
Journal of Graph Algorithms and Applications
http://jgaa.info/ vol. 14, no. 2, pp. 287–306 (2010)

Computing All Best Swaps for

Minimum-Stretch Tree Spanners

Shantanu Das 1 Beat Gfeller 2 Peter Widmayer 3

1LIF, Aix-Marseille University, France.
2IBM Research, Zurich, Switzerland

3Institute of Theoretical Computer Science, ETH Zurich, Switzerland

Abstract

In a densely connected communication network, represented by a graph
G with non-negative edge weights, it is often advantageous to route all
communication on a sparse spanning subnetwork, typically a spanning tree
of G. We consider a tree spanner T of G which guarantees that for any two
nodes, their distance in T is at most k times their distance in G, where k,
called the stretch, is as small as possible. When an edge of the communi-
cation tree T fails, network functionality may be restored by re-connecting
the two separated parts of the tree with a swap edge. In situations where
the failure can be repaired rapidly, such a quick fix is preferred over the re-
computation of an entirely new minimum-stretch tree, because it is much
closer to the previous solution and hence requires far fewer adjustments in
the routing scheme. We are therefore interested in the problem of finding
for any possibly failing edge in the spanner T , a best swap edge that min-
imizes the stretch of the new tree. We show how all these best swap edges
can be computed in total time O(m2 log n) in graphs with arbitrary non-
negative edge weights. For graphs with unit weight edges, we present an
O(n3) time algorithm. Furthermore, we present a distributed algorithm
for computing the best swap for each edge in the tree spanner.

Submitted:

September 2009
Reviewed:

April 2010
Accepted:

April 2010
Final:

April 2010
Published:

June 2010

Article type:

Regular paper
Communicated by:

U. Brandes

A preliminary version of this paper was presented at the 19th International Symposium on

Algorithms and Computation (ISAAC 2008) [3].

This work was partially supported by the National Competence Center in Research on Mobile

Information and Communication Systems NCCR-MICS, a center supported by the Swiss NSF

under grant number 5005 – 67322, and by the Swiss SBF under contract no. C05.0047 within

COST-295 (DYNAMO) of the European Union.

E-mail addresses: shantanu.das@acm.org (Shantanu Das) bgf@zurich.ibm.com (Beat Gfeller)

widmayer@inf.ethz.ch (Peter Widmayer)

mailto:shantanu.das@acm.org
mailto:bgf@zurich.ibm.com
mailto:widmayer@inf.ethz.ch

288 S. Das et al. Computing All Best Swaps for Spanners

1 Introduction

1.1 Minimum Stretch Tree Spanners

In a typical communication network, there are often more links (i.e., commu-
nication channels) available than what is useful for providing most services.
The presence of these additional links makes it possible to deal with failures
in the network. For routing efficiency, it is beneficial to maintain a connected
sub-network (i.e. a subset of all available links) and route all communication
through this subnet. We represent the original network as a connected, undi-
rected graph G = (V,E), and the subnet as a spanning tree T of the graph G.
Instead of using any arbitrary spanning tree of G, we prefer one which has cer-
tain desirable properties that is tailored towards the computations performed.
In this paper, we measure the overhead for communication as a result of using
the subnet T instead of the original network G as the largest multiplicative
increase in distance that any pair of nodes experiences. Thus, we use a tree
T which minimizes the maximum stretch between any two nodes in T , where
the stretch between nodes a, b ∈ T is the ratio of their distance in T over their
distance in G. Such a tree is called an optimal tree spanner of G. Tree spanners
are used for routing in communication networks because they achieve a good
tradeoff between the lengths of communication paths and the sizes of routing
tables needed [16].

A critical problem with which we are confronted in this context is what
happens when one of the links, say edge e ∈ T , fails and thereby disconnects
the tree. There are at least two possible (and extreme) solutions to this: (1)
recomputing an entirely new optimal tree spanner for G − e, or (2) replacing
just the failing edge e by another edge (called a swap edge) that connects the
two disconnected parts of T − e in a best possible way, i.e., so that the stretch
of the resulting tree is as small as possible. For temporary network failures, the
second approach is much better suited than the first, because it is more efficient
to use a swap edge for the duration of the failure, so that we can quickly revert
back to the original spanner T once the fault has been repaired. Furthermore,
this approach needs only a very small adjustment of routing tables and has
therefore attracted research attention in recent years under the name of “on-
the-fly rerouting” [7, 9, 11]. As an aside, note also that an entirely new optimal
tree spanner might not only require a total replacement of all routing table
entries, but is in addition NP-hard to find.

When choosing a best possible swap edge for a failing edge e, it is natural
to use the same criterion as before, i.e. to minimize the stretch of the resulting
tree. We always measure the stretch of a tree with respect to distances in the
original graph G, and not with respect to distances in the fault-free subgraph
G− e. This is due to two different reasons: First, this definition is more stable
in the sense that the stretch of a tree does not depend on the failing edge that it
replaces. Second, measuring the stretch with respect to distances in G−e would
have the unnatural effect that for some failing edges, the stretch of the swap
tree might actually be lower than the stretch of the optimal tree spanner of G.

JGAA, 14(2) 287–306 (2010) 289

Interestingly enough, by merely going for the best swap, for unweighted graphs
we are guaranteed to find a tree that is not all that bad even in comparison
with an entirely new optimal tree spanner: We show that the stretch of a new
tree T ′ obtained by adding a best swap edge is at most twice that of an optimal
tree spanner of G − e (again, measured w.r.t. distances in G). In order to
quickly recover from an arbitrary edge failure, we precompute the best swap
edge for each possible failing edge. The problem we consider in this paper is
that of efficiently computing for every edge in the tree T a best swap edge. This
All-Best-Swaps (ABS) problem has been studied for the cases when the tree T
is a minimum spanning tree (MST), a shortest paths tree (SPT), or a minimum
diameter spanning tree (MDST), with the corresponding different optimization
criteria.

