrences of v for the belt faces f and
f ′ (see Figure 3(a)).

3. If v is singular, then it is a candidate. By Proposition 2, G[V \ (Vk ∪{v})]
is connected.

4. Since v is forbidden, there is a cut face f ′ containing v and a cut face h
between f and f ′ such that Ph contains a vertex w 6= v. If w is not incident
to f , then w and vn are in two connected components of G[V \ (Vk ∪ P)]
(see Figure 3(b)). So assume now that for all faces h′ between f and f ′

the path Ph′ contains only vertices incident to f . Among these faces let
h be the face that is next to f . By Remark 1, Ph consists of one vertex
w 6= v and w is singular (see Figure 3(c)).

�

Corollary 2

1. A candidate that is a chain is locally feasible if and only if it does not
contain any stopper.

2. A vertex of the belt is a locally feasible singleton if and only if it is singular.

For example, the locally feasible candidates for the step k + 1 = 4 in Figure 2
are 〈14〉, 〈12, 10〉, and 〈9〉.

Theorem 1 Algorithm 1 computes the leftist canonical ordering of a tricon-
nected planar graph.

Proof: By Lemma 1, it remains to show that in each step of the algorithm
there is a locally feasible candidate. By Corollary 2(2), if there are any singular
vertices, we have a locally feasible candidate. So, assume now we do not have
any singular vertices. By Corollary 2, we have to show that there is a candidate
that does not contain any forbidden vertex.

Let f be a candidate face and let P = Pf . Assume that P contains a
forbidden vertex v. Let f ′ be a cut face containing v such that the belt contains
a vertex other than v between the occurrence of v in Pf and the occurrence of
v in Pf ′ . Let f, h1, . . . , ht, f

′ be the sequence of cut faces between f and f ′.
We show by induction on the number of forbidden vertices in Ph1

, . . . , Pht
that

there is a locally feasible candidate among Ph1 , . . . , Pht .
By the choice of f ′ and by triconnectivity of G, there is at least one i =

1, . . . , t such that Phi
is a candidate that does not contain v. If v is the only

forbidden vertex in Ph1
, . . . , Pht

, then Phi
is locally feasible.

If Phi
contains a forbidden vertex w (recall that by our assumption there are

no singular vertices), there is a cut face h 6= hi among f, h1, . . . , ht, f
′ incident

106 Badent et al. More Canonical Ordering

to w such that the belt contains a vertex other than w between the occurrence
of w in Phi and in Ph. The cut faces between h and hi do not contain v. Hence,
by the induction hypothesis, one of them is a locally feasible candidate. �

W

f

f ′

Gk

v

w

vn

(a)

f f ′

Gk

vn

v

w

h

(b)

f f ′

Gk

vn

v

w

h

(c)

Figure 3: Illustration of the proof of Lemma 3. (a) W is a connected component
of G[V \ (Vk ∪Pf)] not containing vn. Faces f and f ′ are not consecutive in the
belt of Gk. Thus, f contains a forbidden vertex v. (b, c) If v is forbidden, then
(b) G[V \ (Vk ∪ Pf)] is not connected or (c) there is a singular vertex w.

4 Linear-Time Implementation

We will maintain a list Belt that represents the cut faces from left to right.
For a simpler implementation, Belt contains lists of edges rather than one list
of vertices and each cut face f is represented by a belt item which is a pair
consisting of

• a list Chain of f ’s incident edges not in Gk in clockwise order and

• the rightmost stopper of Pf (if any).

We traverse the list Belt using a pointer candidate.
To decide whether a vertex is a stopper, we maintain two counters. Let

cutFaces(v) be the number of cut faces and cutEdges(v) the number of cut
edges to which v is incident. In order to make the following lemma true also
for vn, we will count the outer face twice in cutFaces(vn).

Lemma 4 A vertex v in the belt of Gk is

• forbidden if and only if cutFaces(v) > cutEdges(v) + 1 and

• singular if and only if 2 < cutFaces(v) = cutEdges(v) + 1.

Proof: A vertex occurs once for each cut face it is incident to in the belt.
Two occurrences of a vertex v in the belt are consecutive if and only if the
corresponding cut faces share a cut edge incident to v. So, all occurrences of v
in the belt are consecutive if and only if v is only incident to one more cut face
than to cut edges. �

JGAA, 15(1) 97–126 (2011) 107

Algorithm 2: Leftist Canonical Ordering

Input : G = (V,E) planar embedded triconnected undirected graph
v1 ∈ V on the outer face

Output: leftist canonical ordering P0, . . . , Ps of (G, v1)

canonicalOrdering
replace each {v, w} ∈ E by (v, w) and (w, v)
vn ← clockwise neighbor of v1 on outer face
v2 ← counterclockwise neighbor of v1 on outer face

for v ∈ V do cutFaces(v)← 0; cutEdges(v)← 0
cutFaces(vn)← 1

mark (v1, v2) and (v2, v1)
Belt← 〈(〈(v2, v1), (v1, v2), (v2, v1)〉, nil)〉
k ← −1
candidate← first item in Belt
while Belt 6= ∅ do

k ← k + 1
Pk ← leftmostFeasibleCandidate

updateBelt

Algorithm 3: Skip infeasible candidates

list leftmostFeasibleCandidate
found← false

repeat
let 〈(z0, z1), (z1, z2), . . . , (zp, zp+1)〉 := candidate.Chain
if z0 6= zp+1 then

j ← p
I1 while j > 0 and not(forbidden(zj) or singular(zj)) do

j ← j − 1

if j > 0 then candidate.stopper← zj

I2 if j = 0 or(singular(candidate.stopper) and p = 1)
then

found← true

for (v, w) ∈ candidate.Chain do mark (w, v)

if not found then
candidate← successor(candidate)
if candidate = nil then HALT: illegal input graph

until found
return 〈z1, . . . , zp〉

The algorithm canonicalOrdering (see Algorithm 2) now works as follows
(for a detailed illustration see Figure 6). We start with a copy of G in which each

108 Badent et al. More Canonical Ordering

Algorithm 4: Replace feasible candidate with incident faces

updateBelt
H if singular(candidate.stopper) then

remove neighboring items with same singleton from Belt

pred← predecessor(candidate)
succ← successor(candidate)
if succ 6= ∅ then remove first edge from succ.Chain

Extension← BeltExtension(candidate.Chain)
replace candidate by Extension in Belt
if Extension 6= ∅ then

candidate← first item of Extension
else

candidate← succ

if pred 6= ∅ then
remove last edge (v, w) from pred.Chain
if v = pred.stopper or w = source(first edge of pred.Chain)
then

pred.stopper← nil
candidate← pred

undirected edge {v, w} is replaced by the two directed edges (v, w) and (w, v). In
the beginning, the belt is initialized by (〈(v2, v1), (v1, v2), (v2, v1)〉,nil). Thus,
leftmostFeasibleCandidate (see Algorithm 3) chooses P0 = 〈v1, v2〉 as the
first path.

