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Abstract

We show an algorithm to construct a greedy drawing of every given

triangulation. The algorithm relies on two main results. First, we show

how to construct greedy drawings of a fairly simple class of graphs, called

triangulated binary cactuses. Second, we show that every triangulation

can be spanned by a triangulated binary cactus.

Further, we discuss how to extend our techniques in order to prove

that every triconnected planar graph admits a greedy drawing. Such a

result, which proves a conjecture by Papadimitriou and Ratajczak, was

independently shown by Leighton and Moitra.
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1 Introduction

The standard Internet routing protocol is as follows: Each computer is univo-
cally identified by an IP-address ; IP-addresses are aggregated, i.e., computers
that are topologically or geographically close in the network are assigned ad-
dresses with the same most significative bits; consequently, routers do not have
to know the route to each address in the network, but they maintain in their
routing tables only information on the route to take for reaching each set of ag-
gregated addresses. Such an approach does not work in many wireless networks,
such as ad-hoc and sensor networks, where the addresses that are assigned to
nodes geographically or topologically close are not necessarily similar. Despite
of their importance, no universally-accepted communication protocol exists for
such wireless environments.

Geographic routing is a class of routing protocols in which nodes forward
packets based on their geographic locations. Among such protocols, geometric
routing, or greedy routing, has been well investigated, because it relies on a very
simple strategy in which, in order to forward packets, each node has to know
only local information and, obviously, the destination address. In fact, in the
greedy routing a node forwards packets to a neighbor that is closer than itself to
the destination’s geographic location. Different distance metrics define different
meanings for the word “closer” and consequently define different routing algo-
rithms for the packet delivery. The most used and studied metric is of course
the Euclidean distance.

The efficiency of the geographic routing algorithms strongly relies on the
geographic coordinates of the nodes. This is indeed a drawback of such routing
algorithms, for the following reasons: (i) Nodes of the network have to know
their locations, hence they have to be equipped with GPS devices, which are
expensive and increase the energy consumption of the nodes; (ii) geographic
coordinates are independent of the network obstructions, i.e. obstacles making
the communication between two close nodes impossible, and, more in general,
they are independent of the network topology; this could lead to situations in
which the communication fails because a void has been reached, i.e., the packet
has reached a node whose neighbors are all farther from the destination than
the node itself.

A brilliant solution to the geographic routing weakness has been proposed
by Rao, Papadimitriou, Shenker, and Stoica, who in [16] proposed a scheme in
which nodes are assigned virtual coordinates and then apply the standard ge-
ometric routing algorithm relying on such virtual locations rather than on the
real geographic coordinates. Clearly, virtual coordinates do not need to reflect
the nodes actual positions, hence they can be suitably chosen to guarantee that
the geometric routing algorithm delivers packets with high probability. It has
been experimentally shown that such an approach strongly improves the reli-
ability of geometric routing [16, 15]. Further, it has been proved that virtual
coordinates guarantee geometric routing to work for every connected topology
when they can be chosen in the hyperbolic plane [11], even if only a logarithmic
number of bits are available to store the coordinates of each node [7]. Moreover,
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some easy modifications of the routing algorithm guarantee that Euclidean vir-
tual coordinates can be chosen so that the packet delivery always succeeds [3],
even if the coordinates need to be computed locally [4].

Subsequent to the publication of Rao et al. paper [16], an intense research
effort has been devoted to determine on which network topologies the Euclidean
geometric routing with virtual coordinates is guaranteed to work. From a graph-
theoretic point of view, the problem can be restated as follows: Which are the
graphs that admit a greedy drawing, i.e., a straight-line drawing Γ in the plane
such that, for every pair of nodes u and v, there exists a distance-decreasing path
in Γ? A path (v0, v1, . . . , vm) is distance-decreasing if d(vi, vm) < d(vi−1, vm),
for i = 1, . . . ,m, where d(p, q) denotes the Euclidean distance between two
points p and q.

In [15] Papadimitriou and Ratajczak conjectured the following:

Conjecture 1 (Papadimitriou and Ratajczak [15]) Every triconnected planar
graph admits a greedy drawing.

Papadimitriou and Ratajczak showed that Kk,5k+1 has no greedy drawing,
for k ≥ 1. As a consequence, both the triconnectivity and the planarity are
necessary, because there exist planar non-triconnected graphs, such as K2,11,
and non-planar triconnected graphs, such asK3,16, that do not admit any greedy
drawing. Further, they observed that, if a graph G has a greedy drawing,
then any graph containing G as a spanning subgraph has a greedy drawing, as
well. It follows that Conjecture 1 extends to all graphs which are spanned by a
triconnected planar graph. Related to such an observation, Papadimitriou and
Ratajczak proved that every triconnected graph that does not have aK3,3-minor
has a triconnected planar spanning subgraph.

