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Abstract

In this paper, we consider time-dependent networks, and the task

of computing cost-optimal paths, which are constrained to stay close to

fastest paths. We derive pruning criteria, which significantly improve both

the number of vertex-time pairs expanded during search and the memory

required to ensure the correctness of any solution algorithm. We then

prove new complexity results, which imply that the problem of computing

constrained cost-optimal paths in a discrete-time setting is polynomially

solvable for several graph and constraint classes.
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1 Introduction

The problem of computing shortest paths in weighted and directed networks
has been studied extensively in the literature. This is due to the fact, that this
problem arises in many applications, such as route planning or internet routing,
in the field of optimal control ([19]) and as subproblem in a variety of graph
problems ([2]). The first algorithmical results were derived by Bellman [3] and
Dijkstra [12], achieving a complexity of O(mn) and O(n2 + m), respectively,
were n denotes the number of vertices and m denotes the number of edges in
the network. In the late 1960ies, a formal study of heuristic search algorithms
([18],[27]) began, and complexity results were derived, which depend on the
length of the solution path ([26],[27],[25]). The problem of computing optimal
paths in time-dependent networks was first introduced in [7], and indirectly
mentioned in the context of maximal flows in [13]. This approach has received
increasing attention since the 1990ies in the fields of intelligent transportation
services [6] and internet routing [22]. As the computation of optimal paths in
large networks, such as the road network, is still costly, a variety of speed-up
techniques have been developed ([11]). There has also been considerable effort
in extending the deterministic approach to a probabilistic setting, in which the
edge travel times and costs are random variables or stochastic processes ([16],
[17], [20], [15]).
The research in the field of time-dependent networks is divided into two ap-
proaches, a continuous (see, e.g., [23], [24], [9]) and a discrete (see, e.g., [4], [6],
[1]) modelling of the time variable. The problems considered consist of comput-
ing optimal paths for one or for all travel times and from one or many source
vertices to one or many goal vertices. Of course, depending on the model and
the problem, different properties of the resulting dynamical network can be ex-
ploited, and different solution strategies have been developed.
Considering the complexity of the resulting solution algorithms, there are again
two classes of problems: If the task consists of computing the fastest path for
a fixed departure time in a network which fulfills the FIFO-condition (i.e., a
network in which it is never possible to arrive earlier by leaving later), there
exist algorithms which solve the problem in polynomial time ([23]). By contrast,
if the FIFO-condition is violated, or minimum cost paths (with a cost different
from travel time) are considered, the computation of optimal paths is NP-hard
([23], [1]). In the case of fastest paths, it is possible to overcome this hardness
result, if unbounded waiting is allowed everywhere in the network ([23]). Yet,
this approach is not applicable for minimum-cost paths.
In this work, we will consider a dynamical network, in which waiting is prohib-
ited everywhere, and a dynamical optimal cost path shall be computed for a
fixed departure time. This is a typical problem setting in applications like auto-
motive navigation systems, in which the driver requests an optimal route to his
desired destination, and repeated waiting in the road network is not allowed due
to traffic constraints. We will discuss two constraints on dynamical paths, i.e., a
time constraint and the claim that only simple paths are allowed for expansion.
Note, that in contrast to static optimal paths, dynamical optimal paths may
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contain circles [24]. We will show that both constraints can be verified in poly-
nomial time. Moreover, we will derive pruning criteria, which allow a significant
improvement in the number of vertex-time pairs, which must be expanded and
which must be kept in memory by any solution algorithm. Finally, we derive
new complexity results, which imply that constrained optimal cost paths can
be computed in polynomial time, if the time variable is discrete. In case of a
continuous time variable, we show that no time constraint other than allowing
only fastest paths can ensure polynomial complexity in the worst case.
This paper is structured as follows: In Section 2, we introduce the notation
required for the description of our problem, and give some preliminary results.
In Section 3, we consider the computation of optimal paths in the absence of
constraints, and show that the optimal cost function is Lipschitz-continuous, if
the edge travel time and cost functions are. Based on this observation we derive
a pruning criterion, which we extend to the time-constrained case in Section
4. Additionally, we show that in order to maintain the simple path property,
not the whole history of a path, but only a small number of predecessors are
required. In Section 5, we prove the complexity results for the computation of
constrained dynamical optimal cost paths. Finally, we conclude our discussion
of dynamical networks in Section 6.

2 Notation and problem formulation

Various ways of describing a dynamical network can be found in the literature
[9], [4], [6], [24]. We find it convenient to use the following notation.

Definition 1 A dynamical network is a quadruple (V,E, τ ;β), where V is a
set of n vertices (n ∈ N), E ⊂ V × V is a set of m directed edges (m ∈ N),
τ : E × R → R

+
0 is an edge travel time function and β : E × R → R is an edge

cost function.
Given a directed edge e = (u, v) ∈ E, we denote by α : E → V , α(e) = u the
tail of the edge e and by ω : E → V , ω(e) = v the head of the edge e.

Remark 1 The second argument of τ and β, respectively, denotes the time
variable and refers to the departure time on the edge given by the first argument.

A state in the dynamical network must therefore be specified by a vertex and a
time, whereas a state transition is specified by an edge and the corresponding
travel time. This notion leads to the following definition of dynamical paths.

Definition 2 A dynamical path p of length l ∈ N is a sequence of pairs (ek, sk) ∈
E×R, k = 1, ..., l, i.e., p = ((e1, s1), (e2, s2), ..., (el, sl)), with the following prop-
erties:

α(ek+1) = ω(ek), k = 1, ..., l− 1, (1)

sk+1 = sk + τ(ek, sk), k = 1, ..., l− 1. (2)
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s1 is called the departure time of the path p, α(e1) is called the source vertex,
ω(el) is called the goal vertex.
We denote the set of all dynamical paths of finite length l by P and the set of
finite connected edge sequences (i.e., edge sequences satisfying (1)) by E.

Remark 2 The set E is the set of all finite topological paths in (V,E).

Given a connected sequence of edges (e1, ..., el) ∈ E and a starting time s1 ∈
R, equation (2) uniquely determines a dynamical path. This motivates the
definition of a path projection Π : P → R × E , with components Π1 : P → R,
Π2 : P → E , Π = (Π1,Π2) and

Π1 ((e1, s1), (e2, s2), ..., (el, sl)) = s1, (3)

Π2 ((e1, s1), (e2, s2), ..., (el, sl)) = (e1, e2, ..., el). (4)

The path projection Π and its inverse will considerably facilitate the notation
and the treatment of dynamical paths corresponding to the same edge sequence
at varying departure times in Section 3.
Next, we define the path travel time function t : P → R,

t(p) =

l
∑

k=1

τ(ek, sk). (5)

Definition 3 Let P(v;u, s) denote the set of dynamical paths from vertex u ∈ V
to vertex v ∈ V with departure time s ∈ R.
We define the optimal travel time function t∗ : V × (V × R) → R

+
0 ,

t∗(v;u, s) =

{

inf{t(p) : p ∈ P(v;u, s)}, u 6= v
0, u = v

. (6)

Each path p∗ ∈ P(v;u, s) with t(p∗) = t∗(v;u, s) is called a fastest path from u
to v with respect to the departure time s.