Our paper is the first to study the problem of finding all best swaps for an
optimal tree spanner. This problem appears to be considerably more difficult
than the previously studied ones: In all of the latter, one can evaluate a tree
obtained by replacing a failing edge with a swap edge candidate in constant time,
after some suitable preprocessing. However, for evaluating the stretch of such a
tree, one needs to consider (at least implicitly) the stretch of each pair of nodes
in the graph, which seems impossible to do in constant time, unless an expensive
preprocessing step is used. Furthermore, in the previously studied problems, the
quality of a given swap edge could be described somewhat independently of the
particular failing edge they are going to replace. Again, this is no longer possible
when evaluating swap edges for tree spanners. For the above reasons, none of
the techniques used in earlier studies are directly applicable to our problem.

1.2 Our Contributions.

We first present and analyze a brute-force algorithm for solving the problem in
Section 2.2. This algorithm requires O(m2n) time for a graph having n nodes
and m edges. In Section 3, we describe a more efficient algorithm that reduces
the time complexity to O(m2 logn) and requires O(m) space. We also present
an O(n3) time and O(n2) space solution for unweighted graphs in Section 4.
In Section 5, we show how to compute all the best swaps of a tree spanner in
a distributed fashion, where initially no node has complete knowledge about
the network topology. Our distributed algorithm solves the problem with a
communication cost of O(m ·D+n logn) messages of size O(log2 n) bits, where
D is the diameter of T . Finally, in Section 6 we compare our approach of
swapping faulty edges with the alternative of recomputing a new tree spanner
for the graph excluding the faulty edge.

1.3 Related Work.

The concept of graph spanners was introduced by Peleg and Ullman [15] who
used it to construct good synchronizers for communication networks. Later,
Peleg and Upfal [16] showed that spanners are useful as subnets for routing as
they optimize both the route lengths and the space required for storing routing

290 S. Das et al. Computing All Best Swaps for Spanners

information. Graph spanners (and in particular sparse spanners) are useful
in many applications such as designing communication networks, distributed
systems, parallel computers and also in motion planning [2].

The problem of finding a tree spanner that minimizes the maximum stretch,
called the MMST problem, was shown to be NP-hard [2]. It can be approxi-
mated withing a factor of O(log n) in unweighted graphs [6].

As mentioned before, the ABS problem has been studied earlier for different
optimization criteria, where the original tree is either a minimum spanning tree
(MST) or a shortest paths tree (SPT) or a minimum diameter spanning tree
(MDST). For MSTs, finding all best swap edges is closely related to sensitivity
analysis: The weight of the best swap for a tree edge e is equal to the thresh-
old up to which the weight of e can be increased without forcing it out of the
MST. Using this connection, in a model where edge weights are atomic, but
side-computations on a RAM are allowed, all the best swap edges can be found
in O(m) expected time using a randomized algorithm given by Dixon et al. [5].
Furthermore, they present a deterministic algorithm with asymptotically opti-
mal running time, but whose exact running time cannot be easily determined.
The best known explicit bound for deterministic algorithms is O(m logα(m,n)),
where, α(m,n) denotes a functional inverse of the Ackermann function [17].

When the original tree is a SPT and the objective is minimizing the (maxi-
mum or total) distance from a fixed root, there are several possible definitions
for the best swap edge. For many of these definitions, the ABS problem could be
solved in O(mα(m,n)) time [13]. For another variant, an O(mα(m,m) log2 n)
time algorithm was presented in a follow-up paper [1] of [4].

While the above solutions are centralized, there also exist distributed solu-
tions for computing best swaps in both SPTs [9] and MSTs [8], where the effi-
ciency is measured in terms of the communication cost. For MSTs, a stronger
version of the problem was studied, where the failures were assumed to occur at
the nodes of the network, thereby disabling several edges at the same time [8].

In the case of MDSTs, there exists a centralized solution [10] that requires
O(m logn) time and O(m) space. The distributed version of the problem has
been solved [11] using O(n∗+m) messages of constant size, where n∗ is the size
of the transitive closure of the tree, when the edges are directed towards the
node initiating the computation.

2 Computing All Best Swaps

2.1 Some Definitions and Properties

We use the following definitions and notations throughout this paper. The com-
munication network is considered to be a 2-edge-connected, undirected graph
G = (V,E), with n = |V | nodes and m = |E| edges. Each edge e ∈ E has a
non-negative real weight denoted by |e|. We assume that the weight of an edge
is in the range [0,M] where M is at most polynomial in n, i.e., we do not allow

JGAA, 14(2) 287–306 (2010) 291

arbitrarily large edge-weights1.

For any path P = 〈e1, . . . , er〉 in the graph G, the length |P| of the path is
the sum of the weights of the edges e1, . . . , er. The distance dH(x, y) between
any two nodes x, y in a subgraph H of G is the length of a shortest path in H
between x and y.

Definition 1 For any two nodes x, y ∈ V (G), the stretch of (x,y) in a spanning
tree T of G is the ratio given by

StretchT (x, y) := dT (x, y)/dG(x, y).

The stretch of the spanning tree T is the maximum stretch for any pair of nodes
in T , i.e.

Stretch(T) := max
x,y∈V

{dT (x, y)/dG(x, y)}.

An optimal tree spanner is a spanning tree with minimum stretch.

