
Journal of Graph Algorithms and Applications
http://jgaa.info/ vol. 14, no. 1, pp. 165–197 (2010)

Computational Aspects of
Lucidity-Driven Graph Clustering

Robert Görke Marco Gaertler Florian Hübner Dorothea Wagner

Institute of Theoretical Informatics, Fakultät für Informatik,
Universität Karlsruhe (TH), Karlsruhe Institute of Technology, Germany

Abstract

We formally state and investigate the lucidity paradigm for graph clus-
terings. The rationale that substantiates this concept is the trade-off be-
tween the achieved quality and the expected quality of a graph clustering.
A recently defined quality measure for graph clusterings, modularity, is
one specific realization of this paradigm, in fact the pioneering one. On
a theoretical side, we state a sound probability space for lucidity and
thus for modularity and prove that in this paradigm of lucidity, using
a subtractive trade-off and either the index coverage (yields modularity)
or performance leads to equivalent indices. Furthermore, we show that
the NP-hardness of optimizing these indices yields the NP-hardness of the
problem MinMixedMultiPartition. Moreover, we describe an efficient
maximization algorithm for a divisive trade-off between quality and ex-
pectation. We experimentally evaluate four realizations of this paradigm
systematically and confirm their feasibility in a first methodic analysis of
the behavior of these realizations on both artificial and on real-world data,
arriving at good results of community assessment and detection.

Submitted:
March 2009

Reviewed:
September 2009

Revised:
October 2009

Accepted:
December 2009

Final:
December 2009

Published:
January 2010

Article type:
Regular paper

Communicated by:
U. Brandes

This work was partially supported by the DFG under grants WA 654/14-3 and WA 654/15-1

and by the EU under grant DELIS (contract no. 001907) and grant CREEN (contract no.

012684).

E-mail addresses: robert.goerke@kit.edu (Robert Görke) marco.gaertler@kit.edu (Marco Gaert-

ler) florian.h@gmail.com (Florian Hübner) dorothea.wagner@kit.edu (Dorothea Wagner)

mailto:robert.goerke@kit.edu
mailto:marco.gaertler@kit.edu
mailto:florian.h@gmail.com
mailto:dorothea.wagner@kit.edu

166 Görke et al. Comp. Aspects of Lucidity-Driven Graph Clustering

1 Introduction

The discovery of natural groups and large scale inhomogeneities is a crucial
task in the exploration and analysis of large and complex networks. This task
is usually realized with graph clustering methods. The majority of algorithms
for graph clustering are based on the paradigm of intra-cluster edge-density ver-
sus inter-cluster edge-sparsity. Several formalizations have been proposed and
evaluated, an overview of such techniques is given in [5] and [9]. Among the
many approaches which incorporate this paradigm, the quality index modularity
introduced in [26] has attained much attention lately, in particular as an objec-
tive function for optimization [24, 11]. Roughly speaking, modularity evaluates
a clustering by comparing the fraction of intra-cluster edges to the expected
value of this number. The predominant usage of modularity employs a simple
greedy agglomerative algorithm for heuristic maximization, proposed in [11]. A
range of alternative algorithmic approaches have been proposed, based on spec-
tral division [25, 33], simulated annealing [18, 30], extremal optimization [14],
and fast iterative local optimization [2]. Applications range from protein inter-
action dependencies to recommendation systems, social network analysis and
even embeddings of neural networks (see, e.g., [35, 21, 29]). While evaluations
and comparisons of clustering methods can, at least to some extent, be found in
the majority of publications on new clustering algorithms (see, e.g., [7, 13, 2]),
only few theoretical analyses of modularity and its optimization exist. Recently,
it has been proven, that it is NP-hard to optimize modularity [[4, 3]], which jus-
tifies the need for heuristics and approximations. Also worth mentioning are
the results on resolution limits of modularity-based methods by [15], who de-
scribe a restrictive tendency of modularity to detect communities of specific size
categories that depend on the size of the input.

In this work, we formally state and investigate the founding paradigm for
modularity , being the lucidity of a clustering, as the trade-off between the
achieved quality and the expected quality for random networks incorporating
the intrinsic properties of the original network. We explore a probability space
for random networks that fulfills the underlying assumptions. Since performance
is known to be more robust than coverage, it seems promising to utilize it in
combination with subtraction (as for modularity). We prove that this yields a
measure of lucidity equivalent to modularity , which corroborates its results. An
alternative interpretation, motivated by an ILP formulation, ultimately leads us
to the NP-hardness of MinMixedMultiPartition. We systematically evalu-
ate how well lucidity complies with human intuition of clustering quality and
with established indices. Furthermore, we present an algorithm that efficiently
optimizes a promising realization, relative performance lucidity, in O(n2 log n)
time and using geometry. We compare the goodness of these algorithms in
terms of clustering quality to that of other algorithms, on a set of random pre-
clustered graphs and complement our findings with results on real data. Our
results indicate the feasibility of the paradigm in that our algorithms surpass
the benchmark algorithms, and in that the generality of the approach is justified
by specific realizations excelling on real-world data.

JGAA, 14(1) 165–197 (2010) 167

This paper is organized as follows: After introducing the necessary prelimi-
naries for graph clustering and some quality measures (Section 2), we give the
formal definition of our lucidity paradigm, explore appropriate probabilistic se-
tups and deduce four realizations of lucidity (Section 3). Section 4 scrutinizes
the greedy algorithms which are employed to obtain clusterings with high lucid-
ity score, including an efficient implementation for a quick stepwise update. The
setup and the results of the experimental evaluation are described in Section 5
which are followed by a conclusion. A precursory paper on this work appeared
in the Proceedings of the 3rd AAIM’08 Conference [16].

2 Preliminaries

Throughout this paper, we will use the notation of [5]. We assume that G =
(V,E, ω) is an undirected, weighted graph and ω : E → [0, 1]. Although consid-
ering only simple graphs suffices for most insights, we require loops and parallel
edges later and thus start out general straight away. We often consider only
unweighted graphs but will say so explicitly. For a node v, we define ω(v) as
the sum of the weights of incident edges, and deg(v) as the number of inci-
dent edges, doubly counting loops in both terms. We set |V | =: n, |E| =: m
and C = {C1, . . . , Ck} to be a partition of V . Since we allow non-simple graphs,
we write both edges and edge sets E as multisets, such that {v, v} ∈ E is
allowed (a loop) and E = {{u, v}, {u, v}} (two parallel edges). Edges are undi-
rected but denoted as both {u, v} (unordered) or (u, v) (as an ordered set)
for convenience, depending on how we enumerate over edges. For simplicity
in enumerations we assume that V is ordered. We denote the set of multi-
sets of two nodes that can be connected by an edge in a non-simple graph
as V × = {{u, v} | u ≥ v, u ∈ V, v ∈ V }. The set of all 2-tuples from V is
V 2 = {(u, v) | u ∈ V, v ∈ V }, these can then be translated to edges, but the set
and the enumeration are different from V ×. Furthermore, ω(e) is the weight of
a single edge e, whereas ω({u, v}) (or ω((u, v))) is the sum of weights of edges
between nodes u and v. We abbreviate ω({u, v}) = ω(u, v).

We call C a clustering of G and the Ci clusters. The cluster which contains
node v is denoted by C(v). We identify a cluster Ci with the induced subgraph
of G, i.e., the graph G[Ci] := (Ci, E(Ci), ω|E(Ci)), where E(Ci) := {{v, w} ∈
E : v, w ∈ Ci}. Then E(C) :=

⋃k
i=1E(Ci) is the set of intra-cluster edges

and E\E(C) the set of inter-cluster edges, with |E(C)| =: m(C) and |E\E(C)| =:
m(C). The set E(Ci, Cj) denotes the set of edges connecting nodes in Ci to
nodes in Cj . We denote the number of non-adjacent intra-cluster pairs of nodes
as m(C)c, and the number of non-adjacent inter-cluster pairs as m(C)c. We
summarize the heavily used term

∑
v∈C deg(v) =: vol(C).

We measured the quality of clusterings with a range of quality indices, dis-
cussed, e.g., in [5], however, we set our focus on the indices inter-cluster con-
ductance [7], coverage [5] and performance [31] in this work, since they are the
most studied ones. For unweighted graphs, in brief, coverage is the fraction of
edges which are intra-cluster edges and performance is the fraction of correctly

168 Görke et al. Comp. Aspects of Lucidity-Driven Graph Clustering

classified node pairs with respect to their connectedness. Inter-cluster conduc-
tance (or inter-cc) measures the worst bottleneck constituted by cutting off a
cluster from the graph, normalized by the degree sums thereby cut off. For a
profound discussion of these indices we refer the reader to the given references
and to further pointers therein, and simply state their formal definitions:

cov(C) :=
m(C)

m(C) +m(C) (1) perf(C) :=
m(C) +m(C)c

1
2n(n− 1)

(2)

icc(C) := 1−max
C∈C

∑
v∈C

deg(v)− 2|E(C)|

min
(∑
v∈C

deg(v),
∑

v∈V \C
deg(v)

) (3)

Note that while coverage and inter-cc are bounded by [0, 1], performance can
take values beyond 1 in non-simple graphs. Inter-cc is based on the measure
conductance [20], which seeks the “cheapest” cut (S, V \ S) (with S ⊆ V) in a
graph (measured by the fractional term of Equation 3. The conductance of a
clustering is then defined as the minimum conductance of each cluster. How-
ever, determining the minimum conductance cut in a graph is NP-hard [1], and
thus this measure is ill-suited for measuring clustering quality. In turn, the cut
induced by a cluster should have a very low conductance in a good clustering.
Following [7] we can thus examine how good cuts induced by clusters are (in-
stead of all cuts inside a cluster), which yields the meaningful (and computable)
formula in Equation 3. We shape this measure as to yield 1 for good clusterings.