In static networks with nonnegative edge cost, optimal paths are always simple.
They can be computed, e.g., applying the principle of dynamic programming
or the algorithm of Dijkstra. In a time-dependent network, the principle of dy-
namic programming is only generally valid in the time-expanded network ([1],
[10]). This explains the difficulty of deriving computationally efficient algo-
rithms for the dynamical optimal path problem: The time-expanded network
is usually very large in the case of a discrete time variable, and even the set
of reachable vertex-time pairs is eventually innumerable in the case of a con-
tinuous time variable ([24]). Several pseudo-polynomial algorithms have been
developed for discrete-time time-expanded networks, exploiting the fact that
the time-expanded network is acyclic if all travel times are positive ([1], [6], [4]).
For some applications, like automotive navigation systems, it might be desirable
to exclude circles in the topological structure of paths. This is on one hand moti-
vated by the smaller number of feasible paths, which must be considered during
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search, and which will in almost all cases suffice for the computation of optimal
paths. On the other hand, it is unlikely that an optimal path which contains a
circle will be accepted by the driver. We will now define which dynamical paths
we call simple.

Definition 4 A dynamical path p ∈ P is called simple, if the topological path
Π2(p) is simple, i.e., if Π2(p) visits no vertex more than once.

In this work, we will consider a dynamical network, in which all edge travel
times fulfill the FIFO-condition, i.e., we suppose that for all s, s′ ∈ R, s′ ≥ s,
and all e ∈ E, we have

s′ + τ(e, s′) ≥ s+ τ(e, s). (7)

The FIFO-property states, that it is not possible to arrive earlier by leaving
later. In traffic theory this is also referred to as the non-passing property ([28]).
The FIFO-property has an important impact on the structure of fastest paths
and on the complexity of computing the like.

Lemma 1 Suppose that the edge travel times of the dynamical network fulfill
the FIFO-condition (7). Then for every source vertex v0 ∈ V , every departure
time s0 ∈ R and every goal vertex v′ ∈ V , there exists a simple and concatenated
fastest path, and the computation of this fastest path can be carried out in O(m+
n log(n)) time.

Proof: The existence of a simple and concatenated fastest path has been proved
in [23, Corollary 1], whereas the relevance of the FIFO-property is explicitly
stated in [23, Section 3.2]. A slightly modified version of Dijkstra’s shortest path
algorithm ([12]) can be used to compute the fastest path in a FIFO network ([1]).
Using Fibonacci heap implementation ([14]), this algorithm can be implemented
in O(m+ n log(n)) time. �

Remark 3 Note, that in sparse networks, i.e., networks in which m = O(n),
the complexity bound of Lemma 1 becomes O(n log(n)). The road network, in
which the number of roads emanating from any junction is bounded, is a sparse
network.

Fastest paths in dynamical networks are therefore simple and easy to compute.
This motivates the introduction of the second constraint, which requires any
feasible path to remain in some sense close to a fastest path.

Definition 5 Let γ : R → R denote a monotonically increasing function with
γ(0) = 0, and let Γ : R → R, Γ(s) = s+ γ(s). Given a source vertex v0 ∈ V , a
departure time s0 ∈ R and a goal vertex v′ ∈ V , we call the visiting time s ∈ R

feasible for the vertex v ∈ V , if

t∗(v; v0, s0) ≤ s, (8)

s ≤ Γ(t∗(v; v0, s0)), (9)

s+ t∗(v′; v, s) ≤ Γ(t∗(v′; v0, s0)). (10)
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Remark 4 The constraint (9) states, that it is not feasible to visit a vertex
more than γ(t∗(v; v0, s0)) after the optimal travel time t∗(v; v0, s0). Considering
automotive navigation systems, it may, e.g., be prohibitive to compute a route,
which takes more than 110% of the optimal travel time.
The inequalities (8) and (10) guarantee, that it is possible to reach v at (or
before) time s, and that the goal vertex is reachable at a feasible visiting time
from v at (or after) time s.

Remark 5 Since the set of feasible visiting times for any vertex v ∈ V de-
pends on the source vertex v0, the departure time s0 and the goal vertex v′ (cf.
Definition 5), these must be specified whenever we deal with time-constrained dy-
namical optimal path problems. Even if not explicitly noted, we will assume that
some particular v0, s0, s

′ have been fixed whenever time constraints are imposed.

In the following, we will consider two classes of time constraints, i.e., we will
choose γ as a linear function or as a logarithmic function. For the sake of
simplicity, we denote

γlin(s) = s, (11)

γlog(s) = log(s), (12)

where log denotes the natural logarithm. Note, that the introduction of con-
stants or the choice of a logarithmic function to a different basis will not result
in different orders of complexity in Section 5. Hence, the functions γlin, γlog can
be viewed as representants for a whole class of functions. These classes have
been chosen in analogy to the literature, which investigates the effect of the ac-
curacy of a given heuristic on the complexity of heuristic search (cf. Section 5).
Yet, this choice is somewhat arbitrary, and results similar to those of Lemma 4,
Theorem 3 and Corollary 3 can also be achieved for other function classes.
In an unconstrained optimal path problem, none of the two constraints (i.e., the
simple path constraint and the feasible visiting time constraint) is imposed. As
each constraint has a different impact on the complexity of computing optimal
paths, we will seperately discuss the effects of the constraints in both continuous
and discrete time. Generally, depending on the set of constraints we impose on
dynamical paths, we will result in a set of feasible dynamical paths, which we
denote by P̂. Note, that in the unconstrained case, there holds P̂ = P .
In the same manner, in which we have defined a path travel time function,
we now define a path cost function b : P̂ → R for each feasible path p =
((e1, s1), (e2, s2), ..., (el, sl)) ∈ P̂,

b(p) =

l
∑

k=1

β(ek, sk). (13)

Definition 6 Let P̂(v;u, s) ⊂ P denote the set of feasible dynamical paths from
vertex u ∈ V to vertex v ∈ V with departure time s. Let

S(v;u) =

{

{s ∈ R : P̂(v;u, s) 6= ∅}, u 6= v
{s ∈ R : s satisfies all imposed time constraints at u = v}, u = v

,
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and D = {(v;u, s) ∈ V × (V × R) : s ∈ S(v;u)}.
We define the optimal cost function b∗ : D → R,

b∗(v;u, s) =

{

inf{b(p) : p ∈ P̂(v;u, s)}, u 6= v
0, u = v

. (14)

Each path p∗ ∈ P̂(v;u, s) with b(p∗) = b∗(v;u, s) is called an optimal path from
u to v with respect to the departure time s.

Remark 6 For u 6= v, S(v;u) denotes the set of visiting times, for which there
exists at least one feasible dynamical path from u to v. Note, that in the absence
of time constraints, there holds S(v;u) = R for all u, v ∈ V , and hence b∗ :
V × (V × R) → R.

We are now ready to formulate the problem of computing the minimum cost
feasible dynamical path.

Problem 1 Given a source vertex v0 ∈ V , a departure time s0 ∈ R and a
goal vertex v′ ∈ V , determine a feasible path p∗ ∈ P̂(v′; v0, s0) with b(p∗) =
b∗(v′; v0, s0).

