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Abstract

We discuss the nearly equitable edge coloring problem on a multigraph
and propose an efficient algorithm for solving the problem, which has a
better time complexity than the previous algorithms. The coloring com-
puted by our algorithm satisfies additional balanced conditions on the
number of edges used in each color class, where conditions are imposed
on the balance among all edges in the multigraph as well as the balance
among parallel edges between each vertex pair. None of the previous algo-
rithms are guaranteed to satisfy these balanced conditions simultaneously.
To achieve these improvements, we propose a new recoloring procedure,
which is based on a set of edge-disjoint alternating walks, while the ex-
isting algorithms are based on an Eulerian circuit or a single alternating
walk. This new recoloring procedure makes it possible to reduce the time
complexity of the algorithm.
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1 Introduction

1.1 Problem Definition and Main Results

We discuss the nearly equitable edge coloring problem on a multigraph. Let
G = (V,E) be a multigraph; a multigraph is an undirected graph which may
have parallel edges and/or loops. Throughout this paper, we denote by n and
m the numbers of vertices and edges in G, respectively. Let C = {1, 2, . . . , k}
be a set of k colors. An edge coloring of a multigraph G is an assignment of k
colors to edges in E, which is represented by a function π : E → C.

For each vertex v ∈ V and a color i ∈ C, we denote by dπ(v, i) the number
of edges in E incident to v with color i. We say that an edge coloring π of a
multigraph G is nearly equitable if it satisfies the condition

(NEC) |dπ(v, i)− dπ(v, j)| ≤ 2 (∀v ∈ V,∀i, j ∈ C).

The main aim of this paper is to propose a new algorithm for computing a
nearly equitable edge coloring of a given multigraph. The time complexity of
the proposed algorithm is better than the previous algorithms.

In addition to the condition (NEC), we consider the following two “balanced”
conditions on the number of edges used in each color class:

(B1) ||Eiπ| − |Ejπ|| ≤ 1 (∀i, j ∈ C),
(B2) ||Eiπ(u, v)| − |Ejπ(u, v)|| ≤ 1 (∀i, j ∈ C,∀u, v ∈ V ),

where π is an edge coloring and

Eiπ = {e ∈ E | π(e) = i} (i ∈ C),
Eiπ(u, v) = {e ∈ E | π(e) = i, e connects u and v} (i ∈ C, u, v ∈ V ).

The first condition (B1) imposes that the number of all edges in each color
class is almost the same, while the second condition (B2) imposes that each
color class uses almost the same number of parallel edges between each pair of
vertices. Note that the conditions (B1) and (B2) are equivalent to the following
(B1′) and (B2′), respectively:

(B1′) |Eiπ| ∈ {bm/kc, dm/ke} (∀i ∈ C),
(B2′) |Eiπ(u, v)| ∈ {bm(u, v)/kc, dm(u, v)/ke} (∀i ∈ C,∀u, v ∈ V ),

where m(u, v) (u, v ∈ V ) denotes the number of parallel edges connecting u and
v. We show that the nearly equitable edge coloring computed by our algorithm
satisfies both of the balanced conditions. Our main result is summarized as
follows:

Theorem 1 Our algorithm computes a nearly equitable edge coloring of a multi-
graph satisfying the conditions (B1) and (B2) in O(min{mn,m2/k}) time.
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Table 1: Comparison of algorithms for nearly equitable edge coloring problem

authors time complexity (B1) (B2)
Hilton & de Werra (1982) [9] O(km2)

√

Nakano et al. (1995) [13] O(m2/k +mn)
Xie et al. (2004) [16] O(m2/k)

√

Xie et al. (2008) [17] O(mn log(m/(nk) + 1))
√

Ours O(min{mn,m2/k})
√ √

Note. The mark “
√

” means that the output of the algorithm satisfies the con-
ditions (B1) and/or (B2).

Table 1 shows a summary of the previous algorithms for the nearly equitable
edge coloring problem. The time complexity of our algorithm is better than the
previous best bound O(mn log(m/(nk) + 1)) by Xie et al. [17].1 Moreover, our
algorithm is the first to compute a nearly equitable edge coloring satisfying both
of the conditions (B1) and (B2). The algorithms in [16, 17] outputs a nearly
equitable edge coloring satisfying (B1), and the output of the algorithm in [9]
satisfies (B2), but none of the previous algorithms is guaranteed to obtain a
coloring satisfying both of (B1) and (B2) (see Table 1).

To compute a nearly equitable edge coloring, our algorithm iteratively mod-
ifies an edge coloring. For this, we propose a new recoloring procedure, which is
based on a set of edge-disjoint alternating walks, while the previous algorithms
are based on an Eulerian circuit [16, 17] or a single alternating walk [9, 13].
This recoloring procedure makes it possible to reduce the time complexity of
the algorithm while keeping the conditions (B1) and (B2) of an edge coloring.

In the following discussion, we assume k ≤ m without loss of generality,
since otherwise the problem is trivial.