If the given spanning tree T = (V,ET) is rooted at some fixed node u, then
for each node x 6= u, we denote the parent of x by p(x) and the set of its children
by C(x). Furthermore, Tx denotes the subtree of T rooted at x, including x.

The removal of any edge e = (x, y) from T partitions the spanning tree
into two disjoint trees T x\y (the subtree containing x but not y) and T y\x (the
subtree containing y but not x). A swap edge f for e is any edge in E\ET

that (re-)connects T x\y and T y\x, i.e., for which Te/f := (V,ET \{e}∪ {f}) is a
spanning tree of G−e := (V,E\{e}). Let S(e) be the set of swap edges for e. A
best swap edge for e is any edge f ∈ S(e) for which the stretch of Te/f , defined
as maxx,y∈V {dTe/f

(x, y)/dG(x, y)}, is minimum. Any edge f ∈ E\ET is called
a candidate swap edge (or non-tree edge), as it is a swap edge for at least one
edge in T .

Definition 2 The All-Best-Swaps problem for a given graph G and a given
optimal tree spanner T of G consists of finding for every edge e ∈ ET a best
swap edge.

When we replace an edge e = (x, y) in the optimal tree spanner T by a swap
edge f , the stretch of a pair of nodes (a, b) remains the same in the new tree
Te/f if either both a and b ∈ T x\y or, both a, b ∈ T y\x. The following property
of tree spanners, follows from a known result (Lemma 5.1 in [6]).

Property 1 Let G = (V,E) be any weighted, undirected graph and let T be
a spanning tree G. For any pair of nodes a, b ∈ V , there exists an edge f =
(x, y) ∈ E such that |f | = dG(x, y) and StretchT (x, y) ≥ StretchT (a, b).

1The size of the edge weights is important only for the distributed version of the problem
(see Section 5) where the communication between processors must be kept small.

292 S. Das et al. Computing All Best Swaps for Spanners

Proof: If (a, b) is an edge of G whose weight is at most the length of any other
path from a to b, then there is nothing to prove. Otherwise, consider some
shortest path between a and b in G that consists of the edges e1, e2, . . . ek where
ei = (xi, yi), x1 = a, xi+1 = yi, ∀i, 1 ≤ i < k and yk = b. Note that each edge
ei in the path satisfies the condition that |ei| = dG(xi, yi) (otherwise we can
replace that edge to obtain a shorter path). We have

dT (a, b)

dG(a, b)
≤

∑

i dT (xi, yi)
∑

i |ei|
=

∑

i StretchT (xi, yi) · |ei|
∑

i |ei|

Thus, the stretch of (a, b) is not larger than the weighted average of the
stretches of the pairs (xi, yi). Hence it must be true that for at least one such
i, StretchT (xi, yi) ≥ Stretch(a, b). This (xi, yi) pair corresponds to the edge
f ∈ E in the lemma. �

From the above discussion, it follows that for computing the stretch of a
swap tree, it is sufficient to consider the stretch of only those pairs of nodes
(x, y) where (x, y) ∈ E. Accordingly, we define the concept of relevant stretch
pairs, which will be used in the description of our algorithms:

Definition 3 Each pair of nodes a, b with (a, b) ∈ E is called a stretch pair. A
stretch pair g = (a, b) is said to be relevant for a given failing edge e if the path
from a to b in T contains the edge e (in other words, if g is also a swap edge
for e).

e

f

g

e

f

g

a

b

Figure 1: An example showing that minimizing detour length does not minimize
the stretch: On the left side, the 2-edge-connected graph G is shown, and on
the right side the given tree spanner with stretch 8 is shown. Assuming that
all edges have equal weight, the swap edge f minimizes the stretch to the value
9. However, the swap edge minimizing the detour length is g, which yields a
stretch of 10 (attained by the stretch pair (a, b)), worse than choosing swap edge
f .

2.2 Naive Approach

To compute the best swap edge for an edge e ∈ T , we need to compare the
Ω(m) possible candidate swap edges that are relevant for the failing edge e.

JGAA, 14(2) 287–306 (2010) 293

Unfortunately, there is no straightforward way of selecting the best among these
candidates without evaluating each possible candidate. A simple trick, such as
choosing the swap edge minimizing the detour around the failure, typicall does
not yield an optimal solution. For instance, see the counterexample shown
in Figure 1. This example can be generalized to obtain an arbitrarily large
difference between the stretch for the best swap f and the minimum detour
edge g.

We first consider the brute-force method for solving the All-Best-Swaps prob-
lem in a tree spanner. For each edge e of T , we can simply consider each relevant
swap edge f , compute the stretch of Te/f and select a swap edge with smallest
stretch as the best swap edge for e. Notice that there could be Ω(m) relevant
swap edges for each edge e ∈ T . Thus, the algorithm would iterate over Ω(nm)
pairs (e, f) of failing edges and corresponding relevant swap edges. The running
time of this approach clearly depends on how fast the stretch of a given tree Te/f

can be computed. Due to Property 1 we know that for computing the stretch of
Te/f , it is sufficient to consider only those stretch pairs (a, b) where a and b are
adjacent in G, as opposed to all O(n2) pairs of nodes in V . Thus the stretch of
the tree Te/f can be computed in O(m) time, if the stretch of each (a, b) ∈ E
can be computed in constant time. This can be done using some preprocessing
as explained below.

First, we obtain distances between all pairs of nodes in G in time O(nm +
n2 logn), using the standard “all-pairs shortest paths” algorithm. Next, we root
the tree T at an arbitrary node r and compute the “to-root” distance dT (r, v) for
each node v ∈ V (G), with a single preorder traversal of T . Finally, we construct
a data structure which provides the nearest common ancestor (nca) of any two
given nodes in constant time. Such a data structure can be computed in O(n)
time, for example using the method described in [12].

