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1 Introduction

An independent set (also called stable set) in a graph G is a subset of pairwise
non-adjacent vertices. The maximum independent set problem (IS for short)
is that of finding in a graph an independent set of maximum cardinality. The
problem is known to be NP-hard in general. Moreover, it remains NP-hard even
under substantial restrictions, for instance, for triangle-free graphs [20], K1,4-
free graphs [19], and planar graphs of degree at most three [9]. On the other
hand, for graphs in some particular classes such as perfect graphs or claw-free
graphs, the problem can be solved in polynomial time. We will call a class of
graphsX IS-easy if the IS problem admits a polynomial-time solution for graphs
in X .

This paper is focused on complexity issues related to the maximum indepen-
dent set problem in planar graphs. While some problems that are intractable
for general graphs are solvable in polynomial time in planar graphs (e.g. max
clique, max cut [11]), this is not the case for the IS problem. As mentioned
above, the problem remains hard even for planar graphs of degree at most
three [9]. It is therefore interesting to study the maximum independent set
problem in proper subclasses of planar graphs. This topic has been a frequent
subject of investigation in the literature (see e.g. [18, 14, 13]).

All the above mentioned classes possess the property that with any graph
G they contain all induced subgraphs of G. Such classes are called hereditary.
This family of graph classes is of particular interest, since hereditary (and only
hereditary) classes admit a uniform description in terms of forbidden induced
subgraphs, which in turn provides a systematic way to study various graph
problems. For a set F of graphs, we say that a graph G is F -free if it does not
contain an induced subgraph isomorphic to a member of F . Our objective is to
distinguish conditions on the set F that would imply polynomial-time solvability
or NP-hardness of the IS problem in the class of F -free planar graphs. In this
respect, a promising direction is suggested by the following theorem proved by
Alekseev [1].

Let S denote the set of graphs each connected component of which is of the
form Si,j,k (see Figure 1), where the values of i, j, k ≥ 0 may depend on the
component.

Theorem 1 ([1]) Let X be the class of graphs defined by a set F of forbid-
den induced subgraphs. If F is finite and contains no graph from S, then the
maximum independent set problem is NP-hard in X.

In particular, the NP-hardness of the problem in triangle-free and K1,4-free
graphs can be obtained as a corollary of Theorem 1. Theorem 1 implies that,
unless P=NP, the class of F -free graphs (for a finite F) can be IS-easy only if
the set F of forbidden induced subgraphs contains a graph from S.

Theorem 1 remains valid even if the input is restricted to planar graphs of
degree at most three. More formally:
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Figure 1: Graphs Si,j,k (left) and Hi (right)

Theorem 2 Let F be a finite set of graphs and let X be the class of F-free
planar graphs of degree at most three. If F contains no graph from S, then the
maximum independent set problem is NP-hard in X.

Proof: The proof is a slight modification of the proof of Theorem 1, so we
present only the main ideas. Theorem 1 was obtained using a reduction from the
IS problem in graphs of degree at most three, in two steps: First, by performing
sufficiently many double subdivisions of the edges of the input graph, it can be
shown that the IS problem is NP-hard for (C1, . . . , Ck, H1, . . . , Hk)-free graphs
of degree at most three (for any fixed k ≥ 3), where Ci and Hi denote the
cycle of length i and the graph on the right of Figure 1, respectively. Second,
it can be shown that for every F as in the theorem there is a k ≥ 3 such
that the class of F -free graphs of degree at most three contains the class of
(C1, . . . , Ck, H1, . . . , Hk)-free graphs of degree at most three.

Subdividing edges preserves planarity, therefore one could perform the same
reduction from the IS problem in planar graphs of degree at most three, to show
that the IS problem is NP-hard in (C1, . . . , Ck, H1, . . . , Hk)-free planar graphs
of degree at most three. The second part of the argument is the same as in the
original proof. The claimed result follows. �

For planar graphs, this result implies a similar conclusion as Theorem 1 does
for general graphs: Unless P=NP, the class of F -free planar graphs (for a finite
F) can be IS-easy only when F contains a graph from S. Note that for infinite
F , this need not be the case (as shown by the classes of forests, bipartite graphs,
or perfect graphs). Henceforth, we will assume that F is finite.

A classical result of this type is the polynomial-time solution to the IS prob-
lem for claw-free (i.e., S1,1,1-free) graphs, obtained independently by Minty [19],
Sbihi [21], and Lovász and Plummer [15]. This result has been further extended
by Alekseev to fork-free (i.e., S1,1,2-free) graphs [3]. Other examples include
P4-free graphs (also known as cographs) [5], and (S1,1,1 +K2)-free graphs [17],
where by A+B we denote the disjoint union of graphs A and B.

Clearly, whenever X is an IS-easy class of graphs, the class of planar graphs
in X is IS-easy. In some cases however, the IS-easiness of a class relies on
the planarity assumption. For example, this is the case for the class of Pk-free
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planar graphs, i.e., planar graphs excluding a path Pk on k vertices as an induced
subgraph. In general, for k ≥ 5, the complexity of the problem in Pk-free graphs
is unknown. On the other hand, for Pk-free planar graphs, the following result
holds.