3 The unconstrained problem

In this section, we will consider the problem of computing unconstrained opti-
mal paths. This problem is - at least from an algorithmic point of view - some-
what simpler than the computation of constrained optimal paths, but some of
the results we will obtain are the basis for further considerations in the time-
constrained case.
We have restricted ourselves to finite dynamical paths in Definition 2. However,
if no additional assumptions are imposed on the dynamical network, a finite
optimal path does not have to exist. If, for example, the topological network
is not strongly connected, then there is at least one pair of vertices v0, v

′ ∈ V ,
such that there exists no path from v0 to v′. Even if the network is strongly
connected, there might be no finite optimal path, but rather an infinite optimal
policy, which describes how to reach the goal vertex with minimum cost ([24]).
We therefore need some additional assumptions, which ensure the existence of
optimal paths.

Assumption 1 The topological network (V,E) is strongly connected and finite.
The edge costs are bounded by positive constants β, β ∈ R,

β ≤ β(e, s) ≤ β, ∀e ∈ E, s ∈ R. (15)

Remark 7 Note, that the formulation of the upper bound in (15) is not nec-
essary if both edge travel time and edge cost functions are continuous, or there
exists at least one path of finite cost for any choice of v0, s0 and v′. Yet, some
of the following analysis would become more involved, and hence (15) has been
assumed for simplicity.



130 Kluge et al. Time-constrained dynamical optimal path problems

Theorem 1 If Assumption 1 holds, then there exists at least one optimal path
from any source vertex v0 ∈ V to any goal vertex v′ ∈ V and for any departure
time s0 ∈ R. Moreover, the set

Eopt(v
′; v0) = {Π2(p) : b(p) = b∗(v′; v0, s), p ∈ P(v′; v0, s), s ∈ R} (16)

is finite for all v0, v
′ ∈ V .

Proof: Let v0, v
′ ∈ V , s0 ∈ R be arbitrary but fixed. As (V,E) is strongly

connected and finite, the minimum-hop distance d from v0 to v′ is finite, d ∈ N.
Let (e1, ..., ed) be a topological minimum-hop path from v0 to v′. From (13)
and (15) we deduce

dβ ≥ b
(

Π−1(s0, (e1, ..., ed))
)

≥ inf{b(p) : p ∈ P(v′; v0, s0)} = b∗(v′; v0, s0), (17)

hence the cost of the optimal path from v0 to v′ with departure time s0 is
bounded. The cost of any optimal path is therefore bounded from above by
nβ, and hence the length of any optimal path is bounded by nβ/β. As the

set of dynamical paths of length l ≤ nβ/β emanating from v0 at time s0 is
finite, at least one element of this set must be optimal. Noting that the bound
l ≤ nβ/β is independent of the departure time, this also implies that the set of
edge sequences Eopt(v′; v0) is finite. �

Remark 8 The set Eopt(v′; v0) contains all topological paths ǫ from u to v,
which define an optimal dynamical path p = Π−1(s, ǫ) for some departure time
s ∈ R. We will need this set to prove the continuity of the optimal cost function
in Lemma 2.

We will now show, that under stronger structural assumptions, i.e., Lipschitz
continuitiy of the edge travel time and edge cost functions, the optimal cost
function defined in (14) is Lipschitz-continuous. The following lemma is fun-
damental for the derivation of the path pruning principle, which we will subse-
quently present, and which we will extend to time-constrained optimal paths in
Section 4.

Lemma 2 Consider a dynamical network in which Assumption 1 holds. If τ, β
are Lipschitz-continuous in the second argument with constants Lτ , Lβ > 0, i.e.,

|τ(e, s)− τ(e, s′)| ≤ Lτ |s− s′|, ∀e ∈ E, s, s′ ∈ R, (18)

|β(e, s)− β(e, s′)| ≤ Lβ |s− s′|, ∀e ∈ E, s, s′ ∈ R, (19)

then for any u, v ∈ V the partial function b∗(v;u, .) : R → R is Lipschitz-
continuous with Lipschitz-constant

L = Lβ
(1 + Lτ )

D − 1

Lτ
, (20)

where D denotes the maximum length of an optimal path from from u to v, i.e.,

|b∗(v;u, s)− b∗(v;u, s′)| ≤ L|s− s′|, ∀s, s′ ∈ R. (21)
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Proof: Let p ∈ P(v;u, s) be a dynamical path from u ∈ V to v ∈ V with
departure time s ∈ R, p = ((e1, s1), ..., (el, sl)), s1 = s, l ≤ D. For s′ ∈ R let p′

denote the dynamical path corresponding to the same edge sequence ǫ = Π2(p)
and the departure time s′, i.e., p′ = Π−1(s′, ǫ) = ((e1, s

′
1), ..., (el, s

′
l)), s

′
1 = s′.

From (2) and (18), we have for k = 2, ..., l, that

|sk − s′k| = |sk−1 + τ(ek−1, sk−1)− s′k−1 − τ(ek−1, s
′
k−1)|

≤ (1 + Lτ )|sk−1 − s′k−1|.

Inductively, it follows that

|sk − s′k| ≤ (1 + Lτ )
k−1|s− s′|, k = 1, ..., l. (22)

Using (19) and (22), we derive

|b(p)− b(p′)| =

∣

∣

∣

∣

∣

l
∑

k=1

β(ek, sk)−
l

∑

k=1

β(ek, s
′
k)

∣

∣

∣

∣

∣

≤
l

∑

k=1

Lβ|sk − s′k|

≤
l

∑

k=1

Lβ(1 + Lτ )
k−1|s− s′| ≤

D
∑

k=1

Lβ(1 + Lτ )
k−1|s− s′|

= Lβ
(1 + Lτ )

D − 1

Lτ
|s− s′|,

where the last equality follows from the formula for the geometric series. Hence
the mapping s 7→ b(Π−1(s, ǫ)) is Lipschitz-continuous with Lipschitz constant
L for every topological path ǫ from u to v, and arbitrary departure time s ∈ R.
According to Theorem 1, Eopt(v;u) contains only a finite number of elements. By
construction, for any s ∈ R there exists a ǫ∗ ∈ Eopt(v;u), such that b∗(v;u, s) =
b(Π−1(s, ǫ∗)). We can therefore write the optimal cost function defined in (14)
as

b∗(v;u, s) = inf{b(Π−1(s,Π2(p))) : p ∈ P(v;u, s)}

= min{b(Π−1(s, ǫ)) : ǫ ∈ Eopt(v;u)}.

Hence the partial function b∗(v;u, ·) is the pointwise minimum of a finite number
of Lipschitz-continuous functions, and thus Lipschitz-continuous with Lipschitz-
constant L. �

Remark 9 From the proof of Theorem 1, it follows, that the length of any
optimal path is bounded from above by nβ/β. In practical applications, there
are usually a plurality of more sophisticated techniques for the derivation of an
upper bound for the length of each optimal path from u to v, such as, e.g., using
landmarks ([11]): Suppose, that upper bounds b for the optimal cost functions
b∗ with respect to a landmark v∗ are given for two vertices u, v ∈ V , i.e., we
know that b∗(v∗;u, s) ≤ b(v∗;u) and b∗(v; v∗, s) ≤ b(v; v∗) for all s ∈ R. Then,
as a consequence of the triangle inequality, we also obtain b∗(v;u, s) ≤ b(v; v∗)+
b(v∗;u). Note, that a smaller Lipschitz constant will result in a stronger pruning
criterion.
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As we have pointed out in Section 2, the computation of a solution to the
dynamical optimal path problem must be carried out in the time-expanded
network. Especially when the edge travel times are functions of a continuous
time variable, most paths from v0 to a vertex v ∈ V with departure time s0 will
result in different arrival times. As the time-expanded network may contain a
large number of vertex-time-pairs in a small time interval, it is of high practical
interest to prune any vertex-time-pair, which cannot be contained in an optimal
path. Although this is particularly important in the case of a continuous time
variable, in which a large number of vertex-time-pairs may be contained in an
arbitrarily small time interval, the following result holds also in the case of a
discrete time variable.