After the preprocessing, we consider each relevant stretch pair (u, v), i.e.
each (u, v) ∈ E\ET where u and v lie on different sides of the failing edge2. For
each such pair (u, v) we compute the distance in Te/f as

dTe/f
(u, v) = dT (u, p) + |f |+ dT (q, v),

where f = (p, q) and p lies on u’s side of the cut induced by e. Further, dT (u, p)
(and similarly dT (v, q)) is computed as

dT (u, p) = dT (u, nca(u, p)) + dT (p, nca(u, p)).

Lemma 1 After preprocessing in time O(mn + n2 logn), for any failing edge
e ∈ ET , swap edge f ∈ E\ET , and relevant stretch pair (u, v), the stretch of
(u, v) in Te/f can be computed in O(1) time.

Proof: Each of the five terms in the equations above can be computed in
constant time. Note that the distance in the tree T between any node u and
one of its ancestors, can be obtained as the absolute difference between the

2This can be checked using a “preorder/inverted preorder” labeling. For details, see e.g.
[9], Section 3.2.

294 S. Das et al. Computing All Best Swaps for Spanners

Algorithm 1: BestSwaps

for e ∈ T do
Current-Best(e) ←∞

for f = (u, v) ∈ E\T do
Assign indices to the nodes in G
Initialize Data Structure H
for ei ∈ PathT (u, v) do

Add to H stretch pairs in Starti
Remove from H stretch pairs in Endi
St(ei, f)← GetMax(H)
if St(ei, f) < Current-Best(ei) then

Update Current-Best(ei)

“to-root” distance of these two nodes (which can be looked up in the data
structure that was precomputed). Finally, to obtain the stretch of (u, v), we
divide dTe/f

(u, v) by their distance in G, which has already been precomputed.
�

To summarize, dTe/f
(u, v) and thus the stretch of (u, v) can be computed in

constant time, for each of the O(m) relevant stretch pairs, for a particular e and
f . This implies the following result:

Theorem 1 The All-Best-Swaps problem in a tree spanner can be solved in
O(nm2) time.

In the next few sections, we present some techniques to reduce this time com-
plexity.

3 A Faster Algorithm

f

e1

e2

ek
u = d1

v = dk+1

d2

d3

dk

T1

T2 T3

Tk

Tk+1

Figure 2: The cycle that a non-tree edge f forms with the given spanning tree.

In the following, we describe an algorithm which computes all best swap
edges of a tree spanner in O(m2 logn) time and O(m) space. The idea of the

JGAA, 14(2) 287–306 (2010) 295

algorithm (called BestSwaps) is the following. We consider each potential swap
edge f ∈ E\ET separately, focusing on the cycle which f = (u, v) forms with T
(see Figure 2). This cycle consists of the edges e1, e2, . . . ek which form a path
in T . We use the nodes of V which lie on the path in T from u = d1 to v = dk+1

to partition T into subtrees as follows. With each node di on this path, we
associate the subtree Ti, which consists of the connected component containing
di in the graph T \{e1, e2, . . . , ek}. For a given failing edge ei = (di, di+1) for
which f is a swap edge, the set of relevant stretch pairs contains all non-tree
edges where one endpoint lies in some subtree T1, . . . , Ti, and the other endpoint
lies in some subtree Ti+1, . . . , Tk+1. We assign to each node the index i of the
subtree Ti containing it. For any edge (a, b) ∈ E \ ET whose endpoints are a
relevant stretch pair for f , this defines an order of the endpoints: if a’s index is
smaller than the index of b, we say that a is the lower endpoint, and that b is
the upper endpoint. In order to evaluate f as a potential swap edge, we need to
compute the stretch for every relevant stretch pair with respect to f and some
failing edge ei. Note that for f = (u, v), the stretch of the pair a, b is given by
(dT (a, u)+ l(f)+dT (b, v))/dG(u, v), which is independent of the failing edge ei.

We consider the potential failing edges e1, e2, . . . , ek, in that order and eval-
uate f as a potential best swap with respect to each ei in turn. Observe the
following: If S(ei−1) is the set of relevant stretch pairs when considering f as
a swap for ei−1, then S(ei), the set of relevant stretch pairs when considering
f as a swap for ei, is S(ei) =

(

S(ei−1) ∪ Starti
)

\ Endi, where Starti is the
set of stretch pairs whose lower endpoint is di, and Endi is the set of stretch
pairs whose upper endpoint is di. Therefore, we store the set S(ei) in a data
structure H and update it as we move from ei to ei+1. To compute S(ei) from
S(ei−1), all stretch pairs that become relevant are added to H and all stretch
pairs that become irrelevant are deleted from H . The data structure H we use
to store the set S(ei) can be implemented as a heap where the priority of a
stretch pair (a, b) is defined by the stretch value StretchT (a, b). Notice that
this stretch is independent of the failing edge ei for a fixed swap edge f , and
therefore the priority of a stretch pair stored in the heap need never be changed.
The largest element in H yields the worst stretch pair for f replacing ei. We
simply check whether this value is smaller than the stretch of the current best
swap edge for ei (which we maintain in a separate data structure) and update
the current swap edge for ei if required. Once we have performed the above
process for every edge f ∈ E \ ET , we have obtained for each edge in T a best
swap edge. Hence:

Theorem 2 The algorithm BestSwaps computes all the best swap edges of a
tree spanner in O(m2 log n) time and using O(m) space.

