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Abstract

The focus of this study is to clarify the approximability of weighted
versions of the maximum independent set problem. In particular, we
report improved performance ratios in bounded-degree graphs, inductive
graphs, and general graphs, as well as for the unweighted problem in sparse
graphs. Where possible, the techniques are applied to related hereditary
subgraph and subset problem, obtaining ratios better than previously
reported for e.g. Weighted Set Packing, Longest Common Subsequence,
and Independent Set in hypergraphs.
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1 Introduction

An independent set, or a stable set, in a graph is a set of mutually nonadja-
cent vertices. The problem of finding a maximum independent set in a graph,
IndSet, is one of most fundamental combinatorial NP-hard problem. It serves
also as the primary representative for the family of subgraph problems that are
hereditary under vertex deletions. We are interested in finding approximation
algorithms that yield good performance ratios, or guarantees on the quality of
the solution they find vis-a-vis the optimal solution.

The focus of this paper is to present improved performance ratios for three
major versions of the independent set problem: in weighted graphs, bounded-
degree graphs and sparse graphs. We also apply some of the methods to a
number of related (or not-so related) problems that obey certain hereditariness
property, most of which had not been approximated before.

A considerable amount of research has been done on the approximability of
IndSet in the last decade. It has been shown to be hard to approximate through
advances in the study of interactive proof systems. In particular, H̊astad [19]
showed it hard to approximate within n1−ε, for any ε > 0, unless NP-hard
problems have randomized polynomial algorithms. The best performance ratio
known is O(n/ log2 n), due to Boppana and Halldórsson [4].

For bounded-degree graphs, Halldórsson and Radhakrishnan [17] gave the
first asymptotic improvement over maximal solutions, obtaining a ratio of
O(∆/ log log ∆). For small values of ∆, an algorithm of Berman and Fujito [3]
attains the best bound known of (∆ + 3)/5. See the survey [13] for a more
complete description of earlier results. The best asymptotic bound known is
O(∆ log log ∆/ log∆) due to Vishwanathan [31] (first recorded in [13]), com-
bining two results on semi-definite programming due to Karger, Motwani and
Sudan [22] and Alon and Kahale [2].

The current paper is divided into four independent section, each of which
treats a different technique for finding independent sets. They are ordered both
in chronological order of inquiry, as well as the depth of the solution technique.
We first study in Section 2 an elementary general partitioning technique that
yields nontrivial performance ratio for a large class of problems satisfying a
property that we call semi-heredity. All results holds for for weighted versions
of the problems. We obtain a O(n/ log n) approximation for Independent
Set in Hypergraphs, Longest Common Subsequence, Max Satisfy-
ing Linear Subsystem, and Max Independent Sequence. We strengthen
the ratio for problems that do not contain a forbidden clique, obtaining a
O(n(log log n/ logn)2) performance ratio for IndSet and Max Hereditary
Subgraph. (All problems are defined in their respective sections.)

In Section 3, we consider another elementary strategy, partitioning the ver-
tices into weight classes. It easily yields that weighted versions of semi-hereditary
problems on any class of graphs are approximable within O(log n) of the respec-
tive unweighted case. However, this overhead factor reduces to a constant in
the case of ratios in the currently achievable range, giving a O(n/ log2 n) ratio
for WIS.
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We consider in Section 3.1 the approximation of the weighted set packing
problem (WSP), in terms of m, the number of base elements. We match the best
ratio known for the unweighted case of O(

√
m). We also describe a simplified

argument of Lehmann [23] with a better constant factor.
In Section 4, we consider approximations based on semi-definite program-

ming (SDP) relaxations. We generalize the result of Vishwanathan [31] in two
ways. First, we apply it to the weighted case, obtaining a O(∆ log log ∆/ log ∆)
ratio for WIS. This improves on the previous best ratio of (∆ + 2)/3 due to
Halldórsson and Lau [15]. Halperin [18] has independently obtained the same
ratio, using different techniques. Our ratio also holds in terms of another param-
eter, δ(G), the inductiveness of the graph, giving a O(δ log log δ/ log δ) approxi-
mation of WIS. This improves on the previous best ratio known of (δ+1)/2 due
to Hochbaum [20]. For the other direction, we apply the technique to sparse
unweighted graphs, obtaining a ratio of O(d log log d/ log d), the first asymptotic
improvement on Turán’s bound [6, 20].