All previous definitions generalize in a natural way as to take edge weights
ω(e) into account, which we indicate by a subscript as in, e.g., covω. Thus,
ω(C) (ω(C)) denotes the sum of the weights of all intra-cluster (inter-cluster)
edges, W denotes the sum of all edge weights and volω(C) :=

∑
v∈C ω(v). The

maximum edge weight in a graph is called ωmax. The fact that modularity can
be expressed as coverage minus the expected value of coverage (see Section 3.1
and [11]) motivates the general paradigm we state in the next section.

3 The Lucidity Paradigm

In the lucidity paradigm a good clustering is characterized by having a high
quality compared to the value the clustering obtains for a random network that
reflects specific structural properties that are expected to be present in the graph,
as predefined in an appropriate null hypothesis. Every realization of the lucidity
paradigm requires a quality measure, a null hypothesis based on a set of such
characteristics, and a mode of comparison of these. The concept of lucidity is
related to the notion of p-values in statistical hypothesis testing. The p-value
of a value t observed for a random variable T is the probability that under the
assumption of a given null hypothesis, T assumes a value at least as unfavorable

JGAA, 14(1) 165–197 (2010) 169

to the null hypothesis as the observed value t. In general, the null hypothesis
is rejected, if the p-value is smaller than the statistical significance level of the
measurement. However, in our concept we do not reject a null hypothesis,
which we assume to reasonably describe observed graphs. Instead, we compare
the quality of a clustering to the expected value, in order to judge its relevance.

Definition 1 Given a quality indexM and a clustering C, we define the lucidity
L�M of a clustering C as the corresponding quality index as follows:

L�M(C) :=M(C) � EΩ[M(C)] , (4)

where EΩ[M] is the expected value of the quality index M for the clustering C
with respect to a suitable probability space Ω and � is a binary operator.

As, in this paradigm, modularity (Equation 5) employs coverage (Equation 1)
and subtraction, the concept of lucidity is a true generalization of modularity .
For unweighed graphs modularity has been defined as (see [26] and [11]):

mod(C) :=
m(C)
m
− 1

4m2

∑
C∈C

(∑
v∈C

deg(v)

)2

, or equivalently: (5)

mod(C) =
∑

{u,v}∈V ×

(
A(u, v)
m

δuv

)
−

∑
(u,v)∈V 2

(
deg(u) · deg(v)

4m2
δuv

)
, (6)

with δuv =

{
1 if C(u) = C(v)
0 otherwise

,

and A(u, v) = number of (parallel) edges between u and v.

using Kronecker’s symbol δuv as an indicator function. Originally, loops and
parallel edges were disregarded, and the original definitions are inconsistent, if
such were allowed. However, since the founding probabilistic assumptions are
not sound without them, as we shall see below, it is meaningful to faithfully
generalize the formulations in [26] and [11], as in Equations 5 and 6. Restricting
the above formulations to simple input graphs yields the original terms.

3.1 A Probabilistic Setup

The question that motivates this subsection is: Is there a sound probability space
underlying the definition of modularity? The random models proposed below
are thus not intended to be particularly elegant or universal, but they serve as a
support for modularity and lucidity . In the following we discuss a suitable prob-
ability space (Ω, p) required for Definition 1, which we use throughout this pa-
per. We restrict ourselves to the unweighted case for now and discuss a weighted
setup later. In their definition of modularity , the authors of [26] and [11] suggest

170 Görke et al. Comp. Aspects of Lucidity-Driven Graph Clustering

p(e) = 3·2
2·m2

u

e

v3 4

43

43

4
2 2

2

5

3 3

u

v

Figure 1: Input graph
(dashed) with original
node degrees inducing
edge probabilities.

setting the probability of a randomly inserted edge to
become {u, v} (u 6= v) to deg(v) deg(w)/2m2. The
motivation for this, and thus the assumed underlying
principle by which the graph is built, is a random pro-
cess that inserts m edges into the disconnected set of
n nodes, of which both ends then connect to node x
with probability proportional to the degree deg(x) of
x in the input, i.e., deg(x)/2m, see Figure 1. How-
ever, note that this model also assigns a probability of
(deg(v))2/4m2, to a self loop on v. In this, the model
differs from those used in [27, 10]. Thus we obtain

p(e) :=

{
deg u deg v

2m if e = {u, v}, u 6= v
(deg v)2

4m if e = {v, v}
. (7)

As follows, this setup is unbiased, i.e., probability masses of edges add up to 1:

∑
{u,v}∈V ×

p[e = {u, v}] =
∑

v>w∈V

deg v degw
2m2︸ ︷︷ ︸

non-loops

+
∑
v∈V

(deg v)2

4m2︸ ︷︷ ︸
loops

(8)

=
∑
v,w∈V

deg v degw
4m2

=
1

4m2

(∑
v∈V

deg v

)2

=
1

4m2
(2m)2 = 1

In the case that edges are not allowed to form loops, the above assumptions are
incorrect and overestimate the number of intra-cluster edges, since the intra-
cluster edge mass contributed by loops has to be distributed elsewhere. Thus,
the discrete probability space (ΩE , p) for edge insertions uses as ΩE all un-
ordered pairs (two-element multisets) {u, v} ∈ V ×, and p({u, v}) is defined
as above. Clearly, the probability function p is nonnegative, and the sample
space ΩE is normed to 1 by Equation 10. A trial consisting of m edges being
drawn independently as elementary events from ΩE , by symmetry and using the
above probabilities, yields an expected number of (deg(u) deg(v))/(2m) (paral-
lel) edges between u and v, for two nodes u 6= v, and an expected number
(deg(v))2/(4m) of self loops on v. These very values are used in the definition
of modularity in Equation 6, and induce a probability space for graphs.

By fixing the number m of edges and expected node degrees, the above
setup is rather restrictive. In the lucidity paradigm, different random models
are conceivable, if other or less properties of a graph are considered to be fixed
according to the application. However, given the ideas of the founders of modu-
larity and the fact that a sound probability space for graphs in accordance with
its formula can be given, we restrict ourselves to that setup in this work.

From Edges to Graphs. Since an edge set E′ is a multiset of elementary
events in ΩE , we may build upon this setup and define the discrete probability

JGAA, 14(1) 165–197 (2010) 171

space (Ω, p) for graphs as follows. Let Ω consist of all m-element multisets of
elementary events in (ΩE , p), which is a subset of the set of all multisets over ΩE .
We can now trivially identify the family of all graphs on n (labeled) nodes and
m (unlabeled) edges with Ω. The probability for a specific graph H = (V,E′)
in this family can then be chosen to directly reflect the edge probabilities (see
Equation 7) in the definition of modularity : Using edge probabilities p(e) as
defined in (ΩE , p) (see Equation 7), in space (Ω, p), let

p(H) :=
∏
e∈E′

p(e)︸ ︷︷ ︸
prob. of one ordering

of the events in E′

· m!∏
e∈E′

se!︸ ︷︷ ︸
number of orderings

which yield E′

(se = multipl. of e in E′) (9)

be the probability of the event that the m elementary events from ΩE result in
the multiset E′ and thus induce H.1 From the above construction of (Ω, p) a
random process for graph creation is immediate: draw m edges independently,
each according to (ΩE , p). Equations 7 and 8 yield that this model is unbiased,
yielding m expected edges. Again, since edges are drawn independently, it is
easy to see that this probability space is sound, i.e., that p(H) ≥ 0 and that∑
H∈Ω p(H) = 1. The former claim is trivial by Equations 9 and 7, and the latter

can be seen as follows. As opposed to the above, suppose for now the drawings
to be labeled, i.e., it matters in which order edges are drawn, and let this setup be
(Ω̇, p). Then we obtain |V ×|m = m̃m different elementary events δ̇ in Ω̇ (some of
which represent identical graphs, merely with edges added in a different order).
Analogous to (Ω, p) (Equation 9), we may now define p(δ̇) =

∏
e∈δ̇ p(e) for all

δ̇ ∈ Ω̇, and get the following lemma:

Lemma 1 The probability spaces (Ω̇, p) and (Ω, p) are normed to 1.

Proof: ∑
δ̇∈Ω̇

∏
e∈δ̇

p(e) =
∑
E′∈

(V ×)m

∏
e∈E′

p(e) =
(∑
e∈V ×

p(e)
)m

= 1m = 1 . (10)

The first two equalities exploit the independence of p(e) and reorder terms,
and the third equality holds by Equation 8. Given that (Ω̇, p) is normed to 1,
for (Ω, p) we can summarize terms that represent the same unordered multiset
(graph) as shown in Equation 9 and obtain that (Ω, p) is normed to 1. �

What is left to be shown is that for any given graph G and clustering C(G),
E(cov(C)) in (Ω, p) equals the term in modularity (see Equation 6):

1This multiplicity is accounted for by the second factor in Equation 9. This factor can
be seen as follows: there are m! possibilities to order m events, but since the si drawings
of event i are indistinguishable, si! of these m! orderings are identical; as this applies to the
multiplicities of all events, we obtain the given factor. It equals m! iff se = 1 for all e ∈ E′,
and 1 iff se = m for some e ∈ E′.

172 Görke et al. Comp. Aspects of Lucidity-Driven Graph Clustering

Lemma 2 For any given graph G and clustering C(G), in (Ω, p) it holds that:
E(cov(C)) =

∑
(u,v)∈V 2

deg(u) deg(v)
4m2 δuv . (As above se denotes e’s multiplicity.)