Proposition 1 For any k ≥ 2, the maximum independent set problem ad-
mits a linear-time solution for Pk-free planar graphs.

Proof: It suffices to solve the problem for connected graphs in the class. Every
connected Pk-free graph is of diameter at most k − 2, and the treewidth of
planar graphs is bounded above by a function of their diameter [8, 6]. It follows
that the treewidth of Pk-free planar graphs is bounded above by a constant. A
linear-time algorithm for the IS problem in Pk-free planar graphs now follows
as the problem is solvable in linear-time on graphs of bounded treewidth (see
e.g. [4] for a proof of a more general statement). �

Our contribution. Our main result is the following theorem.

Theorem 3 For any k ≥ 2, the maximum independent set problem is poly-
nomially solvable for S1,2,k-free planar graphs.

This result is interesting for two reasons. First, we extend some known
polynomial-time results for the IS problem in subclasses of planar graphs, such
as Pk-free planar, S1,1,2-free planar and (S1,1,1 +K2)-free planar graphs. Sec-
ondly, our solution combines two approaches to the IS problem which, to the
best of our knowledge, have so far only been used separately. These are the aug-
menting graph method and the decomposition by clique separators. The former
has been used to develop polynomial-time solutions to the IS problem e.g. in
claw-free [19] and fork-free graphs [3], while the latter provides efficient solu-
tions to the IS problem in (P5, co-(P2 + P3))-free graphs [2] and chordal graphs
(it follows from a result of Dirac [7] that every connected chordal graph without
clique separators is a complete graph).

As can be seen from the proofs, the result of Theorem 3 can be extended to a
more general setting: we can replace the planarity assumption by the condition
“the input graph does not contain a K3,3-minor.”

Organization. The paper is structured as follows. In Section 2 we present
the necessary background, which will be needed in Section 4. In Section 3, we
develop a reduction of the IS problem from S1,2,k-free planar graphs to S1,2,2-
free planar graphs, by means of bounding the treewidth. Finally, Section 4 is
devoted to the solution to the IS problem in S1,2,2-free planar graphs. The
solution combines the technique of finding augmenting graphs with a reduction
to 2-connected components.

Notation and definitions. All graphs considered are finite, simple and undi-
rected. We use standard graph terminology and customary notation. As usual,
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Pn and Cn denote the chordless path and the chordless cycle on n vertices,
respectively. Kn denotes the complete graph on n vertices, and Km,n the com-
plete bipartite graph with parts of size m and n. For a vertex x ∈ V (G), we
denote by N(x) the neighborhood of x, i.e., the set of vertices adjacent to x.
The degree of x is the size of its neighborhood. For a set A ⊆ V (G), we denote
by N(A) the set ∪a∈A{u ∈ N(a) : u /∈ A}, and for sets A,B ⊆ V (G) we denote
NB(A) := N(A) ∩B. Instead of NB({v}), we simply write NB(v).

The diameter of a connected graph G is the maximum distance between two
vertices of the graph. The distance between two subsets U,W of vertices of a
connected graph G is defined as min{d(u,w) : u ∈ U,w ∈ W}, where d(u,w)
stands for the length (i.e., the number of edges) of a shortest u-w path in G.
A cut-vertex of a connected graph G is a vertex whose removal disconnects the
graph. A 2-connected graph is a connected graph with no cut-vertices. A 2-
connected component of a graph G is a maximal induced subgraph of G that is
2-connected.

2 Preliminaries: the Method of Augmenting

Graphs

In this section, we briefly review the method of augmenting graphs, including
the notion of a redundant set introduced in [16].

Let G be a graph and I an independent set in G. We will call the vertices
of I white and the remaining vertices of G black.
Definition 1 An augmenting graph for I in G is an induced bipartite subgraph
H = (W,B,E) of G, where W ∪B is a bipartition of its vertex set and E is the
set of its edges, such that |B| > |W |, W ⊆ I, B ⊆ V (G)\I, and N(B)∩ I ⊆ W .
A bipartite graph H will be called augmenting if there is a graph G and an
independent set I of G such that H is augmenting for I in G.

If H is augmenting for I, we also say that I admits the augmenting graph.
Clearly if H = (W,B,E) is an augmenting graph for I, then I is not a maximum
independent set in G, since the set I ′ = (I−W )∪B is independent and |I ′| > |I|.
We will say that the set I ′ is obtained from I by H-augmentation. Conversely,
if I is not a maximum independent set, and I ′ is an independent set such that
|I ′| > |I|, then the subgraph of G induced by the set (I − I ′) ∪ (I ′ − I) is
augmenting for I. Therefore, the following key result holds.

Theorem of augmenting graphs. An independent set I in a graph G is
maximum if and only if there are no augmenting graphs for I.

This theorem suggests the following general approach to find a maximum
independent set in a graph G: begin with any independent set I in G and as
long as I admits an augmenting graphH , applyH-augmentation to I. From the
NP-hardness of the maximum independent set problem and the Theorem of
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augmenting graphs we conclude that the problem of finding augmenting graphs
is generally NP-hard. However, for graphs in particular classes, such as S1,1,1-
free [19] or S1,1,2-free graphs [3], it can be solved efficiently. To simplify the
problem, we first observe that, without loss of generality, we may restrict our
attention to those augmenting graphs that are minimal.

