
Journal of Graph Algorithms and Applications
http://www.cs.brown.edu/publications/jgaa/

vol. 4, no. 2, pp. 1–11 (2000)

Approximation algorithms for some graph
partitioning problems

G. He
Battelle, Pacific Northwest National Lab

P. O. Box 999 / MS K9-55, Richland, WA 99352 USA
http://www.pnl.gov/remote/expertise/ggh.htm

George.He@pnl.gov

J. Liu1

Department of Mathematics and Computer Sciences
University of Lethbridge, Lethbridge, Alberta, Canada, T1K 3M4

http://www.cs.uleth.ca/
liu@cs.uleth.ca

C. Zhao
Department of Mathematics and Computer Sciences
Indiana State University, Terre Haute, IN 47809 USA

http://math.indstate.edu/zhao.html
cheng@laurel.indstate.edu

Abstract

This paper considers problems of the following type: given an edge-
weighted k-colored input graph with maximum color class size c, find a
minimum or maximum c-way cut such that each color class is totally par-
titioned. Equivalently, given a weighted complete k-partite graph, cover
its vertices with a minimum number of disjoint cliques in such a way that
the total weight of the cliques is maximized or minimized. Our study
was motivated by some work called the index domain alignment problem
[6], which shows its relevance to optimization of distributed computation.
Solutions of these problems also have applications in logistics [3] and man-
ufacturing systems [10]. In this paper, we design some approximation al-
gorithms by extending the matching algorithms to these problems. Both
theoretical and experimental results show that the algorithms we designed
produce good approximations.

Communicated by D. Eppstein.
Submitted: July 2000. Revised: August 2000.

1Research by this author was partially supported by the Natural Sciences and Engineering
Research Council of Canada.

G. He et al., Approximation algorithms , JGAA, 4(2) 1–11 (2000) 2

1 Introduction

Distributed memory architectures are becoming increasingly popular since the
promised scalability at reduced costs, and the availability of high performance
microprocessors. This architecture requires that data associated with a given
computation be partitioned and distributed to the local storage of each individ-
ual processor. How this is done will affect the program performance. However,
programming of distributed memory multiprocessors is difficult and error-prone
due to the lack of a single uniform global address space. The recent research
(Li and Chen [6], Banerjee, Eigenmann, Nicolau and Padua [1], Gupta and
Banerjee [4], Knoble, Lukas and Steele [5], and Ramanujam and Sadayappan
[9]) has concentrated on automating this process. In [6], Li and Chen modeled
this process as the (primary) index domain alignment problem and proved that
the problem is NP-complete for the class of graphs with alignment dimension 2.

In [7], we have further generalized the index domain alignment problem into
the following four graph partitioning problems, and proved that these prob-
lems are polynomially equivalent and NP-complete. We follow the standard
definitions and notations in [2].

Let G be a graph. An edge weight on G is a map w from E(G) to Z+ ∪{0},
the set of nonnegative integers. If H is a subgraph of G, we denote w(H) =∑

e∈E(H) w(e).
Let G = (V (G), E(G), w) be an edge weighted k-vertex colorable graph with

a list of vertex color classes U1, . . . , Uk, where Ui is the set of vertices with color
i. Let c = max{|U1|, |U2|, · · · , |Uk|}. G is called a c-way k-colored graph with
color classes U1, . . . , Uk. If |Ui| = c for 1 ≤ i ≤ k, we say that G is a c-way
k-colored balanced graph.

Let G = (V (G), E(G), w) be a c-way k-colored graph with color classes
U1, . . . , Uk. An orthogonal partition of G is a vertex partition of V (G) into
V1, . . . , Vc such that |Vi ∩ Uj| ≤ 1 for any Ui and Vj . That is, each Ui contains
vertices of different colors.

The maximum (minimum) orthogonal partition problem

Let G = (V (G), E(G), w) be an edge weighted, c-way k-colored graph with color
classes U1, . . . , Uk. Find an orthogonal partition V1, . . . , Vc of G so that

c∑

i6=j

∑

e∈E([Vi,Vj])

w(e)

is the maximum (minimum) among all the orthogonal partitions of G.

We call such a partition V1, . . . , Vc an optimum partition of G. Let S be the
spanning subgraph of G such that e is an edge of S if and only if e is an edge
joining Vi and Vj for some i 6= j. S is called a maximum (minimum) orthogonal
subgraph of G for the maximum (minimum) orthogonal partition problem of G.

