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Abstract

We consider the problem of drawing a set of simple paths along the
edges of an embedded underlying graph G = (V,E) so that the total
number of crossings among pairs of paths is minimized. This problem
arises when drawing metro maps, where the embedding of G depicts the
structure of the underlying network, the nodes of G correspond to train
stations, an edge connecting two nodes implies that there exists a rail-
way track connecting them, whereas the paths illustrate the metro lines
connecting terminal stations. We call this the metro-line crossing mini-
mization problem (MLCM). We examine several variations of the problem
for which we develop algorithms that yield optimal solutions.
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1 Introduction

Metro maps or public transportation networks are quite common in our daily life
and familiar to most people. The visualization of such maps takes inspiration
from the fact that the passengers riding the trains are not too concerned about
the geographical accuracy of the train stations, but they are more interested in
how to get from one station to another and where to change trains. Therefore,
almost all metro maps look like electrical schematics (i.e., circuit boards, usually
orthogonal; see Figure 1), on which all stations are almost equally spaced, rather
than geographic maps (see Figure 2).

Figure 1: An illustration of the metro map of Washington DC. Taken from
http://www.airwise.com/airports/us/IAD/images/metromap.gif

In general, a metro map can be modeled as a tuple (G,L), which consists
of a connected graph G = (V,E), referred to as the underlying network, and a
set L of simple paths on G. The nodes of G correspond to train stations, an
edge connecting two nodes implies that there exists a railway track connecting
them, whereas the paths illustrate the metro lines connecting terminal stations.
Then, the process of constructing a metro map consists of a sequence of steps.
Initially, one has to draw the underlying network nicely. Then, the lines have
to be properly added into the visualization and, finally, a labeling of the map
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Figure 2: A geographic map of the metro map of Washington DC. Taken from
http://homepage.mac.com/credmond/a better tunnel/images/WDC-
Metro-big.jpg

has to be performed over the most important features.

In the graph drawing and computational geometry literature, the focus so
far has been nearly exclusively on the first and the third step. Closely related
to the first step are the works of Hong et al. [11], Merrick and Gudmundsson
[15], Nöllenburg and Wolff [16], and Stott and Rodgers [18]. The map labeling
problem has also attracted the interest of several researchers. Given that the
majority of map labeling problems are shown to be NP -complete [1, 9, 12, 17],
several approaches have been suggested, among them expert systems [2], ap-
proximation algorithms [1, 9, 17, 19], zero-one integer programming [21], and
simulated annealing [22]. An extensive bibliography on map labeling is main-
tained by Strijk and Wolff [20].

The intermediate problem of adding the line set into the underlying network
was recently introduced by Benkert et al. [6]. Since crossings within a visual-
ization are often considered as the main source of confusion, the main goal is
to draw the lines so that they cross each other as few times as possible. This
problem is referred to as the metro-line crossing minimization problem (MLCM)
and it is the topic of this paper.
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1.1 Problem Definition

The input of the metro-line crossing minimization problem consists of a con-
nected, embedded, planar graph G = (V,E) and a set L = {l1, l2 . . . l|L|} of
simple paths on G, called lines. We refer to G as the underlying network and to
the nodes of G as stations. We also refer to the endpoints of each line as its ter-
minals. The stations are represented as particular shapes (usually as rectangles
but in general as polygons). The sides of each station that each line may use
to either “enter” or “leave” the station are also specified as part of the input.
Motivated by the fact that a line cannot make a 180o turn within a station,
we do not permit a line to use the same side of a station to both “enter” and
“leave”.

The output of the MLCM problem specifies an ordering of the lines at each
side of each station so that the number of crossings among pairs of lines is
minimized.

Formally, each line l ∈ L consists of a sequence of edges e1 = (v0, v1), . . . , ed =
(vd−1, vd). Stations v0 and vd are the terminals of line l. Equivalently, we say
that l terminates or has terminals at v0 and vd. By |l| = d we denote the length
of line l.

One can define several variations of the MLCM problem based on the type
of the underlying network, the location of the crossings and/or the location of
the terminals (refer to Figure 1). As already stated, each line that traverses a
station u has to touch two of the sides of u at some points (one when it “enters”
u and one when it “leaves” u). These points are referred to as tracks (see the
white colored bullets on the boundary of each station in Figure 3b). In general,
we may permit tracks on all sides of each station, i.e., a line that traverses a
station may use any side of it to either “enter” or “leave” (see Figure 3a). In
the case where the stations are represented as rectangles, this model is referred
to as the 4-side model. In the general case where the stations are represented
as polygons of at most k sides, this model is referred to as the k-side model. A
more restricted model, referred to as the 2-side model, is the one where i) the
stations are represented as rectangles and ii) all lines that traverse a station
may use only its left and right side (see Figure 3b).

A particularly interesting case that arises under the 2-side model and con-
cerns the location of the line terminals at the nodes is the one where the lines
that terminate at a station occupy its topmost and bottommost tracks, in the
following referred to as top and bottom station ends, respectively. The remaining
tracks on the left and right side of the station are referred to as middle tracks
and are occupied by the lines that pass through the station. Figure 4 illustrates
the notions of top and bottom station ends and middle tracks on the left and
right side of a station (solid lines correspond to lines that terminate, whereas
the dashed lines correspond to lines that go through the station). Based on the
above, we define the following two variants of the MLCM problem:

(a) The MLCM problem with terminals at station ends (MLCM-SE), where we
ask for a drawing of the lines along the edges of G so that (i) all lines



JGAA, 14(1) 75–96 (2010) 79

(a) 4-side model - Station crossings. (b) 2-side model - Edge crossings.