Definition 2 An augmenting graph H for a set I is called minimal if no proper
induced subgraph of H is augmenting for I. A bipartite graph H will be called
minimal augmenting if there is a graph G and an independent set I of G such
that H is minimal augmenting for I in G.

The following lemma characterizes minimal augmenting graphs (which are
then easily seen to be connected).

Lemma 1 ([16]) An augmenting graph H = (W,B,E) is minimal augmenting
if and only if |W | = |B| − 1, and every nonempty subset A ⊆ W satisfies
|A| < |N(A)|.

For a polynomial-time implementation of the augmenting graph approach in
a class of graphs X , one has to

(a) characterize all minimal augmenting graphs in X ,

(b) develop a polynomial-time procedure for detecting them.

Point (a) above can be simplified by means of the following notion introduced
in [16].

Definition 3 In an augmenting graph H = (W,B,E), a subset of vertices U
satisfying |U ∩ W | = |U ∩ B| will be called redundant if H contains no edges
between black vertices of U and vertices of H − U .

It was proved in [16] that, for the sake of a polynomial-time implementation
of the augmenting graph approach, augmenting graphs that contain a redundant
set of bounded size (i.e., of size not exceeding a certain constant) are irrelevant.
The problem of finding such graphs can be reduced in polynomial time to the
problem of finding augmenting graphs without small redundant sets. Therefore,
we do not even need to characterize minimal augmenting graphs in X that con-
tain small redundant sets; they can be safely omitted from the characterization
mentioned in point (a) above.

3 Reduction to S1,2,2-free Planar Graphs

In this section, we show that in order to develop a polynomial-time solution to
the IS problem in planar S1,2,k-free graphs, it suffices to solve the case k = 2. In
our reduction to the latter case, we use the fact that the maximum (weight)
independent set problem in a hereditary class of graphs can be restricted,
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without loss of generality, to 2-connected graphs in the class. This follows from
a more general statement that allows us to consider only graphs without clique
separators. (A clique separator in a connected graph G is a clique C in G whose
removal disconnects G.) The corresponding algorithmic tool is called decom-
position by clique separators and has proved useful in developing algorithms
for several graph optimization problems (see the papers by Whitesides [23] and
Tarjan [22] for the weighted, and the paper by Alekseev [2] for the unweighted
case).

We will thus restrict our attention to 2-connected graphs. The following
auxiliary result will prove useful for our reduction.

Lemma 2 For any k ≥ 2, the diameter of every 2-connected S1,2,k-free planar
graph G that contains an induced copy of S1,2,2 is at most 2k + 4.

Proof: Consider an induced copy F of S1,2,2 in a 2-connected S1,2,k-free planar
graph G. Let V (F ) = {a, b, c, d, e, f} and E(F ) = {ab, ac, ad, ce, df}. We will
show that no vertex in G has distance greater than k from V (F ). In turn, this
will imply that no vertex in G has distance greater than k+2 from a, the vertex
of degree 3 in F . By the triangle inequality, this will imply that the diameter
of G is at most 2k + 4.

For a positive integer j, let us denote by Vj the set of all vertices in G at
distance j from V (F ). Our goal is to show that Vk+1 = ∅.

Assume, for contradiction, that there is a vertex v at distance k + 1 from
V (F ). Let P = (v0, v1, . . . , vk+1) be a shortest V (F )-v path in G with v0 ∈
V (F ), v = vk+1 and vi ∈ Vi for all 1 ≤ i ≤ k + 1. We distinguish several cases
with respect to the distance in G between v1 and a.

Case 1. d(v1, a) = 3. This means that v1 is adjacent to one of {e, f} (or
both), but not to any of {a, b, c, d}. Without loss of generality, we may assume
that v0 = e. Now, if v1 is adjacent to f , then an S1,2,k arises on the vertex
set V (P ) ∪ {c, f}, which is impossible. Otherwise, the vertex set V (P ) ∪ V (F )
induces an S1,2,k+3, again a contradiction.

Case 2. d(v1, a) = 2. In this case, v1 is adjacent to one (or more) of {b, c, d},
but not to a. We distinguish two subcases.

2.1. v1 is adjacent to b. In this case, we may assume that v0 = b. Then v1
is not adjacent to e (otherwise an S1,2,k arises on the vertex set V (P )∪ {a, e}).
Similarly, v1 is not adjacent to f . Also, v1 is not adjacent to c (or there is an
induced S1,2,k on V (P )∪{c, e}), and similarly v1 is not adjacent to d. But now,
an S1,2,k+2 arises on V (P ) ∪ {a, c, d, e}. Contradiction.

2.2. v1 is not adjacent to b. Without loss of generality, we may assume that
v0 = c. We see that v1 is adjacent to e (otherwise an S1,2,k+1 arises on the vertex
set V (P )∪{a, b, e}). Next, v1 is not adjacent to f (or there is an induced S1,2,k

on V (P ) ∪ {a, f}). Moreover, v1 is not adjacent to d (or there is an induced
S1,2,k on V (P ) ∪ {d, f}). But now, an S1,2,k+2 arises on V (P ) ∪ {a, b, d, f}.
Contradiction.