Proof: We first show that the algorithm takes O(m2 logn) time. For each swap
edge f = (u, v) ∈ E \ ET , the algorithm does the following. First, it assigns to
each node z its index i, which denotes the subtree Ti in which it is contained, as
described above. Assigning these indices takes O(n) time. The non-tree edges
of the graph G are partitioned into sets Starti and Endi, corresponding to
nodes di in the path from u to v. This can be done in O(m) time. Further, for

296 S. Das et al. Computing All Best Swaps for Spanners

each pair (f, e) of a swap edge f and a failing edge e, the algorithm performs a
number of insertions and deletions3 on the heap H . For a fixed swap edge f and
all possible failing edges ei, any stretch pair is inserted at most once and deleted
at most once. Thus we require O(m) heap operations, i.e. O(m logm) time for
the process corresponding to each edge f ∈ E \ ET . Note that we also need
to compute the stretch of a stretch pair before inserting it, which however this
takes only constant time using Lemma 1. Thus, in total the algorithm requires
O(m2 logm) = O(m2 logn) time.

As for the space requirements, the heap data structure H requires O(m)
space for storing at most m elements. Storing the current best for each edge
e ∈ T requires O(n) space. �

4 An Algorithm for Unweighted Graphs

In this section we devote our attention to the special case of graphs with unit
weight edges (henceforth called unweighted graphs). For such graphs, we present
a dynamic programming algorithm for solving the ABS problem. The algorithm
computes the best swap edge for each of the n − 1 edges of T in a separate
computation, each requiring O(n2) time and O(n2) space. For each failing edge
e = (l, r), we root the two trees T l\r (for “left”) and T r\l (for “right”) of T−e at
the nodes l and r, respectively. Recall that the stretch of a swap edge f = (a, b)
is obtained at some stretch pair x, y, whose stretch is dTe/f

(x, y)/dG(x, y). In
unweighted graphs, dG(x, y) = 1 and hence the maximum stretch is obtained by
the stretch pair x, y for which dTe/f

(x, y) is maximum. Furthermore, for a, x ∈

T l\r and b, y ∈ T r\l we have dTe/f
(x, y) = dTe/f

(x, a) + |(a, b)| + dTe/f
(b, y) =

dT−e(x, a)+ |(x, y)|+dT−e(b, y). Therefore, the stretch of a swap edge f = (a, b)
is equal to the length of a longest simple path from a to b in G, using only edges
of T − e plus either exactly one candidate swap edge (x, y) ∈ E\ET , or the edge
e 4. In the following, we call paths of this nature the stretch paths of the node
pair a, b. In our approach, we compute the length of a longest stretch path for
each of the O(n2) node pairs a, b, even for those which are not linked by an
edge in G. It turns out that by partitioning the set of all stretch paths into
nine different types, and by computing the length of the longest stretch paths
of a particular type for each node pair a, b in a suitable order, all these lengths
can be computed in O(n2) time by dynamic programming. In the following, we
describe this approach in detail.

The type of a stretch path P depends on which of the edges incident to
a ∈ T l\r and b ∈ T r\l it includes. If P contains the edge (a, p(a)), we say it
goes up on the left side. If P contains an edge (a, q) for some q ∈ C(a), we say
it goes down on the left side. Furthermore, if P uses a candidate swap edge

3For the deletions, we assume that whenever an element is inserted into the heap, a pointer
to its position in the heap is stored, such that the element can later be found in constant time
and then removed in logarithmic time.

4We have to include e here because the stretch is measured with respect to G, not with
respect to G− e.

JGAA, 14(2) 287–306 (2010) 297

incident to a (and hence does not contain any other edge from T l\r), we say
it stays at a. The corresponding definitions hold for the right side of stretch
paths. Hence, we have the following nine types of paths (where the first word
corresponds to the left side of the path, and the second to the right side):
Stay-Stay, Stay-Down, Down-Stay, Stay-Up, Up-Stay, Down-Down, Down-Up,
Up-Down, Up-Up. For each TypeA-TypeB and each node pair a, b, we denote
by TypeA-TypeB(a, b) the length of a longest stretch path from a to b of type
TypeA-TypeB. If no stretch path from a to b of type TypeA-TypeB exists, then
we define TypeA-TypeB(a, b) := −∞.

We compute the longest path of each type with an inductive computation
(dynamic programming) requiring O(n2) time. To that end, we first explain
the necessary recursive equations. We start with Stay-Stay paths: for a given
node pair a, b, the only possible path of that type is composed of the edge (a, b)
(if present). Thus, we have

Stay-Stay(a, b) =

{

1 if (a, b) ∈ E\ET ∪ {e}
−∞ otherwise.

Clearly, Stay-Stay(a, b) for all a, b ∈ V can be obtained in O(n2) time.

It is easy to see that the length of a longest stretch path of type Stay-Down
satisfies the following recursion:

Stay-Down(a, b) = 1 + max
q∈C(b)

{

max{Stay-Stay(a, q), Stay-Down(a, q)}
}

.

Naturally, the symmetric equation holds for Down-Stay(a, b). Note that this
recursion can be translated into a dynamic program: as Stay-Stay(a, q) for any
a, q ∈ V is already available from the previous computation, we only need to
ensure that Stay-Down(a, q) is available for all q ∈ C(b) when Stay-Down(a, b)
is computed. This is guaranteed if we consider the pairs a, b in an order in
which the b’s occur in postorder. Thus, Stay-Down(a, b) and Down-Stay(a, b), ∀
a, b ∈ V can be computed in O(n2) time.

To compute all the Stay-Up paths, we need paths of type Stay-Stay as well
as of type Stay-Down. More precisely:

Stay-Up(a, b) = max
{

1 + Stay-Stay(a, p(b)), 1 + Stay-Up(a, p(b)),

2 + max
q∈C(p(b)),q 6=b

{Stay-Down(a, q), Stay-Stay(a, q)}
}

.