Figure 3: The underlying network is the gray colored graph. We have used different
types of lines to denote different lines.

terminate at station ends and (ii) the number of crossings among pairs of
lines is minimized.

(b) The MLCM problem with terminals at fixed station ends (MLCM-FixedSE),
where all lines terminate at station ends and the information whether a line
terminates at a top or at a bottom station end in its terminal stations is
specified as part of the input. We ask for a drawing of the lines along the
edges of G so that the number of crossings among pairs of lines is minimized.

A further refinement of the MLCM problem concerns the location of the
crossings among pairs of lines. If the relative order of two lines changes between
two consecutive stations, then the two lines must intersect between these stations
(see Figure 3b). We call this an edge crossing. Opposed to an edge crossing, a
station crossing occurs inside a station. In order to avoid the case where a great
number of crossings takes place in the interior of a station, which unavoidably
leads to cluttered drawings, we seek to avoid station crossings whenever this is
possible. This seems quite important especially in the case where the size of the
stations is not quite large. Additionally, station crossings are further obscured
by the presence of the stations themselves, while the line crossings that occur
along the edges of the underlying network are not negatively influenced by the
edges, since the edges are rarely drawn on the map. However, it is not always
feasible to avoid station crossings. For instance, if two lines share a common path
of the underlying network (see the dotted and dashed-dotted lines in Figure 3b),
then we could either place their crossing along an edge or in the interior of a
station of their common path. In this case we would prefer the edge crossing.
However, it is not always feasible to avoid station crossings. To realize that,
refer to Figure 3a, where the two crossing lines share only a common station
and they have to cross (the dashed-dotted line traverses the station from its top
side to its bottom side, where the dashed one from left to right). In this case,
their crossing will inevitably occur in the interior of their common station. Such
crossings (i.e., that cannot be avoided) are referred to as unavoidable crossings.

1.2 Previous Work and Our Results

The problem of drawing a graph with a minimum number of crossings has been
extensively studied in the graph drawing literature. We refer to the monographs
of Di Battista et al. [8] and Kaufmann and Wagner [13]. In the problems we
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Top station ends

Bottom station ends

Middle tracks

Figure 4: Station ends and middle tracks.

study, however, we assume that the underlying graph has already received an
embedding and we seek to draw the lines along the graph’s edges so that the
number of crossings among pairs of lines is minimized.

The MLCM problem was recently introduced by Benkert et al. [6]. In their
work, they proposed a dynamic-programming based algorithm that runs in
O(n2) time for the so-called one-edge layout problem, which is defined as follows:
Given a graph G = (V,E) and an edge e = (u, v) ∈ E, let Le be the set of lines
that traverse e. The set Le is divided into three subsets Lu, Lv, and Luv. Set
Lu (Lv) consists of the lines that traverse u (v) and terminate at v (u). Set Luv

consists of the lines that traverse both u and v and neither terminate at u nor
at v. The lines for which u is an intermediate station, i.e., Luv ∪ Lu, enter u
in a predefined order Su. Analogously, the lines for which v is an intermediate
station, i.e., Luv ∪ Lv, enter v in a predefined order Sv. The number of pairs
of crossing lines is then determined by inserting the lines of Lu into the order
Sv and by inserting the lines of Lv into the order Su. The task is to determine
an insertion order so that the number of pairs of crossing lines is minimized.
Benkert et al. [6] do not address the case of larger graphs; they leave as an open
problem the case where the lines that terminate at a station occupy its station
ends.

Bekos et al. [5] proved that MLCM-FixedSE problem can be solved in
O(|V |+ log ∆

∑
l∈L |l|), in the case where the underlying network was a tree of

degree ∆. Extending the work of Bekos et al., Asquith et al. [4] proved that
the MLCM-FixedSE problem was also solvable in polynomial time in the case
where the underlying network was an arbitrary planar graph. The time com-
plexity of their algorithm was O(|E|5/2|L|3). They also proposed an integer
linear program which solves the MLCM-SE problem.

A closely related problem to the one we consider is the problem of drawing
a metro map nicely, known as the metro map layout problem. Hong et al.
[11] implemented five methods for drawing metro maps using modifications of
spring-based graph drawing algorithms. Stott and Rodgers [18] approached
the problem by using a multi-criteria optimization based on hill climbing. The
quality of a layout was a weighted sum over five metrics that were defined for
evaluating the niceness of the resulting drawing. Nöllenburg and Wolff [16]
specified the niceness of a metro map by listing a number of hard and soft
constraints and proposed a mixed-integer program which always determines a



JGAA, 14(1) 75–96 (2010) 81

drawing that fulfills all hard constraints (if such a drawing exists) and optimizes
a weighted sum of costs corresponding to the soft constraints.

This paper is structured as follows: In Section 2, we show that the MLCM-
SE problem is NP -complete, even in the case where the underlying network
is a path. In Section 3, we present a polynomial time algorithm that runs
in O((|E| + |L|2)|E|) time for the MLCM problem under the k-side model,
assuming that the line terminals are located at stations of degree one. To the
best of our knowledge no results are currently known regarding this model. In
Section 4, we present a faster algorithm for the special case of 2-side restriction.
The time complexity of the proposed algorithm is O(|V ||E| + ∑

l∈L |l|). We
further prove that the MLCM-FixedSE problem can be reduced to this restricted
model resulting in an algorithm that drastically improves the running time of
the algorithm of Asquith et al. [4] from O(|E|5/2|L|3) to O(|V ||E|+ |V ||L|). We
conclude in Section 5 with open problems and future work.