There are a few classes of triconnected planar graphs for which the conjec-
ture is easily shown to be true, for example graphs with a Hamiltonian path and
Delaunay Triangulations. At the Symposium on Discrete Algorithms 2008 [6],
Dhandapani proved the conjecture for the first non-trivial class of triconnected
planar graphs, namely he showed that every triangulation admits a greedy draw-
ing. Triangulations are clearly an important graph class to study, as also re-
marked by Papadimitriou and Ratajczak [15]. The proof of Dhandapani is
probabilistic, namely the author proves that, for every given triangulation G, a
random Schnyder drawing of G [17] is greedy with positive probability; hence,
there exists a greedy drawing of every triangulation. Although such a proof is
elegant, relying at the same time on an old Combinatorial Geometry theorem,
known as the Knaster-Kuratowski-Mazurkievicz Theorem [12], and on standard
Graph Drawing techniques, as the Schnyder realizers [17] and the canonical
orderings of a triangulation [5], it does not lead to an drawing algorithm.

In this paper we show an algorithm for constructing greedy drawings of
triangulations. The algorithm relies on a different and maybe easier approach
with respect to the one used by Dhandapani. We define a simple class of graphs,
called triangulated binary cactuses, and we provide an algorithm to construct a
greedy drawing of any such a graph. Further, we show how to find, for every
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triangulation, a binary cactus spanning it. It is clear that the previous state-
ments imply an algorithm for constructing greedy drawings of triangulations.
Namely, consider any triangulation G, apply the algorithm to find a binary cac-
tus S spanning G, and then apply the algorithm to construct a greedy drawing
of S. As already observed in [15], adding edges to a greedy drawing leaves the
drawing greedy, hence S can be augmented to G, obtaining the desired greedy
drawing of G.

Theorem 1 Given a triangulation G, there exists an algorithm to compute a
greedy drawing of G.

Further, we provide an algorithm to construct greedy drawings of general
triconnected planar graphs. The strategy of such an algorithm is the same as
the one of the algorithm for constructing greedy drawings of triangulations.
In fact, we define a simple class of graphs, called non-triangulated binary cac-
tuses, and we provide an algorithm to construct a greedy drawing of any such
a graph. Finally, we show how to find, for every triconnected planar graph, a
non-triangulated binary cactus spanning it. Such a result proves Conjecture 1;
however, the conjecture has been very recently (and independently) proved by
Leighton and Moitra [13], by using techniques which are amazingly similar to
ours. Hence, we will only sketch how to modify the algorithm we provide for
triangulations in order to make it work for general triconnected planar graphs;
however, we will extensively discuss differences and similarities of our algorithm
with respect to Leighton and Moitra’s one.

The rest of the paper is organized as follows. In Sect. 2 we establish some
definitions and give some preliminaries. In Sect. 3 we show an algorithm to
construct greedy drawings of triangulated binary cactuses. In Sect. 4 we show
an algorithm to construct a triangulated binary cactus spanning a given tri-
angulation. In Sect. 5 we show how to modify the algorithm described for
triangulations in order to make it work for general triconnected planar graphs
and we compare our techniques with Leighton and Moitra’s ones; in the same
section we conclude by providing some interesting open problems concerning
greedy graph drawings.

A preliminary version of this paper appeared at Graph Drawing 2008 [2].

2 Preliminaries

A graph G′(V ′, E′) is a subgraph of a graph G(V,E) if V ′ ⊆ V and E′ ⊆ E.
A subgraph G′(V ′, E′) of a graph G(V,E) is induced by V ′ if, for every edge
(u, v) ∈ E such that u, v ∈ V ′, (u, v) ∈ E′. A graph G′(V ′, E′) is a spanning
subgraph of G(V,E) if it is a subgraph of G and V ′ = V .