A symmetric equation holds for Up-Stay(a, b). Assuming that Stay-Stay and
Stay-Down have been previously computed for all pairs of nodes, we just need to
guarantee that Stay-Up(a, p(b)) is available, when computing Stay-Up(a,b). So,
in our dynamic programming algorithm, we consider the pairs a, b in an order
where the b’s occur in preorder. In this way, Stay-Up(a, b) and Up-Stay(a, b) ∀
a, b ∈ V can be computed in O(n2) time.

298 S. Das et al. Computing All Best Swaps for Spanners

Consider now a Down-Down stretch path from a to b (see Fig. 3(i)). We have:

Down-Down(a, b) = 1 +max
{

max
q∈C(a)

{Stay-Down(q, b), Down-Down(q, b)},

max
q′∈C(b)

{Down-Stay(a, q′), Down-Down(a, q′)}
}

.

In order to write a dynamic program corresponding to this recursion, the node
pairs a, b must be considered in an order such that all children of a node are
considered before the node itself (i.e. both the trees Tl and Tr are traversed in
postorder). In this way, Down-Down(a, b) for all a, b ∈ V can be computed in
O(n2) time.

a b

q1 q2 q3 q′
1

q′
2 q′

3

a b

q1 q2 q3

p(b)

p(p(b))

q′
1 q′

2

(i) (ii)

a bq1 q2

p(b)

p(p(b))

q′
1 q′

2

p(a)

p(p(a))

(iii)

Figure 3: Three of the possible stretch path types of the node pair a, b: (i)
Down-Down, (ii) Down-Up, (iii) Up-Up

JGAA, 14(2) 287–306 (2010) 299

Next, let us focus on the Down-Up paths (see Fig. 3(ii)). Here, we have5

Down-Up(a, b) = max
{

1 + Down-Stay(a, p(b)), 1 + Down-Up(a, p(b)),

2 + max
q′∈C(p(b)),q′ 6=b

{Down-Down(a, q′), Down-Stay(a, q′)}
}

.

We omit the equation for Up-Down(a, b), which is completely symmetric. By
considering all pairs a, b ∈ V such that the b’s occur in preorder, Down-Up(a, b)
and Up-Down(a, b) can be computed in O(n2) time.

Finally, the length of a longest Up-Up stretch path for a, b can be expressed
as (see Fig. 3(iii))

Up-Up(a, b) = max
{

1 + Up-Stay(a, p(b)), 1 + Up-Up(a, p(b)),

1 + Stay-Up(p(a), b), 1 + Up-Up(p(a), b),

2 + max
q′∈C(p(b)),q′ 6=b

{Up-Down(a, q′), Up-Stay(a, q′)},

2 + max
q∈C(p(a)),q 6=a

{Down-Up(q, b), Stay-Up(q, b)}
}

.

To obtain Up-Up(a, b) for all a, b ∈ V in O(n2) time, the pairs are considered in
an order in which both the a’s and the b’s occur in preorder.

Each of these dynamic programs fills an (n × n)-matrix, and thus needs
O(n2) space. As mentioned in the beginning, we repeat these computations for
each of the n − 1 edges e ∈ ET . Then, the algorithm computes, for each swap
edge candidate f = (u, v), the stretch of Te/f as

max
{

Stay-Stay(u, v), Stay-Down(u, v), Down-Stay(u, v),

Stay-Up(u, v), Up-Stay(u, v), Down-Down(u, v),

Down-Up(u, v), Up-Down(u, v), Up-Up(u, v)
}

,

in constant time. After each computation, we can delete the computed matrix
from memory, only storing the best swap edge found for the considered fail-
ing edge e. Thus, the total space complexity of our approach is O(n2). To
summarize, we have the following result:

Theorem 3 In unweighted graphs, all best swap edges of a tree spanner can be
computed in O(n3) time and O(n2) space.

5 A Distributed Solution

In this section, we consider the scenario where each node in the network initially
has only local information about the network. We are interested in a distributed

5In the preliminary version [3], some terms in the expressions for Down-Up(a, b) and
Up-Up(a, b) were inadvertently omitted.

300 S. Das et al. Computing All Best Swaps for Spanners

algorithm which enables each node to compute the information it requires to
modify its local routing table whenever any of the edges in T fails. More specif-
ically, a node v having incident edges e1, e2, . . . , et ∈ ET must compute the best
swap edges f1, f2, . . . , ft corresponding to these edges. Using this information,
the routing mechanism described in [11] can adjust routing quickly when a fail-
ing edge is replaced by its best swap edge. Briefly, this works as follows: Each
node of the tree is assigned a label as an identifier, and to each message, the
label of its destination is attached. For each edge e ∈ T , only its two endpoints
must know the best swap edge f for e (given by the labels of f ’s endpoints).
When edge e fails, its two endpoints will notice the error and propagate an er-
ror message along the two paths leading from the two endpoints of e to the two
endpoints of f . Any message which would normally use edge e will reach some
node on this path, and from there will be rerouted directly through the swap
f to its destination. More details of this rerouting mechanism are described in
[11].

For the following, we consider the original tree spanner T to be rooted at
some fixed node r, which is known to every node in the tree. Each node x ∈ V
also knows which of its incident edges connect to its children C(x) in T and
which edge connects to its parent p(x) in T . We now describe our algorithm for
the distributed computation of all best swaps.