1.2 Previous and Related Work

An edge coloring π of a multigraph G is said to be equitable if it satisfies the
condition

(EC) |dπ(v, i)− dπ(v, j)| ≤ 1 (∀i, j ∈ C,∀v ∈ V ),

which is stronger than the condition (NEC). Although every bipartite multi-
graph has an equitable edge coloring, non-bipartite multigraphs may not have an
equitable edge coloring (see, e.g., [10, 2, 3]). A typical example is an odd cycle,
which has no equitable edge coloring with k = 2. Several sufficient conditions
for multigraphs to have an equitable edge coloring are shown in [9, 10, 15, 4].

1 It is pointed out in Xie et al. [17] that mn log(m/(nk) + 1) = Θ(m2/k) holds for any m,
n and k satisfying 0 < m/nk ≤ 1. From this fact it is not difficult to show that the algorithm
in [17] is never asymptotically slower than that of [16], and that our new algorithm is never
asymptotically slower than that of [17].
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Note that the problem of determining the existence of an equitable edge coloring
is NP-complete (see [17]).

The balanced conditions (B1) and (B2) have often been discussed in the lit-
erature of (nearly) equitable edge coloring [6, 9, 10, 3, 5, 16, 17]. The first condi-
tion (B1) is referred to as “equalized condition” in [6] and “balanced condition”
in [14, 16, 17], and the second condition (B2) is referred to as “edge-balanced
condition” in [9].

Recently, a weighted version of the equitable edge coloring problem is dis-
cussed in [1, 7], and the following conjecture for bipartite multigraphs is raised
in [1]:

given a multigraph G = (V,E), a set of colors C = {1, 2, . . . , k}, and
weights wi (i ∈ C) with 0 < wi < 1 and

∑
i∈C wi = 1, there exists

an edge coloring such that

bwid(v)c ≤ dπ(v, i) ≤ dwid(v)e (∀i ∈ C, ∀v ∈ V ). (1.1)

Note that the condition (1.1) coincides with the condition (EC) if wi = 1/k
for all i ∈ C. Observe that the conjecture cannot be extended to non-bipartite
graphs, as it is obviously false in this case.

The following relaxed statement where both of the upper and lower bounds
are relaxed by two is proven for bipartite multigraphs in [1] and for general
multigraphs in [7].

Theorem 2 ([1, 7]) Given a multigraph G = (V,E), a set of colors C =
{1, 2, . . . , k}, and weights wi (i ∈ C) with 0 < wi < 1 and

∑
i∈C wi = 1, there

exists an edge coloring such that

bwid(v)c − 2 ≤ dπ(v, i) ≤ dwid(v)e+ 2 (∀i ∈ C, ∀v ∈ V ).

1.3 Overview of Our Algorithm

Our algorithm starts with an initial edge coloring satisfying (B1) and (B2), and
repeatedly improves the edge coloring, without violating (B1) and (B2), so that
it satisfies the condition (NEC) in the end. As in many previous papers in
the area of edge coloring, our algorithm improves an edge coloring by switch-
ing edge colors of alternating walks (see, e.g., [8, 11]); the difference from the
previous approach is that our algorithm uses a set of edge-disjoint alternating
walks, not a single alternating walk, in each iteration. If a set of edge-disjoint
alternating walks is chosen in a naive way, we can only show that the algorithm
terminates in O(m) iterations. To reduce the number of iterations, a set of
edge-disjoint alternating walks is chosen in a deliberate way, which leads to the
bound O(min{kn,m}) on the number of iterations. We show that each iteration
can be done in O(m/k) time, and therefore the time complexity of the proposed
algorithm is O((m/k)×min{kn,m}) = O(min{mn,m2/k}).



JGAA, 14(2) 391–407 (2010) 395

2 Switch of Edge Colors

The proposed algorithm modifies an edge coloring by using an operation called
switch. For every pair of distinct colors α, β ∈ C, we denote by Gπ(α, β) the
subgraph ofG given byGπ(α, β) = (V,Eαπ∪Eβπ ). Given an edge set S ⊆ Eαπ∪Eβπ ,
switching edge colors of S means to interchange the colors α and β of edges in S;
more formally, switching edge colors of S is to modify the current edge coloring
π : E → C to the new edge coloring π′ : E → C given by

π′(e) =

 β (e ∈ S, π(e) = α),
α (e ∈ S, π(e) = β),
π(e) (e ∈ E \ S).

To switch edge colors, the algorithm uses an edge set S ⊆ Eαπ ∪Eβπ satisfying
the following condition:

min{0, dπ(v, α)− dπ(v, β)}
≤ dSπ(v, α)− dSπ(v, β) ≤ max{0, dπ(v, α)− dπ(v, β)}, (2.1)

where for each v ∈ V and i ∈ {α, β}, we denote by dSπ(v, i) the number of edges
in S incident to v with color i. We say that S is eligible in the multigraph
Gπ(α, β) if it satisfies the condition (2.1) for all v ∈ V . Eligible edge sets are
useful in getting a better edge coloring, as shown below. In the proofs below,
we use the following useful inequality.

Proposition 1 Let a, b, c ∈ R be any real numbers such that a ≥ b and 0 ≤
c ≤ a− b. Then, we have min{a, b} ≤ min{a− c, b+ c} ≤ max{a− c, b+ c} ≤
max{a, b}.