Proof:

E(cov(C)) = E

(∑
e∈E(C) se

m

)
=

1
m

E

 ∑
e∈E(C)

se

 =
1
m

∑
e∈E(C)

E(se)

=
1
m

 ∑
e={u,v}∈E(C)

u6=v

deg(u) deg(v)
2m

+
∑

e∈E(C)
e={v,v}

(deg(v))2

4m

=
∑

(u,v)∈V 2

deg(u) deg(v)
4m2

δuv

�

Examining the above proof we can see that any distribution that (i) fulfills
Equation 7 and (ii) surely uses a total number m of edges, has the property
described in Lemma 2. Moreover we can immediately see that the additional
postulation that expected node degrees should be fixed is also fulfilled.

Corollary 2 The expected edge degree of node v in (Ω, p) is deg(v) (from G).

Proof:

EΩ(deg(v)) =
∑
u∈V
u6=v

deg(u) deg(v)
2m

· 1 +
(deg(v))2

4m
· 2

= deg(v)
(

2m− deg(v)
2m

+
deg(v)

2m

)
= deg(v)

�

The above proof uses the discussed edge probabilities; note that a self loop
(second summand) contributes 2 to deg(v). Concluding, we now have a sound
probabilistic setup for unweighted graphs for the lucidity paradigm.

u v

w C1

C2

(a) G, C(G)

1
16

u v

w 1
4

1
4

1
4

1
8

1
16

(b) p(e)

Figure 2: Given G (a), Equation 7
yields probabilities p(e) (b)

An Instructive Example. The following
tiny example illustrates this model. Let graph
G = (V,E) in the righthand Figure 2a be
given, with n = 3,m = 2, alongside a clus-
tering C. Figure 2b states the edge proba-
bilities according to Equation 7, comprising
m̃ =

(
n
2

)
+ n = 6 possible edges. We first

consider only one random edge: This yields
the family Ω1 = H1 of the 6 graphs on three
nodes and one edge, their probabilities match the corresponding edge probabil-
ities in Figure 2b, which completes space (Ω1, p). Due to the independence of
edge drawings, we can now build the required probability space (Ω2, p) inducing
the family H2 of graphs on 3 nodes and 2 edges by building the Cartesian prod-
uct Ω1×Ω1. This yields 62 outcomes in Ω2, whose probabilities are obtained by
multiplying those of the participating members of Ω1. Of these outcomes m̃ oc-
cur once (two parallel edges) and

(
m̃
2

)
occur twice (different insertion orders lead

JGAA, 14(1) 165–197 (2010) 173

to the same graph). Consider now the clustering C of G depicted in Figure 2a.
Equation 5 yields mod(C) = 1

2 − 32+12

4·22 = − 1
8 , and in particular E(cov) = 5

8 . To
see that this coincides with the expected coverage in Ω2 (i.e., H2) regarding C,
as theoretically proven in Lemma 2, in Figure 4 we list those 18 (of 21) members
of H2 with positive coverage and check that

∑
H∈H2

p(H)cov(C)H = 5
8 .

1
4

1
2

1
4

(a) G with p(e) (b) p(H) = max

Figure 3: A graph G and one of its
most likely random variants H.

As an interesting side note, the example in
Figure 3 shows that this setup does not nec-
essarily grant the highest probability to the
very graph used as the blueprint for the prob-
ability space. In Figure 3, probabilities are
p(H) = 1

4 and p(G) = 1
8 .

u v

w C1

C2

(a)
p = 1

16
cov = 1

u v

w C1

C2

(b)
p = 1

8
cov = 1

u v

w C1

C2

(c)
p = 1

32
cov = 1

u v

w C1

C2

(d)
p = 1

32
cov = 1

u v

w C1

C2

(e)
p = 1

256
cov = 1

u v

w C1

C2

(f)
p = 1

16
cov = 1

u v

w C1

C2

(g)
p = 1

64
cov = 1

2

u v

w C1

C2

(h)
p = 1

128
cov = 1

u v

w C1

C2

(i)
p = 1

64
cov = 1

2

u v

w C1

C2

(j)
p = 1

256
cov = 1

u v

w C1

C2

(k)
p = 1

32
cov = 1

2

u v

w C1

C2

(l)
p = 1

32
cov = 1

u v

w C1

C2

(m)
p = 1

32
cov = 1

u v

w C1

C2

(n)
p = 1

8
cov = 1

2

u v

w C1

C2

(o)
p = 1

16
cov = 1

2

u v

w C1

C2

(p)
p = 1

8
cov = 1

2

u v

w C1

C2

(q)
p = 1

32
cov = 1

2

u v

w C1

C2

(r)
p = 1

16
cov = 1

2

Figure 4: All graphs in H2 with positive coverage for C, yielding E(cov(C)) = 5
8
. Note

that graphs with non-parallel edges occur twice in Ω2, hence their double probability.

The weighted case. A generalization of modularity to weighted edges, such
that its restriction to weights 0 and 1 yields the unweighted version, is straight-
forward, as proposed in [23]. We again state the formula we use, in order to
disambiguate between formulations in previous works:

modω(C) :=
ω(C)
W︸ ︷︷ ︸

covω

− 1
4W 2

∑
C∈C

(∑
v∈C

ω(v)

)2

︸ ︷︷ ︸
E(covω)

(11)

Analogous to unweighted edges, this formula assumes for expected edge weights

E(ω(e)) :=

{
ω(u)ω(v)

2W if e = {u, v}, u 6= v
(ω(v))2

4W if e = {v, v}
. (12)

Note that for our view parallel edges are obsolete (even disruptive, notationally)
in this setting, if we allow the edge weight function ω to go beyond 1 as ω : E →

174 Görke et al. Comp. Aspects of Lucidity-Driven Graph Clustering

R+
0 and simply summarize parallel edges to one “heavier” edge. For simplicity

we shall do this in the following. Analogous to Equation 8 we can see that
the choices in Equation 12 are unbiased, as the expected total edge mass E(W)
equals W . However, now we cannot simply draw m edges independently, but
have to continuously distribute an edge mass W . Analogous to Lemma 2 we
can prove the following:

Lemma 3 A probability distribution for weighted graphs will justify Equation 11
if it fulfills the following two properties:2

(i) expected edge weights are as in Equation 12,
(ii) random graphs surely have a total edge mass equal to W .

We will not define a probability distribution for weighted graphs, but de-
scribe a rather simple random process, which produces a distribution which
fulfills these two properties. This process starts with expected weights (as in
Equation 12). Then in an arbitrary number of handshakes between random
edges, two participants contest about their combined edge mass. The mass is
divided up in a new random way between the two, but such that the expected
ratio of the two halves matches the ratio of their respective expected weights.
Suppose the two handshaking edges are e` and er with expected weights a` and
ar, and actual edge weights x` and xr, respectively. Let c := a`/(a`+ar) be the
fraction that e` expects to get. We define a piecewise uniform density function
d(x) as depicted in Figure 5 as follows:3

f1

f2

0 1c

Figure 5: density d

d(x) =

{
1−c
c =: f` if 0 ≤ x ≤ c
c

1−c =: fr if c < x ≤ 1
. (13)

Having drawn x from d(x), the available weight x` + xr is divided up such
that e` gets a part of size x ·(x`+xr) and er gets a part of size (1−x) ·(x`+xr).
Algorithm 1 summarizes this procedure.

Lemma 4 Given a weighted graph G and a clustering C(G). Algorithm 1 yields
a distribution of graphs with E(covω) as used in Equation 11.

Proof: We use Lemma 3 for the proof. Property (ii) is trivially fulfilled as edge
mass W is introduced in line 1 and only moved between edges later. To see
property (i) we use induction over the number of runs as coupled experiments.
Ind. start: In the beginning xi = ai for all ei by line 1.

2 As in the unweighted case this does not rule out the existence of different setups.
3 In practice, random draws with density d can be done, e.g., as follows. First decide which

side of c to use with the help of a single Bernoulli trial that chooses ` with prob. p(`) = c ·f` =
1− c (and r with prob. p(r) = (1− c) · fr = c). Then, choose a value x uniformly at random
within the chosen interval.

JGAA, 14(1) 165–197 (2010) 175

Algorithm 1: Random Process for Weighted Graphs

1 Set ai and xi as in Eq. 12 ∀ei = {u, v} ∈ V × V
2 for #T runs do
3 unif. at rand. choose edges {`, r} ∈

(
V ×

2

)
// choose contestants

4 c← a`

a`+ar
// `’s expected fraction

5 draw3 x ∼ d(x) as in Equation 13 // see Figure 5 for d(x)
6 x` ← x(x` + xr) and xr ← (1− x)(x` + xr) // distribute x` + xr

7 return Graph G with edge weights xi

Ind. hypothesis: For all t′ up to some t ≤ T : E(xi) = ai for all ei.
Ind. step: Given E(xi) = ai ∀ ei after run t. For the expected value of x we get:

E(x) =
∫ 1

0

xd(x)dx =
∫ c

0

xf`dx+
∫ 1

c

xfrdx = f`
c2

2
+ fr

1− c2
2

= c

For all ei not chosen in run t + 1 we get Et+1(xi) = Et(xi) after t + 1, and for
the two affected edges we get (xr analogously):

E(xt+1
`) = E(x · (x` + xr)) = E(x) · (Et(x`) + Et(xr)) =

a` · (a` + ar)
a` + ar

= a`

�

Certainly, this process is nowhere close to yielding a uniform distribution, how-
ever it serves our particular purpose. Open questions for it include how T needs
to be chosen, in order to have drawn graphs be more or less independent.