During a preprocessing step, we assign labels to all nodes of the tree, which
encode information that is later used for the distributed swap edge computation.
In particular, given the labels of two nodes a, b ∈ G, it should be possible to
compute the distance dT (a, b) as a function of the labels of a and b. There
exists such a distance labeling for trees, in which the label l(x) assigned to a
node x consists of O(log2 n) bits (see [14], Section 19.2, for example). Moreover,
this labeling can be easily computed in a distributed fashion using O(n log n)
messages of size O(log n) bits. At the end of the label computation, neighboring
nodes in G can exchange label information using at most 2mmessages. After the
preprocessing step which requires O(m + n logn) messages, each node v knows
the weight of each incident edge f = (v, u) and the labels of the endpoints of f .

Each node x 6= r in the tree is responsible for computing the best swap edge
for the tree edge e = (x, p(x)). To that end, it must know the set of all potential
swap edges for e, as well as the set of relevant stretch pairs for these swap edges.
Note that these two sets are identical, and consist of exactly all those non-tree
edges where one endpoint lies in Tx and the other endpoint lies in T \Tx. We
denote this set of edges by Start(T, x). Each edge f = (a, b) ∈ Start(T, x) is
represented by the tuple (l(a), l(b), |(a, b)|). We now show how the best swap
edge for e can be computed using the information contained in Start(T, x).

For any potential swap edge f = (u, v) for e, and a relevant stretch pair
(a, b), we have StretchTe/f

(a, b) := dTe/f
(a, b)/dG(a, b). However, due to Prop-

erty 1, for computing the stretch of Te/f , it is sufficient to measure the stretch
of a, b by dTe/f

(a, b)/|(a, b)|. Note that this does not decrease the value of
stretch for the worst stretch pair. Thus, if we take the maximum value of
Stretch(dTe/f

(a, b)) over all stretch pairs (a, b) ∈ Start(T, x), we get the correct

JGAA, 14(2) 287–306 (2010) 301

value of Stretch(Te/f).

Assuming w.l.o.g. that a, u ∈ Tx, we have:

dTe/f
(a, b) = dT (u, a) + |(a, b)|+ dT (b, v)

As mentioned before, the value of dT (u, a) (respectively dT (b, v)) can be com-
puted from the labels l(u) and l(a) (resp. l(b) and l(v)). Thus, given the list
of edges Start(T, x), each node x can locally compute the stretch of each swap
candidate f for e = (x, p(x)), and thus obtains a best swap edge. The only part
of the algorithm that remains to be described is the computation of Start(T, x)
at node x.

We can compute the set Start(T, x) at each node x, using the convergecast
technique on the tree, propagating information from the leaves of T up to the
root, along the edges of T . For each leaf node xl ∈ T , the set Start(T, xl)
contains exactly all non-tree edges incident to xl (and this information is already
available at node xl). An internal node xi ∈ T receives the set Start(T, y) from
each child y, and combines this information to compute the set Start(T, xi) as
follows:

Start(T, xi) = CS(xi) ∪ {(xi, v) ∈ E \ET : v ∈ V }, where

CS(xi) =
⋃

y∈C(xi)

(Start(T, y) \ {(a, b) ∈ Start(T, y) : nca(a, b) = xi}).

If the two endpoints of an edge f = (a, b) have node x as their nearest
common ancestor, then such an edge appears in two of the sets received by
node x from its children. Thus, node x can detect such edges and remove them
from the list. Node x also adds all its incident non-tree edges to the list. Once
the list Start(T, x) has been computed at node x, this list is sent to p(x).

During the algorithm, the only information exchanged between the nodes
is the list of candidate swap edges. Further, the information about each swap
edge f = (u, v) travels only along the path in T from u to v. This accounts
for at most (m− n+ 1)D messages, where D is the diameter of the tree. Each
message has a size proportional to the size of the node labels and edge weights.
So the overall communication complexity of our algorithm is O(m ·D+n logn)
messages, each of size O(log2 n) bits6.

6 Swapping versus Recomputing

In this section, we investigate how a best swap tree compares with a newly
computed optimal tree spanner of G− e, with respect to the maximum stretch.
We show that at least for unweighted graphs, the stretch is at most twice as
large in the swap tree as in the tree spanner.

6Note that the preliminary version [3] claimed a different bound which, however, is not
guaranteed by our algorithm.

302 S. Das et al. Computing All Best Swaps for Spanners

Lemma 2 For any failing edge e of an optimal tree spanner of an unweighted
graph G = (V,E), the maximum stretch of the swap tree, measured w.r.t. dis-
tances in G, is at most two times larger than the stretch of an optimal tree
spanner of G− e. The bound of two is tight.

Proof: Let T be the optimal tree spanner of G, let k be the maximum stretch
of T , and let T ′ be the best swap tree when e = (u, v) fails. Let (a, b) be a
stretch pair for which the stretch with respect to T ′ is maximum, i.e.

(a, b) = arg max
(i,j)∈E

dT ′(i, j)

dG(i, j)
.

Further, let (u′, v′) be the swap edge for e in T ′. Since (a, b), (u′, v′) ∈ E, we
know that dG(a, b) = dG(u

′, v′) = 1. Notice that the path from a to b in T ′ can
be obtained as a subset of the edges from the path between a and b in T , the
path between u′ and v′ in T , and the new edge (u′, v′). In other words, we have
an upper bound on the distance dT ′(a, b)

dT ′(a, b) ≤ dT (a, b)− 2|(u, v)|+ dT (u
′, v′) + |(u′, v′)|

This implies,

dT ′(a, b)

dG(a, b)
≤

dT (a, b)− 2|(u, v)|+ dT (u
′, v′) + |(u′, v′)|

dG(a, b)

≤
dT (a, b)

dG(a, b)
+

dT (u
′, v′)

dG(a, b)
− 1

≤ k +
dT (u

′, v′)

dG(u′, v′)
≤ 2k.