Lemma 1 Let π : E → C be an edge coloring and S ⊆ Eαπ ∪Eβπ an eligible edge
set. Then, the new edge coloring π′ : E → C obtained by switching edge colors
of S satisfies

min{dπ(v, α), dπ(v, β)} ≤ min{dπ′(v, α), dπ′(v, β)}
≤ max{dπ′(v, α), dπ′(v, β)} ≤ max{dπ(v, α), dπ(v, β)} (∀v ∈ V ).

Proof: The claim follows from (2.1), Proposition 1, and the following equations:

dπ′(v, α) = dπ(v, α)− {dSπ(v, α)− dSπ(v, β)} (v ∈ V ),

dπ′(v, β) = dπ(v, β) + {dSπ(v, α)− dSπ(v, β)} (v ∈ V ).

�

To keep the balanced conditions (B1) and (B2), we consider the following
two conditions for an edge set S ⊆ Eαπ ∪ Eβπ :

(S1) min{0, |Eαπ | − |Eβπ |} ≤ |S ∩ Eαπ | − |S ∩ Eβπ | ≤ max{0, |Eαπ | − |Eβπ |},
(S2) min{0, |Eαπ (u, v)| − |Eβπ (u, v)|}

≤ |S ∩ Eαπ (u, v)| − |S ∩ Eβπ (u, v)| ≤ max{0, |Eαπ (u, v)| − |Eβπ (u, v)|}
(∀u, v ∈ V ).
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Lemma 2 Let π : E → C be an edge coloring, and π′ : E → C be the new edge
coloring obtained by switching edge colors of an edge set S ⊆ Eαπ ∪ Eβπ .
(i) If π and S satisfy (B1) and (S1), respectively, then π′ satisfies (B1).
(ii) If π and S satisfy (B2) and (S2), respectively, then π′ satisfies (B2).

Proof: We prove (i) only since (ii) can be shown similarly. Let η = |Eαπ |−|Eβπ |.
Then, we have

|Eαπ′ | − |E
β
π′ |

= {|Eαπ | − (|S ∩ Eαπ | − |S ∩ Eβπ |)} − {|Eβπ |+ (|S ∩ Eαπ | − |S ∩ Eβπ |)}
= η − 2(|S ∩ Eαπ | − |S ∩ Eβπ |). (2.2)

It follows from (S1) that

min{0,−2η} = −2 max{0, η} ≤ −2(|S ∩ Eαπ | − |S ∩ Eβπ |)
≤ −2 min{0, η} = max{0,−2η}. (2.3)

Combining (2.2) and (2.3), we have

−1 ≤ min{η,−η} ≤ |Eαπ′ | − |E
β
π′ | ≤ max{η,−η} ≤ 1,

where the first and the last inequalities follow from (B1) for π. Hence, π′ satisfies
(B1). �

The following is one of the key properties used in our algorithm. The proof
will be given in Section 5.

Lemma 3 Let π : E → C be an edge coloring. Suppose that there exist two
distinct colors α, β ∈ C and a vertex u ∈ V such that dπ(u, α) − dπ(u, β) ≥ 3
holds. For any integer r ∈ Z such that

1 ≤ r ≤ dπ(u, α)− dπ(u, β)− 2,

we can compute an eligible edge set S ⊆ Eαπ ∪Eβπ satisfying the conditions (S1),
(S2), and dSπ(u, α)− dSπ(u, β) ∈ {r, r + 1} in O(|Eαπ ∪ Eβπ |) time.

3 Proposed Algorithm

We explain our algorithm for computing a nearly equitable edge coloring satis-
fying the conditions (B1) and (B2).

Our algorithm starts with an initial edge coloring satisfying (B1) and (B2),
which can be easily computed in O(m) time by using the following property.

Lemma 4 Let {e1, e2, . . . , em} be an ordered list of the edges in E such that
the parallel edges connecting the same pair of vertices are ordered consecutively,
and color each edge et (t = 1, 2, . . . ,m) by the color (t mod k) + 1. Then, the
resulting edge coloring satisfies the conditions (B1) and (B2).
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Proof: The condition (B1) is easy to see. The condition (B2) is satisfied since
the parallel edges connecting the same pair of vertices are ordered consecutively.

�

The algorithm always keeps the two conditions (B1) and (B2) satisfied, and
iteratively improves the edge coloring so that the condition (NEC) is satisfied
in the end.

To obtain an edge coloring π satisfying the condition (NEC), our algorithm
processes each vertex u ∈ V one by one. If the vertex u violates the condition

|dπ(u, i)− dπ(u, j)| ≤ 2 (∀i, j ∈ C), (3.1)

then the algorithm repeatedly updates the edge coloring π by switching edge
colors of an eligible edge set S until the condition (3.1) is satisfied. By Lemma 1,
once the vertex u satisfies the condition (3.1), the edge coloring always satisfies
(3.1) in the following iterations.