Lemma 3 Consider a dynamical network in which Assumption 1 holds, and let
a source vertex v0 ∈ V , a departure time s0 ∈ R and a goal vertex v′ ∈ V be
given. Suppose, that τ, β are Lipschitz-continuous in the second argument with
constants Lτ , Lβ > 0.
For a given vertex v ∈ V , let D = dβ/β, where d denotes the minimum-hop
distance from v to v′, and L according to (20). If p, p′ ∈ P(v; v0, s0), then p′

cannot be extended to an optimal path, if

b(p′) > b(p) + L|t(p)− t(p′)|. (23)

Proof: As in the proof of Theorem 1 (cf. equation (17)), we see that the
length of any optimal path from any vertex-time pair (v, s) to v′ is bounded
from above by D = dβ/β. Applying Lemma 2, the partial function b∗(v′; v, ·) :
R → R is Lipschitz-continuous with the Lipschitz-constant L given by (20).
The minimum-cost extension of a path p ∈ P(v; v0, s0) which leads to the goal
vertex v′ is the extension by an optimal path from v to v′ with departure time
s = s0 + t(p). Consequently, using the Lipschitz-continuity of b∗(v′; v, ·), (23)
implies that

b(p) + b∗(v′; v, s0 + t(p)) ≤ b(p) + b∗(v′; v, s0 + t(p′)) + L|t(p)− t(p′)|

< b(p′) + b∗(v′; v, s0 + t(p′)).

Therefore, p′ cannot be extended to an optimal path. �

The following simple example illustrates the use of the path pruning criterion:
Consider the dynamical network given by the graph in Figure 1, with

τ(e0, s) = 0.1 ,

β(e0, s) = 0.5 .

Suppose, that τ, β are Lipschitz-continuous in the second argument with con-
stants Lτ = Lβ = 0.15, and β(e, s) ≥ β = 0.5. Let s0 = 0, and consider
the task of computing the cost-optimal dynamical path from v0 to v′ with de-
parture time s0. We assume, that (e.g., from a static preprocessing step) we
know that b∗(v′; v0, s) ≤ 5 for all s ∈ R. This implies, that the topological
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v0 v′e0

Figure 1: Topological structure of the example network. The dashed center part
of the graph may be arbitrary, but such that there exists at least one topological
path from v0 to v′. It might be, e.g., a symmetric grid graph of arbitrary size.

length of an optimal path is bounded from above by D = b∗(v′; v0, s0)/β ≤ 10.
Consequently, the partial mapping s 7→ b∗(v′; v0, s) is Lipschitz-continuous with
Lipschitz-constant

L = Lβ
(1 + Lτ )

D − 1

Lτ
≤ 3.1 .

As the optimal path may contain circles, we must generally consider all copies
of the source vertice v0 in the time-expanded network. Since b∗(v′; v0, s) ≤ 5 we
must eventually consider 11 copies of v0 if the vertex-time pairs are expanded
in an increasing order of cost. Let pk = ((e0, 0), ..., (e0, (k − 1) · 0.1)) denote
the dynamical path k times cycling e0. In addition to (v0, 0) (which may be
considered as reached by the path p0 of length 0 emanating from v0), the vertex-
time pairs (v0, k · 0.1) are reached by pk, k = 1, ..., 10, respectively. The travel
times and costs associated with pk, k = 0, ..., 10, are

t(pk) = k · 0.1 ,

b(pk) = k · 0.5 .

Now, since

b(pk) = k · 0.5 > L · k · 0.1 = b(p0) + L|t(pk)− t(p0)|,

Lemma 3 implies that pk cannot be extended to an optimal path, if k = 1, ..., 10.
Hence, only by considering the source vertex, the application of the path pruning
criterion has significantly reduced the size of the search space. Instead of 11
possible copies of v0 in the time-expanded network, only (v0, 0) needs to be
considered for the computation of the optimal dynamical path. Of course, the
same procedure can be repeated in any subsequent vertex, resulting in a further
reduction of the search space. Although this is only an illustrative example, and
the performance of the pruning criterion depends on the underlying network
and the particular application, it shows the potential of the simple test given
by equation (23).
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4 Pruning principles for the constrained opti-

mal path problems

In this Section we will derive two criteria, which define admissible pruning strate-
gies for the computation of constrained optimal paths. We will first extend the
result of Lemma 3 to the time-constrained case and then derive a pruning cri-
terion which significantly decreases the complexity of maintaining the simple
path property.
Let us give a precise definition of feasible time-constrained paths:

Definition 7 Given a source vertex v0 ∈ V , a departure time s0 ∈ R and a
goal vertex v′ ∈ V , we call a dynamical path p ∈ P feasible, if it visits vertices
only at feasible times, i.e., if we have for p = ((e1, s1), (e2, s2), ..., (el, sl)), that

sk ∈ S(v′;α(ek)), k = 1, ..., l, (24)

s1 + t(p) ∈ S(v′;ω(el)). (25)

Remark 10 As the fastest path from v0 to v′ with departure time s0 is simple
(cf. Lemma 1) and passes vertices only at feasible visiting times (cf. Definition
5), there exists at least one feasible path from v0 to v′ with departure time s0:
This holds also, if in addition to the time constraint, paths are constrained to
be simple.

In order to decide, whether a dynamical path is feasible or not, it is necessary
to know the set of feasible visiting times S(v′; v) for all v ∈ V . This is based
on the knowledge of a large number of optimal travel times (cf. Definition 5).
We will therefore state the following assumption, which not only implies the
finiteness of fastest and optimal paths, but is also the basis for the complexity
results in Section 5.

Assumption 2 The topological network (V,E) is strongly connected and finite.
The edge travel times fulfill the FIFO-condition and are bounded by positive
constants τ, τ ∈ R,

τ ≤ τ(e, s) ≤ τ, ∀e ∈ E, s ∈ R. (26)

Theorem 2 If Assumption 2 holds, then there exists at least one optimal path
from any source vertex v0 ∈ V to any goal vertex v′ ∈ V and for any departure
time s0 ∈ R. Moreover, the set Efeas(v;u) = {Π2(p) : p ∈ P̂(v;u, s), s ∈ S(v;u)}
is finite for all u, v ∈ V .