2 The MLCM-SE Problem

In this section, we study the metro-line crossing minimization problem assuming
that the underlying network G is a path and its nodes are restricted to lie on
a horizontal line. We consider the 2-side model where each line enters (exists)
an internal station on its left (right) side. Then, assuming that there exist
no restrictions on the location of the line terminals at the nodes, it is easy to
see that there exist solutions without any crossing among lines. In fact, using a
simple reduction from the interval graph coloring problem [10], we can determine
a solution, which also minimizes the number of tracks used at each individual
node. So, in the rest of this section, we further assume that the lines that
terminate at a station occupy its top and bottom station ends. In particular,
we consider the MLCM-SE problem on a path. Since the order of the stations is
fixed as part of the input of the problem, the only remaining choice is whether
each line terminates at the top or at the bottom station end in its terminal
stations. In the following we show that under this assumption, the problem of
determining a solution so that the total number of crossings among pairs of lines
is minimized is NP -complete. Our proof is based on a reduction from the fixed
linear crossing number problem [14].

Definition 1 Given a simple graph G = (V,E), a linear embedding of G is an
embedding of G in which the nodes of V are placed on the x-axis and the edges
are drawn as semicircles either above or below the x-axis.

Definition 2 A node ordering (or a node permutation) of a graph G is a
bijection δ : V → {1, 2, . . . , n}, where n = |V |. For each pair of nodes u and v,
with δ(u) < δ(v) we shortly write u < v.

Note that the crossing number of a linear embedding is determined by the
node ordering. However, Masuda et al. [14] proved that, even if the node or-
dering is fixed, it is NP -hard to determine a linear embedding of a given graph
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with the minimum number of crossings. The latter problem is referred to as
fixed linear crossing number problem. Observe that the computational difficulty
of this problem merely lies in determining, for each edge, whether to place it
above or below the x-axis.

Theorem 1 The MLCM-SE problem on a path is NP -complete.

Proof: We will prove that, given a positive integer c ∈ Z+, the problem of
finding a solution of the MLCM-SE problem on a path with total number of
crossings no more than c, is NP -complete. Membership in NP follows from the
fact that a nondeterministic algorithm needs only to guess an ordering of the
lines at the left and the right side of each station and then to check whether the
total number of crossings of the implied solution is no more than c, which can
be clearly done in polynomial time.

Let I be an instance of the fixed linear crossing number problem, consisting of
a graph G = (V,E), where V = {u1, u2, . . . , un} and E = {e1, e2, . . . , em}, and a
node ordering. Without loss of generality, we assume that u1 < u2 < · · · < un.
We construct an instance I ′ of the MLCM-SE problem on a path as follows:
The underlying network G′ = (V ′, E′) is a path consisting of n + 2 nodes and
n + 1 edges, where V ′ = V ∪ {u0, un+1} and E′ = {(ui−1, ui); 1 ≤ i ≤ n + 1}.
The set of lines L is partitioned into two sets LA and LB :

• LA consists of a sufficiently large number of lines (e.g., 2nm2 lines) con-
necting u0 with un+1.

• LB contains m lines l1, l2, . . . , lm, one for each edge of G. Line li, which
corresponds to edge ei of G, has terminals at the end points of ei.

Figure 5 illustrates the construction. First observe that all lines of LA can
be routed “in parallel” without any crossing among them (see Figure 5.b). Also
observe that in an optimal solution none of the lines l1, l2, . . . , lm crosses the
lines of LA, since that would contribute a very large number of crossings. Thus,
in an optimal solution each line of LB has both of its terminals either at top or
at bottom station ends. This excludes any solution of I ′ where a line l ∈ LB has
one of its terminals at a top station end and the other one at a bottom station
end.

Assume now that there exists an optimal linear embedding of I with c cross-
ings. We first route the lines of LA without introducing any crossing among
them. The remaining lines l1, l2, . . . , lm will be routed either above or below the
lines of LA depending on the placement (i.e., either above or below the x-axis)
of their corresponding edges in the embedding of I (refer to Figure 5.b). This
implies a one-to-one correspondence between the crossings among pairs of edges
of I and the crossings among pairs of lines of I ′, as desired.

Consider now the case where we have determined an optimal solution of I ′

with c pairs of crossing lines. As already mentioned, lines l1, l2, . . . , lm do not
cross the lines of the set LA, since a solution including such a crossing is not
optimal. Therefore, each line of LB entirely lies either above the lines of LA or
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u0 u1 u2 u3 u4 u5 u6 u7

u1 u2 u3 u4 u5 u6

(a) (b)

Figure 5: (a) A linear embedding, (b) an instance of the MLCM-SE problem.

below them. In the case where a line li ∈ LB lies above them, we draw edge ei
of graph G above the x-axis, otherwise below that. Again, it is easy to see that
there exists an one-to-one correspondence between the crossings among pairs of
edges of I and the crossings among pairs of lines of I ′. Therefore, instance I
has a linear embedding with c crossings among its edges. 2

3 The MLCM Problem under the k-Side Model

In this section, we study the MLCM problem under the k-side model, assuming
that all line terminals are located at stations of degree one, which are referred
to as terminal stations (see Figure 1). Stations of degree greater than one are
referred to as internal stations. To simplify the description of our algorithm
and to make the accompanying figures simpler, we restrict our presentation to
the MLCM problem under the 4-side model, i.e., we assume that each station is
represented as a rectangle and we permit tracks to all four sides of each station.
Our algorithm for the case of k-side model is identical, since it is based on
recursion over the edges of the underlying network. Recall that the lines can
terminate at any track of their terminal stations, and the two sides of each
station where each line enters or leaves the station are specified as part of the
input. We further assume that an internal station always exists within the
underlying network, otherwise the problem can be solved trivially.