Notation Let G = (V, E) be a graph, let n denote its number of vertices and
let ∆ (d) denote its maximum (average) degree. WIS takes as input instance
(G, w), where G is a graph and w : V 7→ R is a vector of vertex weights, and
asks for a set of independent vertices whose sum of weights is maximized. The
maximum weight of an independent set in instance (G, w) denoted by α(G, w),
or α(G) on unweighted graphs. Let |S| denote the cardinality of a set S, and
let w(S) denote the sum of the weights of the elements of S. Let w(G) denote
w(V (G)).

We say that a problem is approximable within f(n), if there is a polynomial
time algorithm which on any instance with n distinguished elements returns a
feasible solution within a f(n) factor from optimal. We let OPT denote some
optimal solution of the given problem instance and HEU the output of the
algorithm under study on that same instance. We also overload those term to
refer to the weight of those solutions.

2 Partitioning into easy subproblems

We consider a collection of problems that involve finding a feasible subset of the
input of maximum weight. The input contains a collection of n distinguished
elements, each carrying an associated nonnegative rational weight. Each set of
distinguished elements uniquely induces a candidate for a solution, which we
assume is efficiently computable from the set. The weight of a solution is the
sum of the weights of the distinguished elements in the solution.

A property is said to be hereditary if whenever a set S of distinguished
elements corresponds to a feasible solution, any subset of S also corresponds to a
feasible solution. A property is semi-hereditary if under the same circumstances,
any subset S′ of S uniquely induces a feasible solution, possibly corresponding
to a superset of S′.
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To illustrate the concept of semi-hereditarity, consider the problem Maxi-
mum Common Subtree [1]. Given is a collection of n free trees, and we are to
find a tree that is isomorphic to a subtree (i.e. connected induced subgraph)
of each input tree. Verifying if a particular tree is isomorphic to a subtree of
another tree is polynomial solvable. Consider the vertices of the first input tree
as the distinguished elements. A given subset of these vertices is not necessar-
ily a proper solution, but it uniquely induces a tree that minimally connects
the vertices of the subset. Thus, the additional power of the semi-hereditary
property is necessary to capture this problem.

Hereditary graph properties are special cases of these definitions. A property
of graphs is hereditary if whenever it holds for a graph it also holds for its induced
subgraphs. For a hereditary graph property, the associated subgraph problem
is that of finding a subgraph of maximum vertex-weight satisfying the property.
Here, the vertices form the distinguished elements.

Our key tool is a simple partitioning idea, that has been used in various
contexts before.

Proposition 2.1 Let Π be a semi-hereditary subset property. Suppose that
given an instance I, we can produce t instances I1, I2, . . . , It that cover the set
of distinguished elements (i.e. each distinguished element is contained in at least
one Ii). Further, suppose we can solve exactly the maximum Π-subset problem
on each Ii. Then, the largest of these t solutions yields an approximation of the
maximum Π-subset of I within t.

In the remainder of this section we describe applications of this approach to
a number of particular problems.

2.1 Partition into small subsets

Proposition 2.2 Let Π be a semi-hereditary property for which feasibility can
be decided in time at most polynomial in the size of the input and at most
simply exponential in the number of distinguished elements. Then, the maximum
weighted Π-subgraph can be approximated within n/ logn.