In general, each iteration in Algorithm 2 consists of three steps: (1) We
choose the new leftmost locally feasible candidate Pk, (2) we find the new cut
faces incident to Pk, and (3) we replace Pk by its incident cut faces in the belt
and update its neighbors (see Figure 1(c)). In detail:

leftmostFeasibleCandidate We traverse Belt from the current cut face can-
didate to the right doing the following: If candidate is a candidate face,
traverse candidate.Chain from right to left until a stopper is found. If
so, store it. If candidate.Chain contains no stopper or it is a singular
singleton, it is the next locally feasible candidate. Otherwise, go to the
next face. See Algorithm 3.

beltExtension To find the new cut faces, we traverse candidate.Chain from
left to right. The outer repeat-loop iterates over all vertices incident to
two edges of candidate.Chain. Each iteration finds the new cut faces
incident to such a vertex and increments the counter cutEdges. In the
inner repeat-loop, we traverse all new edges of a new cut face and store
them in the list Chain. Here the counter cutFaces is incremented. Each

JGAA, 15(1) 97–126 (2011) 109

Algorithm 5: Construct list of new belt items incident to Pk

list beltExtension(list 〈e0, . . . , ep〉)
Extension← ∅
for j ← 1, . . . , p do // scan for new cut faces incident to vstart

vstart ← source(ej)
vend ← target(ej)
first← ej
repeat

first = (v, w)← clockwise next in N+(vstart) after first
cutEdges(w)← cutEdges(w) + 1
if first not marked then // new cut face

Chain← ∅
repeat // traverse clockwise

mark (v, w)
append Chain← (v, w)
cutFaces(w)← cutFaces(w) + 1
(v, w)← counterclockwise next in N+(w) after (w, v)

until w ∈ {vstart , vend}
mark (v, w)
append Chain← (v, w)
append Extension← (Chain,nil)

until w = vend

return Extension

list Chain is finally appended to the list Extension that stores all new
belt items incident to candidate.Chain. See Algorithm 5.

updateBelt We replace candidate (and all its copies if it was a singleton)
by the new cut faces found by beltExtension. The last edge of the
predecessor and the first edge of the successor of candidate are removed
since they are now contained in Gk. If the predecessor of candidate was
not a candidate face before or it lost its stopper, then we go one step to
the left in Belt and set candidate to its predecessor. See Algorithm 4.

Theorem 2 Algorithm 2 computes the leftist canonical ordering of a tricon-
nected planar graph in linear time.

Proof:

Linear running time: In the algorithm beltExtension each edge is touched
at most twice. In the algorithm leftmostFeasibleCandidate each can-
didate is scanned from right to left until the first stopper occurs. All the
scanned edges will have been deleted from the list when the candidate will
be scanned the next time. In total only 2m edges will be added to Belt.

110 Badent et al. More Canonical Ordering

Correctness: While scanning Belt from left to right, we always choose the
leftmost locally feasible candidate: Assume that at step k + 1 we scan a
face f and there are no locally feasible candidates to the left of f . The
face f is omitted because it is not a candidate or it contains a stopper.
None of the two properties changes if no direct neighbor in Belt had been
added to Gk. Hence, as long as f is not locally feasible, no face to the left
of f has to be considered. Further, the number of incident cut faces or
cut edges of a vertex never decreases. We show that a candidate can only
become locally feasible after his rightmost stopper has become singular.

Let v be the rightmost stopper of Pf and assume v is forbidden. Let f`
be the leftmost and fr be the rightmost cut face containing v. We can
conclude from the proof of Theorem 1 that all occurrences of v between
f` and f are consecutive and that Algorithm 2 finds the locally feasible
candidates between f and fr in the belt until the belt contains only v
between f and fr. It follows that all occurrences of v in the belt are
consecutive. Let now v be singular. Then, the only two incident cut faces
f = f` and fr of v would share a cut edge {v, w} that would not have
been a cut edge before. Hence, w would have been a stopper of f to the
right of v.

�

Note that the algorithm for computing the leftist canonical ordering can also
be used to compute the rightist canonical ordering. In that case, we store for
each cut face the leftmost stopper and we scan the belt from right to left.

5 Duality

In this section, we show that the leftist canonical ordering can also be found by
choosing always the rightmost face or singleton in the algorithm of Kant [34].
We conclude that the dual of the leftist canonical ordering is the leftist canonical
ordering of the dual graph.

Let 〈v2, v1, vn〉 be a path on the outer face of G in clockwise direction. Let
Π = (P0, . . . , Pk−1) with P0 = 〈v1, v2〉, Pk−1 6= 〈vn〉 or Π = (Pk+1, . . . , Ps) with
〈v1, v2〉 6= Pk+1, Ps = 〈vn〉, respectively, be a sequence of paths of G that can
be extended to a canonical ordering of (G, v1). We say that Pk is a feasible
extension of Π if P0, . . . , Pk or Pk, . . . , Ps, respectively, can also be extended to
a canonical ordering of (G, v1).

Let Gk = G[V \ (Pk+1, . . . , Ps)]. Kant [34] proved that the path Pk is a
feasible extension for Pk+1, . . . , Ps if and only if the following is true:

1. All vertices of Pk are adjacent to some vertex in Pk+1, . . . , Ps.

2. If Pk is a chain, then all vertices of Pk have degree 2 in Gk.

3. Gk−1 = G[V \ (Pk ∪ · · · ∪ Ps)] is biconnected.

JGAA, 15(1) 97–126 (2011) 111

An inner face of Gk is called a separation face if its incidence with the outer
face of Gk is not only a single path.

Remark 2 The following two conditions are equivalent for a path Pk on the
outer face of Gk, k ≥ 2:

1. G[V \ (Pk ∪ · · · ∪ Ps)] is biconnected.

2. (a) Pk is not incident to a separation face and

(b) Pk is a singleton with degree greater than 2 or Pk is a maximal se-
quence of vertices of degree 2 on the outer face of Gk.

Definition 6 (upper rightist canonical ordering) A canonical ordering
P0, . . . , Ps of (G, v1) is called upper rightist if for k = s− 1, . . . , 0 the following
is true. Let P 6= Pk be a feasible extension of Pk+1, . . . , Ps. Then, P is between
v1 and Pk on the clockwise outer facial cycle Ck around Gk.

Theorem 3 The upper rightist canonical ordering of a triconnected plane graph
with a fixed vertex on the outer face equals its leftist canonical ordering.