The basic idea of our algorithm is to decompose the underlying network by
removing an arbitrary edge out of the edges that connect two internal stations
(and, consequently, appropriately partitioning the set of lines that traverse this
edge), then recursively solve the subproblem and, finally, derive a solution of
the initial problem by i) re-inserting the removed edge and ii) connecting the
partitioned lines along the re-inserted edge. In the following subsections, we
present the base of the recursion and the recursive step.

3.1 Base of recursion

The base of the recursion corresponds to the case of a graph GB consisting of an
internal station u and a number of terminal stations, say v1, v2, . . . , vf , incident



84 Argyriou et al. On Metro-Line Crossing Minimization

to u, each of which has only one side with terminals (see Figure 6). To cope with
this case, we first group all lines that have exactly the same terminals into a
single line, which is referred to as bundle. The lines in a bundle will be drawn in
a uniform fashion, i.e., occupying consecutive tracks at their common stations.
In an optimal solution, a bundle can be safely replaced by its corresponding lines
without affecting the optimality of the solution. In Figure 6c, lines belonging to
the same bundle have been drawn with the same type of non-solid line. We refer
to single lines as bundles, too, in order to maintain a uniform terminology (refer
to the solid lines of Figure 6c). Then, the number of bundles of each terminal
station is bounded by the degree of the internal station u.

In order to route the bundles along the edges of GB , we make use of what
we call Euler tour numbering. Let v be a terminal station of GB . Then, the
Euler tour numbering of the terminal stations v1, v2, . . . , vf of GB with respect
to v is a function ETNv : {v1, v2, . . . , vf} → {0, 1, . . . , f − 1}. More precisely, we
number all terminal stations of GB according to the order of first appearance
when moving clockwise along the external face of GB starting from station v,
which is assigned the value zero. Note that such a numbering is unique with
respect to v and we refer to it as the Euler tour numbering starting from station
v or simply as ETNv. In Figure 6c, the number next to each line terminal at
each terminal station vi corresponds to the ETNvi of its destination, i = 1, 2 . . . 8.
Also, note that the computation of only one numbering is enough in order to
derive the corresponding Euler tour numberings from any other terminal station
v′ of GB , since ETNv′(w) = (ETNv(w)− ETNv(v′)) mod f .

Our approach works as follows. We first sort the bundles at each terminal
station v based on the Euler tour numbering starting from v (i.e., ETNv) of
their destinations in ascending order and we place them so that they appear in
counterclockwise order around the internal station u (see Figure 6a). We denote
by BND(v) the ordered set of bundles of each terminal station v. Then, we pass
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(a) Sorting the bundles at
the terminal stations.
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(b) Passing the bundles
into the internal station
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Figure 6: Illustration of the base of the recursion. The number next to each line
terminal at each terminal station vi corresponds to the ETNvi of its desti-
nation, i = 1, 2 . . . 8.
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these bundles from each terminal station to the internal station u along their
common edge without introducing any crossings (see Figure 6b). This implies
an ordering of the bundles at each side of the internal station u. To complete
the routing procedure, it remains to connect equal bundles in the interior of the
internal station u, which may imply crossings (see Figure 6c). Note that only
station crossings that cannot be avoided are created in this manner since the
underlying network is planar and since the Euler tour numbering implies that
no unnecessary edge crossings occur. Therefore the optimality of the solution
follows trivially.

3.2 Description of the recursive algorithm

Having fully specified the base of the recursion, we now proceed to describe
our recursive algorithm in detail. First observe that, in the case where the
input graph is not connected, we can separately solve the MLCM problem on
each of the connected components of G and the lines induced by each of these
components. Thus, in the rest of this section, we will assume that the input
graph is connected. Let e = (v, w) be an edge which connects two internal
stations v and w of the underlying network. If no such edge exists, then the
problem can be solved by employing the algorithm of the base of the recursion.

Let Le be the set of lines that traverse e. Any line l ∈ Le originates from
a terminal station, passes through a sequence of edges, then enters station v,
traverses edge e, leaves station w and, finally, passes through a second sequence
of edges until it terminates at another terminal station. Since each line consists
of a sequence of edges, Le can be written in the form {l ∈ L | l = πeπ′}. We
proceed by removing edge e from the underlying network and by inserting two
new terminal stations tve and twe incident to the stations v and w, respectively (see
the dark-gray colored stations of the right drawing of Figure 7). Let G∗ = (V ∪
{tve , twe }, (E − {e}) ∪ {(v, tve), (twe , w)}) be the new underlying network obtained
in this manner.