We achieve this by arbitrarily partitioning the set of distinguished elements
into n/ log n sets each with log n elements. For each subset of each set, obtain the
candidate solution for this subset and determine feasibility. By our assumptions,
each step can be done in polynomial time, and in total at most 2log n ·n/ log n =
n2/ logn sets are generated and tested. By this procedure, we find optimal
solutions within each of the n/ logn sets. Since the optimal solution of the
whole is divided among these sets, the performance ratio is at most n/ log n.

Surprisingly, this n/ logn-approximation appears to be the best that is
known for most such problems. A property is nontrivial if it holds for some
graphs and fails for others. It is known that, the subgraph problem for any non-
trivial hereditary property cannot be approximated within any constant unless
P = NP , and stronger results hold for properties that fail for some clique or
some independent set [25].
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We apply Proposition 2.2 to several problems featured in the compendium
on optimization problems [5]:

Weighted Independent Sets in Hypergraphs Given a hypergraph, or a
set system, (S, C) where S is a set of weighted base elements (vertices) and
C = {C1, C2, . . . , Cn} is a collection of subsets of S, find a maximum weight
subset S′ of vertices such that no subset Ci is fully contained in S′.

Hofmeister and Lefmann [21] analyzed a Ramsey-theoretic algorithm gener-
alizing that of [4], and showed its performance ratio to be O(n/(log(r−1) n)) for
the case of r-uniform hypergraphs. It is straightforward to verify the heredity
thus a O(n/ log n) performance ratio holds by Proposition 2.1.

Longest Common Subsequence Given a finite set R of strings from a finite
alphabet Σ, find a longest possible string w that is a subsequence of each string
x in R. The problem is clearly hereditary, and feasibility can be tested for each
string x in R separately via dynamic programming. Hence, by applying Propo-
sition 2.2, partitioning the smallest string in the input, we obtain a performance
ratio of O(m/ log m), where m is the size of the smallest string.

Max Satisfying Linear Subsystem Given a system Ax = b of linear equa-
tions, with A an integer m×n matrix and b an integer m vector, find a rational
vector x ∈ Qn that satisfies the maximum number of equations.

This problem is clearly hereditary, since any subset of a feasible collection of
equations is also feasible. Feasibility of a given system can be solved in polyno-
mial time via linear programming. Hence, O(m/ log m) approximation follows
from Proposition 2.2. This holds equally if equality is replaced by inequalities
(>, ≥). It also holds if a particular set of constraints/equations are required to
be satisfied by a solution.

Max Independent Sequence Given a graph, find a maximum length se-
quence v1, v2, . . . , vm of independent vertices such that, for all i < m, a vertex
v′i exists which is adjacent to vi+1 but is not adjacent to any vj for j ≤ i. This
problem was introduced by Blundo (see [5]).

First observe that solutions to the problem are hereditary: if v1, v2, . . . , vm

is an independent sequence, then so is any subsequence va1 , va2 , . . . , vax . This
is because, for all i < x, there exists a node v′i that is adjacent to vai+1 but not
adjacent to any vj for j < ai+1 and hence not to any vaj for j ≤ i. Feasibility of a
solution can be tested in time polynomial in the size of the input. Independence
is easily tested by testing all pairs in the proposed solution. A valid set can be
turned into a valid sequence by inductively finding the element adjacent to a
vertex outside the set that is adjacent to no other unselected vertex.

Thus, we obtain an O(n/ log n) approximation via Proposition 2.2. We can
also argue strong approximation hardness bounds.
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Proposition 2.3 Max Independent Sequence is no easier than IndSet,
within 2. Thus, it is hard to approximate within n1−ε, for any ε > 0, unless
NP = ZPP .

Proof. Given a graph G on vertices v1, v2, . . . , vn, the graph HG consists of
G and n additional vertices {w1, w2, . . . , wn} connected into a clique, with
(vi, wj) ∈ E(HG) iff i ≥ j. Then, any independent set in G corresponds to
an independent sequence in HG. The converse is also true, with the possible
exclusion of one wi vertex; in that case, we can replace that wi vertex with
some vj vertex that must exist and be independent of the other v-vertices in the
set. Hence, we get a size-preserving reduction. The new graph contains twice
as many vertices, thus the performance ratio lower bound is weaker for Max
Independent Sequence by a factor of 2. The hardness now follows from the
result of H̊astad [19] on IndSet.