Note that a k-vertex colorable graph is a k-partite graph. We have the
following variation of the above problems, which are easier to deal with.

G. He et al., Approximation algorithms , JGAA, 4(2) 1–11 (2000) 3

The maximum (minimum) disjoint k-clique problem

Let Kc,...,c be an edge weighted complete k-partite graph with c vertices in each
part. Find a set of c vertex-disjoint k-cliques of Kc,...,c that has the maximum
(minimum) weight.

We would like to point out that both the maximum and minimum vertex
disjoint k(≥ 2)-clique problems have applications in logistics (see [3]) and man-
ufacturing systems in industry (see [10]). The logistics application arises in the
context of making weekly assignments of sets of drivers to loads. Often we are
left with a driver assignment problem that is an instance of c vertex disjoint
3-cliques: we are given an edge weighted complete 3-partite graph with a vertex
set V1 of drivers, a vertex set V2 of beginning-of-the-week loads and a vertex set
V3 of midweek loads. We are looking for a set of vertex-disjoint triangles, say
{∆uvw} so we can maximize the total revenue or minimize the total cost. The
manufacturing system application occurs in the selection of quality tools and
assignment of the tools and quality operations to machine centers or inspection
stations. This case can also be modeled as an instance of c vertex disjoint 3 (or
higher)-cliques.

Since the maximum (minimum) orthogonal partition problem and the max-
imum (minimum) clique problem are all NP-complete, it is worthwhile to find
approximation algorithms for these problems, and this is the goal of our paper.

In Section 2, we extend the optimum matching algorithms to these problems
to obtain approximation algorithms, and analyze these algorithms. Section 3
provides experimental results and comparisons with other algorithms, for ex-
ample, the random search algorithm. Section 4 shows that in some sense these
approximations are tight. Section 5 gives concluding remarks.

2 Approximation algorithms

First, we define a useful graph merge operation.
Let G = (V (G), E(G), w) be a c-way k-colored graph with color classes

U1, . . . , Uk. Consider the induced subgraph Gi,j = G[Ui ∪ Uj]. Let Fi,j =
{u1v1, u2v2, . . . , ulvl} be a matching of Gi,j where uk ∈ Ui and vk ∈ Uj. Merge
Uj with Ui by identifying the vertex vk with uk, also identifying an unsaturated
vertex v under Fi,j in Ui with an unsaturated vertex u under Fi,j in Uj in an
obvious way, and leaving the vertices which are not Fi,j -saturated and cannot
be paired off unchanged. The new vertex set is denoted by Ui(j). Remove the
loops and edges within Ui(j), and replace multiple edges by a single edge with
the sum of weights of the multiple edges as the new weight of the edge. The
new weighted graph (Gi(j), w

′) is called the merge of Uj to Ui from G along
Fi,j . We note that (Gi(j), w

′) is an edge weighted (k − 1)-colored graph.
Next, we extend G to a complete k-partite balanced graph C(G) with c

vertices in each part by adding in some new vertices and edges. Let w′ be the
extension of w to C(G) such that w′(e) = 0 if e is a new edge. Note that

G. He et al., Approximation algorithms , JGAA, 4(2) 1–11 (2000) 4

C(G) = G if G is a complete k-colored balanced graph with c vertices in each
part.

Now we consider some approximate solutions based on the idea of optimum
matching algorithms.

Algorithm A1. (For the maximum orthogonal partition and the
minimum k-clique problems)

Begin
1 Input G with color classes U1, . . . , Uk.
2 If C(G) 6= G, construct C(G) with columns U ′

1, . . . U
′
k;

label the new vertices with symbol ′;
assign the new edges weight 0 to obtain the weight function w′

3 Set i = k, and Gi = C(G).
4 Repeat

Construct Gi
1,i = [U ′

1, U
′
i].

Find a minimum weighted 1-factor Fi of Gi
1,i.

Relabel the vertices in U ′
i so that Fi = {v1u

i
1, v2u

i
2, . . . , vcu

i
c}.

Construct a merge Gi
1(i) from Gi along with Fi.

Set i to i − 1, Gi = Gi
1(i).

Until i = 2.
5 Find a minimum weighted 1-factor F2 of G2.
6 Set V ′

1 = {v1, u
2
1, u

3
1, . . . , u

k
1}, . . . , V ′

c = {vc, u
2
c , u

3
c, . . . , u

k
c}.