Since the edge e has been removed from the underlying network, the lines
of Le cannot traverse e anymore. So, we force them to terminate at tve and twe ,
as it is depicted in the right drawing of Figure 7. More precisely, let:

• Lv
e = {π (v, tve) | πeπ′ ∈ Le}

• Lw
e = {(twe , w)π′ | πeπ′ ∈ Le}

Then, the new set of lines that is obtained after the removal of the edge e is
L∗ = (L − Le) ∪ (Lv

e ∪ Lw
e ). We proceed by we recursively solving the MLCM

problem on (G∗, L∗).
The recursion will lead to a solution of (G∗, L∗). Part of the solution consists

of two ordered sets of bundles BND(tve) and BND(twe ) at each of the terminal
stations tve and twe , respectively. Recall that, in the base of the recursion, all
lines in a bundle have exactly the same terminals. In the recursive step, a bundle
actually corresponds to a set of lines (with the same terminals) whose relative
positions cannot be determined. In order to construct a solution of (G,L), we
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v w

remove e = (v, w)

v wtve twe

e

Lv
e Lw

eLe

Figure 7: Illustration of the removal of an edge that connects two internal stations.

first have to restore the removed edge e and to remove the terminal stations tve
and twe . The bundles BND(tve) and BND(twe ) of tve and twe have also to be connected
appropriately along the edge e. Note that the order of the bundles of tve and twe
is equal to those of v and w, because of the base of the recursion. Therefore,
the removal of tve and twe will not produce unnecessary crossings.

We now proceed to describe the procedure of connecting the ordered bundle
sets BND(tve) and BND(twe ) along edge e. We say that a bundle is of size s if it
contains exactly s lines. We also say that two bundles are equal if they contain
the same set of lines, i.e., the parts of the lines that each bundle contains
correspond to the same set of lines. First, we connect all equal bundles. Let
b ∈ BND(tve) and b′ ∈ BND(twe ) be two equal bundles. The connection of b and b′

will result into a new bundle which i) contains the lines of b (or equivalently of
b′) and ii) its terminals are the terminals of b and b′ that do not participate in
the connection. Note that a bundle is specified as a set of lines and a pair of
stations, that correspond to its terminals. When the connection of b and b′ is
completed, we remove both b and b′ from BND(tve) and BND(twe ).

If both BND(tve) and BND(twe ) are empty, all bundles are connected. In the case
where they still contain bundles, we determine the largest bundle, say bmax of
BND(tve)∪BND(twe ). Without loss of generality, we assume that bmax ∈ BND(tve) (see
the left drawing of Figure 8). Since bmax is the largest bundle among the bundles
of BND(tve)∪BND(twe ) and all equal bundles have been removed from both BND(tve)
and BND(twe ), bmax contains at least two lines that belong to different bundles
of BND(twe ). So, it can be split into smaller bundles, each of which contains a
set of lines belonging to the same bundle in BND(twe ) (see the right drawing of
Figure 8). Also, the order of the new bundles in BND(tve) must follow the order
of the corresponding bundles in BND(twe ) in order to avoid unnecessary crossings
(refer to the order of the bundles within the dotted rectangle of Figure 8). In
particular, the information that a bundle was split is propagated to all stations
that this bundle traverses, i.e., splitting a bundle is not a local procedure that
takes place along a single edge but it requires greater effort. Note that no
crossings among lines of bmax occur, when bmax is split. In addition, the crossings
between lines of bmax and bundles in BND(twe ) cannot be avoided, which proves
the correctness of our algorithm.

We repeat these two steps (i.e., connecting equal bundles and splitting the
largest bundle) until both BND(tve) and BND(twe ) are empty. Since we always split
the largest bundle into smaller ones, this guarantees that our algorithm regard-
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Split(bmax)
l1
l2
l3
l4

l4
l1
l2
l3

BND(tve) BND(twe )

bmax

BND(twe )BND(tve)

Figure 8: Splitting the largest bundle. The dotted lines just illustrate which connec-
tions have to be made. Note that no equal bundles exist.

ing the connection of the bundles along the edge e will eventually terminate.
The basic steps of our algorithm are summarized in Algorithm 1.

Theorem 2 Given a graph G = (V,E) and a set L of lines on G that terminate
at stations of degree 1, the metro-line crossing minimization problem under the
k-side model can be solved in O((|E|+ |L|2)|E|) time.

Proof: The base steps of the recursion trivially take O(|V | + |L|) time. The
complexity of our algorithm is determined by step D of Algorithm 1, where the
connection of bundles along a particular edge takes place. The previous steps
of Algorithm 1 need O((|V | + |E|)|E| + |V ||L|) time in total. Since we always
remove an edge that connects two internal stations, step D of Algorithm 1 will
be recursively called at most O(|E|) times.

In step D.1 of Algorithm 1, we have to connect equal bundles. To achieve
this, we initially sort the lines of BND(twe ) using counting sort [7] in O(|L|+ |Le|)
time, assuming that the lines are numbered from 1 to |L|, and we store them
in an array, say B, such that the i-th numbered line occupies the i-th position
of B. Then, all equal bundles can be connected by performing a single pass
over the lines of each bundle of BND(tve). Note that, given a line l that belongs
to a particular bundle of BND(tve), say b, we can determine in constant time
to which bundle of BND(twe ) it belongs by employing array B. So, in a total of
O(|b|) time, we decide whether b is equal to one of the bundles of BND(twe ), which
yields into an O(|Le|) total time for all bundles of BND(tve). Therefore, step D.1
of Algorithm 1 can be accomplished in O(|L|+ |Le|) time.