Proof: Let Π = (P0, . . . , Ps) be the upper rightist canonical ordering and let
Π′ = (P0, . . . , Pi−1, P ′i , . . . , P

′
s′−1, P

′
s′) be the leftist canonical ordering of (G, v1).

For k = 0, . . . , s let again Gk = G[V \ (Pk+1 ∪ · · · ∪ Ps)] = G[P0 ∪ · · · ∪ Pk].
Assume that Pi 6= P ′i . Then both, Pi and P ′i are feasible extensions of

P0, . . . , Pi−1 and P ′i is to the left of Pi on Ci−1. Hence, it is not possible that
one of the two is contained in the other. Let v ∈ Pi \P ′i and v′ ∈ P ′i \Pi. Since
P ′i is feasible, it follows that G[V \ (P0 ∪ · · · ∪ Pi−1 ∪ P ′i)] is connected. Thus,
there is a path Q from v to vn that contains no vertices of P ′i or Gi−1.

Let i < j < s be such that v′ ∈ Pj . Let w′ be the first vertex of Q not in
Gj and let w be the vertex that is immediately before w′ in Q. Then, w is to
the right of v′ on the outer facial cycle Cj of Gj . Further, w is adjacent to the
vertex w′ in Pj+1 ∪ · · · ∪ Ps.

Assume first that w is not incident to a separation face. If w has degree 2
in Gj , let P be a maximal sequence of vertices of degree 2 in Cj containing w.
Otherwise, let P = 〈w〉. In both cases P is a feasible extension of Pj+1, . . . , Ps

on the right of Pj .
Assume now that w is incident to a separation face f . Consider the separator

S of Gj consisting of all the vertices that are incident to both, f and the outer
face and consider the components of Gj with respect to S. Then, there is
one component that contains Gi−1 and v′. All other components have to be
eliminated before w can become part of a feasible extension (see Figure 4).
Hence, all these components have to contain a feasible extension. But all these
components are to the right of v′. Thus, Pj was not the rightmost feasible
extension. �

Let G∗ = (V ∗, E∗) be the dual graph of G. Let v∗1 be the dual vertex of the
outer face of G and let v1 be on the outer face of G∗. Kant [33] mentioned that

112 Badent et al. More Canonical Ordering

Gi−1

vn

v

w

P ′
i

Pi
v′

Q

Gj

Pj f

Figure 4: Illustration of the proof of Theorem 3. The gray component has to
be eliminated before w can become part of a feasible extension.

a leftmost canonical ordering of (G, v1) induces a leftmost canonical ordering
on (G∗, v∗1). We rephrase Kant’s construction and show that the result can be
extended to the leftist canonical ordering. Note that a similar result holds for
st-orderings [41].

Let Π = (P0, . . . , Ps) be a canonical ordering of (G, v1). Let Ei be the set
of edges of Gi = G[P0 ∪ · · · ∪ Pi], i = 0, . . . , s, and let E(P0) = E0, E(Pi) =
Ei \Ei−1, i = 1, . . . , s. I. e., E(Pi) consists of all edges that are incident to two
vertices in Pi and all cut edges of Gi−1 that are incident to a vertex of Pi.

Analogously, if Π∗ = (P ∗0 , . . . , P
∗
s) is a partition of the set V ∗ of faces of

G, let E∗i be the set of edges of G∗i = G∗[P ∗0 ∪ · · · ∪ P ∗i], i = 0, . . . , s, and let
E∗(P0) = E∗0 , E∗(P ∗i) = E∗i \ E∗i−1, i = 1, . . . , s. For E′ ⊂ E let E′∗ be the set
of dual edges of E′. Further, let v∗2 be the neighbor of v∗1 on the outer facial
cycle of G∗ in counter clockwise direction.

1 2

43

5

6

1
2 3

45

6

7

(a)

1 2

4
3

1

2
6

4

5

6
7 8

9

3

5

(b)

Figure 5: (a) A graph G with the leftist canonical ordering Π with P0 = 〈1, 2〉
and Ps = 〈6〉, and the dual graph G∗ with the leftist canonical ordering Π∗ with
P ∗0 = 〈1, 2〉 and P ∗s = 〈7〉. Black solid paths are chains in Π, blue solid paths
are chains in Π∗. (b) Illustration of the proof of Theorem 4.

Definition 7 (dual canonical ordering) A partition Π∗ = (P ∗0 , . . . , P
∗
s) of

V ∗ into paths is the dual canonical ordering of a canonical ordering Π =

JGAA, 15(1) 97–126 (2011) 113

(P0, . . . , Ps) of (G, v1) if and only if P ∗0 = 〈v∗1 , v∗2〉 and

E∗(P ∗0) ∪ E∗(P ∗1) = E(Ps)∗
E∗(P ∗k) = E(Ps−k+1)∗, k = 2, . . . , s− 1

E∗(P ∗s) = E(P1)∗ ∪ E(P0)∗.

Theorem 4 Let Π be a canonical ordering of (G, v1).

1. A dual canonical ordering Π∗ of Π exists and is uniquely determined. It
is a canonical ordering of (G∗, v∗1).

2. Π is the leftist canonical ordering of (G, v1) if and only if Π∗ is the leftist
canonical ordering of (G∗, v∗1).

Proof: Let Π = (P0, . . . , Ps).

1. Let v∗n be the face of G bounded by P0 and P1. Then P ∗s = 〈v∗n〉. By
the definition of the dual canonical ordering, P ∗0 = 〈v∗1 , v∗2〉. Further,
〈v∗2 , v∗1 , v∗n〉 is a path on the outer face of G∗ in clockwise direction.

Again by the definition of a dual canonical ordering, it follows that the
subgraph induced by P ∗0 and P ∗1 is the simple cycle bounding the face of
G∗ in which vn is located. Hence, Conditions 1 and 3 of Definition 1 are
fulfilled for k = 1. Condition 2 is fulfilled by the triconnectivity of G∗.

Let C∗k , k = 1, . . . , s, be the boundary of the outer face of G∗k = G∗[P ∗0 ∪
· · · ∪P ∗k]. We will prove the following observation by induction on k while
proving Theorem 4(1). The remark is certainly true for k = 1.

Remark 3 Let k = 1, . . . , s. The edges of the simple cycle C∗k are the
duals of the cut edges of Gs−k and it holds that the vertices of Ps ∪ · · · ∪
Ps−k+1 are inside the cycle C∗k and the vertices of Gs−k are outside C∗k .