Suppose that the vertex u violates the condition (3.1). Our algorithm im-
plicitly maintains the following sets of colors:

C0π(u) = {i ∈ C | dd(u)/ke − 1 ≤ dπ(u, i) ≤ bd(u)/kc+ 1}, (3.2)

C+π (u) = {i ∈ C | dπ(u, i) ≥ bd(u)/kc+ 2}, (3.3)

C−π (u) = {i ∈ C | dπ(u, i) ≤ dd(u)/ke − 2}. (3.4)

Note that {C0π(u), C+π (u), C−π (u)} is a partition of C. Whenever both of C+π (u)
and C−π (u) are nonempty, the algorithm chooses two distinct colors α, β with
α ∈ C+π (u) and β ∈ C−π (u), which is done by choosing α and β satisfying

dπ(u, α) = max
i∈C

dπ(u, i), dπ(u, β) = min
i∈C

dπ(u, i).

Then, the algorithm updates the edge coloring π so that at least one of α and β
is contained in C0π(u). This can be done efficiently by Lemma 3 with the value
r given by

r = min{dπ(u, α)− (bd(u)/kc+ 1), (dd(u)/ke − 1)− dπ(u, β)}. (3.5)

Repeating these steps, we obtain either C+π (u) = ∅ or C−π (u) = ∅ (or both).
Suppose that C−π (u) = ∅ holds. Note that in this case, the right-hand side of
(3.5) is nonpositive. Then, the algorithm iteratively updates the edge coloring
π so that the value

∑
{dπ(u, i)−dd(u)/ke | i ∈ C+π (u)} decreases at least by one

while keeping the condition C−π (u) = ∅. This is done by choosing two colors α
and β with the same rule as above, and then using Lemma 3 with r = 1. In
this way, the algorithm computes an edge coloring π satisfying (3.1).

Our algorithm is described as follows.
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Algorithm FastBalancing(G, C)
Input: a multigraph G = (V,E) and a set of colors C = {1, 2, . . . , k}.
Output: a nearly equitable edge coloring π : E → C ofG satisfying (B1) and (B2).
1. Compute an initial edge coloring π satisfying the conditions (B1) and (B2).
2. for each u ∈ V do
3. Compute the value dπ(u, i) for all i ∈ C.
4. while ∃i, j ∈ C such that |dπ(u, i)− dπ(u, j)| ≥ 3 do
5. Compute colors α, β ∈ C such that

dπ(u, α) = maxi∈C dπ(u, i), dπ(u, β) = mini∈C dπ(u, i).
6. Compute an eligible edge set S ⊆ Eαπ ∪ Eβπ satisfying (S1), (S2),

and dSπ(u, α)− dSπ(u, β) ∈ {r, r + 1}, where r is given by
r = max{1,min{dπ(u, α)−(bd(u)/kc+1), (dd(u)/ke−1)−dπ(u, β)}}.

7. Modify the edge coloring π by switching edge colors of S.
8. Output π and stop.

We note that an eligible edge set S in Line 6 can always be obtained by
Lemma 3. It is easy to see that the condition (NEC) is satisfied when the algo-
rithm terminates. Since the edge set S chosen in Line 6 satisfies the conditions
(S1) and (S2), the edge coloring π always satisfies (B1) and (B2) by Lemma 2.
Hence, the output of the algorithm is a nearly equitable edge coloring satisfying
(B1) and (B2).

4 Analysis of Time Complexity

We analyze the time complexity of the algorithm FastBalancing. First of all,
we analyze the number of iterations of Lines 5–7 for a fixed vertex u ∈ V , where
we use a convex function ϕz : R→ R defined by

ϕz(x) = max{bzc − x, 0, x− dze} (x ∈ R),

where z ∈ R is a real number.

Lemma 5 Let z ∈ R be any real number, and a, b, c ∈ Z any integers such that
a > z > b and 1 ≤ c ≤ a− b− 1. Then, we have

ϕz(a− c) + ϕz(b+ c) ≤ ϕz(a) + ϕz(b)− 1.

Proof: Let a′ = max{a− c, b+ c} and b′ = min{a− c, b+ c}. Then, it suffices
to show that {ϕz(a) +ϕz(b)}−{ϕz(a′) +ϕz(b

′)} ≥ 1. Note that a > a′ ≥ b′ > b
(cf. Proposition 1) and a− a′ = b′ − b ≥ 1. If a′ ≥ z ≥ b′, then we have

{ϕz(a) + ϕz(b)} − {ϕz(a′) + ϕz(b
′)}

= {(a− dze) + (bzc − b)} − {(a′ − dze) + (bzc − b′)}
= (a− b)− (a′ − b′) ≥ 2.
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If a > z > a′, then we have

{ϕz(a) + ϕz(b)} − {ϕz(a′) + ϕz(b
′)}

= {(a− dze) + (bzc − b)} − {(bzc − a′) + (bzc − b′)}
= 2a− dze − bzc ≥ 1,

where the inequality is by a > z ≥ bzc. The case with b′ > z > b can be shown
in the same way as the case with a > z > a′. �

For an edge coloring π : E → C and a vertex u ∈ V , we define

Φ(π, u) =
∑
i∈C

ϕd(u)/k(dπ(u, i)).

The value Φ(π, u) is a nonnegative integer for every edge coloring π, and Φ(π, u) =
0 holds if and only if bd(u)/kc ≤ dπ(u, i) ≤ dd(u)/ke for all i ∈ C. Thus, the
value Φ(π, u) represents the degree of imbalance in the edge coloring π at the
vertex u.