The Loop-Free Case. Suppose now we disallow loops, but still adopt the
intuition that a randomly inserted edge should become incident with node v
with probability proportional to deg(v) in the unweighted case. Analogous to
Figure 1 and the derivation of modularity , we can now derive the probability of
a random edge in a loop-free setup to become:

pø({u, v}) =
deg(u)

2m
· deg(v)

2m− deg(u)︸ ︷︷ ︸
=pø((u,v))

“first connect to u then to v”

+
deg(v)

2m
· deg(u)

2m− deg(v)︸ ︷︷ ︸
=pø((v,u))

“first connect to v then to u”

=
deg(u) deg(v) · (deg(u) + deg(v))

2m · deg(u)deg(v)
using deg(v) = 2m− deg(v) (14)

Analogous to Equation 8 we can observe that this setup is normed to 1. For
easier summation we suppose for a moment that the graph was directed, and
we write the above probability for edge {u, v} as the sum of the probabilities of
the two directed edges (u, v) and (v, u), as in the derivation of Equation 14.

176 Görke et al. Comp. Aspects of Lucidity-Driven Graph Clustering

∑
{u,v}∈V
u 6=v

pø({u, v}) =
∑

{u,v}⊆V
u6=v

(pø((u, v)) + pø((v, u))) =
∑
v∈V

∑
u∈V
u6=v

pø((v, u))

=
∑
v∈V

∑
u∈V
u 6=v

deg(v) deg(u)
2m · deg(v)

=
1

2m

∑
v∈V

deg(v)
deg(v)

deg(v) = 1

Using arguments from the previous sections we can now setup a discrete prob-
ability space (Ωø, pø) for loop-free graphs in an analogous way. By drawing m
independent edges according to Equation 14 we obtain probabilities for graphs
similar to Equation 9 and a lemma analogous to Lemma 1. Even our arguments
concerning a weighted version (using total weight W) and a random process for
weighted graphs in Section 3.1 carry over, yielding an expected edge weight of
Eø(ω(u, v)) = ω(u)ω(v) · (ω(u) + ω(v))/(2ω(u)ω(v)), using ω(v) := 2W − ω(v)
(compare to Eq. 14). A variant modularityø for loop-free graphs could thus be
defined as (compare to Formulas 6 and 11):

modø(C) :=
∑

{u,v}⊆V
u6=v

(
ω(u, v)
W

− ω(u)ω(v) · (ω(u) + ω(v))
2W · ω(u)ω(v)

)

It is important to note that this formulation does not fulfill Corollary 2: the
intuition of making random edges incident to v with probability proportional to
deg(v) does not generally preserve expected node degrees in the loop-free model.
Devising such a model is much harder, simply using p({u, v}) = deg(u) deg(v),
normalized, does not work. Excluding parallel edges makes issues even worse,
thus we stop here and postpone such thoughts to future work. While sophisti-
cated random processes have been proposed for simple random graphs with a
predefined degree sequence, e.g., in [32], we require a formulation which yields
edge probabilities in a closed form, in order to support a formula for modularity .

3.2 Implementations of the Lucidity Paradigm

The building blocks presented above enable us to study four implementations
of the lucidity paradigm, namely, coverage and performance as quality indices
and subtraction and division as the binary operators. Using coverage and sub-
traction, modularity is one of these implementations. For a discussion of perfor-
mance [31] in weighted graphs we refer the reader to [5]. However, one aspect
needs particular attention: Performance evaluates node pairs based on their
being connected or not. Switching to weighted edges now requires a meaningful
assumption (see [5]) about a maximum edge weight M to compare to, in order
to measure, e.g., how missing inter-cluster edges contribute. The above main
references for performance are not specific about M and thus three possible
choices for M are immediate: ωmax of G, 1 (being the maximum allowed edge
weight), or W . The canonic formulation is (compare Equation 2)

JGAA, 14(1) 165–197 (2010) 177

perfω =
ω(C) +Mm(C)c +Mm(C)− ω(C)

1
2n(n− 1)M

. (15)

Any choice for M which is a parameter dependent on G (such as ωmax) becomes
a random variable in (Ω, p). However, there is a more fundamental objection
against using ωmax: in a fixed random model, there should be a fixed maximum
weight to compare to. On the other hand, keeping the value of ωmax in G, being
one specific draw, as a fixed constant for all draws, seems equally inappropriate.
As a better choice for M , the range of the weight function ω should be used,
which will often be 1. Thus, in the following we assume M to be some choice
of a constant, which leads to the following lemma:

Lemma 5 Using the probability space described in Section 3.1 and an arbitrary
but fixed constant M , the expected value of performance is∑

C∈C(
∑
v∈C ω(v))2/W +M(n2 −∑C∈C |C|2)− 2W

n(n− 1)M

Proof: We split Equation 15 into edges (first term in numerator) and non-edges
(remains). Again we use (Ω, p), i.e., Equation 12 for expected edge weights.

E
(

ω(C)
1
2n(n− 1)M

)
︸ ︷︷ ︸

E1

=
1

4W

∑
C∈C (volω(C))2

1
2n(n− 1)M

=
1

2W

∑
C∈C (volω(C))2

n(n− 1)M

E
(
Mm(C)c +Mm(C)− ω(C)

1
2n(n− 1)M

)
︸ ︷︷ ︸

E2

=

E
(∑
e={u,v}∈E
C(u)6=C(v)

(M − ω(e)) +
∑

{u,v}/∈E
C(u) 6=C(v)

M

)
1
2n(n− 1)M

=

1
2

∑
C∈C

∑
C′∈C\C

∑
(v,w)∈C×C′

(
M − ω(v)ω(w)

2W

)
1
2n(n− 1)M

=
M(n2 −∑C∈C |C|2)

n(n− 1)M
−

1
4W

∑
C∈C

∑
v∈C ω(v)(2W − volω(C))
1
2n(n− 1)M

=
M(n2 −∑C∈C |C|2)

n(n− 1)M
−

1
4W 4W 2 − 1

4W

∑
C∈C(volω(C))2

1
2n(n− 1)M

E(perfω) = E1 + E2 =

1
W

∑
C∈C

(∑
v∈C

ω(v)
)2

− 2W +M

(
n2 −

∑
C∈C
|C|2

)
n(n− 1)M

(16)

�

178 Görke et al. Comp. Aspects of Lucidity-Driven Graph Clustering

measure coverage performance

M m(C)
m

m(C)+m(C)c

0.5·n(n−1)

E[M]
∑
C∈C

(P
v∈C deg(v)

2m

)2 P
C∈C((

P
v∈C deg(v))2/m−(

P
v∈C 1)2)+n2−2m

n(n−1)

Mω
ω(C)
W

ω(C)+Mm(C)c+(Mm(C)−ω(C))
0.5·n(n−1)M

E[Mω]
∑
C∈C

(P
v∈C ω(v)

2W

)2 P
C∈C(

P
v∈C ω(v))2/W+M(n2−P

C∈C |C|2)−2W

n(n−1)M

Table 1: Quality indices and expected values (M : maximum edge weight in the
model). The subscript “ω” indicates edge-weighted versions.

We can now state an overview summarizing the formulas of the resulting
four implementations of the lucidity paradigm in Table 1. The straightforward
weighted variant of L−cov has been described by [23]. Based on Table 1 we now
define the following implementations:

L−cov := cov − E[cov] (equals modularity) L÷cov :=
cov

E[cov]
(17)

L−perf := perf − E[perf]︸ ︷︷ ︸
absolute variants (subtractive)

L÷perf :=
perf

E[perf]︸ ︷︷ ︸
relative variants (divisive)

(18)

Corollary 3 A constant M for weighted L−perf is a scaling factor, which means
that an observation L−perf(C(G)) ≥ L−perf(C′(G)) is M -invariant.

Proof: From Lemma 5 it it not hard to see, that some terms from perfω have
survived in E(perfω), which for simplicity we denote:

Φ = Mm(C)c +Mm(C) =
1
2
M(n2 −

∑
C∈C
|C|2) (19)

Rewriting and summarizing L−perf yields the following term, which uses M only
as a factor in the denominator, as an inverse scaling factor.

L−perf = perfω − E(perfω) (20)

=
ω(C) + Φ− ω(C)

1
2 · n(n− 1)M

−
∑
C∈C(volω(C))2/W + 2Φ− 2W

n(n− 1)M

=
ω(C)− ω(C)− 1

2W

∑
C∈C(volω(C))2 −W

1
2n(n− 1)M �

We refrain from a discussion of the usage of lucidity on graphs with a fuzzy
clustering, which allows clusters to overlap, i.e., nodes may belong to several

JGAA, 14(1) 165–197 (2010) 179

clusters. However we point the reader to two recent works which consistently
generalize modularity to the overlapping case. These are [28], which also pro-
poses a generalization to directed graphs, and [22] which discusses the former
and proposes sound improvements. Summarizing, the introduction of belonging
factors of nodes to clusters, as proposed by these two works, can immediately
be applied to coverage and performance and thus also to the implementations
of lucidity discussed herein, but not necessarily to any implementation.