Theorem 2.4 Weighted versions of IndSet in Hypergraphs, Max Hered-
itary Subgraph and Max Independent Sequence can be approximated
within O(n/ log n).

2.2 Weighted Independent Sets and Other Hereditary Graph
Properties

A theorem of Erdős and Szekeres [7] on Ramsey numbers yields an efficient
algorithm [4] for finding either cliques or independent sets of nontrivial size.

Fact 2.5 (Erdős, Szekeres) Any graph on n vertices contains a clique on s
vertices or an independent set on t vertices such that

(
s+t−2
s−1

) ≥ n.

We use this theorem to approximate a large class of hereditary subgraph
problems.

Theorem 2.6 Max Weighted Hereditary Subgraph can be approximated
within O(n(log log n/ logn)2), for properties that fail for some cliques or some
independent set.

Proof. Let n denote here the size of the input graph G to the Max Weighted
Hereditary Subgraph problem. We say that a graph is amenable if it is
either an independent set or consists of at most log n/ log log n disjoint cliques.
Theorem 2.5 implies that we can find in G either an independent set of size at
least log2 n, or a clique of size at least log n/2 log log n. Thus we can find an
amenable subgraph of size X = log2 n/3 log log n, by at most log n applications
of Theorem 2.5.

We then pull these amenable subgraphs one by one from G, obtaining a
partition of G into amenable subgraphs. The number of subgraphs in the par-
tition will be at most 3n/X . Namely, at most n/(log2(n/X)/3 log log n) =
n/X(1 + o(1)) subgraphs are found before the size of G drops below n/X and
the remainder is at most another n/X .
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We can solve WIS on an amenable subgraph by exhaustively checking all
(log n/ log log n)log n/ log log n = O(n) possible combinations of selecting up to
one vertex from each clique. More generally, assume without loss of generality
that our hereditary subgraph property fails for cliques of size s. We can solve it
optimally on an amenable subgraph by exhaustively checking all combinations
of selecting at most s−1 vertices from each clique. That number is still at most
(log n/ log log n)s log n/ log log n, which is poly(n) for fixed s. In the case that the
property fails for some independent set, we exchange the roles of independent
sets and cliques in our partitioning routine with no change in the results.

Examples of such properties include: bipartite, k-colorable, k-clique free,
planar.

2.3 Limitations of partitioning

The wide applicability of this partitioning technique might offer a glimmer of
hope for approximating the independent set problem in general graphs within
n1−ε, for some ε > 0. The following observation casts a shade on that proposal.

For a property Π, the Π-chromatic number of a graph is the minimum num-
ber of classes that the vertex set can be partitioned into such that the graph
induced by each class satisfies Π. Scheinerman [29] has shown that for any
nontrivial hereditary property Π, the Π-chromatic number of a random graph
approaches θ(n/ log n). This indicates that our results are essentially the best
possible.

3 Partitioning into weight classes

We now consider a simple general strategy for obtaining approximations to
weighted subgraph problems, that always comes within a log n factor from the
unweighted case and often within less.

Theorem 3.1 Let Π be a hereditary subgraph problem. Suppose Π can be ap-
proximated within ρ on unweighted graphs (or on a subclass thereof). Then, the
vertex-weighted version can be approximated within O(ρ · log n).

Proof. Consider the following strategy. Let W be the maximum vertex weight.
Delete all vertices of weight at most W/n. Let Vi be the set of vertices whose
weight lies in (W/2i, W/2i−1], for i = 1, 2, . . . , lg n. Run the ρ-approximate
algorithm on the Vi, ignoring the weights. Output the maximum weight solution,
denoted by HEU .