Case 3. d(v1, a) = 1. Without loss of generality, we may assume that v0 = a.
We distinguish three subcases.
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3.1. v1 is not adjacent to b. Then v1 is not adjacent to e (otherwise an S1,2,k

arises on the vertex set V (P ) ∪ {b, e}), and by symmetry, v1 is not adjacent to
f . Next, we see that v1 is adjacent to c (or there is an induced S1,2,k+1 on
V (P ) ∪ {b, c, e}), and, similarly, v1 is adjacent to d. But now, an S1,2,k arises
on V (P )\{a} ∪ {c, d, e}. Contradiction.

3.2. v1 is adjacent to b and not adjacent to any of {c, e}. In this case, v1 is
not adjacent to f (otherwise an S1,2,k arises on the vertex set V (P ) ∪ {c, f}).
Next, v1 is adjacent to d (or there is an induced S1,2,k+1 on V (P ) ∪ {c, d, e}).
But now, an S1,2,k arises on V (P )\{a} ∪ {b, d, f}. Contradiction.

3.3. v1 is adjacent to b, to at least one of {c, e}, and to at least one of {d, f}.
Since G is 2-connected, it contains an induced V (F )-v path P ′ = (u0, u1, . . . , ul)
with u0 ∈ V (F ) and l ≥ k + 1 that does not contain v1. Without loss of
generality, we may assume that P ′ is a shortest V (F )-v path in G − v1. Since
P ′ cannot correspond to any of the already considered cases (with v1 replaced
by u1), we conclude that u1 is adjacent to b, to at least one of {c, e}, and to
at least one of {d, f}. However, it is now easy to see that G contains K3,3 as
a minor (on the vertex set V (F ) ∪ {v1, u1}). This contradiction completes this
case and the proof of the lemma. �

Recall that the treewidth of a planar graph is bounded above by a function
of its diameter [8, 6]. Since the IS problem is solvable in linear time on graphs
of bounded treewidth [4], the following result holds.

Corollary 1 For any k ≥ 2, the maximum independent set problem for
S1,2,k-free planar graphs is polynomially equivalent to the maximum indepen-
dent set problem for S1,2,2-free planar graphs.

4 The Maximum Independent Set Problem in

the Class of S1,2,2-free Planar Graphs

Let X denote the class of S1,2,2-free planar graphs. In this section, we present
a polynomial-time solution to the maximum independent set problem for
graphs in X . The main ingredients of our solution are the technique of aug-
menting graphs and reduction to 2-connected components.

To apply the augmenting graph technique, we have to characterize the min-
imal augmenting graphs in our class. We start by showing that minimal aug-
menting graphs in the class cannot contain vertices of arbitrarily high degree.

Lemma 3 The maximum degree of minimal augmenting graphs in X is bounded
by a constant.

Proof: Let H be a minimal augmenting graph in X . The proof consists of two
parts. First, we prove that no black vertex of H has degree more than 9.

Assume that H contains a black vertex x of degree 10 or more. By Lemma 1
and Hall’s Theorem [12], we know that the subgraph H−x has a perfect match-
ing M . For a vertex v ∈ V (H − x), we denote by m(v) the unique vertex such
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that {v,m(v)} is an edge in M . Also, let A denote the set of neighbors of x,
and A′ = {m(v) : v ∈ A}. Since H does not contain a K3,3 as a subgraph, we
have |A ∩N(u) ∩N(v)| ≤ 2 for all pairs of distinct vertices u, v ∈ A′.

Claim: A′ contains at most one vertex with 5 or more neighbors in A.
Suppose, for contradiction, that A′ contains two distinct vertices, say u and

v, such that |N(u) ∩ A| ≥ 5 and |N(v) ∩ A| ≥ 5. Let A0 = N(u) ∩ N(v) ∩ A
and A1 = A\A0. Then |A0| ≤ 2, which implies |A1 ∩N(u)| ≥ 3. Let w denote
a neighbor of u in A1, different from m(u), and let w′ = m(w). Since u and w′

have at most two common neighbors in A, there is a vertex in A1 ∩N(u), say z,
that is non-adjacent to w′. Note that w and z are non-adjacent to v, since, by
definition, A1 contains no common neighbor of u and v. But now, the vertices
{x, z, w, w′, v′, v}, where v′ ∈ (A ∩ N(v))\N(w′), induce a copy of S1,2,2 in H .
This contradiction shows the claim.

Therefore, A′ contains a subset A′′ of at least 9 vertices, each of which
has at most 4 neighbors in A. Let u, v ∈ A′′. Clearly A contains a vertex
nonadjacent to both u and v. To avoid an induced S1,2,2, we conclude that
either N(u)∩A ⊆ N(v)∩A or N(v)∩A ⊆ N(u)∩A. Therefore, the vertices of
A′′ admit an ordering u1, u2, . . . , u|A′′| such that N(ui+1) ∩ A ⊆ N(ui) ∩ A for
each i. But then NA(u1)∩NA(u2) ⊇ {m(u2),m(u3),m(u4)}, which leads to an
induced K3,3 in H . This contradiction completes the first part of our proof.