7 Set Vi = V ′
i − { vertices with label ′}.

8 Output K = G[V1] ∪ · · · ∪ G[Vc] and X = G\E(K).
End.

Theorem 1 Let G be an edge weighted complete k-colored graph with c vertices
in each part. Algorithm A1 computes in O(kc3) time an approximation solution
K for the minimum disjoint k-clique problem satisfying

w(K) ≤ 1
c
w(G).

If G is an edge weighted c-way k-colored graph, then the subgraph X con-
structed by Algorithm A1 is an orthogonal subgraph for the maximum partition
problem with w(X) ≥ c−1

c w(G).

Proof: For the clique problem, G = C(G) and Ui = U ′
i . We prove the theorem

by induction on k. If k = 2, G is a complete bipartite graph Kc,c, E(G) has a
decomposition into c edge-disjoint 1-factors. Therefore, Algorithm A1 produces
an optimum 1-factor with the minimum weight. Being an optimum one, we
must have w(X) ≤ 1

nw(G). The theorem is true for k = 2.
Suppose that the theorem is true for any weighted complete (k − 1)-partite

graphs with c vertices in each part. Now let k > 2. We are going to prove that
the theorem is true for k.

Let G be a weighted complete k-partite graph with n vertices in each part.
In Algorithm A1, first at step 4, we consider the subgraph G1,k = [U1, Uk].

G. He et al., Approximation algorithms , JGAA, 4(2) 1–11 (2000) 5

Then Algorithm A1 delivers a minimum weighted 1-factor Fk of G1,k. We have
that w(Fk) ≤ 1

cw(G1,k). Now we let G′ be a merge graph (G1(k), w
′) from G

along the 1-factor Fm. Let K ′ be the result obtained by applying Algorithm
A1 to G′. Then w′(K ′) ≤ 1

cw′(G′) by the induction hypothesis. We note that
K ′ consists of c disjoint (k − 1)-cliques. At step 6, we construct K∗ from K ′ as
follows: if a clique C in K ′ contains the vertex ui, then we include vi to C to
obtain a k-clique. It is clear that K∗ is a feasible solution to G for the minimum
clique problem. Then we have

w(K) = w(K∗) = w′(K ′) + w(Fk)

≤ 1
c
w′(G′) + w(Fk)

=
1
c
(

∑

e/∈[U1,Uk]

w(e)) + w(Fk)

≤ 1
c
(

∑

e/∈[U1,Uk]

w(e)) +
1
c
(

∑

e∈[U1,Uk]

w(e))

=
1
c
w(G).

For the second part of the theorem, we have that w(X) = w′(C(G))−w(K) =
w(G) − w(K) ≥ w(G) − 1

cw(G) = c−1
c w(G).

As for the running time, we see that the main operation in Algorithm A1 is
finding a minimum weighted 1-factor which takes O(c3) steps (see [2] and [8]).
There are k−1 such operations, and other operations can be performed in O(c3)
steps, hence the above algorithm has time complexity O(kc3).

This completes the proof.

Algorithm A2. (For the minimum orthogonal partition
and the maximum clique problems)

Begin
1 Input G with color classes U1, . . . , Uk, where |U1| = c.
2 Set i = k, and Gi = G.
3 Repeat until i = 2.

Construct Gi
1,i = [U1, Ui].

Find a maximum weighted 1-factor Fi of Gi
1,i.

Relabel the vertices in Ui so that Fi = {v1u
i
1, . . . , vlu

i
l}.

Construct a merge Gi
1(i) from Gi along with Fi.

Set i to i − 1, Gi = Gi
1(i).

4 Find a maximum weighted 1-factor F2 of G2.
5 Let V1 = {v1, u

2
1, u

3
1, . . . , u

k1
1 }, . . . , Vc = {vc, u

2
c , u

3
c , . . . , u

kc
c }.

Output K = G[V1] ∪ · · · ∪ G[Vc] and X = G − E(K).
End.

Similarly, we can prove the following:

G. He et al., Approximation algorithms , JGAA, 4(2) 1–11 (2000) 6

Theorem 2 Let G be an edge weighted complete k-partite graph with c vertices
in each part. Algorithm A2 computes in O(kc3) time an approximation solution
K for the maximum disjoint k-clique problem satisfying

w(K) ≥ 1
c
w(G).

If G is a c-way k-colored edge weighted graph, then the subgraph X con-
structed by Algorithm A2 is an orthogonal solution for the minimum orthogonal
partition problem with w(X) ≤ c−1

c w(G).