Lemma 6 Let π be an edge coloring, u ∈ V be a vertex, and α, β ∈ C be distinct
colors such that

dπ(u, α) = max
i∈C

dπ(u, i), dπ(u, β) = min
i∈C

dπ(u, i), dπ(u, α)− dπ(u, β) ≥ 3.

Suppose that π′ is an edge coloring obtained by switching edge colors of an eligible
edge set S ⊆ Eαπ ∪ Eβπ with

1 ≤ dSπ(u, α)− dSπ(u, β) ≤ dπ(u, α)− dπ(u, β)− 1. (4.1)

Then, we have Φ(π′, u) ≤ Φ(π, u)− 1.

Proof: It suffices to show that

ϕz(dπ′(u, α)) + ϕz(dπ′(u, β)) ≤ ϕz(dπ(u, α)) + ϕz(dπ(u, β))− 1,

where z = d(u)/k. Since (1/k)
∑
i∈C dπ(u, i) = z and

dπ(u, α) = max
i∈C

dπ(u, i) > min
i∈C

dπ(u, i) = dπ(u, β),

we have dπ(u, α) > z > dπ(u, β). In addition, dπ′(u, α) = dπ(u, α) − c and
dπ′(u, β) = dπ(u, β) + c hold with c = dSπ(u, α) − dSπ(u, β). Hence, Lemma 5
implies that

ϕz(dπ′(u, α)) + ϕz(dπ′(u, β)) = ϕz(dπ(u, α)− c) + ϕz(dπ(u, β) + c)

≤ ϕz(dπ(u, α)) + ϕz(dπ(u, β))− 1.

�
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Lemma 7 For a fixed vertex u ∈ V , the number of iterations in the while loop
in the algorithm FastBalancing is O(d(u)).

Proof: The eligible set S computed in Line 6 satisfies the condition (4.1).
Hence, the claim follows from Lemma 6 and the fact that Φ(π, u) = O(d(u)). �

Lemma 8 For a fixed vertex u ∈ V , the number of iterations in the while loop
in the algorithm FastBalancing is O(k).

Proof: In each iteration of the while loop, we consider the sets C0π(u), C+π (u), C−π (u)
defined by (3.2), (3.3), and (3.4), respectively. Suppose that the colors α and
β chosen in Line 5 satisfy α ∈ C+π (u) and β ∈ C−π (u). Recall that α and β are
such that dπ(u, α) = maxi∈C dπ(u, i) and dπ(u, β) = mini∈C dπ(u, i). Let S be
an edge set chosen in Line 6. Since the value r in Line 6 satisfies

r = min{dπ(u, α)− (bd(u)/kc+ 1), (dd(u)/ke − 1)− dπ(u, β)} ≥ 1,

at least one of α and β is contained in C0π(u) after switching edge colors of S.
This fact implies that in at most k iterations, we have either C+π (u) = ∅ or
C−π (u) = ∅.

Assume, without loss of generality, that C−π (u) = ∅. Then, we have

(d(u)/k)− dπ(u, i) ≤ dd(u)/ke − dπ(u, i) ≤ 1 (∀i ∈ C). (4.2)

Since
∑
i∈C{dπ(u, i)− (d(u)/k)} = d(u)− d(u) = 0, it holds that∑

{dπ(u, i)− (d(u)/k) | i ∈ C, dπ(u, i) > d(u)/k}

=
∑
{(d(u)/k)− dπ(u, i) | i ∈ C, dπ(u, i) ≤ d(u)/k}.

Hence, we have

Φ(π, u) ≤
∑
i∈C

max{dπ(u, i)− (d(u)/k), (d(u)/k)− dπ(u, i)}

= 2
∑
{(d(u)/k)− dπ(u, i) | i ∈ C, dπ(u, i) ≤ d(u)/k} ≤ 2k,

where the last inequality is by (4.2). This fact, together with Lemma 6, implies
that the while loop terminates in at most 2k iterations. This concludes the
proof. �

By Lemmas 7 and 8, the number of iterations of Lines 5–7 for a fixed vertex
u ∈ V is O(min{k, d(u)}). We can compute an eligible edge set S satisfying
the desired conditions in O(|Eαπ ∪Eβπ |) = O(m/k) time by Lemma 3. Switching
edge colors in Line 7 requires O(|S|) = O(m/k) time. Maintenance of values
dπ(u, i) and Line 5 can be done in O(m) time in total by using an appropriate
data structure (see Section 3 of [17]). Hence, the algorithm FastBalancing
computes a nearly equitable edge coloring of a multigraph satisfying the condi-
tions (B1) and (B2) in O((m/k) ×

∑
u∈V min{k, d(u)}) = O(min{mn,m2/k})

time. This concludes the proof of Theorem 1.
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5 Computing Eligible Edge Sets

In this section we give a proof of Lemma 3, which states that an eligible edge set
S ⊆ Eαπ ∪ Eβπ satisfying the conditions (S1), (S2), and an additional condition
on the number dSπ(v, α)−dSπ(v, β) can be found in O(|Eαπ ∪Eβπ |) time. To prove
this, we consider a decomposition of the edge set Eαπ ∪ Eβπ by using eligible
alternating walks to be defined below.