Now let us show that if H contains no black vertex of degree more than
k ≥ 2, then the degree of each white vertex is at most 4k − 3.

Assume that H contains a white vertex x of degree more than 4k− 3, while
no black vertex of H has degree more than k ≥ 2. Fix an arbitrary neighbor b
of x. As before, the subgraph H − b has a perfect matching M . For a subset
U ⊂ V (H − b) of vertices of the same color, we denote by m(U) the set of
vertices of the opposite color matched with vertices of U with respect to M .
For a vertex a ∈ V (H − b), let m(a) := m({a}). Denote A1 := N(x)\{b,m(x)}
and A2 := m(A1)\N(m(x)).

Since m(x) has at most k − 1 neighbors in the set m(A1), it follows that
|A2| ≥ 3k − 3. Now, fix an arbitrary vertex a ∈ A2, and let A3 = A2\N(m(a)).
We see that |A3| ≥ 2k − 2.

Note that a is adjacent to all vertices in m(A3), since otherwise the vertices
x,m(x),m(a), a together with any vertex v ∈ m(A3) non-adjacent to a and its
neighbor m(v) induce an S1,2,2 in H .

Since H does not contain an induced K3,3, every vertex of A3 has at most
two neighbors in m(A3). Now, fix an arbitrary vertex a′ ∈ A3. In particular,
given |A3| ≥ 2k − 2 and the bound on the degree of black vertices, this implies
that there is a vertex a′′ ∈ A3 which shares no neighbor with a′ in the set m(A3).
But now an S1,2,2 arises on the vertex set {x,m(x),m(a′), a′,m(a′′), a′′}. This
contradiction completes the proof of the lemma. �

Now we proceed to a characterization of minimal augmenting graphs in our
class that are of bounded vertex degree. To this end, we introduce two families
of graphs that generalize paths and cycles. The duplication of a vertex v of a
graph G results in a graph obtained from G by introducing a new vertex v′ with
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N(v′) = N(v).

Definition 4 A strip is a graph obtained from a path by repeatedly (zero or
more times) duplicating vertices. A bracelet is a graph obtained in the same
manner from a cycle.

Lemma 4 There are only finitely many minimal augmenting graphs in X,
different from strips and bracelets.

Proof: Let H = (W,B,E) be a minimal augmenting graph in X . Let l denote
a fixed (large enough) integer. There are only finitely many connected graphs
of bounded vertex degree that are Pl-free. Therefore, we may assume that a
longest induced path P = (v1, . . . , vr) in H satisfies r ≥ l. If H = P , then H is
a strip. For the rest of the proof, assume that H is different from P . Consider
any vertex v outside P and which has a neighbor on P .

Recall that by definition, H is bipartite. In particular, H contains no trian-
gles, which implies that v cannot have two consecutive neighbors on P . We will
now show that v has at most two neighbors on H . Let NP (v) = {vi1 , . . . , vip}
with i1 < · · · < ip.

If p ≥ 4, then the vertices {v, vi1 , vi2 , vi2+1, vi4 , vi4−1} induce a copy of S1,2,2

in H .
Suppose that p = 3. If i3 ≤ r − 2, then the vertices {vi3 , vi3−1, v, vi1 ,

vi3+1, vi3+2} induce a copy of S1,2,2 in H . It follows that i3 ∈ {r − 1, r}.
By symmetry, i1 ∈ {1, 2}. Since r is large enough, we may assume that
i3 ≥ i2 + 4. But now, an induced copy of S1,2,2 in H arises on the vertices
{vi2 , vi2−1, v, vi3 , vi2+1, vi2+2}.

This shows that v has at most two neighbors on P . If v has two neighbors
on P , say vi and vj , then either |i − j| = 2 or i = 1 and j = r, since otherwise
an induced S1,2,2 arises (by similar arguments as above). If v has exactly one
neighbor vi on P then either i = 2 or i = r − 1, since otherwise either P is not
a longest path or H contains an induced S1,2,2.

The above discussion enables us to conclude that every vertex of H outside
P has a neighbor on P . (If not, then one could find an induced S1,2,2 in H with
the help of a vertex v as in the above paragraph and a neighbor of v that has
no neighbors on P .)

Next, we observe that there must be a vertex outside P with exactly two
neighbors in V (P ). Assume to the contrary that every vertex outside P has
exactly one neighbor in P , either v2 or vr−1. In particular, both endpoints of
P belong to B. (For instance, if v1 ∈ W , then the fact that H is minimal
augmenting implies that v1 has a neighbor different from v2.) Consequently,
every vertex outside P is black. However, assuming that H 6= P , it follows that
|B| > |B ∩ V (P )| = |W ∩ V (P )| + 1 = |W | + 1, contrary to the fact that H is
minimal augmenting.