We claim that the performance ratio of this method is at most 2ρ lgn + 1.
First, note that the set of vertices of small weight adds up to at most W , or
less than that of HEU . Second, if G′ is the graph induced by vertices of weight
more than W/n,

OPT (G′) ≤
lg n∑

i=1

OPT (Vi) ≤
lg n∑

i=1

2ρ HEU(Vi) = 2ρ HEU(G),
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where the additional factor of 2 comes from the rounding of the weights.
We note that the logarithmic loss in approximation is caused by a logarithmic

decrease in subgraph sizes. However, when the performance function is close to
linear, as is the case today, decrease in subgraph size affects performance only
slightly. We illustrate this with WIS, matching the known approximation for
unweighted graphs.

Theorem 3.2 If a hereditary subgraph problem can be approximated within
g(n) = n1−Ω(1/ log log n), then its weighted version can also be approximated
within O(g(n)). In particular, WIS can be approximated within O(n/ log2 n).

Proof. Let G be a graph partitioned into subgraphs V1, . . . , Vlog n as in Theorem
3.1, let OPT be an optimal solution and HEU the heuristic solution found.
Observe that the function g satisfies g(N) = O(g(n) ·N/n) when N ≥ n/ lg n,
and g(N) = O(g(n)/ log n) when N ≤ n/ lg n,

Let L be the set of indices ` that satisfy

w(V` ∩OPT ) ≥ w(OPT )/2 lg n, (1)

and note that
∑

i∈L w(Vi ∩OPT ) ≥ w(OPT )/2.
Suppose that for some `′ ∈ L, |V`′ | < n/ lg n. By (1), w(Vi ∩ OPT ) ≤

w(OPT ) ≤ (2 lg n)w(V`′ ∩OPT ), for all i. Thus,

ρ ≤ w(OPT )
w(HEU)

≤ 4 lg n
w(V`′ ∩OPT )

w(HEU)
≤ 4 lg n · g(|V`′ |) = O(g(n)).

Otherwise, g(|V`|) = O(g(n) · |V`|/n) for all ` ∈ L. Then,

ρ ≤
∑

i

w(Vi ∩OPT )
w(HEU)

≤ 2
∑

`∈L w(V` ∩OPT )
w(HEU)

≤ 2
∑

i

g(|Vi|) =
g(n)
n

∑

`∈L

O(|V`|) = O(g(n)).

The O(n/ log2 n) ratio for WIS now follows from the result of [4] for the un-
weighted case.

3.1 Weighted Set Packing

The WSP problem is as follows. Given a set S of m base elements, and a
collection C = {C1, C2, . . . , Cn} of weighted subsets of S, find a subcollection
C′ ⊆ C of disjoint sets of maximum total weight

∑
C′

i
∈C′ w(C′

i). A variety
of applications of this problem to practical optimization problems is surveyed
in [30]. It has recently been used to model multi-unit combinatorial auctions
[27, 10] and and in the formation of coalitions in multiagent systems [28].

By forming the intersection graph of the given hypergraph (with a vertex
for each set, and two vertices being adjacent if the corresponding sets intersect),
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a weighted set packing instance can be transformed to a weighted independent
set instance on n vertices. Hence, approximations of WIS — as a function of n
— carry over to WSP.

For approximations of unweighted set packing as a function of m (= |S|),
Halldórsson, Kratochv́ıl, and Telle [14] gave a simple

√
m-approximate greedy

algorithm, and noted that m1/2−ε-approximation is hard via [19]. We observe
that the positive results hold also for the weighted case, by a simple variant of
the greedy method.

Theorem 3.3 WSP can be approximated within 2
√

m in time proportional to
the time it takes to sort the weights.

Proof. The algorithm initially removes all sets of cardinality
√

m or more. It
then greedily selects sets of maximum weight that are disjoint from the previ-
ously selected sets.