Having connected all equal bundles, the largest bundle is then determined in
O(|me|) time, where me = |BND(tve) ∪ BND(twe )|. In step D.3 of Algorithm 1, the
largest bundle is split. Again, using counting sort [7] this can be accomplished
in O(|L|+ |Le|) time. The propagation of the splitting of the largest bundle in
step D.4 of Algorithm 1 needs O(|V ||Le|) time. The connection of the equal
bundles and the splitting of the largest bundle will take place at most O(|Le|)
times. Since |me| ≤ 2|Le| and |Le| ≤ |L|, the total time needed for Algorithm 1
is O((|E|+ |V ||L|2)|E|+ |V ||L|).

Note that the above straight-forward analysis can be improved by a factor of
|V |. This is accomplished by propagating the splitting of each bundle only to its
endpoints (i.e., not to all stations that each individual bundle traverses). This
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Algorithm 1: Rec-Draw(G,L)

input : An embedded, planar graph G and a set L of lines.
output : A routing of the lines on G s.t. they cross each other as few times

as possible.
require: G contains at least one internal station.

Rec-Draw(G=(V,E), L)
{
{Recursion on the connected components of G.}
if (G is not connected) then

foreach (connected component G∗ of G) do
L(G∗) ← lines induced by G∗;
Rec-Draw(G∗, L(G∗));

return;

if (@ edge connecting internal stations) then
{Base of recursion.}
Apply the algorithm of the base of the recursion;

else
{Recursive step.}
e = (v, w) ← an edge connecting internal stations;
Le ⊆ L ← set of lines that pass through e;
Let Le = {l ∈ L | l = πeπ′};

{Step A: Remove e, insert terminals tve , twe incident to v, w, resp.}
G∗ ← (V ∪ {tve , twe }, (E − {e}) ∪ {(v, tve), (twe , w)})

{Step B: Update the set of lines; see Figure 7}
L∗ ← (L− Le) ∪ (Lv

e ∪ Lw
e ), where:

• Lv
e = {π (v, tve) | πeπ′ ∈ Le}

• Lw
e = {(twe , w)π′ | πeπ′ ∈ Le}

{Step C: Recursive call.}
Rec-Draw(G∗, L∗)

{Step D: Bundle connection.}
while (BND(tve) 6= ∅) do
{BND(tve) and BND(twe ) obtained from the base of recursion}
1. Connect equal bundles of BND(tve) and BND(twe );
2. Remove connected bundles from BND(tve) and BND(twe );
3. Split the largest bundle bmax of BND(tve) ∪ BND(twe );
4. Propagate the splitting of bmax to all stations that it traverses;

immediately implies that some stations of G may still contain bundles after the
termination of the algorithm. So, we now need an extra post-processing step
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to fix this problem. We use the fact that the terminals of G do not contain
bundles, since they are always at the endpoints of each bundle, when it is split.
This suggests that we can split—up to lines—all bundles at stations incident
to the terminal stations. We continue in the same manner until all bundles
are eventually split. Note that this extra step needs a total of O(|E||L|) time
and consequently does not affect the total complexity, which is now reduced
to O((|V | + |E| + |L|2)|E| + |V ||L|). Since G is connected, |E| ≥ |V | − 1 and
therefore Algorithm 1 needs O((|E|+ |L|2)|E|) time, as desired. 2

4 The MLCM Problem under the 2-Side Model

In this section, we adopt the scenario of Section 3 under the 2-side model, i.e.,
we study the MLCM problem assuming that all line terminals are at stations of
degree one, each station is represented as a rectangle, and tracks are permitted
only to the left and to the right side of each station, i.e., one of the rectangle’s
sides is devoted to “incoming” lines while the other one is devoted to “outgoing”
lines (see Figure 9a). Since we do not permit a line to use the same side of a
station to both enter and leave, all the lines are x-monotone. Note that, since
the 2-side model is a restricted case of the 4-side model, Algorithm 1 can be
applied in this case. However, our intention is to construct a more efficient
algorithm.

Before we proceed with the description of our algorithm, we introduce some
terminology. Since the lines are x-monotone, we refer to the leftmost and right-
most terminals of each line as its origin and destination, respectively. We also
say that a line uses the left side of a station to enter it and the right side to
leave it. Furthermore, we refer to the edges that are incident to the left (resp.
right) side of each station u in the embedding of G as incoming (resp. outgoing)
edges of station u (see Figure 9a). For each station u of G, the embedding of G
also specifies an order of both the incoming and outgoing edges of u. We denote
these orders by Ein(u) and Eout(u), respectively (see Figure 9a).

A key component of our algorithm is a numbering of the edges of G, i.e., a
function EN : E → {1, 2, . . . , |E|}. In order to obtain this numbering, we first
construct a directed graph G′ = (V ′, E′), as follows: For each edge e ∈ E of G,
we introduce a new vertex ve in G′ (refer to the little black disks in Figures 9b
and 9c). Therefore, |V ′| = |E|. For each pair of edges e and e′ of G that
are consecutive in that order in Ein(u) or Eout(u), where u ∈ V is an internal
station of G, we introduce an edge (ve, ve′) in G′ (refer to the black-colored
solid edges of Figure 9b). Finally, we introduce an edge connecting the vertex
of G′ associated with the last edge of Ein(u) to the vertex of G′ associated with
the first edge of Eout(u) (refer to the black-colored dashed edge of Figure 9b).
Then, |E′| = O(|E|). Using the embedding of G, we direct each edge of G′.