Let now k = 2, . . . , s − 1 and let w∗1 , . . . , w
∗
t be the faces bounded by

Ps−k+1 and Cs−k in the order in which they occur around Ps−k+1. Then
P ∗k = 〈w∗1 , . . . , w∗t 〉. Since each vertex in Ps−k+1 is adjacent to at least one
vertex in Ps−k+2∪· · ·∪Ps, it follows that C∗k is a simple cycle. Since each
of these faces is incident to at least one edge in Cs−k, it follows that w∗i ,
i = 1, . . . , t, is adjacent to at least one vertex in P ∗k+1 ∪ · · · ∪ P ∗s . Assume
now that P ∗k is a chain, i. e., that Ps−k+1 is a singleton 〈v〉 with more than
two neighbors in Gs−k. See Figure 5(b) for an illustration. Since Cs−k
is a simple cycle it follows that all vertices in P ∗k have degree 2 in G∗k.
Finally, the vertices of G inside C∗k are exactly those that had been inside
C∗k−1 plus the vertices in Ps−k+1. Hence, Remark 3 is true for k.

2. It follows from the construction in Theorem 4(1) that Π∗ is the upper
rightist canonical ordering of (G∗, v∗1) and hence, with Lemma 3 that Π∗

is the leftist canonical ordering of (G∗, v∗1).

�

114 Badent et al. More Canonical Ordering

0,0

2,1

2,1 2,1
1,0

1,0 2,1

2

n = 15

1

0,0 0,0

0,00,0?

3,1

2,1

(a)

0,0

2,1

2,1 2,1
1,0

1,0 2,1

2

n = 15

1

0,0 0,0

0,00,0

?

3,1

2,1

(b)

3,2
2,1

2

n = 15

1

1,0

2,1

4,1

1,0 1,0

2,1
2,1

3
4

5

2,1

(c)

2

n = 15

1
3

4
5

1,0

6
2,1 2,1

1,0 1,0

2,12,1

4,2

2,1

(d)

0,0

2,1

2

n = 15

1
3

4
5

?

6

1,0

2,1 2,1

1,0 1,0

2,12,1

4,2

2,1

(e)

2,1

2,1 2,1

2

n = 15

1

1,0

3
4

5

6

4,2

7 8

3,2
2,1

(f)

3,1

2,1

2

n = 15

1

2,1

3
4

5

7 8
6

3,2

4,2

9

3,1

(g)

2,1

2

n = 15

1

9 2,1

3
4

5

7 8
6

5,3

10 4,2

3,1

(h)

10

2,1

2

n = 15

1

9 2,1

3
4

5

7 8
6

?

5,3

4,2

3,1

(i)

10

2,1 3,1

2

n = 15

1
3

4
5

7 8
6

9 ? 2,1

5,3

4,2

(j)

10

2

n = 15

1
3

4
5

7 8
6

9

5,3

12

11

4,3

4,2

(k)

10

12

2

n = 15

1
3

4
5

7 8
6

9 11

5,3

4,3

13

(l)

10

12 13

2

n = 15

1
3

4
5

7 8
6

9 11

5,4

14

(m)

1410

12 13

2

n = 15

1
3

4
5

7 8
6

9 11

(n)

1410

12 13

2

n = 15

1
3

4
5

7 8
6

9 11

(o)

Figure 6: Illustration of Algorithm 2: The light blue faces are the cut faces ofGk,
Gk is light gray. The leftmost feasible candidate is dark gray. Algorithm 4 sub-
stitutes the dark gray face by the dark blue faces, i. e., by the Extension found
by Algorithm 5. Black paths are chains, red vertices are forbidden. If a vertex v
is labeled with a pair of numbers, the first number indicates cutFaces(v) and
the second number indicates cutEdges(v).

JGAA, 15(1) 97–126 (2011) 115

6 Schnyder Woods

In this section, we discuss how the concept of leftist canonical orderings is related
to Schnyder woods. Let G = (V,E) be again a planar and triconnected graph
and 〈v2, v1, vn〉 a path on the outer face of G in clockwise direction and let G∗

be the dual graph of G.

6.1 Schnyder Woods and Canonical Orderings

Definition 8 (closure) The closure of (G, v1) is the graph G∞ that is obtained
from G by adding a new vertex v∞ to the outer face of G and the edges {v1, v∞},
{v2, v∞}, and {vn, v∞}.

For simplicity, we sometimes denote v1 = a1, v2 = a2, vn = a3 and assume
on the labels i = 1, 2, 3 a cyclic structure so that 3 + 1 = 1 and 1− 1 = 3.

Definition 9 (Schnyder wood) A Schnyder wood of (G, v1) is an orientation
and labeling of the edges of the closure G∞ of (G, v1) with labels 1, 2, and 3
such that:

1. Every edge is oriented by one or two opposing directions. If an edge is
bioriented, then the two directions have distinct labels.

2. The three edges {ai, v∞} are oriented towards v∞ and labeled i, i = 1, 2, 3.

3. Every vertex v 6= v∞ has outdegree one in each label. The labels i of the
three outgoing edges ei, i = 1, 2, 3, of a vertex v occur in counterclockwise
order. Each incoming edge of v with label i enters v in the clockwise sector
from ei−1 to ei+1. See Figure 7.

4. There is no interior face whose boundary is a directed cycle in one label.

See Figure 8(a) for an example. A Schnyder wood consists of three trees.
More precisely, let i = 1, 2, 3. Let Ti denote the oriented subgraph of G induced
by the edges having label i.

Lemma 5

1. The graph Ti, i = 1, 2, 3, is a spanning tree of G with the unique sink ai [5,
Fact 2].

2. The graph T−11 ∪T
−1
2 ∪T3 in which the orientation of all edges with label 1

or 2 is reversed does not contain any directed cycle of length greater than
two [21, Lemma 2].

Let v ∈ V . By the previous lemma, we know that there are oriented paths
Ti(v), i = 1, 2, 3, from v to ai, in which all edges are labeled i. The following
lemma states that any two of these paths are internally disjoint.

116 Badent et al. More Canonical Ordering

1

3

1
3

2

2

1

1

2

2

3 3

Figure 7: Edge orientations and labels at a vertex.

Lemma 6 ([16, Lemma 6]) For each v ∈ V the paths T1(v), T2(v), and T3(v)
have only vertex v in common.

Schnyder woods are closely related to α0-orientations [23] which we define
next.

Definition 10 (primal dual superimposition) The primal dual superim-
position G× = (V ×, E×) of (G, v1) is constructed as follows:

1. Superimpose the closure G∞ of (G, v1) with its dual G∗∞ such that exactly
every edge of G∞ crosses with its dual edge of G∗∞ and insert edge-vertices
at those crossings.