Suppose now that there is a vertex v withNP (v) = {v1, vr}. Then V (P )∪{v}
induce a cycle in H , say C. To see that H must be a bracelet, consider an
induced bracelet Q in H which contains C and has as many vertices as possible.
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If H 6= Q, then Q has a neighbor u ∈ V (H)\V (Q). Let x ∈ NQ(u). For
a vertex z ∈ V (Q), let us denote by Q(z) the subset of vertices of Q with
the same neighborhood in Q as z. Without loss of generality we may assume
that x ∈ V (C). Let y1 and y2 be the neighbors of x on C, and let further z1
(resp. z2) be the neighbor of y1 (resp. y2) on C different from x. From our
previous observations and from the fact that C contains a longest induced path
of H , we conclude that u has no more than two neighbors on C. If u is adjacent
to neither of {z1, z2}, then H contains an S1,2,2 centered at x, a contradiction.
Therefore, NC(u) = {x, z′} with z′ ∈ {z1, z2}. We may assume z′ = z1.

Suppose x′ ∈ Q(x) is a non-neighbor of u. Then H contains an S1,2,2,
centered at z1 (and containing u, y1 and x′). Hence u is adjacent to all vertices
of Q(x). A symmetric argument shows that u is also adjacent to all vertices
of Q(z1). Also, NQ(u) ⊆ Q(x) ∪ Q(z1), since otherwise we are in one of the
previously considered cases which led to a contradiction. Hence equality holds,
and u has the same set of neighbors as y1. But now V (Q) ∪ {u} induces a
bracelet Q′ with |V (Q′)| > |V (Q)|, contradicting the choice of Q.

The last remaining case is such that for every longest induced path P of
H and for every v ∈ N(P ) with exactly two neighbors on P , the neighbors
of v on P are at distance 2. Fix a longest induced path P = (v1, . . . , vr) of
H . To see that H must be a strip, consider an induced strip Q in H which
contains P and has as many vertices as possible. If H 6= Q, then Q has a
neighbor u ∈ V (H)\V (Q). Without loss of generality we may assume that
NQ(u) ⊇ {vi, vi+2} for some i ∈ {1, . . . , r−2}. Similarly as above, let us denote
by Q(z) the subset of vertices of Q each of which has the same neighborhood in
Q as z.

Suppose v′ ∈ Q(vi) is a non-neighbor of u. Then H contains an S1,2,2,
centered either at vi−1 or at vi+2 (depending on whether i ≥ 4 or not). Hence
u is adjacent to all vertices of Q(vi). A symmetric argument shows that u
is also adjacent to all vertices of Q(vi+2). By the assumption of this case,
NQ(u) = Q(vi) ∪ Q(vi+2). Hence u has the same set of neighbors as vi+1. But
now V (Q) ∪ {u} induces a strip Q′ with |V (Q′)| > |V (Q)|, contradicting the
choice of Q. The lemma follows. �

Lemma 4 reduces the problem of finding augmenting graphs in the class
under consideration to finding augmenting strips and bracelets. Now we provide
a further specification of the structure of augmenting graphs in our class. To
this end, let us introduce some more notations and definitions.

Definition 5 Let us call two vertices in a graph G similar, or twins, if they
have the same neighborhood in G.

Clearly, similarity is an equivalence relation. Note that every equivalence
class is an independent set. For a vertex v ∈ V (G), we denote by Cv the
equivalence class containing v.

Definition 6 Given a graph G and a vertex v ∈ V (G),

• the thickness of v is the cardinality of Cv;
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• the thickness of G is the maximum thickness of any vertex of G.

The following lemma specifies the structure of minimal augmenting strips
and bracelets in our class in terms of their thickness.

Lemma 5 If H = (W,B,E) is a minimal augmenting strip or bracelet in X,
then H is either

- a strip of thickness at most 2, or

- a bracelet obtained from an even cycle by the duplication of exactly one
vertex.

Proof: If H = K2,3, the lemma is true. Assume now that H 6= K2,3.
Suppose that the thickness ofH is at least 3. By Lemma 1, no set of pairwise

similar white vertices A can have cardinality more than 2 (else A∪N(A) would
contain a K3,4). Therefore, there is a set of pairwise similar black vertices B′

such that |B′| ≥ 3. By the K3,3-minor-freeness and connectedness, we have
1 ≤ |N(B′)| ≤ 2. Denote A = W\N(B′). If A is empty, then H = K1,3,
contradicting the minimality of H . Therefore, A is nonempty and satisfies
|A| ≥ |W | − 2 and |N(A)| ≤ |B| − 3. Together with Lemma 1, this implies
|A| ≥ |N(A)|, contradicting the minimality of H again. Thus, we conclude that
thickness of H is at most two, which proves the lemma in case when H is a
strip.

Assume now that H is a bracelet. Since no cycles are augmenting, H must
contain a vertex x of thickness 2. Since H is planar, no neighbor of x has
thickness 2 or more (or H would contain a subdivision of K3,3). Therefore, x
has exactly 2 neighbors, both of thickness 1. Next, observe that xmust be black,
since otherwise A := Cx would violate the inequality |N(A)| > |A|. Hence, all
white vertices have thickness 1, and since |B| = |W |+ 1, there can only be one
black vertex of thickness more than 1. The lemma follows. �

Our next step is to show that some of the augmenting graphs revealed in
the above lemma can be neglected, as they contain redundant sets. Again, we
start with definitions.