We say that an algorithm A is a δ-approximation algorithm for a problem
P if there is a number δ such that for every instance I of P, the approximate
solution SA(I) given by A is related to the exact solution on S(I) by

|SA(I) − S(I)
S(I)

| ≤ δ.

It is desirable to design approximation algorithm with a small δ.

Theorem 3 Algorithm A1 is a 1
c -approximation algorithm for the maximum

orthogonal partition problem.

Proof: Given a c-way k-colored edge weighted graph G, let X∗ be an opti-
mum solution and X be a solution obtained by Algorithm A1 for the maxi-
mum orthogonal partition problem. Then w(X∗) ≥ w(X) ≥ c−1

c w(G). Hence
w(X)
w(X∗) ≥ w(X)

w(G) ≥ c−1
c , and 0 ≤ 1 − w(X)

w(X∗) ≤ 1 − c−1
c = 1

c .

Remark 4 We note that Algorithm A1 is significant when c is large.

Similarly, we can prove the following.

Theorem 5 Algorithm A2 is a c−1
c -approximation algorithm for the maximum

k-clique problem.

Remark 6 We point out that if G is a complete k-partite graph with c vertices
in each part and with constant weight for each edge, then both of our algorithms
produce optimum solutions. One natural question is, for which input graphs,
will Algorithms A1 and A2 generate optimum solutions?

To investigate the above question, let G be an edge weighted c-way k-colored
graph with color classes {Ui : i = 1, . . . , k}. We construct a new graph T (G)
from G with vertex set {Ui : i = 1, . . . , k} and UiUj is an edge of T (G) if and
only if there is an edge in G which joins Ui and Uj . In other words, T (G)
is obtained from G by shrinking each of Ui into one vertex and deleting the
multiple edges.

We easily have the following observation.

G. He et al., Approximation algorithms , JGAA, 4(2) 1–11 (2000) 7

Theorem 7 Let G = (V, E, w) be a c-way k-colored edge weighted graph with
color classes U1, . . . , Uk. If T (G) is acyclic, then we can obtain optimum solu-
tions for the maximum and minimum orthogonal partition problems using Al-
gorithms A1 and A2.

Proof: We only prove the case of minimum orthogonal partition. We note that
if T (G) is acyclic, then in each merge operation of Algorithm A2, there are no
multiple edges. The matching produced in step 4 in Algorithm A2 is actually a
maximum matching between Ui and Ui+1 in G for some i. Let X be a solution
produced by Algorithm A2 with the orthogonal partition V1, V2, . . . , Vc and let
X∗ be an optimum solution to the problem. Then K = C(G) − E(X) is the
solution for the minimum clique problem. Let K∗ = C(G) − E(X∗). Then
K∗ ∩ [Ui, Ui+1] is a matching, hence w(K∗ ∩ [Ui, Ui+1]) ≤ w(K ∩ [Ui, Ui+1]).
Therefore, w(K∗) =

∑
i w(K∗ ∩ [Ui, Ui+1]) ≤

∑
i w(K ∩ [Ui, Ui+1]) = w(K). It

follows that w(X) = w(G)−w(K) ≤ w(G)−w(K∗) = w(X∗). Therefore, w(X)
is an optimum solution.

3 Experimental Comparison

In this section, we compare Algorithms A1 and A2 with some simple algorithms
when k is small. We first describe two simple algorithms for the four partition
problems when k = 3. The input consists of an edge weighted graph G and a
list of color classes U1, U2, U3.

Random Selection Algorithm

This procedure randomly picks three vertices v1, v2 and v3 from U1, U2 and
U3 respectively to form a triangle (3-clique). Remove this triangle and repeat
this procedure until a set of c vertex-disjoint 3-cliques is found.

The Cubic (3-clique) Greedy Algorithm

This algorithm searches for an optimum (maximum or minimum) weighted
triangle containing a starting vertex v1 ∈ U1. If v1, v2, v3 are the vertices of
this triangle, we remove them from the sets: U1 , U2 and U3, and apply the
algorithm again.

Our comparison results are based on 1000 tests of graphs with 30 vertices
in each set and with integer weights uniformly in the range from 0 to 9. The
tables below give the mean values and the standard deviations of the 1000
approximation solutions obtained by the algorithms.

Method Random Greedy Algorithm A1
Mean 405 218 60

Standard Deviation 26 18 6.6
Comparison results for minimum 3-cliques

G. He et al., Approximation algorithms , JGAA, 4(2) 1–11 (2000) 8

Method Random Greedy Algorithm A2
Mean 405 736 749

Standard Deviation 26 8.8 6.6
Comparison results for maximum 3-cliques

We see that Cubic Greedy Algorithms are better than the Random select
Algorithm and Algorithms A1 and A2 are better than Cubic Greedy Algorithms.