2. Let v∗1 be the face with boundary v2, vn, v∞, let v∗2 be the face with boundary
v1, vn, v∞, and let v∗n be the face with boundary v1, v2, v∞. Add edges
{v∗1 , v∞}, {v∗2 , v∞}, and {v∗n, v∞}.

Definition 11 (α0-orientation) Let α0 : V × → N be a function such that
α0(v) = 3 for all primal and dual vertices v, α0(ve) = 1 for all edge-vertices ve,
and α0(v∞) = 0. An orientation of the elements of E× is called α0-orientation
if each vertex v ∈ V × has exactly α0(v) outgoing edges.

Felsner [23] shows that the Schnyder woods of (G, v1) are in bijection with
the Schnyder woods of the dual graph (G∗∞, v

∗
1), where v∗1 is the dual vertex

of the face bounded by v2, vn, v∞, and with the α0-orientations of G× (see
Figure 8(b)). However, given only the orientations of a Schnyder wood of (G, v1),
the labels cannot be reconstructed from the underlying orientation [23].

There exists a unique α0-orientation without clockwise cycles of the pri-
mal dual superimposition G×. This is the minimal α0-orientation, where the
term minimal refers to the fact that the set of all α0-orientations of G× forms
a distributive lattice [23]. An α0-orientation can be made minimal by itera-
tive application of reversing clockwise cycles. A minimal Schnyder wood is a
Schnyder wood that is associated with the minimal α0-orientation.

Di Battista et al. [16] construct a Schnyder wood from a canonical ordering.
While the minimal Schnyder wood of a triangulated graph is the one associated
with the leftist canonical ordering [7], this observation does not hold for tricon-
nected graphs any more. See Figure 8. Moreover, the minimal Schnyder wood
cannot always be reconstructed from a canonical ordering. See again Figure 8.
The graph has one canonical ordering and at least two different Schnyder woods.

JGAA, 15(1) 97–126 (2011) 117

v1 v2

vn

v3 v4 v5

v8 v9 v7

v6

v∞

(a) Schnyder wood of (G, v1)

v1 v2

vn

v3 v4 v5

v8 v9

v6

v∞

v∗1

v∗n

v∗2 v7

(b) Primal dual superimposition G× of (G, v1)

Figure 8: Schnyder wood associated with the leftist canonical ordering (blue,
green, red indicate labels 1, 2, 3, respectively); the corresponding α0-orientation
contains a clockwise cycle.

6.2 Schnyder Woods and Path Partitions

Canonical orderings do not seem to be the right concept to construct a bijection
to Schnyder woods since a graph can have more Schnyder woods than canonical
orderings. Therefore, we generalize the definition of a canonical ordering to
an ordered path partition and show that certain equivalence classes of ordered
path partitions are in bijection with Schnyder woods. Further, we show that
the leftist ordered path partition corresponds to the minimal Schnyder wood.

Definition 12 (ordered path partition) Let P0 = 〈v1, v2〉, let Ps = 〈vn〉,
and let Vk and Ck be defined as in Definition 1. An ordered partition Π =
(P0, . . . , Ps) of V into paths is called ordered path partition of (G, v1) if for
each k = 1, . . . , s− 1:

1. Ck is a simple cycle.

2. Each vertex in Pk has a neighbor in V \ Vk.

3. Each vertex on Ck has at most one neighbor on Pk+1.

An ordered path partition Π = (P0, . . . , Ps) of (G, v1) induces an orientation
on the edges of G that are not in the paths P0, . . . , Ps. More precisely, let
e = {u1, u2} be an edge of G such that there are k1 < k2 with ui ∈ Pki , i = 1, 2.
Then, e is an outgoing edge of u1 and an incoming edge of u2.

Definition 13 (equivalence of ordered path partitions) Two ordered
path partitions Π = (P0, . . . , Ps) and Π′ = (P ′0, . . . , P

′
s) are equivalent if and only

if {P0, . . . , Ps} = {P ′0, . . . , P ′s} as well as Π and Π′ induce the same orientation
on the edges.

118 Badent et al. More Canonical Ordering

Theorem 5 There is a bijection between the equivalence classes of the ordered
path partitions of (G, v1) and the Schnyder woods of (G, v1).

Proof: We show how to map equivalence classes of ordered path partitions
to Schnyder woods and Schnyder woods to equivalence classes of ordered path
partitions such that the composition of the two maps yields the identity.

From ordered path partitions to Schnyder woods. We extend the con-
struction of Di Battista et al. [16]. Let Π = (P0, . . . , Ps) be an ordered path
partition. Let (u, v) denote the directed edge from u to v and let label(u, v) = i
indicate that (u, v) has label i. Orient the three edges label(ai, v∞) = i, i =
1, 2, 3, and bi-orient label(a1, a2) = 2 and label(a2, a1) = 1. Let k = 1, . . . , s
and let Pk = 〈z1, . . . , zp〉 have left neighbor c` and right neighbor cr. We label
and orient the edges of Pk and between Pk and Ck−1 as follows (see Figure 9):

1. label(z1, c`) = 1

2. label(zp, cr) = 2

3. label(zi, zi+1) = 2 and label(zi+1, zi) = 1, i = 1, . . . , p− 1

4. For all c ∈ Ck−1 that are incident to a vertex z ∈ Pk but not to a vertex
in V \ Vk set label(c, z) = 3.

Construction yields a Schnyder wood. If the end vertices of an edge e are
in the paths Pi and Pj , i ≤ j, then e is oriented and labeled in step j.
Therefore, Definition 9(1) is true since every edge is oriented exactly once
with one or two opposing directions by construction. Definition 9(2) is
obviously true.

Since every vertex is contained in exactly one path, every vertex has out-
degree one in label 1 and 2. Let z be a vertex of Pk, k < s, and let k′ be
maximal such that z has a neighbor z′ in Pk′ . Then, k′ > k. Therefore, z
has an outgoing edge to z′ with label 3. Since z has at most one neighbor
in Pk′ , this is the only outgoing edge of z with label 3. Also, since k′ > k,
the edge (z, z′) appears in the adjacency list of z in the clockwise sector
between the outgoing edge with label 1 and the outgoing edge with label 2.
By construction, the incoming edges with label 3 appear in the clockwise
sector of the outgoing edges with label 2 and 1.

Assume that z has an incoming edge e = (ẑ, z) with label 1 that appears
in the clockwise sector between the outgoing edges with label 1 and 3.
Since label(ẑ, z) = 1, it follows that ẑ is the leftmost vertex of a path

Pk̂ with k̂ > k and that z is the left neighbor of Pk̂. Since Ck̂ is a simple
cycle and by the planarity of G the assumption implies that the outgoing
edge of z with label 3 is an incoming edge of Pk̂ to the right of ẑ. By
Definition 12, z has at most one vertex on Pk̂. This is a contradiction.
See Figure 9. The same argumentation holds for the incoming edges with
label 2. This completes Definition 9(3).