Definition 7 In a strip H,

• an endpoint is a vertex that belongs to a longest induced path P in H and
has degree 1 in P ;

• a pair of twins {u, u′} is said to be inner if u and u′ are at distance at
least 4 from every endpoint of H.

In the following lemma, an augmenting chain is an augmenting graph iso-
morphic to a path.

Lemma 6 Let H ∈ X be a minimal augmenting strip or bracelet with
|V (H)| ≥ 19. Then either H is a strip containing an inner pair of twins, or
H contains a redundant set U ⊆ V (H) of size at most 18 such that H − U is
an augmenting chain.
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Proof: If H is a bracelet, then it follows from Lemma 5 that H contains a
redundant set U ⊆ V (H) of size 4 such that H − U is an augmenting chain.

Now let H be a strip and let P = (v1, . . . , vl) be a longest induced path
in H . Also, let ai denote the thickness of vi, for i ∈ {1, . . . , l}. By Lemma 5,
ai ≤ 2 for any i. Thus, if l ≤ 9 then |V (H)| ≤ 18, and therefore, in what follows
we assume that l ≥ 10.

If ai = 2 for some i ∈ {5, . . . , l− 4}, then H contains an inner pair of twins.
Now assume ai = 1 for 5 ≤ i ≤ l − 4. Denote by x = vi the black vertex
satisfying i = min{i′ : 1 ≤ i′ ≤ 6, ai′ = ai′+1 = · · · = a6 = 1}. Note that such
a vertex exists since l ≥ 10. Symmetrically, let y = vj denote the black vertex
satisfying j = max{j′ : l − 5 ≤ j′ ≤ l : al−5 = al−4 = · · · = aj′ = 1}. Also,
denote by H ′ the path connecting x to y in H , and by U the remaining vertices
of H . It is not difficult to see that U is a redundant set of size at most 18 and
H − U is an augmenting chain. �

In [10], a polynomial-time algorithm was developed for finding augmenting
chains in S1,2,3-free graphs. Since every S1,2,2-free graph is also S1,2,3-free, we
conclude, using Lemma 6 above and the algorithm from [10], that the IS problem
in S1,2,2-free planar graphs can be completely solved by augmentation, unless
the input graph contains a minimal augmenting strip with an inner pair of twins.

Luckily, in turns out that even in this case, we can still reduce the problem to
augmentation by a double transformation of the input graph G. First, we shrink
every class C of similar vertices in G to a single vertex and assign to this vertex
the weight equal to |C|, obtaining in this way a weighted graph G′. Obviously, a
maximum independent set in G corresponds to a maximum weight independent
set in G′ and vice versa. To solve the problem for G′, we first decompose it
into 2-connected components, and then for each 2-connected component of G′

we implement a reverse transformation by expanding every vertex with weight
ω to a class of similar vertices of cardinality ω. It will be shown later that every
2-connected graph transforms in this way into an unweighted graph without
strips with inner twins.

We now describe these transformations in detail. For the input graph G, we
denote by C the set of all similarity classes, i.e., classes of vertices with the same
neighborhood. For each similarity class C ∈ C, we fix an arbitrary member of
C and denote it by vC .

Transformation 1 (From unweighted to weighted) φ1 : Ḡ 7→ (Ĝ, ω̂)

Input: An induced subgraph Ḡ of G.
Output: The ordered pair (Ĝ, ω̂), where:

Ĝ is the subgraph of G, induced by the set {vC : C ∈ C, C ∩V (Ḡ) 6= ∅}, and
ω̂ is the collection of vertex weights of Ĝ, given by ω̂(vC) = |C ∩ V (Ḡ)| for

all vC ∈ V (Ĝ).

Transformation 2 (From weighted to unweighted) φ2 : (Ĝ, ω̂) 7→ Ḡ

Input: An ordered pair (Ĝ, ω̂), where:
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Ĝ is an induced subgraph of G of the form Ĝ = G[{vC : C ∈ C′}] for some
nonempty subset of equivalence classes C′ ⊆ C, and

ω̂ is a collection of integer vertex weights of Ĝ satisfying 1 ≤ ω̂(vC) ≤ |C|
for all C ∈ C′.
Output: The subgraph Ḡ of G, induced by the vertex set F =

⋃
C∈C′ FC where,

for each C ∈ C′, FC is an arbitrary subset of C of cardinality ω̂(vC).
1

It is easy to see that these two transformations are inverse to each other.
The importance of these transformations for our solution is due to the following
result.

Lemma 7 Let Ḡ be an induced subgraph of G that contains a minimal aug-
menting strip with inner twins, and let (Ĝ, ω̂) = φ1(Ḡ). Then Ĝ contains a
cut-vertex.

Proof: Let H = (W,B;E) be a minimal augmenting strip with an inner twin
{u, u′} in Ḡ. By definition, H is an induced subgraph of Ḡ and hence of G.