In the following we will compare only Algorithm A2 with the (4-clique)
Greedy Algorithm when k = 4. The results are also based on 1000 trials of
graphs with 100 vertices in each set and with integer weights uniformly in the
range from 1 to 100.

Method Greedy Algorithm A2
Mean 41806 52801

Standard Deviation 391 173
Comparison results for maximum 4-cliques

To summarize, Algorithms A1 and A2 appear to be the better performers
both in terms of speed and quality of the solution. We are interested in study-
ing how often these methods find an optimum solution. By looking at some
smaller instances G of the problem (where we could find an optimum solution
by exhaustive searching) with k = 3, c = 5 (k is the number of sets and c is
the number of vertices in each set) and uniform weight, the matching method
found an optimum solution about 40% of the time and the cubic greedy method
found it about 30% of the time.

4 How good are these algorithms?

We consider the following decision problem.
Problem Let W be any positive integer and G an edge weighted c-way k-colored
graph with color classes U1, . . . , Uk. Is there an orthogonal subgraph X of G such
that w(X) ≥ W (w(X) ≤ W)?

We note that these two problems are actually other versions of the optimum
orthogonal partition problems. Therefore, they are NP-complete. We recall that
our algorithms A1 (A2) can produce an approximate solution X with w(X) ≥
c−1

c w(G) (w(X) ≤ c−1
c w(G)). The following theorem shows that there is no

efficient algorithm for finding an approximation solution X with a better ratio
w(X)
w(G) .

Theorem 8 For every real 0 < ε < 1
c , it is NP-complete to decide whether a

given edge weighted, c-way, k-colored graph G = (V, E, w) has an orthogonal
subgraph X such that w(X) ≥ (c−1

c + ε)w(G), (or w(C) ≤ (c−1
c − ε)w(G)).

Proof: We will prove the case for maximum orthogonal partition problem only.
For each pair of input instance G and W in the decision problem, we are going to

G. He et al., Approximation algorithms , JGAA, 4(2) 1–11 (2000) 9

construct, in polynomial time, a c-way k′-colored graph G′ with weight function
w′ such that w(X) ≥ W is equivalent to w′(X ′) ≥ (c−1

c + ε)w′(G′), where X ′ is
an orthogonal subgraph of G′.

(I) If W < d(c−1
c + ε)w(G)e, then add in one pendant edge to G with

weight W ′ to obtain G′ (the new vertex forms one color class in G′), where W ′

satisfies d(c−1
c + ε)(w(G) + W ′)e − W ′ = W (the smallest integer W ′ satisfying

W+W ′
w(G)+W ′ ≥ c−1

c + ε will do). Let the weight function on E(G′) be w′. Then
w′(G′) = w(G) + W ′ and w′(X ′) = w(X) + W ′. Therefore,

w′(X ′) ≥ d(c − 1
c

+ ε)w′(G′)e

is equivalent to

w(X) + W ′ ≥ d(n − 1
n

+ ε)(w(G) + W ′)e,

which is equivalent to

w(X) ≥ d(c − 1
c

+ ε)(w(G) + W ′)e − W ′ = W.

(II) Let W > d(c−1
c +ε)w(G)e. We note that there exists a c-way, W -colored,

edge weighted graph (H, w1) such that w1(XH) = c−1
c w1(H), where XH is an

orthogonal subgraph with the maximum weight (the complete W -partite graph
with c-vertices in each part and with a constant weight for each edge will do).
Now we choose such a graph H satisfying (let the weight of w1(H) be big
enough)

W +
c − 1

c
w1(H) ≤ d(c − 1

c
+ ε)(w(G) + w1(H))e.

Two cases arise:
Case (a). If W = d(c−1

c +ε)(w(G)+w1(H))e− c−1
c w1(H), then let G′ be the

disjoint union of G and H . The weight function w′ of G′ is defined as follows:
w′(e) = w(e) if e ∈ E(G) and w′(e) = w1(e) if e ∈ E(H). It is easy to see that
w′(G′) = w(G) + w1(H), w′(X ′) = w(X) + c−1

c w1(H). Therefore,

w′(X ′) ≥ d(c − 1
c

+ ε)w′(G′)e,

which is equivalent to

w(C) +
c − 1

c
w1(H) ≥ d(c − 1

c
+ ε)(w(G) + w1(H))e,

which is equivalent to

w(C) ≥ d(c − 1
c

+ ε)(w(G) + w1(H))e − c − 1
c

w1(H) = W.