A walk is a sequence of vertices and edges of the form u0e1u1e2u2 . . . et−1
ut−1etut, where u0, u1, . . . , ut are vertices and e1, e2, . . . , et are distinct edges
such that ej connects the vertices uj−1 and uj for j = 1, 2, . . . , t. It should be
mentioned that a walk may visit the same vertex more than once; in particular,
it is possible that the first and last vertices u0 and ut are the same. A walk is
said to be eligible if the set of all edges in the walk is eligible. In the following
discussion, we may regard a walk as the set of edges {e1, e2, . . . , et} to simplify
the description.

Let π : E → C be an edge coloring, and α, β ∈ C distinct colors. We
call a walk P in the multigraph Gπ(α, β) an alternating walk if any two con-
secutive edges in P have different colors. Alternating walks in Gπ(α, β) can
be categorized into the following three types. An αβ-even alternating walk is
an alternating walk P such that |P ∩ Eαπ | = |P ∩ Eβπ |. An α-odd alternat-
ing walk (resp., a β-odd alternating walk) is an alternating walk P such that
|P ∩ Eαπ | = |P ∩ Eβπ |+ 1 (resp., |P ∩ Eβπ | = |P ∩ Eαπ |+ 1). In the following, we
mainly consider eligible alternating walks in Gπ(α, β).

Lemma 9 ([11, 12, 13]) Let u0 ∈ V be a vertex such that dπ(u0, α) 6= dπ(u0, β).
Then, there exists an eligible alternating walk P = u0e1u1e2u2 . . . et−1ut−1etut
starting from u0.

A partition {P1, P2, . . . , Ps, R} (s ≥ 0) of the edge set Eαπ ∪Eβπ of the multi-
graph Gπ(α, β) is called an alternating walk decomposition if Ph (h = 1, 2, . . . , s)
are eligible alternating walks satisfying the following condition:

s∑
h=1

{dPh
π (v, α)− dPh

π (v, β)} = dπ(v, α)− dπ(v, β) (∀v ∈ V ). (5.1)

Note that an alternating walk decomposition is not uniquely determined. An
alternating walk decomposition always exists, and can be obtained by the follow-
ing algorithm. We note that if P is an eligible alternating walk in the multigraph
(V,E) and P ′ is an eligible alternating walk in (V,E \ P ), then P ′ is also an
eligible alternating walk in the original multigraph (V,E).

Step 0: Set s := 0 and E′ := Eαπ ∪ Eβπ .
Step 1: If dE

′

π (v, α) = dE
′

π (v, β) (∀v ∈ V ), then output {P1, P2, . . . , Ps, E
′} and

stop.
Step 2: Let u ∈ V be a vertex with dE

′

π (u, α) 6= dE
′

π (u, β).
Step 3: Find an eligible alternating walk Ps+1 in the multigraph (V,E′) starting
from u.
Step 4: Set E′ := E′ \ Ps+1 and s := s+ 1. Go to Step 1.



402 A. Shioura and M. Yagiura Algorithm for nearly equitable edge coloring

It is not difficult to implement this algorithm so that it runs in O(|Eαπ ∪ Eβπ |)
time. See Appendix for details.

We now prove Lemma 3. Suppose that there exist two distinct colors α, β ∈ C
and a vertex u ∈ V such that dπ(u, α) − dπ(u, β) ≥ 3. Let {P1, P2, . . . , Ps, R}
be an alternating walk decomposition of Eαπ ∪ Eβπ . In the following, we show
that there exists a subset P ⊆ {P1, P2, . . . , Ps} of alternating walks such that
the set S =

⋃
P∈P P satisfies the conditions (S1), (S2), and

dSπ(u, α)− dSπ(u, β) ∈ {r, r + 1}, (5.2)

where r is an integer with 1 ≤ r ≤ dπ(u, α)−dπ(u, β)−2. We note that for any
P ⊆ {P1, P2, . . . , Ps}, the set S =

⋃
P∈P P is eligible since {P1, P2, . . . , Ps, R} is

an alternating walk decomposition. The proof given below is constructive, and
it immediately yields an algorithm for computing an eligible edge set satisfying
the desired conditions in O(|Eαπ ∪ Eβπ |) time.

We first consider the condition (5.2). We assume that P1, . . . , Ps′ (s′ ≥ 0) are
the alternating walks such that both of the end vertices are u, and Ps′+1, . . . , Ps′′

(s′′ ≥ s′) are the alternating walks such that only one of the end vertices is u.
We start with P = ∅, and add the walks P1, P2, . . . , Pmin{s′,dr/2e} to the set P.
If s′ ≥ dr/2e, then the edge set S =

⋃
P∈P P satisfies

dSπ(u, α)− dSπ(u, β) = 2dr/2e ∈ {r, r + 1};

i.e., (5.2) holds. Otherwise (i.e., s′ < dr/2e), we further add the walks Ps′+1,
Ps′+2, . . . , Ps′+(r−2s′) to P. Then, S =

⋃
P∈P P satisfies (5.2). We note that

s′ + (r − 2s′) ≤ s′′ holds since

2s′ + (s′′ − s′) = dπ(u, α)− dπ(u, β) > r.