JGAA, 15(1) 97–126 (2011) 119

We show by induction that there is no cycle in one label (Definition 9(4)).
This is for sure true for the first path P0 = 〈v1, v2〉. Assume that in Gk−1
there is no cycle in one label and that Pk is the next path. When adding
Pk, there does not exist a directed path in any label between two vertices
on Ck−1 using vertices of Pk.

Independence of representatives. All representatives have the same paths.
Also, two ordered path partitions are only equivalent if they induce the
same orientation and, therefore, induce the same Schnyder wood.

From Schnyder woods to ordered path partitions. Let a Schnyder wood
of (G, v1) be given. A path P = 〈z1, . . . , zp〉 of G is a 1-2 labeled path if the
edges {zi, zi+1}, i = 1, . . . , p− 1, are oriented from zi to zi+1 with label 2, and
from zi+1 to zi with label 1. We define a partial ordering ≺ on the partition of
V into maximal 1-2 labeled paths. Let e be an edge between two maximal 1-2
labeled paths P and P ′. Then P ≺ P ′ if

1. e is oriented from P to P ′ and labeled 3 or

2. e is oriented from P ′ to P and labeled 1 or 2.

We will show that the transitive closure of these two conditions indeed yields
a partial ordering. We will then show that the set of all linear extensions
Π = (P0, . . . , Ps) of this partial ordering≺ defines an equivalence class of ordered
path partitions. This will be the image of the given Schnyder wood.

≺ is acyclic Assume that there is a sequence Q0 ≺ · · · ≺ Qk = Q0 of ascending
maximal 1-2 colored paths such that the first and the last element is the
same. Then there is a cycle C = 〈z0, . . . , zp〉, p > 2, in G such that the
edges {zi, zi+1}, i = 0, . . . , p− 1, are oriented from zi to zi+1 and labeled
3 or oriented from zi+1 to zi and labeled 1 or 2. Note that some edges
of C may also be bioriented. Especially, C may contain edges of the 1-2
labeled paths. However, this contradicts Lemma 5(2).

Π = (P0, . . . ,Ps) is an ordered path partition. 〈v1, v2〉 is a maximal 1-2
labeled path. From each vertex there is an oriented path labeled 1 to
v1. Hence, P0 = 〈v1, v2〉. All edges incident to vn are labeled 3. Hence,
〈vn〉 is a maximal 1-2 labeled path. From each vertex there is an oriented
path labeled 3 to vn. Hence, Ps = 〈vn〉.
Next, we prove by induction that Ck, k = 1, . . . , s−1, is a simple cycle and
that Ck, k = 0, consists of a single edge. This claim is true for k = 0. Let
now k > 0, let i = 1, 2, and let ci be the vertex not in Pk that is incident
to the edge labeled i and oriented away from Pk. By the definition of ≺,
we have c1, c2 ∈ Vk−1. Again by the definition of ≺, the paths T3(u), u
on Pk may not intersect Ck−1. Hence, Pk is contained in the exterior of
Ck−1 and, thus, c1, c2 are on Ck−1. By Lemma 6, it follows that c1 6= c2.
Hence, Pk has at least two neighbors on Ck−1. Thus, Ck is a simple cycle.

120 Badent et al. More Canonical Ordering

Let now k = 1, . . . , s − 1 and let u be a vertex of Pk. Then, there is an
edge labeled 3 and oriented away from u. This edge is incident to a vertex
of V \ Vk.

From the definition of Schnyder woods and of ≺ it follows that among
the edges between Ck−1 and Pk there are exactly two that are oriented
towards Ck−1 – one with label 1 and one with label 2. All other edges are
labeled 3 and oriented towards Pk. Assume now that there is a vertex c on
Ck−1 that has two neighbors u, u′ in Pk. The edges {c, u}, {c, u′} cannot
both be labeled 3. Otherwise, c had two outgoing edges with the same
label. By Lemma 6, {c, u}, {c, u′} cannot be labeled 1 and 2, respectively.
So assume that {c, u} is labeled 1 and that {c, u′} is labeled 3. Consider
the cycle C bounded by {c, u}, {c, u′} and a part of Pk. By Definition 9(3)
there have to be vertices xi, i = 1, 2, in the interior of C such that the
edges {c, xi} are oriented towards xi and labeled i. Now, we have on one
hand xi ∈ Vk−1. On the other hand, the simple cycle Ck−1 cannot bound
a region that contains c, x1, x2, v1, and v2, but does not intersect Pk. The
case in which {c, u} is labeled 2 is symmetric.

It is easy to see that the two constructions are inverse to each other. �

Gk−1

z

ẑ

c` cr

z1 zp

Figure 9: Construction of a Schnyder wood from an ordered path partition.

Definition 14 (leftist ordered path partition) An ordered path partition
P0, . . . , Ps is called leftist if for k = 0, . . . , s − 1 and an ordered path parti-
tion P ′0, . . . , P

′
s′ with Pi = P ′i , i = 0, . . . , k, the following is true. Let c` (cr)

be the left (right) neighbor of Pk+1 and c`′ (cr′) be the left (right) neighbor of
P ′k+1. Then, ` ≤ `′ and r ≤ r′.

Note that ` and r in the above definition can be simultaneously minimized.
Assume that P ′k+1 is contained in Pk+1 with ` < `′ and r′ < r. Let z1 be
the neighbor of c` in Pk+1 and zp the neighbor of cr′ in Pk+1. Then, the
subpath P = 〈z1, . . . , zp〉 of Pk+1 fulfills the properties of Definition 12, has
the same left neighbor as Pk+1, and a right neighbor that is to the left of cr.
Moreover, analogously to canonical orderings, a sequence P0, . . . , Pi of paths
can be extended to an ordered path partition if and only if P0, . . . , Pi fulfill the
properties of Definition 12 and G[V \ (P0 ∪ · · · ∪Pi)] is connected. The latter is

JGAA, 15(1) 97–126 (2011) 121

fulfilled for P since P is a subpath of Pk+1, G[V \(P0∪· · ·∪Pk+1)] is connected,
and each vertex of Pk+1 is adjacent to a vertex of G[V \ (P0 ∪ · · · ∪ Pk+1)].

We now show that the leftist ordered path partition corresponds to the min-
imal Schnyder wood. The algorithm of Fusy et al. [25] to compute the minimal
element of an α0-orientation reuses the idea of the algorithm of Kant [34]. Let
Gk and Ck be as in Definition 1. A vertex v on Ck is eligible if

1. it is incident to at least one edge in G[V \ Vk] and

2. it is not incident to a separation face.