3.3 The Equivalence of L−perf and L−cov

As is well known from [4, 3], L−cov can be optimized via ILP4 formulation: Con-
straints ensure a consistent partition of the nodes by formalizing an equivalence
relation on the nodes, deciding whether two nodes are in the same cluster. The
linear target function follows directly from the weighted version of Equation 6:

weighted L−cov =
∑

{u,v}∈V ×

(
ω(u, v)
W

Xuv

)
−

∑
(u,v)∈V 2

(
ω(u)ω(v)

4W 2
Xuv

)
(21)

with Xuv = [δuv =]

{
1 if u, v in same cluster
0 otherwise

A similar formulation is possible for L−perf . We first build upon the formula
for L−perf derived in Equation 20, and then rewrite it:

weighted L−perf =
ω(C)− ω(C)− 1

2W

∑
C∈C(

∑
v∈C ω(v))2 −W

1
2n(n− 1)M

=

∑
{u,v}∈V 2

ω(u, v)Xuv −
∑

{u,v}∈V 2

ω(u, v)(1−Xuv)−
∑

(u,v)∈V 2

ω(u)ω(v)
2W

Xuv −W

1
2n(n− 1)M

=

2
∑

{u,v}∈V 2

ω(u, v)Xuv −
1

2W

∑
(u,v)∈V 2

ω(u)ω(v)Xuv − 2W

1
2n(n− 1)M

=

∑
{u,v}∈V 2

ω(u, v)
W

Xuv −
∑

(u,v)∈V 2

ω(u)ω(v)
4W 2

Xuv

1
4W

n(n− 1)M︸ ︷︷ ︸
a

− 1
1

4W n(n− 1)M︸ ︷︷ ︸
b

(22)

We now trim Formula 22 by removing the second summand (b) and the
(main) denominator (a), which are both invariant under Xuv and obtain For-
mula 21. This yields the following lemma:

4ILP stands for integer linear program.

180 Görke et al. Comp. Aspects of Lucidity-Driven Graph Clustering

Lemma 6 (Equivalence of L−perf and L−cov) The problem of optimizing L−perf

and that of optimizing L−cov are equivalent, furthermore

L−cov(G, C1) > L−cov(G, C2) ⇐⇒ L−perf(G, C1) > L−perf(G, C2) (23)

This lemma together with the NP-completeness of optimizing modularity [3],
immediately gives us the following corollary:

Corollary 4 Given a graph G (weighted or unweighted) and a real L. It is
NP-complete to decide whether there is a clustering C(G) with L−perf(C(G)) ≥ L.

The deduction of the equivalence in Lemma 6 implies that a linear relation
between the values of L−perf and L−cov for a given instance G and an arbitrary
clustering C(G) can be given in the form L−perf = a(G) ·L−cov + b(G). Coefficients
a and b both depend on the instance G and are the very terms mentioned
above (see Equation 22). Together with the fact that both L−perf and L−cov can
attain the value 0, even for the respective optimum clusterings, this yields that
relative approximation guarantees do not easily carry over in either direction.
In any way, to our best knowledge, no positive results on the approximability of
either L−perf or L−cov exist. Note that Formula 20 can be trimmed further, such
that in Formula 24 we obtain a very simple but equivalent target function for
maximizing L−cov (or L−perf) in, e.g., an ILP:

L−cov
∼=

∑
{u,v}∈(V

2)

((
ω(u, v)− ω(u)ω(v)

2W

)
Xuv

)
(24)

3.4 The Relation to MinMixedMultiPartition

Note that the ILP formulation in Equation 24 has an equivalent metric version,
i.e., Xuv = 1 iff nodes u and v are in different clusters. The problem thus
changes to minimizing the same target function: Instead of maximizing the edge
contributions inside clusters, we minimize those in between. This is equivalent
to finding the minimum weight edge set inducing a (multi-)partition on the
complete graph K on V , where edge weights g are equal to the (simplified)
term in brackets in Equation 24. Given an unweighted instance of L−cov (i.e.,
modularity), edge weights in K are multiples of 1/m, thus we can assume g ∈ Z.
We formalize the general form of this problem as follows:

Definition 5 (MinMixedMultiPartition) Consider an undirected graph K =
(V,E), an edge weight function g : E → Z and a rational number L. Is there
a partition of V into disjoint subsets V1, . . . , Vm (m ≥ 1) such that the sum of
weights of edges whose endpoints lie in different subsets is at most L?

By the fact that optimizing L−cov is NP-hard, we obtain the following corollary:

Corollary 6 The problem MinMixedMultiPartition is NP-hard.

JGAA, 14(1) 165–197 (2010) 181

For a weighted L−cov instance, a similar observation holds, if we assume that
original edge weights are rational, ω(e) ∈ Q. Although many similar hardness
results on cuts in graphs exist, we are not aware of a proof of this particular
variant. Well known hardness results in this context have been presented, e.g.,
by [17] for GraphPartition or MaxCut, and by [12] for MinimumMultiway-
Cut, where in a positively weighted graph a set of terminals T ⊆ V has to be

a b

c d

1

−2−2
−4−4

−10
B C

Figure 6: The (unique) minimum multi-
partition C with cost(C) = −22 does not
directly induce the (unique) minimum bi-
partition B with cost(B) = −17.

separated. Note that MinMixed-
MultiPartition is not, as it might
seem, a straightforward generaliza-
tion of the NP-hard problem Mixed-
MinCut (i.e., MaxCut), in that the
set of cut edges of a MixedMinCut
is a subset of the set of edges cut by
MinMixedMultiPartition, as can
be disproven by the simple example
in Figure 6. Moreover instances ex-
ist where the solution to MinMixed-
MultiPartition is the trivial parti-
tion {V } (e.g., in the case of exclu-
sively positive weights), such that for obvious reasons no MixedMinCut can
be deduced. This emphasizes the relevance of Corollary 6.

4 Lucidity-Clustering Algorithms

The optimization of L−cov being NP-complete ([4], [3]) encourages the usage of
heuristics or approximations. In this section, we briefly describe the algorithms
we use for lucidity maximization. Throughout our experiments, we employ a
greedy heuristic approach, allowing for a consistent evaluation of the four vari-
ants of lucidity, as follows. For a given lucidity measure L the greedy algorithm
starts with the singleton clustering and iteratively merges those two clusters
that yield the largest increase or the smallest decrease in L. After a maximum
of n − 1 merges the intermediate clustering that achieved the highest value of
L is returned. The algorithm maintains a symmetric matrix ∆L with entries
∆Li,j equaling L(Ci,j) − L(C), where C is the current clustering and Ci,j is ob-
tained from C by merging clusters Ci and Cj . The pseudo-code for the greedy
algorithm is given in Algorithm 2. In this work, we refrain from delving into the
many variants of this pure greedy approach that can be found in the literature,
for the sake of brevity.

Let ∆L be defined by matrices ∆M and ∆E[M], denoting the additive
changes in M and in E[M], respectively. Then, when merging Ci and Cj ,
entries ∆Mpq of unaffected clusters do not change, while entries in rows and
columns i and j are updated as follows: ∆Mk,(ij) := ∆Mk,i + ∆Mk,j , where
C(ij) = Ci∪Cj (and ∆E[M] is updated analogously). From Equations 17 and 18
it becomes clear that for the absolute variants this transfers to ∆L, while for
the relative variants all entries of ∆L change, even those of unaffected clusters.

182 Görke et al. Comp. Aspects of Lucidity-Driven Graph Clustering

Algorithm 2: Greedy Lucidity

Input: Graph G = (V,E, ω)
Output: Clustering C of G

1 C ← Singletons, initialize L
2 Initialize matrix ∆L (with ∆Lij ∼= change in L when merging Ci and Cj)
3 while |C| > 1 do
4 Find {i, j} with ∆Li,j = arg max ∆Lij
5 Merge clusters Ci and Cj
6 Update ∆L
7 L← L+ ∆Li,j
8 Return intermediate clustering with highest lucidity

4.1 Runtime Analysis

Both absolute variants of lucidity share the same asymptotic running time.
Employing a standard data structure for clusterings, one observes that Step 1
and 8 run in O(n) time. Matrix ∆L is initialized in O(n2) time. The loop
at Step 3 is executed n − 1 times. Step 4 runs in O(n) time, if we store the
rows of ∆L as heaps. Merging two clusters (Step 5) and updating L (Step 7)
require at most linear time. Thus, updating ∆L dominates, which consists of
O(n) insertions and deletions from heaps, requiring O(log n) each. This yields
the following lemma:

Lemma 7 Algorithm 2 runs in O(n2 log n) time for the absolute variants.

Adapting Lemma 7 to the relative variants yields a runtime of O(n3), since
a merge entails an update of n2 matrix entries. However, in Lemma 8 and
Algorithm 3 we improve on this. It is not hard to see that the first local optimum
of L, that the absolute greedy heuristic attains, is its global optimum. In case
the number of clusters is dependent on n, i.e., |C| ∈ ω(1), this may result in an
asymptotic decrease in running time. Since only merges of connected clusters
can increase L, for sparse graphs a runtime of O(md log(n)) can then be seen
(with d being the maximum number of merges per node) as shown in [11].

4.2 Quick Divisive Merge

In this section we describe how for relative variants, the running time for updat-
ing ∆L can be reduced by avoiding explicit matrix updates. We give an algo-
rithm that updates ∆L in O(n log n) amortized time using a geometric embed-
ding. We store matrix ∆L by a point set P in the plane as follows and as depicted
in Figure 7. Each entry {i, j} is represented by a point pij with coordinates
pij := (M(Ci,j),E[M(Ci,j)]) = (M+∆Mij ,E[M]+∆E[M]ij). Thus, each point
encodes the measure (y-axis) of a clustering and its expectation (x-axis). Since
these are both non-negative, all points are in quadrant one. We additionally
insert one point R = (M(C),E[M(C)]) that represents the current clustering.

JGAA, 14(1) 165–197 (2010) 183

M
(C

)

E[M(C)]
O

R

convex
hull

tangent
query

point
set Ppmax

Figure 7: Each cross encodes the quality of
some merge, with pmax yielding the highest
quotient. Instead of all crosses, O moves
antipodally by R−pmax (gray arrow). Due
to some earlier step, O has already been
shifted away from (0, 0).