SetPackingApprox(S,C)
Max← the set in C of maximum weight
C ← {C ∈ C : |C| ≤ √m}
Output the larger of GreedySP(S,C) and Max

end
GreedySP(S,C)

t← 0, Ct ← C
repeat
t← t + 1
Xt ← C ∈ Ct−1 of maximum weight
Zt ← {C ∈ Ct−1 : X ∩ C 6= ∅}
Ct ← Ct−1 − Zt

until C = ∅
return {X1, X2, . . . , Xt}

end

Figure 1: Greedy set packing algorithm

Consider Zt, the sets eliminated in some iteration i. Observe that the op-
timal solution contains at most

√
m sets from Zt (since sets in Zt have an

element in common with Xt which is of cardinality at most
√

m), all of which
are of weight at most that of Xt, the set chosen by the algorithm. Hence, in
every iteration, the contribution added to the algorithm’s solution is at least√

m-th fraction of what the optimal solution could get.
Also, the optimal solution contains at most

√
m sets among those eliminated

in the second line of SetPackingApprox, since each of them is of cardinality at
least

√
m. Since the algorithm contains at least the weight of the maximum

weight set, this is at most
√

m times the algorithm’s solution. Combined, the
optimal solution is of weight at most 2

√
m times the algorithm’s solution.
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We now describe an improvement due to Lehmann [23] that shows that the
greedy algorithm can be modified to give a slightly better ratio of

√
m by itself.

The modification to GreedySP is to change line 4 to

Xt ← C ∈ Ct−1 that maximizes w(C)/
√|C|.

Let OPT be some optimal set packing solution. Consider any iteration t of the
algorithm, and let OPTt be the sets in OPT ∩ Zt. Note first, that for any set
C ∈ Ct−1,

w(C) ≤
√
|C|w(Xt)√|Xt|

,

because of how Xt was chosen. Thus,

w(OPTt) =
∑

C∈OPTt

w(C) ≤ w(Xt)√|Xt|
∑

C∈OPTt

√
|C|.

Since the sets in OPTt must be disjoint and of total cardinality at most m, the
sum on the right hand side is maximized when all the sets are of equal size.
This gives

w(OPTt) ≤ w(Xt)√|Xt|
√
|OPTt| ·m.

Note that OPTt contains at most one set for each element of Xt, so |OPTt| ≤
|Xt|. Hence, w(OPTt) ≤ √m w(Xt). Since this holds for each iteration, a ratio
of
√

m follows. Gonen and Lehmann [10] show that no greedy algorithm can
obtain a better ratio.

One can also observe that the constant factor can be arbitrarily improved, if
one can afford a commensurate increase in the polynomial complexity. Modify
SetPackingApprox to set Max as the maximum weight set packing in (S, C)
containing at most s sets. Also, change the upper bound on the cardinality of
sets to be included in C from

√
m to q =

√
m/s. To analyze this, let us split the

optimal packing into a packing of sets of size greater than q and that of sets at
most q. A packing of the former can contain at most m/q =

√
sm sets, hence

Max approximates it within
√

m/s factor. Also, we know that GreedySP
approximates the latter within the same factor. The better of the two solutions
now yields a 2

√
m/s approximation.

4 Semi-definite programming

A fascinating polynomial-time computable function ϑ(G) introduced by Lovász
[24] has the remarkable “sandwiching” property that it always lies between
two NP -hard functions, α(G) ≤ ϑ(G) ≤ χ(G). This property suggests that it
may be particularly suited for obtaining good approximations to either function.
While some of those hopes have been dashed [8], a number of fruitful applications
have been found and it remains the most promising candidate for obtaining
improved approximations [9].
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Karger, Motwani and Sudan [22] gave improved approximations for k-colorable
graphs via the theta function, followed by Alon and Kahale [2] that obtained
improved approximations for IndSet in the case of linear-sized independent
sets. Mahajan and Ramesh [26] showed how these and related algorithms can
be derandomized. Vishwanathan [31] observed that an improved performance
ratio for the independent set problem of O(∆ log log ∆/ log∆) could be obtained
by combining together theorems of [22, 2].