An illustration of the proposed construction is depicted in Figure 9c. Note
that all edges of G′ are either directed “downward” or “left-to-right” w.r.t. an
internal station. This implies that there exist no cycles within the constructed
graph. The desired numbering of the edges of G is then implied by performing a
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Incoming edges of u

Outgoing edges of u

u
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Ein(u)
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(b)
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5

7 8
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(c)

Figure 9: (a) An illustration of the incoming/outgoing edges of a station u. (b) An
example of the construction of graph G′ in the case where the underlying
network consists of a single internal station u. (c) An edge numbering of
the underlying network.

topological sorting on G′ (see Figure 9c). From the construction of G′, it follows
that the numbering obtained in this manner has the following properties:

(i) The numbering of the incoming (resp. outgoing) edges of each internal
station u follows the order Ein(u) (resp. Eout(u)), i.e., an edge later in the
order Ein(u) (resp. Eout(u)) is assigned a greater number than an edge
earlier in this order.

(ii) The numbers assigned to the incoming edges of each internal station u are
smaller than the corresponding numbers assigned to its outgoing edges.

Since each line is a sequence of edges, it can be equivalently expressed as
a sequence of numbers based on the edge numbering EN : E → {1, 2, . . . , |E|}.
We refer to the sequence of numbers assigned to each line as its numerical
representation. Note that the numerical representation of each line is sorted
in ascending order because of the second property of the numbering and the
x-monotonicity of the lines. We now proceed to consider two cases where a
crossing between two lines cannot be avoided:

Unavoidable edge crossings: Let l and l′ be two lines that share a common
path of G. Let a1 . . . aqπb1 . . . br and a′1 . . . a

′
gπb
′
1 . . . b

′
h be their numerical

representations, respectively, where the subsequence π corresponds to the
numerical representation of their common path. Then, it is easy to see
that l and l′ will inevitably cross if and only if (aq − a′g) · (b1 − b′1) < 0.
This case is depicted in Figure 10a. Note that the crossing of l and l′ can
be placed along any edge of their common path. This is because we aim
to avoid unnecessary station crossings.

Unavoidable station crossings: Consider two lines l and l′ that share only
a single internal station u of the underlying network. We assume that u is
incident to at least four edges, say e1v, e2v, e3v and e4v, where e1v and e2v are
incoming edges of u, whereas e3v and e4v outgoing. We further assume that
l enters u using e1v and leaves u using e4v. Similarly, l′ enters u using e2v and
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l
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a′g b1

b′1

(a) Edge crossing.

l

l′

e1v

e2v

e3v

e4vu

(b) Station crossing.

Figure 10: Crossings that cannot be avoided. Note that in Figure 10a, aq < a′
g <

b′1 < b1, whereas in Figure 10b, EN(e1v) < EN(e2v) < EN(e3v) < EN(e4v).

leaves u using e3v (see Figure 10b). Then, l and l′ form a station crossing
that cannot be avoided if and only if (EN(e1v)−EN(e2v)) ·(EN(e4v)−EN(e3v)) <
0. In this case, the crossing of l and l′ can only be placed in the interior
of station u.

Our intention is to construct a solution where only crossings that cannot be
avoided are present. We will draw the lines of G incrementally by appropriately
iterating over the stations of G and by extending the lines from previously
considered stations to the current station. Assuming that the edges of G are
directed from left to right in the embedding of G, we first topologically sort the
stations of G. Note that, since all edges are directed from left to right, the graph
does not contain cycles, and therefore a topological order exists. We consider the
stations of G in their topological order. This ensures that, whenever we consider
a station, its incoming lines have already been routed up to its left neighbors.
Let u be the current station in the order. We distinguish the following two
cases:

Case (a) : The indegree of u is zero (i.e. u is a terminal station).
A station u with zero indegree corresponds to a station which only con-
tains the origins of some lines. In this case, we simply sort these lines in
ascending order lexicographically with respect to their numerical repre-
sentations. This implies the desired ordering of the lines along the right
side of station u.

Case (b) : The indegree of u is greater than zero.
Let e1u, e

2
u, . . . , e

d
u be the incoming edges of station u, where d = indegree(u)

and eiu = (ui, u), i = 1, . . . , d. Without loss of generality, we assume that
EN(eiu) < EN(eju) if i < j. The lines that enter u from e1u occupy the top-
most tracks of the left side of station u. Then, the lines that enter u from
e2u occupy the next available tracks and so on.

Let Li
u be the lines that enter u from edge eiu, i = 1, 2, . . . , d, ordered

according to the order of the lines along the right side of station ui. To
specify the order of all lines along the left side of station u, it remains
to describe how the lines of Li

u are ordered when entering u, for each
i = 1, 2, . . . , d. We stably sort in ascending order the lines of Li

u based on
the numbering of the edges that they use when leaving station u. In order
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to perform this sorting we simply consider the number following EN(eiu) in
the numerical representation of each line.

Up to this point, we have specified the order of the lines along the left side
of station u, say Lu

in. In order to complete the description of this case it
remains to specify the order, say Lu

out, of these lines along the right side
of u. Again, the desired order Lu

out is implied by stably sorting the lines
of Lu

in based on the numbering of the edges that they use when they leave
station u. Note that also in this case the sorting of the lines is performed
by considering only the EN-number of the edges used by the lines when
leave station u.