Fusy et al. [25] iteratively eliminate the rightmost eligible vertex and its
incident faces from the outer face of G× until the graph is shrunk to the edge
{v1, v2}. The vertices v1 and v2 are considered to be blocked until only the
edge {v1, v2} is left. Let v be the rightmost eligible vertex that is eliminated in
step s − k + 1. Let Pk be the path that consists of v and a maximal chain of
vertices with degree two on Ck to the left of v. Then, Pk is the next path that
is eliminated and Π = (P0, . . . , Ps) is the corresponding ordered path partition.
It follows that Π is the upper rightist ordered path partition in the following
sense:

Definition 15 (upper rightist ordered path partition) An ordered path
partition P0, . . . , Ps of (G, v1) is called upper rightist if for k = 1, . . . , s and
an ordered path partition P ′0, . . . , P

′
s′ with Ps−i = P ′s′−i, i = 0, . . . , k − 1, the

following is true. Let Ps−k = 〈z1, . . . , zp〉 and let P ′s′−k = 〈z′1, . . . , z′p′〉, then z′1
is between v1 and z1, and z′p′ is between v1 and zp on the clockwise outer facial
cycle Cs−k around Gs−k.

Theorem 6 The leftist ordered path partition corresponds to the minimal
Schnyder wood.

Proof: It remains to show that the upper rightist ordered path partition equals
the leftist ordered path partition. Let Π = (P0, . . . , Ps) be the upper rightist
ordered path partition, let Π′ = (P0, . . . , Pi−1, P ′i , . . . , P

′
s′−1, P

′
s′) be the leftist

ordered path partition of (G, v1), and assume Pi 6= P ′i .
If Pi is contained in P ′i or P ′i is contained in Pi, then P ′i does not fulfill the

requirements of a leftist ordered path partition. Otherwise, the argumentation
is the same as in Theorem 3. �

We adapt Algorithm 2 such that it computes the leftist ordered path partition
in the following way. Replace line I1 in Algorithm 3 by:

while j > 0 and not forbidden(zj) do

Replace line I2 in the same algorithm by:

if j = 0 then

Finally, replace the if -loop H in Algorithm 4 by:

122 Badent et al. More Canonical Ordering

let 〈(z0, z1), (z1, z2), . . . , (zp, zp+1)〉 := candidate.Chain
if singular (zp) then
b remove neighboring items with zp as singleton from Belt

Theorem 7 The modification of Algorithm 2 as specified above computes the
leftist ordered path partition of a triconnected planar graph in linear time.

Proof: The running time of Algorithm 2 is not affected by the changes.
The difference to a canonical ordering is that a path of the leftist ordered

path partition can be a chain with an attached singleton to the right. This path
would be split into a singleton and a chain in a canonical ordering.

The modifications in lines I1 and I2 in Algorithm 3 guarantee that the
algorithm does not skip a candidate if it contains a singular vertex. Since we
process the candidate faces from left to right and the vertices in a face from right
to left, only the rightmost vertex of a path in a leftist ordered path partition
can be singular. If a vertex is forbidden, the algorithm goes to the next face.

If the rightmost vertex of a path is singular, all neighboring items are still
removed from the belt (if -loop H in Algorithm 4). �

Acknowledgment

The authors want to thank Michael Baur for useful discussion, helpful hints for
the pseudocodes, and the implementation of the algorithm. We also thank the
anonymous referee who prompted us to consider Schnyder woods.

JGAA, 15(1) 97–126 (2011) 123

References

[1] J. Barbay, L. C. Aleardi, M. He, and I. Munro. Succinct Representation
of Labeled Graphs. In T. Tokuyama, editor, Proceedings of the 18th Inter-
national Symposium on Algorithms and Computation (ISAAC’07), volume
4835 of Lecture Notes in Computer Science, pages 316–328. Springer, 2007.

[2] G. Barequet, M. T. Goodrich, and C. Riley. Drawing Planar Graphs with
Large Vertices and Thick Edges. Journal of Graph Algorithms and Appli-
cations, 8(1):3–20, 2004.

[3] T. C. Biedl. Drawing Planar Partitions I: LL-Drawings and LH-Drawings.
In Proceedings of the 14th Annual Symposium on Computational Geometry,
pages 287–296. ACM Press, 1998.

[4] T. C. Biedl and M. Kaufmann. Area-Efficient Static and Incremental Graph
Drawings. In G. J. Woeginger, editor, Proceedings of the 5th Annual Eu-
ropean Symposium on Algorithms (ESA’97), volume 1284 of Lecture Notes
in Computer Science, pages 37–52. Springer, 1997.

[5] N. Bonichon, S. Felsner, and M. Mosbah. Convex Drawings of 3-Connected
Plane Graphs. Algorithmica, 47:399–420, 2007.

[6] P. Bose, J. Gudmundsson, and M. Smid. Constructing Plane Spanners of
Bounded Degree and Low Weight. Algorithmica, 42(3–4):249–264, 2005.

[7] E. Brehm. 3-Orientations and Schnyder 3-Tree-Decompositions. Master’s
thesis, FU Berlin, 2000.

[8] Y.-T. Chiang, C.-C. Lin, and H.-I. Lu. Orderly Spanning Trees with Ap-
plications to Graph Encoding and Graph Drawing. In Proceedings of the
12th Annual ACM–SIAM Symposium on Discrete Algorithms (SODA’01),
pages 506–515, 2001.

[9] M. Chrobak and G. Kant. Convex Grid Drawings of 3-Connected Planar
Graphs. International Journal of Computational Geometry and Applica-
tions, 7(3):211–223, 1997.

[10] M. Chrobak and S.-I. Nakano. Minimum-Width Grid Drawings of Plane
Graphs. Computational Geometry, 11(1):29–54, 1998.

[11] M. Chrobak and T. H. Payne. A Linear-Time Algorithm for Drawing a
Planar Graph on a Grid. Information Processing Letters, 54(4):241–246,
1995.

[12] R. C.-N. Chuang, A. Garg, X. He, M.-Y. Kao, and H.-I. Lu. Compact
Encodings of Planar Graphs via Canonical Orderings and Multiple Paren-
theses. In K. G. Larsen, S. Skyum, and G. Winskel, editors, Proceedings of
the 25th International Colloquium on Automata, Languages and Program-
ming (ICALP’98), volume 1443 of Lecture Notes in Computer Science,
pages 118–129. Springer, 1998.

124 Badent et al. More Canonical Ordering

[13] H. de Fraysseix and P. O. Mendez. Regular Orientations, Arboricity, and
Augmentation. In DIAMCS International Workshop, volume 894 of Lecture
Notes in Computer Science, pages 111–118. Springer, 1995.