Proof: Let v0, v
′ ∈ V , s0 ∈ R be arbitrary but fixed. As (V,E) is strongly

connected and finite, the minimum-hop distance d from v0 to v′ is finite, d ∈ N.
Let (e1, ..., ed) be a topological minimum-hop path from v0 to v′. From (5) and
(26) we deduce

dτ ≥ t
(

Π−1(s0, (e1, ..., ed))
)

≥ inf{t(p) : p ∈ P̂(v′; v0, s0)} = t∗(v′; v0, s0),
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hence the travel time of the fastest path from v0 to v′ with departure time s0
is bounded. The maximum feasible visiting time for any vertex in the network
is therefore bounded from above by Γ(dτ ), and hence the length of any feasible
path is bounded by Γ(dτ )/τ . The remaining part of the proof follows as in the
proof of Theorem 1. �

Remark 11 The set Efeas(v;u) contains all topological paths ǫ from u to v,
which define a feasible dynamical path p = Π−1(s, ǫ) for some departure time
s ∈ R. With respect to continuity, it plays a similar role to Eopt(v;u) in the
unconstrained case.

Remark 12 The result of Theorem 2 holds even in a dynamical network, in
which the FIFO-property is not fulfilled. Yet, the assumption of the FIFO-
property will be crucial for the derivation of the complexity results in Section 5.
Note also, that the edge cost function may assume arbitrary values.

The optimal cost function is not necessarily continuous in the case of time-
constrained optimal paths. This is due to the fact, that an edge sequence
ǫ ∈ Efeas(v;u) may produce very low values of the cost function but become
infeasible at a certain time σ, due to the constraint on the visiting times. In
such a case the optimal cost function would jump to the value defined by the
next-best feasible path. (Note, that due to the FIFO-property the number
of feasible edge sequences can only decrease as time increases.) We therefore
only have lims↑σ b

∗(v;u, s) ≤ lims↓σ b
∗(v;u, s), with a finite number of jumps

(because Efeas(v;u) is finite, cf. Theorem 2). As in the case of continuous edge
travel times the feasible time intervals S(v;u) are closed for all u, v ∈ V , the
optimal cost function is continuous from the left, provided that all edge cost
functions are continuous (see Figure 4). This leads to the following extension
of Lemma 3.

Corollary 1 Consider a dynamical network in which Assumption 2 holds, and
let a source vertex v0 ∈ V , a departure time s0 ∈ R and a goal vertex v′ ∈ V be
given. Suppose, that τ, β are Lipschitz-continuous in the second argument with
constants Lτ , Lβ > 0.
For a given vertex v ∈ V , let D = [Γ(t∗(v′; v0, s0)) − t∗(v; v0, s0)]/τ , and L
according to (20). If p, p′ ∈ P̂(v; v0, s0), then p′ cannot be extended to an optimal
path, if t(p′) ≥ t(p) and

b(p′) > b(p) + L(t(p′)− t(p)). (27)

Proof: As a feasible path p ∈ P̂ from v to v′ must depart and arrive at
feasible times, its travel time is bounded by maxS(v′; v′) − minS(v′; v) =
Γ(t∗(v′; v0, s0)) − t∗(v; v0, s0). The length of such a feasible path is therefore
bounded by D = [Γ(t∗(v′; v0, s0))−t∗(v; v0, s0)]/τ . Applying Lemma 2, the par-
tial function b∗(v′; v, .) : S(v′; v) → R is Lipschitz-continuous with the Lipschitz-
constant L given by (20) on every time interval S ⊂ S(v′; v), which contains no
discontinuity. Note, that S(v′; v) is also an interval, as the edge travel times are
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maxS(v′; v)

minS(v′; v)

s

s+ t(Π−1(s, ǫ))

s

b(Π−1(s, ǫ))

bc

bc

b

b

minS(v;u) maxS(v;u)

minS(v;u) maxS(v;u)

Figure 2: Cost functions and arrival time functions of dynamical paths, cor-
responding to three topological paths from vertex u to vertex v and varying
departure times s (dashed, chain-dotted, dotted black curves). The grey line in
the lower drawing constitutes the time constraint in v, the solid black curve in
the upper drawing illustrates the resulting constrained optimal cost function.
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continuous. Let σ1, ..., σj , j ∈ N, denote the time instants, at which b∗(v′; v, .)
is discontinuous, and let βi = lims↓σi

b∗(v′; v, s)− lims↑σi
b∗(v′; v, s), i = 1, ..., j,

denote the height of the i-th jump. As we have argued before, βi > 0 for all
i = 1, ..., j. Consequently, for t(p′) ≥ t(p), there holds

b∗(v′; v, s0 + t(p′)) ≥ b∗(v′; v, s0 + t(p))− L(t(p′)− t(p)) +
∑

i:s≤σi<s′

βi

≥ b∗(v′; v, s0 + t(p))− L(t(p′)− t(p)). (28)

The minimum-cost extension of a path p ∈ P̂(v; v0, s0) which leads to the goal
vertex v′ is the extension by an optimal path from v to v′ with departure time
s = s0 + t(p). Consequently, (27) and (28) imply that

b(p) + b∗(v′; v, s0 + t(p)) ≤ b(p) + b∗(v′; v, s0 + t(p′)) + L(t(p′)− t(p))

< b(p′) + b∗(v′; v, s0 + t(p′)).

Therefore, p′ cannot be extended to an optimal path. �

Let us now consider the case, in which in addition to the time constraint, feasi-
ble paths are constrained to be simple. In this case, any solution algorithm will
have to remember the history of each path during the expansion process. Hence,
a solution algorithm must expand paths rather than vertices. In contrast to the
static algorithm of Dijkstra, which only needs to remember the direct predeces-
sor of each vertex, this must be considered as a severe drawback. The following
result shows, that the number of predecessors which are relevant for a further
expansion of a path is bounded.

Lemma 4 Consider a dynamical network in which Assumption 2 holds, and let
a source vertex v0 ∈ V , a departure time s0 ∈ R and a goal vertex v′ ∈ V be
given. Let d denote the minimum-hop distance from v0 to v′, and suppose that
γ is either linear or logarithmic. Then the number N of predecessors, relevant
for the expansion of any path, is bounded by N ≤ γ(dτ )/τ − 1.

Proof: Without loss of generality, we assume that s0 = 0. Let pK ∈ P̂
be any feasible path of maximum length K ∈ N. (Note, that as a conse-
quence of Theorem 2, the length of any feasible path is bounded.) Let ǫK =
Π2(pK) = (e1, ..., eK) denote the corresponding topological path, and let fur-
ther vk = α(ek), ǫk = (e1, ..., ek) and pk = Π−1(0, ǫk) for k = 1, ...,K. For each
vi, i = 1, ..., k, the set of feasible visiting times obviously satisfies S(v′; vi) ⊂
[0,Γ(t(pi))], as Γ is monotone increasing and t(pi) ≥ t∗(vi; v0, 0) ≥ 0. A neces-
sary condition for the relevance of vi for the further extension of pk is therefore

t(pk) + τ ≤ Γ(t(pi)), (29)

because vi must still be reachable, and t(pk+1) ≥ t(pk) + τ .
Let pi,k = Π−1(t(pi), (ei+1, ..., ek)), 1 ≤ i < k ≤ K, denote the tail path of pk
emanating from vi. Since t(pk) = t(pi) + t(pi,k) and Γ(t(pi)) = t(pi) + γ(t(pi)),
(29) implies, that

t(pi,k) + τ ≤ γ(t(pi)) (30)
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is necessary for the relevance of vi. As t
∗(v′; v0, 0) ≤ dτ , and v′ must always be

reachable, another necessary condition for the further extension of pk is given
by

t(pk) + τ ≤ Γ(dτ ). (31)