G. He et al., Approximation algorithms , JGAA, 4(2) 1–11 (2000) 10

Case (b). If Case (a) does not hold, then WH = W + c−1
c w(H) < d(c−1

c +
ε)(w(G) + w1(H))e. Let G′ and w′ be defined as in Case (a). Since w′(G′) =
w(G) + w1(H), w′(X ′) = w(X) + c−1

c w1(H), it follows that

WH < d(c − 1
c

+ ε)(w′(G′))e.

We modify G′ to obtain G′′ by the method used in (I) [that is, we add in one
pendant edge with weight W ′

H to G′ (the weight W ′
H is determined by the

method in (I)), the resulting graph is denoted by G
′′

and its weight function is
w′′]. Let X ′′ be an orthogonal subgraph of G′′. Then

w′′(X ′′) ≥ d(c − 1
c

+ ε)w′′(G′′)e

is equivalent to

w′(X ′) + W ′
H ≥ d(c − 1

c
+ ε)(w′(G′) + W ′

H)e,

which is equivalent to

w′(X ′) ≥ d(c − 1
c

+ ε)(w′(G′) + W ′
H)e − W ′

H = WH ,

which is equivalent to

w(X) +
c − 1

c
w1(H) ≥ W +

c − 1
c

w1(H),

which is equivalent to
w(X) ≥ W.

In any case, we have constructed, in polynomial time, a c-way k′-colored
graph G′ with the weight function w′ such that w(X) ≥ W is equivalent to
w′(X ′) ≥ (c−1

c + ε)w′(G′), where X ′ is an orthogonal subgraph of G′. There-
fore, it is NP-complete to decide whether or not w(X) ≥ (c−1

c + ε)w(G). This
completes the proof.

5 Conclusion

We have provided efficient and deterministic algorithms for four graph partition
problems. Our algorithms produce good approximate solutions, both in theory,
as shown by our mathematical analysis, and in practice, as confirmed by our
experimental results. We have also shown that there is no efficient algorithm is
likely to yield a better ratio of the weight of the approximation solution over
the weight of the input graph.

G. He et al., Approximation algorithms , JGAA, 4(2) 1–11 (2000) 11

Acknowledgments

We thank the anonymous referees for their valuable comments.

References

[1] U. Banerjee, R. Eigenmann, A. Nicolau and D. A. Padua, Automatic
Program Parallelization, Proceedings of the IEEE, Vol. 81, No. 2, 1993,
pp. 211–243.

[2] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, Else-
vier, New York, 1976.

[3] J. Exoo, J. Jiang and C. Zhao, An Application of Multi-Dimensional
Matching to Logistics, Utilitas Mathematica 57(2000), pp. 227–235.

[4] M. Gupta and P. Banerjee, Demonstration of Automatic Data Partitioning
Techniques for Parallelizing Compilers on Multicomputers, IEEE Trans-
actions on Parallel and Distributed Systems, No. 2, 3 (1992), pp. 179–193.

[5] K. Knoble, J. Lukas and G. L. Steele, Data Optimization, Allocation of
Arrays to Reduce Communication in SIMD Machines, Journal of Parallel
and Distributed Computing, 8 (1990), pp., 102–118.

[6] J. Li and M. Chen, Index Domain Alignment: Minimizing Cost of Cross-
reference between Distributed Arrays, in Proceedings of the third Sym-
posium on Frontiers of Massively Parallel Computation, College Park,
October, 1990, pp. 424–433.

[7] G. He, Jiping Liu and Cheng Zhao, Extremal n-colorable Subgraphs with
Index Domain Alignment Restrictions, Submitted for publication.

[8] L. Lovász and M. Plummer, Matching Theory, Annals of Discrete Math-
ematics 29, North-Holland, 1986.

[9] J. Ramanujam and P. Sadayappan, Compile-Time Techniques for
Data Distribution Memory Machines, IEEE Transactions on Parallel and
Distributed Systems, No.4, 2 (1991), pp. 472–483.

[10] M. Zhou and C. Zhao, Quality Planning in Manufacturing Systems, In
the Proceedings, 8th Annual Industrial Engineering Research Conference
(IERC), May 23–26, 1999, Pheonix, AZ.