SinceM and E[M] update additively,
we can update each point p in the
plane, after merging two clusters Ck
and Cl, as follows: First, for a lin-
ear number of points p (i.e., those in-
volving Ck and Cl), we set pi,(kl) ←
pi,k + pi,l − R. By doing so we actu-
ally both delete and introduce a lin-
ear number of points. Second, for all
points P , including those newly intro-
duced, we set p← p+(pkl−R). These
steps maintain the data structure.

There are two crucial observa-
tions: First, instead of uniformly set-
ting p ← p + (pkl − R), we can save
Ω(n2) such updates by only shifting
the origin: O ← O − (pkl − R). Sec-
ond, at any time, the merge maximizing L÷∗ corresponds to the point pmax that
maximizes y(p)/x(p). Point pmax must lie on the convex hull of P , and can
be found by a tangent query through the origin O. Such a query reports the
tangents on the hull that pass through a given point. Initially O is set to (0, 0),
but each merge shifts this imaginary origin, which serves as the vantage point
of the tangent queries. Figure 7 illustrates these observations. We thus need
a data structure that maintains the convex hull of a fully dynamic point set P
and that allows for quick tangent queries.

In fact [8] present such a data structure, using so-called kinetic heaps. It
uses linear space (i.e., O(n2), in our case), handles both insertions into and
deletions from P , as well as tangent queries to the convex hull in amortized time
O(log n). This data structure is described more extensively in the dissertation
of [19], where, among other things, it is proven that the amortized performance
of this data structure is in fact optimal. Since detailing this data structure is
far beyond the scope of this paper, we just give a rough idea and use it as a
black box. The points are stored in several instances of a semi-dynamic data
structure that supports deletions. Insertions result in new instances, which are
merged with rank degree log n by a semi-dynamic data structure that supports
constant time deletions. Then, the core data structure is built which maintains
the convex hull of two such merged sets. On top of that data structure, a kinetic
heap is then built, which finally handles queries and operations. A kinetic (or
parametric) heap is a generalization of a priority queue, such that the entries
are linear functions that change over time. The authors use interval trees as
secondary structures for answering containment queries.

Given this data structure, Algorithm 3 performs the update in Line 6 of
Algorithm 2 in time O(n log n). First, a tangent query from O to the convex
hull of P finds pmax (Line 1) in time O(log n). Then, after storing the merge of
Cl and Ck (Line 2) in at most linear time, a linear number of points pi,k and
pi,l are replaced by a new point pi,(kl) (Line 3). After each such replacement the

184 Görke et al. Comp. Aspects of Lucidity-Driven Graph Clustering

Algorithm 3: Quick Divisive Merge

Input: ∆M,∆E[M], data structure with of points P as described above,
reference R, (shifted) origin O

Output: Best merge, updated matrices ∆′M,∆′E[M]
1 Find pmax = pkl with tangent query through R
2 Merge clusters Ck and Cl of point pkl = pmax

3 For all clusters Ci insert pi,(kl) := pi,k + pi,l −R, delete pi,k, pi,l
4 R← pmax

5 O ← O − (pkl −R)

convex hull of P is maintained in time O(log n) by the data structure. Finally,
reference point R is set to the newly improved coordinates (Line 4), and origin O
is shifted (Line 5) in constant time, saving the update of all Ω(n2) points in P .
Thus, we arrive at the following lemma, which generalizes to all implementations
of lucidity where a merge of two clusters entails an addition of corresponding
entries of ∆L (or of ∆Mw and ∆E[Mw]).

Lemma 8 By employing quick divisive merge (Algorithm 3), Algorithm 2 runs
in O(n2 log n) time for the relative variants.

5 Experimental Evaluation

The aim of this section is to experimentally evaluate the behavior of lucidity
and of lucidity-based clustering algorithms in a systematic way. We proceed in
two steps and start with the measure lucidity itself:

1. Lucidity vs. Human Intuition. The key idea of this part is to eval-
uate how well lucidity quantifies the human intuition of the quality of a
graph clustering. In a first step we examine the behavior of lucidity on
generated ground-truth clusterings. These generated clusterings are built
by a basic random generator which features an unarguable and intuitive
mechanism for tuning the clarity of the implanted clustering. We thereby
check whether our implementations of lucidity yield results that are in
accordance with human intuition of “better” or “worse” clusterings.

We then cluster the generated graphs with established clustering algo-
rithms and repeat our measurements of lucidity . This second set of ex-
periments is less controlled than that which uses the generator, but reduces
the dependency of our findings on the generator’s clustering.

2. Quality of Greedy Lucidity. The experiments described above serve to
corroborate that lucidity may be used to quantify the goodness of a graph
clustering. In this second setup, we then try to find out how well lucidity-
driven algorithms, and the proposed greedy agglomerative algorithms in
particular, work in practice. To this end, we use three established quality

JGAA, 14(1) 165–197 (2010) 185

indices and lucidity itself, and systematically measure the quality of the
clusterings found by our lucidity-based clustering algorithms from Sec-
tion 4. Here we again use our generator for clustered random networks
with scalable clarity. We thereby compare our algorithms to three estab-
lished ones which serve as benchmarks. The question we want to answer
is: How well do lucidity-based clustering algorithms compete with other
algorithms in terms of quality?

5.1 The Experimental Setup

We employ an adaption of the benchmark used in [6, 7]. For further details
on this experimental setup we refer the reader to these references and restrict
ourselves to a brief sketch at this point.

Starting with a fixed set V = {1, . . . , n} of nodes, a random partition gener-
ator P(n, s, ν) partitions V into (P1, . . . , Pk). For the distribution of |Pi| we use
|Pi| ∼ N (s, sν), with s = n/k. This simple process constrains |Pk| (and possibly
even predecessors); this is dealt with by setting |Pk| = n−∑i<k |Pi| iff this yields
||Pk|− s| < s/3, otherwise the partition is rejected and a new one drawn. Given
a partition, this is used as the clustering. Then, for all e ∈

(
V
2

)
edges are intro-

duced inside and between clusters with probabilities pin and pout, respectively.
Finally a random weight ω is assigned to each edge with ω ∼ U([0, pin])5 or ω ∼
U([0, pout]), respectively. In case the resulting graph is disconnected, additional
edges between random nodes of disconnected components are drawn. In our ex-
periments we used n = 100 and n = 1000, and choose k ∼ U([log n,

√
n]), ν = 4.

pout

pin

Asparse
A

AdenseAstrong

A ra
nd

.

0.2

0.4

0.6

0.8

1.0

0.0

0.0 0.2 0.4 0.6 0.8 1.0

Figure 8: Combinations of pin, pout and
their rough naming.

We roughly refer to combinations of pin

and pout supporting dense, sparse, strong
and random community structure by
Adense, Asparse, Astrong and Arand., respec-
tively, as sketched out in Figure 8.

We then let the lucidity algorithms,
based on Algorithm 2 and on the four
variants (see Section 3.2) compete with
reference algorithms on these instances.
We restrict ourselves to Markov Cluster-
ing (MCL) [31], Geometric MST Cluster-
ing (GMC) [7] and Iterative Conductance
Cutting (ICC)6 [20] for comparison and
to lucidity , coverage, performance and
inter-cc (see [5]) for measuring clustering quality alongside structural aspects,
such as the number of clusters. We keep the number of algorithms for compari-

5The uniform distribution over the interval [a, b] is denoted as U([a, b])
6ICC uses a threshold which determines when the cutting strategy of the algorithm should

stop, we use 0.4; for GMC we use embedding dimension 2 and the geometric mean of coverage,
performance and inter-cc as the objective function; for MCL we use expansion = 2 and
reduction = 2; note that while for ICC the threshold directly influences the number of clusters,
the other two algorithms automatically determine this number.

186 Görke et al. Comp. Aspects of Lucidity-Driven Graph Clustering

son limited as they only serve as a benchmark. Although there exist a number of
alternative approaches that work towards the maximization of modularity (and
could thus also be applied to lucidity), we refrain from including any of them
in our study as it has been repeatedly shown (see Section 1 and the references
therein) that all these largely similar approaches only marginally differ in both
the structure of the identified clustering and the measured modularity .

We systematically conducted experiments using 100 and 1000 nodes, for all
combinations of pin > pout in steps of 0.05. We repeated each setup, until
mean measured qualities were estimated to lie within a confidence interval of
length 2 · 0.05 around the actual mean with an α-level (probability) of 0.95. We
separately required this level of significance for each quality index measured. In
total about one million total runs were conducted. Effective runtimes of our very
basic Java 1.5 implementations ranged from a few milliseconds for 100 nodes
using absolute variants to several seconds for 1000 nodes using relative variants,
on an AMD Opteron 2.2 GHz. In addition to this systematic evaluation, we
show exemplary results on two real-world networks in Section 5.3.

5.2 Computational Results

In this section we discuss the outcomes of our experiments. Since results for
n = 100 largely agreed with those for n = 1000 we chose to focus on the latter
(larger) setup here. Due to the equivalence of L−cov and L−perf , we denoted results
as L−∗ . The plots use isolines (or contour lines), which are curves where the
evaluated function has a constant value as denoted by labels on the isolines in
the figures. This is comparable to elevation contour lines on topographic maps,
giving a good impression of the behavior of a function on two variables. We
first conduct experiments that evaluate how well lucidity is in accordance with
human intuition in terms of the quality of a given clustering, then we evaluate
lucidity-based algorithms.