Let j = k − i denote the number of relevant predecessors of a path of length k,
τi = t(pi)/i the average edge travel time on pi and τj = t(pi,k)/j the average
edge travel time on pi,k. (26) implies that τ ≤ τi ≤ τ and τ ≤ τj ≤ τ . We now
consider the following nonlinear optimization problem:

min
(i,j,τi,τj)

−j, (32)

−i ≤ 0, (33)

−j ≤ 0, (34)

τ − τi ≤ 0, (35)

τi − τ ≤ 0, (36)

τ − τj ≤ 0, (37)

τj − τ ≤ 0, (38)

−γ(τii) + τjj + τ ≤ 0, (39)

−Γ(τd) + τjj + τii+ τ ≤ 0. (40)

The constraints (33), (34) ensure, that only paths of nonnegative length are
considered. (35)-(38) denote the edge travel time constraints, and (39), (40)
coincide with (30), (31). If x∗ = (i∗, j∗, τ∗i , τ

∗
j ) is an optimal solution of (32)-

(40), then the number of relevant predecessors is bounded from above by j∗.
Let f : R4 → R denote the objective function of (32), and let q : R4 → R,
with the components ql, l = 1, ..., 8, be defined by (33)-(40). According to [5,
Theorem 3.3.5], a necessary condition for the optimality of x∗ is the existence
of µl ∈ R, µl ≤ 0, l = 1, ..., 8, such that

−∇f(x∗) +

8
∑

l=1

µl∇ql(x
∗) = 0, (41)

µlql(x
∗) = 0, l = 1, ..., 8, (42)

if the set Ω = {x ∈ R
4 : q(x) ≤ 0} satisfies the constaint qualification [5,

Definition 3.3.1] in x∗. This is guaranteed by the existence of δx ∈ R
4 with

〈∇ql(x
∗), δx〉 < 0 ∀l ∈ {1, ..., 8} with ql(x

∗) = 0. (43)

according to [5, Theorem 3.3.21].
If γ ≡ γlin, an analysis of (41) and (42) yields the admissible solutions µ1 =
µ2 = µ3 = µ4 = µ6 = 0, µ5 = −(dτ − τ )/τ2, µ7 = µ8 = −1/2τ, i∗ = dτ/τ∗i ,
j∗ = (dτ − τ)/τ , τ∗j = τ and τ∗i ∈ [τ, τ ] arbitrary. Obviously, the choice of
τ∗i does not affect the value of the objective function. We therefore choose
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τ∗i = τ and i∗ = d as candidates for an optimal solution. The constraint
qualification is satisfied in the thereby defined point x∗ = (i∗, j∗, τ∗i , τ

∗
j ), as

δx = (0,−3d/τ,−1, dτ/(dτ − τ )) satisfies (43). Hence the number of relevant
predecessors is bounded from above by j∗ = γlin(dτ )/τ − 1, if γ ≡ γlin.
If γ ≡ γlog, an analysis of (41) and (42) yields the (unique) admissible solution
µ1 = µ2 = µ3 = µ6 = 0, µ4 = −(d − τ )/[(1 + dτ )τ ] , µ5 = (− log(τ ) + τ)/τ ,
µ7 = −dτ/τ(1 + dτ ), µ8 = −1/τ(1 + dτ ), i∗ = d,j∗ = (log(dτ )− τ )/τ , τ∗i = τ ,
τ∗j = τ . The constraint qualification is satisfied in the thereby defined point
x∗ = (i∗, j∗, τ∗i , τ

∗
j ), as δx = (0,−2d(τ + 1)/(ττ),−1, τ/(log(dτ ) − τ)) satisfies

(43). Hence the number of relevant predecessors is bounded from above by
j∗ = γlog(dτ )/τ − 1, if γ ≡ γlog. �

Remark 13 Note that the upper bound on the number of predecessors given by
Lemma 4 is valid for any feasible path in the dynamical network, given a source
vertex and a goal vertex of minimum-hop distance d. In the same manner, in
which this bound was derived in the proof of Lemma 4, replacing d by k, a bound
for any feasible path of length k ∈ N can be derived. This bound will be much
smaller for a (topologically) short path, but it will be valid only for any path of
length k.

5 Complexity Results

We have derived two pruning techniques in the last Section, which allow a signif-
icant reduction of the cost of computing dynamical optimal paths. Nevertheless,
the computation of such paths is still in general NP-hard. In this section, we
will prove new complexity results for the computation of time-constrained dy-
namical optimal paths. As those results will be based on the knowledge of the
feasible time intervals, the first result concerns the computation of the feasible
visiting times.

Corollary 2 Consider a dynamical network in which Assumption 2 holds, and
let a source vertex v0 ∈ V , a departure time s0 ∈ R and a goal vertex v′ ∈ V be
given. Then the computation of the feasible visiting time intervals S(v′; v) can
be carried out in O(n log(n) +m) complexity.

Proof: The computation of the feasible visiting times consists of the computa-
tion of two bounds, i.e., the computation of the lower bound t∗(v; v0, s0) for each
v ∈ V and the computation of the last visiting time, which allows an arrival at
v′ at time s ≤ Γ(t∗(v′; v0, s0)). The computation of the earliest arrival times
can be carried out in O(n log(n) +m) complexity, due to Lemma 1. The same
holds for the computation of the last departure times, which has been shown in
[8]. �

There has been considerable effort in bounding the number of vertices expanded
by heuristic search algorithms, such as the A*-algorithm ([18]), in terms of the
accuracy of the heuristic. Assuming that the graph is a tree, it has been shown
that the number of vertices expanded by the A*-algorithm is polynomial in the
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length of the optimal solution (in the worst case), if the accuracy of the heuris-
tic is constant ([26]) or logarithmic ([25]). By contrast, the number of vertices
expanded by the A*-algorithm is exponential (in the worst case), if the accuracy
of the heuristic is linear ([27]). Although the setting considered in these works
does not carry over to the time-dependent case, a similar result holds, if the
time variable is discrete and time constraints of varying order are considered.
As we have argued in Section 4, the constraint of allowing only simple paths
for expansion leads to a different notion of expansion. In constrast to the usual
optimal path algorithms (such as Dijkstra or Bellman-Ford), it is necessary to
expand paths rather than nodes. As the number of simple paths grows expo-
nentially with the number of feasible vertices, we cannot expect a polynomial
bound on the number of paths. Hence, as long as we consider a discrete time
variable, we will only impose a constraint on the visiting times of a vertex, but
we will not require paths to be simple.