We illustrate here how the improved O(∆ log log ∆/ log∆) also applies to
weighted independent sets. For this purpose, we give straightforward general-
izations of the results of [22] and [2]. Halperin [18] has independently obtained
the same bound, using a different rounding procedure.

We actually prove a stronger bound. A graph is said to be δ-inductive if,
there is a linear ordering of the vertices such that each vertex has at most δ
neighbors ordered after itself. We obtain a O(δ log log δ/ log δ) approximation
of WIS, improving on the previous best (δ + 1)/2 [20].

The Lovász number ϑ(G) of a graph G is the least number k such that there
exists a representation of unit vectors vi to each vertex i ∈ V , such that for any
two nonadjacent vertices i and j the dot product of their vectors satisfies the
equality

(vi · vj) = −1
k

.

Such a representation can be computed in polynomial time, or more precisely,
one can obtain a representation that is arbitrarily close. We shall use several
other definitions of this measure later, that were introduced in the original paper
of Lovász [24]; the current one was defined in [22] as the strict vector chromatic
number.

We first give a weighted version of a result of [22]. For our purposes, it suffices
to use the simpler method of “rounding by hyperplanes”, as the constant in the
exponent is not important.

Proposition 4.1 Let G be a weighted δ-inductive graph satisfying ϑ(G) ≤ k.
Then an independent set in G of weight Ω(w(G)/δ1−1/2k) can be constructed
with high probability in polynomial time.

Proof. The inductiveness of the graph implies that its edges can be directed
so that each vertex has outdegree at most d, and thus we say it has at most d
out-neighbors. We assume such a direction on the edges.

¿From the bound on ϑ(G), we can represent the vertices as Euclidean vectors,
such that for adjacent vertices i and j the corresponding vectors vi and vj satisfy
(vi ·vj) = − 1

k . Given such a representation, the algorithm selects r hyperplanes
at random (by choosing uniformly random vectors on the unit sphere around
the origin as normals), dividing Rn into 2r partitions. The algorithm examines
each of the partitions, collects the set of vertices with no out-neighbors in the
same partition, and outputs the set of maximum weight. We give a lower bound
on the expected weight of this set.
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Let q = 1
2 + 1

πk and let r = 2 + dlog1/(1−q) δe. Note that (1 − q)r ≤ 1/4δ.
Also, it can be shown that 1/ lg 1/(1 − q) ≤ 1 − 1/2k, using that 1/(1 − q) =
2(1 + 1/(πk/2− 1)) and that ln(1 + x) ≥ x/(1 + x). That means that

2r ≤ 8δ1/ lg 1/(1−q) = O(δ1−1/2k).

The probability that a random hyperplane separates the vectors associated
with two vertices is φ/π, where φ is the angle between the vectors. When the
vertices are adjacent, this probability is

arccos(−1/k)
π

≤ 1
2

+
1
πk

= q,

where the inequality is obtained from the Taylor expansion of arccos(x). Hence,
the probability that none of the r hyperplanes cuts a given edge is at most

p = (1 − q)r ≤ 1
4δ

.

The probability, for a given vertex v, that all of v’s outedges are cut is then at
least 1 − δp ≥ 1 − 1/4. Consider, for a given partition P , the independent set
I of vertices with no out-neighbors (i.e. outdegree zero) within its partition. If
w(P ) denotes the weight of a given partition P , the expected weight of I is at
least w(P )(1 − 1/4). Averaging over the 2r partitions, the expected weight of
the set output is at least

w(G)(1 − 1/4)
2r

= Ω(w(G)/δ1−1/2k).

We now consider a generalization of the Lovász number to weighted graphs.
An orthonormal representation of a graph G = (V, E) is an assignment of a unit
vector bv in Euclidean space to each vertex v of G, such that bu · bv = 0 if u 6= v
and (u, v) 6∈ E. The (weighted) theta function ϑ(G, w) [11] equals the minimum
over all unit vectors d and all orthonormal labelings bv of

max
v∈V

w(v)
(d · bv)2

.