We then consider the property (S1). We note that none of walks in the
current set P is a β-odd alternating walk since every eligible alternating walk
starting from the vertex u is either an αβ-even alternating walk or an α-odd
alternating walk. Let tα be the number of α-odd alternating walks in P, and
define tβ by

tβ =

{
max{0, tα − 1} if |Eαπ | = |Eβπ |+ 1,
tα if |Eαπ | = |Eβπ | − 1 or |Eαπ | = |Eβπ |.

We see from the following simple observation that the number of β-odd alter-
nating walks in {P1, P2, . . . , Ps} is at least tβ .

Lemma 10 Let {P1, P2, . . . , Ps, R} be an alternating walk decomposition of
Eαπ ∪ Eβπ , and let sα (resp., sβ) be the number of α-odd (resp., β-odd) alter-
nating walks in {P1, P2, . . . , Ps}. Then, we have sα − sβ = |Eαπ | − |Eβπ |.

We choose tβ β-odd alternating walks in the decomposition arbitrarily and add
them to P. Note that u cannot be an end vertex of a β-odd alternating walk,



JGAA, 14(2) 391–407 (2010) 403

and hence the addition of β-odd alternating walks does not affect the condition
(5.2). Therefore, the edge set S =

⋃
P∈P P satisfies both of (5.2) and (S1).

Finally, we consider the condition (S2). We use a similar technique as in
[9, 11, 12]. Let G∗π(α, β) be a subgraph of Gπ(α, β) defined as follows. From
the multigraph Gπ(α, β), delete successively all pairs of edges of color α and β
respectively connecting the same two vertices as far as such a pair of edges exists,
and let G∗π(α, β) = (V,E∗) be the resulting multigraph. Obviously, for each pair
of vertices v, v′ there exists at most one edge connecting v and v′; an edge (v, v′)
with color α (resp., β) is in E∗ if and only if |Eαπ (v, v′)| = |Eβπ (v, v′)|+ 1 (resp.,
|Eβπ (v, v′)| = |Eαπ (v, v′)|+ 1). Hence, any subset S of E∗ satisfies the condition
(S2). This means that if we consider an edge set of the graph G∗π(α, β) instead of
the original graph Gπ(α, β), the condition (S2) is automatically satisfied. This
modification does not affect (S1) since G∗π(α, β) is obtained by removing the
same number of edges from Eαπ and from Eβπ . Moreover, we have

dE
∗

π (v, α)− dE
∗

π (v, β) = dπ(v, α)− dπ(v, β) (∀v ∈ V ).

This implies that the conditions concerning the balance around each vertex such
as eligibility condition (2.1) and the conditions (5.1) and (5.2) are not affected
by the replacement of Gπ(α, β) with G∗π(α, β). In summary, this replacement of
the multigraph does not affect the properties shown in the previous discussion.
This concludes the proof of Lemma 3.

6 Conclusion

In this paper, we proposed a new algorithm for the nearly equitable edge
coloring problem. Our algorithm FastBalancing computes a nearly equi-
table edge coloring of a multigraph satisfying the conditions (B1) and (B2) in
O(min{mn,m2/k}) time. The time complexity of our algorithm is better than
those of the previous algorithms. Moreover, our algorithm is the first to com-
pute a nearly equitable edge coloring satisfying both of the conditions (B1) and
(B2).
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Appendix: Computation of Alternating Walk De-
composition

We explain the implementation details of the algorithm for computing an alter-
nating walk decomposition in Section 5.

Suppose that we are given the two edge sets Eαπ and Eβπ . Recall that a
partition {P1, P2, . . . , Ps, R} (s ≥ 0) of the edge set Eαπ ∪Eβπ of the multigraph
Gπ(α, β) is called an alternating walk decomposition if Ph (h = 1, 2, . . . , s) are
eligible alternating walks satisfying the following condition:

s∑
h=1

{dPh
π (v, α)− dPh

π (v, β)} = dπ(v, α)− dπ(v, β) (∀v ∈ V ).

For simplicity of the algorithm description, we assume, without loss of gen-
erality, that the edge set Eαπ ∪ Eβπ does not contain a loop. If there exists a
loop (v, v) ∈ Eαπ ∪Eβπ , then we replace it with three edges (v, v′), (v′, v′′), (v′′, v),
where v′ and v′′ are new vertices not in V , (v, v′) and (v′′, v) have the same color
(i.e., α or β) as (v, v), and (v′, v′′) has the other color. It is not difficult to see
that if an eligible alternating walk contains some edge in {(v, v′), (v′, v′′), (v′′, v)},
then it contains all of the three edges.

For each color i ∈ {α, β} and each vertex v ∈ V , we first construct a linked

list Êi(v) consisting of all edges incident to v having color i. We assume that

before we start constructing such lists, an empty list Êi(v) is available for each
i ∈ C and each v ∈ V ; this assumption is always satisfied by making each
nonempty Êi(v) empty after finishing the computation of an alternating walk
decomposition. We process each edge in Eαπ ∪Eβπ one by one and insert its copies

into two appropriate linked lists. We also construct a list V̂ of vertices v ∈ V
satisfying |Êα(v)| 6= |Êβ(v)|. It is not difficult to see that the construction of
these linked lists can be done in O(|Eαπ ∪ Eβπ |) time. We also note that the re-
initialization of lists after the computation of an alternating walk decomposition
can be done in O(|Eαπ ∪ Eβπ |) time.