Theorem 3 Let (V,E, τ ;β) be a dynamical network satisfying Assumption 2,
and let τ(E × R) ⊆ {τ, ..., τ} with τ , τ ∈ N. Let a source vertex v0 ∈ V , a
departure time s0 ∈ R and a goal vertex v′ ∈ V be given and let d denote the
minimum-hop distance from v0 to v′. If (V,E) is a symmetric directed r-ary
tree, then the number N of feasible vertices in the time-expanded network is

N = O
(

d3rdτ/(2τ)
)

, if γ ≡ γlin, (44)

N = O
(

d1+1/(2τ) log(d)r1/(2τ )
)

, if γ ≡ γlog. (45)

Proof: The fastest path subtree T of (V,E) is a directed tree rooted in v0.
As any admissible path must visit v0 at a feasible time s ∈ S(v′; v0) = {s0},
the only edge emanating from v0 must be an edge on a fastest path from v0
to v′. Due to the FIFO-condition, the fastest path from v0 to v′ is simple and
therefore uniquely determined. We denote the vertices, which are passed by this
path by v0, v1, ..., vd−1, vd, with vd = v′. Let Tk, k = 1, ..., d, denote the subtree
of T rooted in vk and containing (except for vk) only vertices not passed by the
fastest path from v0 to v′ (see Figure 3). The number of feasible vertices in the
time-expanded network is given by the set of all vertex-time pairs in the time-
expansions of the subtrees Tk, k = 1, ..., d. As γ is monotonically increasing, the
maximum number of feasible copies of vk is given by ⌊γ(kτ )⌋. The maximum
depth of Tk is therefore bounded from above by ⌊γ(kτ )/(2τ)⌋, because vk must
be reachable at a feasible visiting time from any vertex v ∈ Tk. Moreover, if
we consider a vertex vkj at depth j ∈ N in Tk (see Figure 3), then S(v′; vkj)
contains no more than γ(kτ ) − 2jτ feasible visiting times. The number Nk of
feasible vertex-time pairs in the time-expansion of Tk is therefore bounded by

Nk ≤ γ(kτ) + (r − 1)

⌊γ(kτ)/(2τ)⌋
∑

j=1

rj−1(γ(kτ )− 2jτ). (46)
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v0
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v12

e1

e2

(e3, ..., ed)

· · ·

· · ·

· · · · · ·

· · · · · ·

T1

Figure 3: Labelling of the symmetric directed r-ary tree used in the proof of
Theorem 3. The edge sequence (e1, ..., ed) constitutes the topological structure
of the optimal path.

From our reasoning above we have N ≤
∑d

k=1 Nk.
If γ ≡ γlin, then (46) becomes

Nk ≤ kτ + (r − 1)

⌊(kτ)/(2τ)⌋
∑

j=1

rj−1(kτ − 2jτ) = O
(

k2rkτ/(2τ)
)

,

which results in (44).
If γ ≡ γlog, using the formula for the geometric series, (46) becomes

Nk ≤ log(kτ ) + (r − 1)

⌊log(kτ)/(2τ)⌋
∑

j=1

rj−1(log(kτ )− 2jτ)

≤ log(kτ )



1 + (r − 1)

⌊log(kτ)/(2τ)⌋−1
∑

j=0

rj





= log(kτ )

(

1 + (r − 1)
r⌊log(kτ)/(2τ)⌋ − 1

r − 1

)

= O
(

log(k)(kr)1/(2τ )
)

,

which results in (45). �

A major difficulty when adapting this methodology to general graphs is the fact,
that there exists more than one simple solution path. In a grid graph, which
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may be considered as an appropriate model for the road network of an urban
area, neither the complexity results concerning the accuracy of a heuristic, nor
the results derived in Theorem 3 apply. Considering a continuous variable,
independent of the simple path constraint, even the following negative result
holds.

Theorem 4 Let (V,E, τ ;β) be a dynamical network satisfying Assumption 2
and suppose that (V,E) is a grid graph. Let a source vertex v0 ∈ V , a departure
time s0 ∈ R and a goal vertex v′ ∈ V be given and let d denote the minimum-
hop distance from v0 to v′. If γ 6≡ 0, then in the worst case there exist Ω(2d/2)
optimal paths from v to v′ and Ω(2d/2) feasible vertex-time pairs.

Proof: In order to localize a vertex in the grid graph, we use a coordinate
system and choose v0 as the origin. The coordinates (x, y) ∈ Z

2 of any vertex
v ∈ V in the grid graph are then given by the (directed) number of hops x
in the horizontal direction and the (directed) number of hops y in the vertical
direction, which are required to reach v from v0. Without loss of generality, we
assume that v′ is located at (x′, y′) ∈ Z

2, with 0 ≤ x′ ≤ y′, d = x′ + y′. We will
now consider the set V� of vertices v with coordinates (x, y) ∈ Z

2, 0 ≤ x ≤ x′,
0 ≤ y ≤ y′, i.e., those vertices which are contained in minimum-hop paths from
v0 to v′. As t∗(v; v0, s0) ≥ τ > 0 and γ 6≡ 0, S(v′; v) contains an infinite number
of time instances for all v ∈ V�, v 6= v0. We may therefore choose the edge travel
times τ such that each minimum-hop path from v0 to v ∈ V� is feasible, and
such that each minimum-hop path defines a different arrival time. Furthermore,
we may choose the edge cost β, such that β(e, s) = β > 0 for all s ∈ S(v′;α(e))
and all e ∈ E with e = (u, v) for some u, v ∈ V�, and β(e, s) > β otherwise.
With this choice, each minimum-hop path from v0 to v′ is feasible and optimal.
Each of these paths can be represented by a sequence of x′ horizontal and y′

vertical hops, hence the number of all minimum-hop paths from v0 to v′ is
given by the number of permutations of a set containing x′ indistintinguishable
elements of one type (horizontal hops) and y′ indistintinguishable elements of
another type (vertical hops). Therefore, there are

(x′ + y′)!

x′!y′!
(47)

minimum-hop paths. Choosing, without loss of generality, x′ = y′ = d/2, we
obtain Ω(2d/2) optimal paths from v to v′. �

Remark 14 Note, that the exponential number of feasible vertex-time pairs re-
sults from the fact, that each dynamical path eventually defines a new vertex-
time pair. In this case, it might be beneficial to introduce the simple path
constraint, as the number of simple paths of length l in a grid graph is µl,
2.62002 ≤ µ ≤ 2.67919 ([21]), whereas the number of paths of length l is of
the order 4l. Although this may lead to a considerable decrease in the number
of vertex-time pairs, exponential worst-case complexity can only be avoided by
choosing γ ≡ 0.
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Despite the negative result given by Theorem 4, the number of feasible vertex-
time pairs in a time-dependent grid graph remains polynomial in the minimum-
hop distance of the source and goal vertex, if the time variable is discrete. In
order to establish this result, we need the following Lemma:

Lemma 5 Let (V,E) be a grid graph. The number of vertices v ∈ V of
minimum-hop distance k from a given vertex v0 is bounded from above by 4k.

Proof: Associating the same coordinate system with the grid graph as in the
proof of Theorem 4, the number of vertices of distance k is given by the number
of solutions (i, j) ∈ Z

2 of |i|+ |j| = k. These solutions form a π/4-rotated square
in Z

2, with each edge of the square containing k+1 grid points. As each corner
of the square is contained in two edges, there are 4(k + 1)− 4 = 4k vertices of
minimum-hop distance k from v0. �

We now derive an upper bound for the number of vertex-time pairs, which im-
plies the desired complexity result for discrete-time time-expanded grid graphs.