An equivalent dual characterization is to define it as the maximum over all unit
vectors d and all orthonormal representations bv of the complement graph G of∑

v∈V (d · bv)2w(v). The Lovász number ϑ(G) is ϑ(G,1), the theta function on
the unit-weighted graph.

Proposition 4.2 If ϑ(G, w) ≥ 2w(G)/k (e.g. if α(G, w) ≥ 2w(G)/k), then we
can find an induced subgraph K in G such that ϑ(K) ≤ k and w(K) ≥ w(G)/k.
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Proof. We emulate [2]. Let d be a unit vector and bv a representation such that
ϑ(G, w) =

∑
v∈V (d · bv)2w(v). For each v, let av denote (d · bv)2. We can then

split the sum for ϑ(G, w) into two parts: those where av is small or at most 1/k
for some breakpoint k, and those where av is large. Thus,

ϑ(G, w) =
∑

av≤1/k

avw(v) +
∑

av≥1/k

avw(v) ≤ w(G)/k +
∑

av≥1/k

avw(v).

Let K be the subgraph induced by vertices v with av ≥ 1/k. If ϑ(G, w) ≥
2w(G)/k, we have that since av ≤ 1 for each vertex v,

w(K) =
∑

v∈V (K)

w(v) ≥
∑

av≥1/k

avw(v) ≥ ϑ(G, w) − w(G)/k ≥ w(G)/k.

Also,

max
v∈K

1
(d · bv)2

≤ k,

hence the Lovász number of K is at most k by its definition.

Theorem 4.3 WIS can be approximated within O(δ log log δ/ log δ).

Proof. Let (G, w) be an instance with α(G, w) = 2w(G)/k, for some k. We
find via Proposition 4.2 a subgraph Kk with ϑ(Kk) ≤ k and w(Kk) ≥ w(G)/k.
We then find via Proposition 4.1 an independent set in Kk ⊂ G of weight at
least w(G)/k

δ1−1/2k . The approximation ratio is then at most 2δ1−1/2k.
Alternatively, δ-inductive graphs are well-known to be δ+1-colorable. Thus,

the heaviest color class is an independent set of weight at least w(G)/(δ + 1),
for a 2(δ +1)/k approximation. Observe that first ratio is increasing with k and
the latter decreasing, with breakpoint achieved when k = 1

2 log δ/ log log δ, in
which case both ratios are O(δ log log δ/ log δ).

4.1 Sparse graphs

Inductive graphs can be thought of as being “everywhere sparse”. For reasons
of padding, it is not possible to get similar ratios for WIS on all sparse graphs.
However, we can obtain this for the unweighted IndSet problem, improving on
the previous best ratio known of (2d + 3)/5 [16].

Theorem 4.4 IS can be approximated within O(d log log d/ log d).

Proof. For a graph G of average degree d, let t denote n/α(G), i.e. α(G) = n/t.
Consider the subgraph H induced by vertices of degree at most 2td. Then,
∆(H) ≤ 2td(G). At least td(n− |V (H)|) edges are removed, while G contained
only 1

2dn edges. Hence, at most 1
2tn vertices are removed, and thus α(H) ≥

α(G)/2.
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Apply Propositions 4.1 and 4.2 on H to obtain a subgraph K ⊂ H ⊆ G with
ϑ(K) ≤ k = 4t and at least n/k vertices, We then obtain an independent set in
K with at least

Ω(
|V (H)|/k

∆(H)1−1/2k
) = Ω(

n/t

(2td(G))1−1/8t
) = Ω(

n/t2

d(G)1−1/8t

vertices, for a performance ratio of O(d(G)1−1/8tt2). Recall that a minimum-
degree greedy algorithm attains the Turán bound of n/(d + 1) [6] for a O(d/t)
approximation [16]. The two functions cross when t is about 1

24 log d/ log log d,
for the desired ratio.
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