For any other spanning tree of G (including the optimal spanner of G − e),
the stretch must be at least k, and hence the result follows. An example that
achieves the bound of two is shown in Figure 4. �

7 Conclusions

The technique of “on-the-fly rerouting”, where faulty edges in the routing tree
are immediately replaced by the best available swap edge, has received a lot of
attention in recent years. For the simple cases where the routing tree is either
a minimum spanning tree (MST), a shortest path tree (SPT) or a minimum
diameter spanning tree (MDST), the replacements for all possible failures can be
computed together in a single efficient precomputation. However, the problem
becomes more challenging if the original tree is a optimal tree spanner and the
objective is to minimize the stretch factor in the resulting swap tree. For this
case, we solved the All-Best-Swaps problem using O(m2 logn) time and O(m)
space for weighted graphs and O(n3) time and O(n2) space for unweighted

JGAA, 14(2) 287–306 (2010) 303

optimum tree spanner for G

best swap tree for G − e optimum tree spanner for G − e
stretch = n − 1 stretch = n/2

stretch = n/2the graph G

e e

≈ n/4 nodes

≈ n/4 nodes

f f

Figure 4: An example of a graph where the stretch of the best swap tree is two
times worse than the best newly computed tree spanner.

304 S. Das et al. Computing All Best Swaps for Spanners

graphs, where n and m are respectively the number of nodes and edges in the
graph. We also showed how to solve the problem in a distributed fashion such
that each node in the network obtains information about the best swap edges
corresponding to each of its incident tree edges. In the event of an edge failure,
this information can be used to quickly adjust the routing with local changes to
the routing tables.

JGAA, 14(2) 287–306 (2010) 305

References

[1] D. Bilò, L. Gualà, and G. Proietti. Finding All the Best Swap Edges
of a Routing Tree: a Faster Algorithm and an Effectiveness Analysis.
Manuscript, 2008.

[2] L. Cai and D. G. Corneil. Tree Spanners. SIAM J. Discr. Math., 8(3):359–
387, 1995.

[3] S. Das, B. Gfeller, and P. Widmayer. Computing Best Swaps in Optimal
Tree Spanners. In 19th International Symposium on Algorithms and Com-
putation (ISAAC), volume 5369 of LNCS, pages 716–727. Springer, 2008.

[4] A. Di Salvo and G. Proietti. Swapping a failing edge of a shortest paths tree
by minimizing the average stretch factor. Theor. Comput. Sci., 383(1):23–
33, 2007.

[5] B. Dixon, M. Rauch, and R. Tarjan. Verification and Sensitivity Analysis of
Minimum Spanning Trees in Linear Time. SIAM J. Comput., 21(6):1184–
1192, 1992.

[6] Y. Emek and D. Peleg. Approximating Minimum Max-Stretch spanning
Trees on unweighted graphs. In SODA ’04: Proceedings of the fifteenth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 261–270,
2004.

[7] P. Flocchini, A. M. Enriques, L. Pagli, G. Prencipe, and N. Santoro. Point-
of-failure Shortest-path Rerouting: Computing the Optimal Swap Edges
Distributively. IEICE Transactions on Information and Systems, E89-
D(2):700–708, 2006.

[8] P. Flocchini, T. M. Enriquez, L. Pagli, G. Prencipe, and N. Santoro. Dis-
tributed Computation of All Node Replacements of a Minimum Spanning
Tree. In Proceedings 13th International Euro-Par Conference, volume 4641
of LNCS, pages 598–607. Springer, 2007.

[9] P. Flocchini, L. Pagli, G. Prencipe, N. Santoro, and P. Widmayer. Com-
puting all the best swap edges distributively. J. Parallel Distrib. Comput.,
68(7):976–983, 2008.

[10] B. Gfeller. Faster Swap Edge Computation in Minimum Diameter Spanning
Trees. Algorithmica, 2010. To appear.

[11] B. Gfeller, N. Santoro, and P. Widmayer. A Distributed Algorithm for
Finding All Best Swap Edges of a Minimum Diameter Spanning Tree. IEEE
Transactions on Dependable and Secure Computing, 2009. To appear.

[12] D. Harel and R. E. Tarjan. Fast Algorithms for Finding Nearest Common
Ancestors. SIAM Journal on Computing, 13(2):338–355, 1984.

306 S. Das et al. Computing All Best Swaps for Spanners

[13] E. Nardelli, G. Proietti, and P. Widmayer. Swapping a Failing Edge of
a Single Source Shortest Paths Tree Is Good and Fast. Algorithmica,
35(1):56–74, 2003.

[14] D. Peleg. Distributed computing: a locality-sensitive approach. Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA, 2000.

[15] D. Peleg and J. D. Ullman. An optimal synchronizer for the hypercube. In
PODC ’87: Proceedings of the sixth annual ACM Symposium on Principles
of Distributed Computing, pages 77–85, New York, NY, USA, 1987. ACM.

[16] D. Peleg and E. Upfal. A trade-off between space and efficiency for routing
tables. J. ACM, 36(3):510–530, 1989.

[17] S. Pettie. Sensitivity Analysis of Minimum Spanning Trees in Sub-Inverse-
Ackermann Time. In Proceedings 16th Int’l Symposium on Algorithms and
Computation (ISAAC), pages 964–973, 2005.

	Introduction
	Minimum Stretch Tree Spanners
	Our Contributions.
	Related Work.

	Computing All Best Swaps
	Some Definitions and Properties
	Naive Approach

	A Faster Algorithm
	An Algorithm for Unweighted Graphs
	A Distributed Solution
	Swapping versus Recomputing
	Conclusions