5.2.1 Lucidity-Scores on Generator and Benchmark Algorithms.

We can assume that the graph generation process described above yields clus-
terings whose qualities—according to human intuition—clearly scale with pin

and (inversely) with pout. Roughly speaking, for our results, one would expect
high values in Astrong, with some variety of descent towards Arand.. Figure 9
shows the results. As postulated for a reasonable index, all indices clearly at-
tain the highest values for Astrong. For most indices, the slope of the quality
level decreases with higher pout; since the number of inter-cluster pairs of nodes
increases more quickly than the number of intra-cluster nodes in our genera-
tor.7 The slopes for performance remain approx. constant, which is a favorable
behavior, as it yields a better comparability of clustering qualities of different
graphs. This behavior is due to the fact that both edges inside, and non-edges
between clusters are considered (as compared to, e.g., coverage). By Figure 9f

7Roughly speaking, the ratio of intra- to inter-cluster edges is proportional to k. Thus, in
our generator and in many real networks, the statement holds.

JGAA, 14(1) 165–197 (2010) 187

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) coverage

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b) performance

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(c) inter-cc

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(d) L−∗

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(e) L÷cov

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(f) L÷perf

Figure 9: Plotted results for achieved quality on the underlying generator’s clustering.
The y-axis shows pin, the x-axis shows pout. The isolines indicate combinations of pin

and pout where the same quality (value as label on isoline) has been measured.

L÷perf adopts this behavior, a fact that is not obvious from the definition, but a
property to keep in mind when using the index. Conversely, L−∗ does not exhibit
this behavior, which is in parts explained by its strong dependence on coverage
(remember from Section 3.2 that in L−perf , the terms referring to inter-cluster
edges cancel out). As one difference between coverage and L−∗ note that the
latter is more discriminative about Arand., yielding values close to 0. Inter-cc
yields high values for Astrongand low values for Arand., consistent with the in-
tuition. Again, slopes decrease, but for a different reason: The index inter-cc
is sensitive to a large cut induced by a single small cluster; since the ratio of
inter- to intra-cluster edges for Asparse is lower than for Adense, inter-cc gen-
erally yields higher values for Asparse. Summarizing, all three implementations
of lucidity behave consistently in this test on the quality of a “ground truth”
clustering with scalable clarity.

So far we know that our implementations of lucidity behave in a sound way
on the generator’s clustering. Figure 10 shows how they assess the results of
the algorithms MCL and ICC (here we omit GMC for brevity), being less con-
trolled experiments. For Astrong these algorithms probably identify a clustering
which is very similar to the generator’s. Comparing plots 10(a)-(c) to the corre-
sponding ones in Figure 9 yields strong evidence for this. All three agree about
MCL not performing very well for Asparse, a fact coverage, performance and

188 Görke et al. Comp. Aspects of Lucidity-Driven Graph Clustering

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) L−∗ on MCL

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b) L÷cov on MCL

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(c) L÷perf on MCL

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(d) L−∗ on ICC

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(e) L÷cov on ICC

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(f) L÷perf on ICC

Figure 10: Plotted results for achieved lucidity on the MCL’s and ICC’s clusterings
(for a comparison to other measures on these clusterings review Figures 11-14)

inter-cc also agree on (see Figures 11b, 12b and 13b, respectively). The main
reason for this is that MCL tends to identify a very fine clustering for Asparse

(see Figure 14b). Interestingly, L−∗ sees worse quality in MCL’s clusterings for
Adense, as opposed by L÷perf .

8 The reason is MCL’s rather coarse clustering for
that region, something we will see L÷perfapprove of repeatedly below. To briefly
discuss the results on ICC note that L−∗ ’s values largely agree with those on the
generator. Exhibiting a rather exotiv behavior, L÷cov seems to approve of the
generally rather fine clustering of ICC; note how the number of clusters of ICC
(see Figure 14d) correlates with L÷cov, especially for Asparse. The general shape
of the values of L÷perf strongly resembles that for the generator, a result all other
measures (except L÷cov) second. However, it does so at a lower absolute level;
we shall see the reason for this in Figure 14g, where it becomes obvious that
in terms of the number of clusters to be found, this measure disagrees with the
behavior of ICC, i.e., that L÷perf favors coarse clusterings.

Summary for Question 1. To summarize our findings, we can state that
all three implementations of lucidity behave very reasonably on the controlled,

8Keeping crossreferences rigorous and multiply referring to other figures in almost each
sentence massively obfuscates the text. We therefore refrain from most further references to
plots in this section and hope that the reader manages to find the relevant ones.

JGAA, 14(1) 165–197 (2010) 189

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) generator

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b) algorithm MCL

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(c) algorithm GMC

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(d) algorithm ICC

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(e) greedy L−∗

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(f) greedy L÷cov

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(g) greedy L÷perf

Figure 11: Plotted results for values of performance achieved by the generator, the
benchmark clustering algorithms and the lucidity-based algorithms

pregenerated clusterings, with the small asset for L÷perf which seems to react
to pin and pout in a largely independent manner. Our experiments on the two
benchmark algorithms MCL and ICC partially second these results, but already
suggest that L÷perf favors coarse clusterings in a mild manner, and that L÷cov

rather wildly favors fine clusterings. In turn, L−∗ appears not to depend too
strong on this, but instead mildly disfavors both extremes.

5.2.2 Lucidity-Based Algorithms

In this section we measure the quality of clusterings identified with lucidity-
based algorithms with three established indices and with lucidity itself. We
thereby compare the results with those of three other algorithms which serve
as benchmarks. Note that while a structural comparison with the generator’s
clustering is possible, it is not very meaningful, as this is not a “ground-truth”
clustering in the traditional sense: we do not draw samples from an underlying
distribution which is to be identified.

At a first glance, the statistical results for both relative variants (L÷cov and
L÷perf) and for L−∗ essentially differ for all three quality indices. Alongside the
disagreement on the quality indices, L÷cov tends to identify fine clusterings, i.e.,
33 clusters on the average,while L÷perf finds clusterings with a coarse granularity,
i.e., 2.9 clusters on the average. The absolute variants exhibit a surprisingly
similar behavior to the initial clustering with respect to all quality indices. The
same holds for L÷perf with respect to coverage and inter-cluster conductance,

190 Görke et al. Comp. Aspects of Lucidity-Driven Graph Clustering

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) generator

0.0 0.2 0.4 0.6 0.8 1.0
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

(b) algorithm MCL

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(c) algorithm GMC

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(d) algorithm ICC

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(e) greedy L−∗

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(f) greedy L÷cov

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(g) greedy L÷perf

Figure 12: Plotted results for values of coverage achieved by the generator, the bench-
mark clustering algorithms and the lucidity-based algorithms

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) generator

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b) algorithm MCL

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(c) algorithm GMC

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(d) algorithm ICC

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(e) greedy L−∗

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(f) greedy L÷cov

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(g) greedy L÷perf

Figure 13: Plotted results for values of inter-cc achieved by the generator, the bench-
mark clustering algorithms and the lucidity-based algorithms

JGAA, 14(1) 165–197 (2010) 191

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) generator (≈ 6)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b) algorithm MCL

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(c) algorithm GMC

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(d) algorithm ICC

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(e) greedy L−∗

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(f) greedy L÷cov

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(g) greedy L÷perf

Figure 14: Average number of clusters identified by the generator and the algorithms

however, the behavior is different for performance, but still acceptable scores
are attained. In contrast, L÷cov clearly fails to achieve high values of coverage
and inter-cluster conductance, while its performance score is surprisingly good,
a consequence of a very high number of clusters. The benchmark algorithms do
not substantially surpass the initial clustering in general. Although the same
holds for the lucidity algorithms, they shine for Arand., finding higher quality
clusterings than the generator (except L÷perf for coverage).

Summary for Question 2. In an overall assessment of the achieved clus-
tering quality, the two absolute variants excel with respect to performance for
almost all generated instances. This is particularly meaningful since both do not
yield inappropriately high numbers of clusters, which would artificially increase
performance. With respect to coverage, the absolute variants are only surpassed
by the few algorithms that produced a substantially coarser clustering, among
those L÷perf . An interesting observation is, that, using the lucidity measures as
quality indices themselves, the greedy algorithms attain the maximum corre-
sponding score for most testsets. However, in the case of Astrong, the obtained
differences in the lucidity measures are small among most algorithms.

Explaining Some Artifacts. The high values of performance, attained by
greedy L÷cov for Asparse are due its fine clusterings. These, in turn, can be ex-
plained as follows. Each step of the algorithm increases coverage and E[coverage],
which are both bounded by 1. These values increase faster, if an already large
cluster is enlarged. Thus, the fraction tends to 1 for coarse clusterings, causing

192 Görke et al. Comp. Aspects of Lucidity-Driven Graph Clustering

the L÷cov-algorithm to terminate early, since coverage is monotonic in |C|.

5.3 Real Data

Figure 15 shows how the variants of lucidity perform on the karate club net-
work, studied initially in [34]. The network represents friendship between the
34 members of a university club that, due to an internal dispute, split up into
two groups (circular nodes on the left and square-shaped nodes on the right).
Clearly, relative performance lucidity (L÷perf) excels here, exactly reproducing
the original division and thereby surpassing even modularity in precision.

(a) L−∗ (modularity) (b) ILP-optimized L−∗

(c) L÷cov(boxes removed for readability) (d) L÷perf

Figure 15: The upper right figure shows the clustering with optimum L−∗ , In all
figures node shapes denote the grouping in reality. While both the greedy and the ILP
optimization of L−∗ are meaningful and close to the real grouping, relative performance
lucidity (Subfigure 15d) exactly reproduces the real grouping. The clustering L÷cov
identifies is not unreasonable, but too fine and insensitive for some applications.

Figure 16 shows a graph of the email contacts at our department over a
period of three months (approx. 44300 emails). Nodes represent persons and
weighted edges represent the number of email contacts between two coworkers.
The grouping depicts the department’s internal structure while the node colors
(gray values) show the findings of the greedy algorithm based on L−∗ .