The basic steps of our algorithm are summarized in Algorithm 2. The lexi-
cographical sortings taking place at terminal stations ensure that the lines that
originate from each terminal station do not cross along their first common path.
Furthermore, it is easy to see that the lines that enter each station from dif-
ferent edges do not cross each other when entering the station since they use
non-conflicting tracks. To complete the proof of the correctness of Algorithm 2,
it remains to prove that the stable sortings that are performed at each internal
station ensure that only unavoidable station and edge crossings possibly occur.
To see this, first consider two lines l, l′ ∈ Li

u which enter a station u using the
same edge eiu and use the same edge to leave station u. Since the sorting is
stable, their relative position does not change when they enter u, which implies
that they do not cross along the edge eiu. Thus, only unavoidable edge crossing
are present and such crossings are always placed along the last edge of the com-
mon path of the crossing lines. Similarly, we can prove that none of the station
crossings can be avoided. Now, we are ready to present the main theorem of
this section.

Theorem 3 Given a graph G = (V,E) and a set L of lines on G that terminate
at stations of degree 1, the metro-line crossing minimization problem under the
2-side model can be solved in O(|V ||E|+ ∑

l∈L |l|) = O((|E|+ |L|)|V |) time.

Proof: Step A of Algorithm 2 needs O(|V | + |E|) time in order to perform a
topological sorting on G. In step B.1 of Algorithm 2, we have to construct graph
G′ and perform a topological sorting on it. This can be done in O(|E|) time,
since both the number of nodes and the number of edges of G′ are bounded by
|E|. Having computed the EN-number of each individual edge of the underlying
network, the numerical representations of all lines in step B.2 of Algorithm 2
can be computed in O(

∑
l∈L |l|) time.

Using radix sort [7], we can lexicographically sort all lines at each terminal
station v of indegree zero in O((|E|+|Lv|)|lvmax|) total time, where Lv is the set of
lines that originate at v and lvmax is the longest line of Lv. Therefore, the sorting
of all lines that fall into case (a) of step C needs a total of O((|E| + |L|)|V |)
time, since the length of the longest line of L is at most |V |.

In step C.1 of Algorithm 2, we stably sort the lines of each set Li
u, i =

1, 2, . . . , d based on the numbering of the edges that they use when leave u.
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Algorithm 2: 2-sided Algorithm

input : An embedded, connected, planar graph G and a set of lines L.
output : A routing of the lines on G s.t. they cross each other as few times

as possible.
require: Tracks are permitted to the left and the right side of each station.

{Step A: Topological Sort}
Perform a topological sorting on G, assuming that the edges of G are
directed from left to right in the embedding of G;

{Step B: Numerical representations.}
1. Determine the EN-number of each edge e ∈ E;
2. Rewrite all lines in numerical representation;

{Step C: Line Routing}
foreach station u in topological order do

if (indegree(u) = 0) then
{Case (a)}
Sort the lines that originate from u lexicographically in ascending
order;

else
{Case (b)}
d← indegree(u);

e1u . . . e
d
u ← incoming edges of u s.t. eiu = (ui, u) & EN(eiu) < EN(eju),

for any 1 ≤ i < j ≤ d;
Li
u ← lines that enter u from edge eiu in the order in which they

leave the right side of ui;

{Step C.1: Find the order Lu
in of the lines along the left side of u}

Lu
in ← ∅;

for i = 1 to d do
Stably sort the lines of Li

u based on the numbering of the edges
they use when leaving u and add them to the end of Lu

in;

{Step C.2: Find the order Lu
out of the lines along the right side of u}

Lu
out ← Stably sort the lines of Lu

in based on the numbering of the
edges they use when leaving station u.

Using counting sort [7], this can be done in O(|E| + |Lu|) total time, where
Lu denotes the set of lines that traverse station u. Recall that counting sort
is stable [7]. Similarly, step C.2 can be accomplished using counting sort and
also needs O(|E|+ |Lu|) time. Summing over all internal stations, Algorithm 2
needs O(|V ||E|+ ∑

l∈L |l|). 2

As already stated, we can employ Algorithm 2 to solve the MLCM-FixedSE
problem. Our approach is as follows: For each station u of G, we introduce four
new stations, say utopleft, u

bottom
left , utopright and ubottomright , adjacent to u. Station utopleft
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(ubottomleft ) is placed on top (below) and to the left of u in the embedding of G
and contains all lines that originate at u’s top (bottom) station end. Similarly,
station utopright (ubottomright ) is placed on top (below) and to the right of u in the
embedding of G and contains all lines that are destined for u’s top (bottom)
station end. In the case where some of the newly introduced stations contain
no lines, we simply ignore their existence. So, instead of restricting each line
to terminate at a top or at a bottom station end in its terminal stations, we
equivalently assume that it terminates in one of the newly introduced stations.
Then, Algorithm 2 can be used to solve the MLCM-FixedSE problem. The
following theorem summarizes this result.

Theorem 4 Given a graph G = (V,E) and a set L of lines on G, the metro-line
crossing minimization problem with fixed station ends under the 2-side model can
be solved in O(|V ||E|+ ∑

l∈L |l|) time.

5 Conclusions

In this paper, we studied the MLCM problem under the k-side model for which
we presented an O((|E| + |L|2)|E|) algorithm for the general case, and a more
efficient algorithm for the special case of the 2-side model. Possible extensions
would be to study the problem where the lines are not simple, and/or the un-
derlying network is not planar. Our first approach seems to work even for these
cases, although the time complexity is harder to analyze and cannot be esti-
mated so easily. The focus of our work was on the case where all line terminals
are located at specific stations of the underlying network. Allowing the line
terminals anywhere within the underlying network would hinder the use of the
proposed algorithms in both models. Therefore, it would be of particular inter-
est to study the computational complexity of this problem. Another possible
extension would be to try to derive approximation or fixed-parameter algorithms
for the MLCM-SE problem, which was shown to be NP -complete.
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