First, we notice that u has a neighbor of thickness 2 in H . If not, then,
according to Lemma 1, we conclude that u, u′ ∈ B. Deleting the vertices {u, u′}
from H results in two disjoint strips, say Hi = (Wi, Bi, Ei) for i = 1, 2. Since
{u, u′} is an inner pair of twins of H , the sets Ai := Wi\N(u) (for i = 1, 2) are
nonempty. But now, it follows from Lemma 1 that

|B| = |N(A1)|+ |N(A2)|+ 2
≥ (|A1|+ 1) + (|A2|+ 1) + 2
= |W1|+ |W2|+ 2
= |W |+ 2 = |B|+ 1 ,

a contradiction.
Therefore, there is a pair of twins {v, v′} in H such that uv, uv′, u′v, u′v′ ∈

E(G). Consider the 4-cycle C induced by the vertices {v, v′, u, u′}. We claim
that C is a separating set of G. Indeed, since {u, u′} is an inner pair of twins
in H , we may consider two vertices x ∈ V (H)∩ (N(u)\{v, v′}) and y ∈ V (H)∩
(N(v)\{u, u′}). Then, C separates x from y: if x and y belonged to the same
connected component of G − C, the graph G would contain a subdivision of
K3,3, contradicting the planarity assumption.

Next, we show that {u, u′} is a pair of twins in G as well. Assume there
is a vertex a ∈ N(u)\N(u′). Let Cx, Cy denote the connected components of
G − C containing x and y, respectively, and let x′ and x′′ denote vertices in
V (H) ∩ V (Cx) at distance 1 and 2 from x, respectively. Similarly we define y′,
y′′. To avoid an induced S1,2,2 on {x, u′, u, a, x′, x′′}, we see that a has a neighbor
in {x, x′, x′′}. Therefore, a ∈ Cx. Next, we observe that a is adjacent to v, since
otherwise an S1,2,2 arises on the vertex set {v, u′, u, a, y, y′}. By symmetry,
we conclude that a is adjacent to v′. However, this leads to a contradictory

1For definiteness, we do the following for each equivalence class C ∈ C: we fix, once and
for all, a numbering of vertices of C, and then put into FC the first ω̂(vC) vertices of C.
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K3,3-minor contained in the vertex set {a, u, u′, v, v′, x, x′, x′′}. A symmetric
argument shows that {v, v′} is also a pair of twins in G.

Now, we show that {u, u′} separates x from v in G. Assume that there is
a path P = (v1, . . . , vr) in G − {u, u′} from x to v (with v1 = x and vr = v).
Then r ≥ 3 and since {v, v′} is a pair of twins in G, vr−1 is adjacent to v′ too.
But now, a subdivision of K3,3 arises on V (P ) ∪ V (C), a contradiction.

Therefore, {u, u′} is a pair of twins in G that separates a pair of vertices
of H with different neighborhoods in G. As can be seen from the above proof,
{u, u′} separates x from v in Ḡ as well. Since x and v belong to different
equivalence classes of C, the vertex vCu

separates vCx
from vCv

in Ĝ. Thus, vCu

is a cut-vertex of Ĝ and the proof is complete. �

Corollary 2 Let (G′, ω) = φ1(G) and let (Ĝ, ω̂) be an input to φ2 such that
Ĝ is contained in a 2-connected component of G′. Then Ḡ = φ2(Ĝ, ω̂) is an
induced subgraph of G that contains no minimal augmenting strips with inner
twins.

We are now ready to present the procedure that finds a maximum indepen-
dent set in a graph G ∈ X .

Procedure Alpha

Input: An S1,2,2-free planar graph G = (V,E).
Output: A independent set I of G of maximum cardinality.

Step 0. (Preprocessing) Determine the connected components C1, . . . , Cr of G.
If r > 1, return I = ∪r

i=1Alpha(Ci) and halt. Else, compute the equivalence
classes C = {Cv : v ∈ V }.
Step 1. Compute (G′, ω) = φ1(G).
Step 2. Compute a maximum-weight independent set I ′ of G′. To this end,
first reduce the problem to the 2-connected components of G′. To compute a
maximum-weight independent set of a 2-connected component Ĝ, with vertex
weights ω̂, perform the following steps:

2.0. Remove the vertices of Ĝ with non-positive weights. (Note that the
reduction to 2-connected components is performed via the decomposition by
clique separators [22]. During each step of this recursive procedure, some vertex
weights are redefined, and they can become non-positive.)

2.1. Compute Ḡ = φ2(Ĝ, ω̂).
2.2. Compute a maximum independent set Ī of Ḡ (by augmentation).
2.3. Compute Î = {vC : C ∈ C, C∩ Ī 6= ∅}, a maximum-weight independent

set of Ĝ.
Step 3. Return I := ∪v∈I′Cv, a maximum independent set in G, and halt.

Using this algorithm, we can derive the main result of this section.

Theorem 4 The maximum independent set problem is polynomially solv-
able for S1,2,2-free planar graphs.
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Together with Corollary 1 this proves Theorem 3, i.e., polynomial-time solv-
ability of the problem in the class of S1,2,k-free planar graphs, for any particular
value of k.
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