6 Conclusion

We formally stated the founding clustering paradigm of modularity , a recently
introduced quality measure for graph clusterings. This paradigm of lucidity
L�M(C) considers the trade-off between the achieved quality and the expected

JGAA, 14(1) 165–197 (2010) 193

Figure 16: Inside reference clusters, L−∗ misclassifies only 6.8% of nodes, most of which
are due to the highly ambiguous reference cluster A, which is split in half by the algo-
rithm. The clustering of L−∗ yields a noticeably higher (≈ 6%) coverage, which is partly
due to 9 clusters each being merged into other clusters they are strongly connected
with. In terms of inter-cc and all four realizations of lucidity, L−∗ slightly surpasses the
reference. However, the performance of the reference clustering is 2.4% higher than
for L−∗ . Note the artifact nodes in clusters B, C, D and the strong connections between
clusters A, E1, . . . , E4, which account for the aggregation done by the algorithm.

quality of a clustering with respect to networks with a similar intrinsic struc-
ture. We scrutinize four specific realizations of this paradigm—one being modu-
larity—based on the well-known quality indices performance and coverage, and
realizing the trade-off to the expectation by either subtraction or division. We
state and discuss a probabilistic model for the assumptions that modularity and
lucidity are founded upon. We derive and prove that using performance and
subtraction yields a measure L−perf of lucidity which is equivalent to modularity ,
which in turn constitutes the special case L−cov. Since performance is more robust
than coverage, this observation strengthens modularity . The ILP formulation
of the corresponding optimization problems leads us to NP-hardness of Min-
MixedMultiPartition. The performed experimental study is a systematic
evaluation of the lucidity paradigm. Its evaluation yields that the paradigm is
highly feasible, producing meaningful indices and clusterings with good quality.
The generality of our approach is substantiated by the good results of using per-

194 Görke et al. Comp. Aspects of Lucidity-Driven Graph Clustering

formance and division on real networks. We additionally show its applicability
by giving a general and efficient greedy algorithmic approach for a whole class
of relative realizations, including the presented ones.

JGAA, 14(1) 165–197 (2010) 195

References

[1] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, and A. Marchetti-
Spaccamela. Complexity and Approximation - Combinatorial Optimiza-
tion Problems and Their Approximability Properties. Springer, 2nd edition,
2002.

[2] V. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre. Fast unfolding
of communities in large networks. Journal of Statistical Mechanics: Theory
and Experiment, 2008(10), 2008.

[3] U. Brandes, D. Delling, M. Gaertler, R. Görke, M. Höfer, Z. Nikoloski, and
D. Wagner. On Modularity Clustering. IEEE Transactions on Knowledge
and Data Engineering, 20(2):172–188, February 2008.

[4] U. Brandes, D. Delling, M. Höfer, M. Gaertler, R. Görke, Z. Nikoloski, and
D. Wagner. On Finding Graph Clusterings with Maximum Modularity. In
A. Brandstädt, D. Kratsch, and H. Müller, editors, Proceedings of the 33rd
International Workshop on Graph-Theoretic Concepts in Computer Science
(WG’07), volume 4769 of Lecture Notes in Computer Science, pages 121–
132. Springer, October 2007.

[5] U. Brandes and T. Erlebach, editors. Network Analysis: Methodological
Foundations, volume 3418 of Lecture Notes in Computer Science. Springer,
February 2005.

[6] U. Brandes, M. Gaertler, and D. Wagner. Experiments on Graph Clustering
Algorithms. In Proceedings of the 11th Annual European Symposium on
Algorithms (ESA’03), volume 2832 of Lecture Notes in Computer Science,
pages 568–579. Springer, 2003.

[7] U. Brandes, M. Gaertler, and D. Wagner. Engineering Graph Clustering:
Models and Experimental Evaluation. ACM Journal of Experimental Al-
gorithmics, 12(1.1):1–26, 2007.

[8] G. Brodal and R. Jacob. Dynamic Planar Convex Hull. In Proceedings of
the 43rd Annual IEEE Symposium on Foundations of Computer Science
(FOCS’02), pages 617–626. IEEE Computer Society Press, 2002.

[9] C. Castellano and S. Fortunato. Community Structure in Graphs. To
appear as chapter of Springer’s Encyclopedia of Complexity and Systems
Science; arXiv:0712.2716v1, 2008.

[10] F. R. K. Chung and L. Lu. Connected Components in Random Graphs
Graphs with Given Expected Degree Sequences . Annals of Combinatorics,
6(2):125–145, 2002.

[11] A. Clauset, M. E. J. Newman, and C. Moore. Finding community structure
in very large networks. Physical Review E, 70(066111), 2004.

196 Görke et al. Comp. Aspects of Lucidity-Driven Graph Clustering

[12] E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D. Seymour, and
M. Yannakakis. The Complexity of Multiterminal Cuts. SIAM Journal on
Computing, 23(4):864–894, 1994.

[13] L. Danon, A. Dı́az-Guilera, J. Duch, and A. Arenas. Comparing Commu-
nity Structure Identification. Journal of Statistical Mechanics: Theory and
Experiment, 09(P09008):1–10, 2005.

[14] J. Duch and A. Arenas. Community Detection in Complex Networks using
Extremal Optimization. Physical Review E, 72(027104):1–4, 2005.

[15] S. Fortunato and M. Barthélemy. Resolution limit in community detection.
Proceedings of the National Academy of Science of the United States of
America, 104(1):36–41, 2007.

[16] M. Gaertler, R. Görke, and D. Wagner. Significance-Driven Graph Clus-
tering. In Proceedings of the 3rd International Conference on Algorith-
mic Aspects in Information and Management (AAIM’07), Lecture Notes
in Computer Science, pages 11–26. Springer, June 2007.

[17] M. R. Garey and D. S. Johnson. Computers and Intractability. A Guide to
the Theory of NP-Completeness. W. H. Freeman and Company, 1979.

[18] R. Guimerà and L. A. N. Amaral. Functional Cartography of Complex
Metabolic Networks. Nature, 433:895–900, February 2005.

[19] R. Jacob. Dynamic Planar Convex Hull. PhD thesis, BRICS Research
Centre, 2002.

[20] R. Kannan, S. Vempala, and A. Vetta. On Clusterings - Good, Bad and
Spectral. In Proceedings of the 41st Annual IEEE Symposium on Founda-
tions of Computer Science (FOCS’00), pages 367–378, 2000.

[21] S. Muff, F. Rao, and A. Caflisch. Local Modularity Measure for Network
Clusterizations. Physical Review E, 72(056107):1–4, 2005.

[22] S. Nagel. Optimisation of Clustering Algorithms for the Identification of
Customer Profiles from Shopping Cart Data. Master’s thesis, Universität
Karlsruhe (TH), Fakultät für Informatik, October 2008. Diplomarbeit In-
formatik.

[23] M. E. J. Newman. Analysis of Weighted Networks. Physical Review E,
70(056131):1–9, 2004.

[24] M. E. J. Newman. Fast Algorithm for Detecting Community Structure in
Networks. Physical Review E, 69:066133, 2004.

[25] M. E. J. Newman. Modularity and Community Structure in Networks.
Proceedings of the National Academy of Science of the United States of
America, 103(23):8577–8582, June 2006.

JGAA, 14(1) 165–197 (2010) 197

[26] M. E. J. Newman and M. Girvan. Finding and evaluating community
structure in networks. Physical Review E, 69(026113), 2004.

[27] M. E. J. Newman and J. Park. Origin of degree correlations in the Internet
and other networks. Physical Review E, 68(2), 2003.

[28] V. Nicosia, G. Mangioni, V. Carchiolo, and M. Malgeri. Extending the Def-
inition of Modularity to Directed Graphs with Overlapping Communities.
Journal of Statistical Mechanics: Theory and Experiment, 2009(03):p03024
(23pp), 2009.

[29] A. Philippides, P. Fine, and E. D. Paolo. Spatially Constrained Networks
and the Evolution of Modular Control Systems. In Proc. 9th International
Conference on Simulation of Adaptive Behavior, Lecture Notes in Com-
puter Science, pages 546–557. Springer, 2006.

[30] J. Reichardt and S. Bornholdt. Statistical Mechanics of Community De-
tection. Physical Review E, 74(016110):1–16, 2006.

[31] S. M. van Dongen. Graph Clustering by Flow Simulation. PhD thesis,
University of Utrecht, 2000.

[32] F. Viger and M. Latapy. Efficient and Simple Generation of Random Simple
Connected Graphs with Prescribed Degree Sequence. In Proceedings of the
11th Annual International Conference on Computing Combinatorics (CO-
COON’05), Lecture Notes in Computer Science, pages 440–449. Springer,
2005.

[33] S. White and P. Smyth. A Spectral Clustering Approach to Finding Com-
munities in Graphs. In Proceedings of the fifth SIAM International Con-
ference on Data Mining, pages 274–285. SIAM, 2005.

[34] W. W. Zachary. An Information Flow Model for Conflict and Fission in
Small Groups. Journal of Anthropological Research, 33:452–473, 1977.

[35] E. Ziv, M. Middendorf, and C. H. Wiggins. Information-Theoretic Ap-
proach to Network Modularity. Physical Review E, 71(046117):1–9, 2005.

	Introduction
	Preliminaries
	The Lucidity Paradigm
	A Probabilistic Setup
	Implementations of the Lucidity Paradigm
	The Equivalence of Subtractive Coverage and Subtractive Performance Lucidity
	The Relation to MinMixedMultiPartition

	Lucidity-Clustering Algorithms
	Runtime Analysis
	Quick Divisive Merge

	Experimental Evaluation
	The Experimental Setup
	Computational Results
	Lucidity-Scores on Generator and Benchmark Algorithms.
	Lucidity-Based Algorithms

	Real Data

	Conclusion