Theorem 5 Let (V,E, τ ;β) be a dynamical network satisfying Assumption 2,
and let τ(E × R) = {τ, ..., τ} with τ , τ ∈ N. Let a source vertex v0 ∈ V , a
departure time s0 ∈ R and a goal vertex v′ ∈ V be given and let d denote the
minimum-hop distance from v0 to v′. Suppose that the number of neighbours of
minimum-hop distance k from v0 is bounded by ν(k). Then the number N of
feasible vertices in the time-expanded network is bounded by

N ≤

⌊Γ(dτ)/τ⌋
∑

k=1

ν(k)γ(kτ ). (48)

Proof: Let vk denote a vertex of minimum-hop distance k from the source
vertex v0, and let tk = t∗(vk; v0, s0). From (26), we deduce that kτ ≤ tk ≤ kτ ,
and t∗(v′; v0, s0) ≤ dτ . Relaxing the constraint (10), which ensures that v′ can
be reached at a feasible time from each s ∈ S(v′; vk), S(v

′; vk) contains at most
⌊γ(tk)⌋ feasible passing times, and tk is bounded from above by t = Γ(dτ ).
An upper bound for the number of feasible vertex-time pairs of minimum-hop
distance at most L from v0 is therefore given by the following optimization
problem:

max
(t1,...,tL)

L
∑

k=1

ν(k)γ(tk), (49)

τ ≤ t1 ≤ τ, (50)

τ ≤ tk+1 − tk ≤ τ, k = 1, ..., L− 1, (51)

tk ≤ t, k = 1, ..., L. (52)

The constraints (50) and (51) ensure, that the bound on the edge travel times
(26) is satisfied. Obviously, all tk, k = 1, ..., L, are bounded from above by Lτ ,
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hence
∑L

k=1 ν(k)γ(tk) is bounded from above, and if there exists a solution,
there also exists an optimal solution with a finite value NL of the objective
function (49). As we have required tk ≤ t for all k = 1, ..., L, a solution can only
exist if L ≤ t/τ . Hence, the number of feasible vertex-time pairs is bounded by

N ≤ max
L∈{1,...,⌊t/τ⌋}

NL. (53)

Since γ is monotone increasing, for any L ∈ {1, ..., ⌊t/τ⌋},
∑L

k=1 ν(k)γ(tk) is
maximized if the variables tk are maximized simultaneously, i.e., if for some
k∗ ∈ {1, ..., L}

tk = t− (L− k)τ , k∗ + 1 ≤ k ≤ L, (54)

tk∗ = t− (L− k∗ + 1)τ − (k∗ − 1)τ , (55)

tk = kτ, 1 ≤ k ≤ k∗ − 1. (56)

From (54)-(56) we see that tk ≤ kτ for all k = 1, ..., L. Consequently, because
γ is monotone increasing, we obtain γ(tk) ≤ γ(kτ) and

L
∑

k=1

ν(k)γ(tk) ≤
L
∑

k=1

ν(k)γ(kτ ).

Finally, as L ≤ t/τ = Γ(dτ )/τ , we obtain (48). �

Remark 15 In the proof of Theorem 5, the optimization problem (49)-(51)
defines a bound for the number of feasible vertex-time pairs, which only accounts
for the distance to the source vertex v0. Considering, in addition to (50)-(52),
the constraint that v′ must be reachable at a feasible passing time from any
feasible vertex-time pair, a more sophisticated and more accurate upper bound for
the number of feasible vertex-time pairs can be defined as follows: Associate with
any v ∈ V the minimum-hop distance i from v0 and the minimum-hop distance j
from v′. (Note, that we must assume that the number of neighbours of minimum-
hop distance j from v′ is bounded by ν(j).) Then, for any L ∈ {1, ..., ⌊Γ(dτ)/τ⌋},
solve the following maximization problem:

max
νij ,tij

∑

i+j≤L, i,j≥0

νijγ(tij), (57)

iτ ≤ tij ≤ iτ , i+ j ≤ L, i, j ≥ 0, (58)

Γ(dτ )− jτ ≤ tij ≤ Γ(dτ )− jτ , i+ j ≤ L, i, j ≥ 0, (59)

νij ≤ ν(i), i+ j ≤ L, i, j ≥ 0, (60)

νij ≤ ν(j), i+ j ≤ L, i, j ≥ 0. (61)

In this formulation, (58) and (59) take into account the time constraints at
v ∼ (i, j), whereas (60) and (61) take into account the topological structure of
the dynamical network. The maximum value of the objective function in (57)
defines an upper bound for the maximum number of feasible vertex-time pairs.
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As long as neither γ nor ν are exponential functions, this procedure only yields a
more accurate upper bound, but does not improve the result of Theorem 5 in the
order of complexity. For this reason, we have not further followed this approach.

Remark 16 Note, that the application of Theorem 5 to a symmetrical r-ary tree
results in different orders of complexity than Theorem 3, i.e., N = O

(

d2r2dτ/τ
)

if γ ≡ γlin and N = O
(

d1+1/τ log(d)rdτ/τ+1/τ
)

if γ ≡ γlog. The fact, that
N grows exponentially with d even if γ ≡ γlog is due to the weaker structural
assumptions in Theorem 5.

Corollary 3 Let (V,E, τ ;β) be a dynamical network satisfying Assumption 2,
and let τ(E × R) = {τ, ..., τ} with τ , τ ∈ N. Let a source vertex v0 ∈ V , a
departure time s0 ∈ R and a goal vertex v′ ∈ V be given and let d denote the
minimum-hop distance from v0 to v′. If (V,E) is a grid graph, then the number
N of feasible vertices in the time-expanded network is

N = O(d3), if γ ≡ γlin, (62)

N = O(d2 log(d)), if γ ≡ γlog. (63)

Proof: The assertion follows directly from Lemma 5 and Theorem 5, since for
γ ≡ γlin and γ ≡ γlog we have γ(kτ ) = O(γ(k)) and Γ(dτ/τ) = O(d). �

6 Conclusion

In this paper, we have considered the problem of computing cost-optimal paths
in time-dependent networks. We have considered a topological and a time con-
straint, which induce, that cost-optimal paths stay close to fastest paths. As-
suming that the dynamical network satisfies the FIFO-condition, we have shown
that the time constraint can be guaranteed in polynomial time. We have derived
new pruning criteria, one of which is applicable in both the constrained and the
unconstrained setting of the cost-optimal dynamical path problem. We have
proved, that there is no time constraint, except the constraint of allowing only
fastest paths, which results in a polynomial complexity bound in continuous-
time grid graphs. Assuming a discrete time variable, we have shown, that the
number of feasible vertex-time pairs in a time-expanded r-ary tree is exponential
in the length of the solution path, if a linear time constraint is applied, whereas
this number is polynomial in the length of the solution path, if a logarithmic
time constraint is applied. Moreover, we have proved, that the number of feasi-
ble vertex-time pairs is polynomial in a discrete-time time-expanded grid graph
for both a linear and a logarithmic time constraint.
A direction of further research could be the investigation of the effect of time
constraints in dynamical networks with other topological structures than the
ones considered in this paper. Another possibility would be to study the effect
of the accuracy of the heuristic used by heuristic search algorithms in dynamical
networks. In view of possible applications, it would also be of interest to carry
out a detailed empirical study of the effects of the proposed constraints and
pruning criteria, e.g., in a large dynamical road network.
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