We denote by Ê the union of the sets of edges in the linked lists Êi(v) (i ∈
{α, β}, v ∈ V ). We say that an eligible alternating walk u0e1u1e2 . . . ut−1etut
(t ≥ 1) is an eligible alternating closed walk if u0 = ut and the colors of e1 and
et are distinct. In each iteration of the algorithm, we find an eligible alternating
walk P or an eligible alternating closed walk P in the graph (V, Ê), output P if

it is an eligible alternating walk, and delete edges in P from Ê. We repeat this
step until the condition V̂ = ∅ is satisfied.

We explain how to find an eligible alternating walk or an eligible alternating
closed walk in the graph (V, Ê). We take a vertex u ∈ V̂ , i.e., a vertex u ∈ V
with |Êα(u)| 6= |Êβ(u)|; we assume, without loss of generality, that |Êα(u)| >
|Êβ(u)|. We also take an edge e1 ∈ Êα(u). Let u0 = u, and u1 be the vertex
with e1 = (u0, u1).

Then, we iteratively add an edge to construct an eligible alternating walk or
an eligible alternating closed walk. Suppose that we have already obtained
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an alternating walk P = u0e1u1e2 . . . uj−1ejuj (j ≥ 1) such that for j′ =
1, 2, . . . , j − 1, one of the conditions (a), (b), and (c) holds:

(a) if π(ej′) = α and uj′ 6= u0, then |Êα(uj′)| ≤ |Êβ(uj′)|,
(b) if π(ej′) = α and uj′ = u0, then |Êα(uj′)| = |Êβ(uj′)|+ 1,

(c) if π(ej′) = β, then |Êα(uj′)| ≥ |Êβ(uj′)|.

We consider the following seven possible cases of the edge ej and the vertex

uj . Note that no other case occurs since |Êα(u0)| > |Êβ(u0)| holds.

(Case 1) π(ej) = α, uj 6= u0, and |Êα(uj)| ≥ |Êβ(uj)|+ 1,

(Case 2) π(ej) = α, uj 6= u0, and |Êα(uj)| ≤ |Êβ(uj)|,
(Case 3) π(ej) = α, uj = u0, and |Êα(uj)| ≥ |Êβ(uj)|+ 2,

(Case 4) π(ej) = α, uj = u0, and |Êα(uj)| = |Êβ(uj)|+ 1,

(Case 5) π(ej) = β, uj 6= u0, and |Êα(uj)| ≤ |Êβ(uj)| − 1,

(Case 6) π(ej) = β, uj 6= u0, and |Êα(uj)| ≥ |Êβ(uj)|,
(Case 7) π(ej) = β and uj = u0.

If Case 1, 3, or 5 occurs, then P is an eligible alternating walk; we output P
and delete edges in P from Ê. If Case 7 occurs, then P is an eligible alternating
closed walk; we delete edges in P from Ê.

Suppose that Case 2, 4, or 6 occurs. Note that in this case, one of the
conditions (a), (b), and (c) holds for j′ = j. We extend the alternating walk
P by adding an appropriately chosen edge ej+1. We here consider Case 2 or 4
since Case 6 can be treated similarly. If Case 2 or 4 occurs, then we add an edge
ej+1 ∈ Êβ(uj) \ {e1, e2, . . . , ej} to the walk P , which is always possible for the

following reasons. If Case 2 occurs, then we have Êβ(uj) \ {e1, e2, . . . , ej} 6= ∅
since |Êα(uj)| ≤ |Êβ(uj)| and

|Êα(uj) ∩ {e1, e2, . . . , ej}| − |Êβ(uj) ∩ {e1, e2, . . . , ej}|
= 1 + (|Êα(uj) ∩ {e1, . . . , ej−1}| − |Êβ(uj) ∩ {e1, . . . , ej−1}|) = 1;

similarly, if Case 4 occurs, then we have Êβ(uj) \ {e1, e2, . . . , ej} 6= ∅ since

|Êα(uj)| ≤ |Êβ(uj)|+ 1 and

|Êα(uj) ∩ {e1, e2, . . . , ej}| − |Êβ(uj) ∩ {e1, e2, . . . , ej}|
= 2 + (|Êα(uj) ∩ {e2, . . . , ej−1}| − |Êβ(uj) ∩ {e2, . . . , ej−1}|) = 2.

In either case, the edge set Êβ(uj)\{e1, e2, . . . , ej} is nonempty, and we can take
an edge ej+1 in this set. We note that when Case 4 occurs, P = u0e1u1e2 . . . uj−1ejuj
is neither an eligible alternating walk nor an eligible alternating closed walk.

In this way, we can compute an eligible alternating walk in the graph (V, Ê).
This can be done in time proportional to the number of edges in P . Hence, the
computation of an alternating walk decomposition can be done in O(|Eαπ ∪Eβπ |)
time.
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