[14] H. de Fraysseix, J. Pach, and R. Pollack. Small Sets Supporting Fáry
Embeddings of Planar Graphs. In Proceedings of the 20th Annual ACM
Symposium on the Theory of Computing (STOC’88), pages 426–433. ACM
Press, 1988.

[15] H. de Fraysseix, J. Pach, and R. Pollack. How to Draw a Planar Graph on
a Grid. Combinatorica, 10(1):41–51, 1990.

[16] G. Di Battista, R. Tamassia, and L. Vismara. Output-Sensitive Reporting
of Disjoint Paths. Algorithmica, 23(4):302–340, 1999.

[17] E. Di Giacomo, W. Didimo, and G. Liotta. Radial Drawings of Graphs:
Geometric Constraints and Trade-Offs. Journal of Discrete Algorithms,
6(1):109–124, 2008.

[18] E. Di Giacomo, W. Didimo, G. Liotta, and S. K. Wismath. Drawing Planar
Graphs on a Curve. In H. L. Bodlaender, editor, Proceedings of the 29th
International Workshop on Graph-Theoretic Concepts in Computer Science
(WG’03), volume 2880 of Lecture Notes in Computer Science, pages 192–
204. Springer, 2003.

[19] E. Di Giacomo, W. Didimo, G. Liotta, and S. K. Wismath. Curve-
Constrained Drawings of Planar Graphs. Computational Geometry,
30(2):1–23, 2005.

[20] V. Dujmović, M. Suderman, and D. R. Wood. Really Straight Graph Draw-
ings. In Proceedings of the 12th International Symposium on Graph Draw-
ing (GD’04), volume 3383 of Lecture Notes in Computer Science, pages
122–132. Springer, 2005.

[21] S. Felsner. Convex Drawings of Planar Graphs and the Order Dimension
of 3-Polytopes. ORDER, 18(1):19–37, 2001.

[22] S. Felsner. Geodesic Embeddings and Planar Graphs. ORDER, 20(2):135–
150, 2003.

[23] S. Felsner. Lattice Structure from Planar Graphs. The Electronic Journal
of Combinatorics, 11(1), 2004.

[24] U. Fößmeier, G. Kant, and M. Kaufmann. 2-Visibility Drawings of Planar
Graphs. In Proceedings of the 4th International Symposium on Graph Draw-
ing (GD’96), volume 1090 of Lecture Notes in Computer Science, pages
155–168. Springer, 1997.

[25] É. Fusy, G. Schaeffer, and D. Poulalhon. Dissections, Orientations, and
Trees with Applications to Optimal Mesh Encoding and Random Sampling.
ACM Transactions on Algorithms, 4(2), 2008.

JGAA, 15(1) 97–126 (2011) 125

[26] D. Gonçalves, B. Lévêque, and A. Pinlou. Triangle contact representations
and duality. In Proceedings of the 18th International Symposium on Graph
Drawing (GD’10), Lecture Notes in Computer Science. Springer, 2010.

[27] M. T. Goodrich and C. G. Wagner. A Framework for Drawing Planar
Graphs with Curves and Polylines. Journal of Algorithms, 37(2):399–421,
2000.

[28] C. Gutwenger and P. Mutzel. Planar Polyline Drawings with Good Angular
Resolution. In S. H. Whitesides, editor, Proceedings of the 6th International
Symposium on Graph Drawing (GD’98), volume 1547 of Lecture Notes in
Computer Science, pages 167–182. Springer, 1999.

[29] D. Harel and M. Sardas. An Algorithm for Straight-Line Drawing of Planar
Graphs. Algorithmica, 20:119–135, 1998.

[30] X. He. On Floor-Plan of Plane Graphs. SIAM Journal on Computing,
28(6):2150–2167, 1999.

[31] X. He, M.-Y. Kao, and H.-I. Lu. Linear-Time Succinct Encodings of Planar
Graphs via Canonical Orderings. SIAM Journal on Discrete Mathematics,
12(3):317–325, 1999.

[32] G. Kant. Drawing Planar Graphs using the lmc-Ordering. In Proceedings
of the 33rd Annual IEEE Symposium on Foundations of Computer Science
(FOCS’92), pages 101–110. IEEE Computer Society, 1992.

[33] G. Kant. Drawing Planar Graphs using the lmc-Ordering. Technical Re-
port RUU-CS-92-33, Department of Information and Computing Sciences,
Utrecht University, 1992.

[34] G. Kant. Drawing Planar Graphs Using the Canonical Ordering. Algorith-
mica, 16(4):4–32, 1996.

[35] G. Kant. A More Compact Visibility Representation. International Journal
of Computational Geometry and Applications, 7(3):197–210, 1997.

[36] G. Kant and X. He. Regular Edge Labeling of 4-Connected Plane Graphs
and its Applications in Graph Drawing Problems. Theoretical Computer
Science, 172(1-2):175–193, 1997.

[37] C.-C. Lin, H.-I. Lu, and I.-F. Sun. Improved Compact Visibility Represen-
tation of Planar Graph via Schnyder’s Realizer. SIAM Journal on Discrete
Mathematics, 18(1):19–29, 2004.

[38] K. Miura, M. Azuma, and T. Nishizeki. Canonical Decomposition, Re-
alizer, Schnyder Labeling and Orderly Spanning Trees of Plane Graphs.
International Journal of Foundations of Computer Science, 16(1):117–141,
2005.

126 Badent et al. More Canonical Ordering

[39] S.-I. Nakano. Planar Drawings of Plane Graphs. IEICE Transactions on
Information and Systems, E83-D(3):384–391, 2000.

[40] W. Schnyder. Embedding Planar Graphs on the Grid. In Proceedings of the
1st Annual ACM–SIAM Symposium on Discrete Algorithms (SODA’90),
pages 138–148, 1990.

[41] R. Tamassia and I. G. Tollis. A Unified Approach to Visibility Representa-
tions of Planar Graphs. Discrete and Computational Geometry, 1:321–341,
1986.

[42] K. Wada and W. Chen. Linear Algorithms for a k-Partition Problem of
Planar Graphs. In J. Hromkovic and O. Sýkora, editors, Proceedings of
the 24th International Workshop on Graph-Theoretic Concepts in Com-
puter Science (WG’98), Lecture Notes in Computer Science, pages 324–
336. Springer, 1998.

	Introduction
	Preliminaries
	Leftmost Canonical Ordering
	Leftist Canonical Ordering

	New Algorithm
	Linear-Time Implementation
	Duality
	Schnyder Woods
	Schnyder Woods and Canonical Orderings
	Schnyder Woods and Path Partitions