A graph is connected if every pair of vertices of G is connected by a path. A
k-connected graphG is such that removing any k−1 vertices leavesG connected;
3-connected, 2-connected, and 1-connected graphs are also called triconnected,
biconnected, and simply connected graphs, respectively. A separating k-set is a
set of k vertices whose removal disconnects the graph. Separating 1-sets and
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separating 2-sets are also called cutvertices and separation pairs, respectively.
Hence, a connected graph is biconnected if it has no cutvertices and it is tri-
connected if it has no separation pairs. The maximal biconnected subgraphs
of a graph are its blocks. Each edge of G falls into a single block of G, while
cutvertices are shared by different blocks. The block-cutvertex tree, or BC-tree,
of a connected graph G is a tree with a B-node for each block of G and a C-node
for each cutvertex of G. Edges in the BC-tree connect each B-node µ to the
C-nodes associated with the cutvertices belonging to the block of µ.

The BC-tree of G may be thought as rooted at a specific block ν. When the
BC-tree T of a graph G is rooted at a certain block ν, we denote by G(µ) the
subgraph of G induced by all the vertices in the blocks contained in the subtree
of T rooted at µ. In a rooted BC-tree T of a graph G, for each B-node µ we
denote by r(µ) the cutvertex of G parent of µ in T . If µ is the root of T , i.e.,
µ = ν, then we let r(µ) denote any non-cutvertex node of the block associated
with µ. In the following, unless otherwise specified, each considered BC-tree is
meant to be rooted at a certain B-node ν such that the block associated with
ν has at least one vertex r(ν) which is not a cutvertex. It is not difficult to see
that such a block exists in every planar graph.

A triangulated binary cactus S, in the following simply called binary cactus,
is a connected graph such that (see Fig 1):

• The block associated with each B-node of T is either an edge or a triangula-
ted cycle, i.e., a cycle (r(µ), u1, u2, . . . , uh) triangulated by the edges from
r(µ) to each of u2, u3, . . . , uh−1.

• Every cutvertex is shared by exactly two blocks of S.

ν

µ1
µ2

µ3

µ4

µ5

µ6

µ7
r(µ1)

r(µ2)
r(µ3)
r(µ4)
r(µ5)

r(µ6)

r(µ7)
r(ν) ν

µ1
µ2

µ3

µ4
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µ6
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r(µ1)

r(µ2)
r(µ6)

r(µ3)

r(µ4)
r(µ5)

r(µ7)

(a) (b)

Figure 1: (a) A binary cactus S. (b) The block-cutvertex tree of S. White
(resp. black) circles represent C-nodes (resp. B-nodes).

A planar drawing of a graph is a mapping of each vertex to a distinct point
of the plane and of each edge to a Jordan curve between its endpoints such that
no two edges intersect except, possibly, at common endpoints. A straight-line
drawing is such that all the edges are straight-line segments. A planar drawing
of a graph determines a circular ordering of the edges incident to each vertex.
Two drawings of the same graph are equivalent if they determine the same
circular ordering around each vertex. A planar embedding is an equivalence class
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of planar drawings. A planar drawing partitions the plane into topologically
connected regions, called faces. The unbounded face is the outer face. The
outer face of a graph G is denoted by f(G). A chord of a graph G is an
edge connecting two non-consecutive vertices of f(G). A graph together with
a planar embedding and a choice for its outer face is called plane graph. A
plane graph is a triangulation when all its faces are triangles. A plane graph is
internally-triangulated when all its internal faces are triangles. An outerplane
graph is a plane graph such that all its vertices are incident to the outer face. A
Hamiltonian cycle of a graph G is a simple cycle passing through all vertices of
G. Notice that a biconnected outerplane graph has only one Hamiltonian cycle,
namely the one delimiting its outer face.

3 Greedy Drawing of a Binary Cactus

In this section, we give an algorithm to compute a greedy drawing of a binary
cactus S. Such a drawing is constructed by performing a bottom-up traversal
of the BC-tree T of S.

Consider the root µ of a subtree of T corresponding to a block of S, consider
the k children of µ, which correspond to cutvertices of S, and consider the
children of such cutvertices, say µ1, µ2, . . . , µk. Notice that each C-node child of
µ is parent of exactly one B-node µi of T , by the definition of binary cactus. For
each i = 1, . . . , k, inductively assume to have a drawing Γi of S(µi) satisfying
the properties listed below.

Let C be a circle, let (ai, bi) be an arc of C, let p∗i be a point of C such that
the diameter through p∗i cuts (ai, bi) in two arcs of the same length. Let αi and
βi be any two angles such that αi ≤ βi ≤

π
4
. Consider the tangent t(p∗i ) to C in

p∗i . Consider two half-lines l∗1 and l∗2 incident to p∗i , lying on the opposite part
of C with respect to t(p∗i ), and forming angles equal to βi with t(p∗i ). Denote
by W (p∗i ) the wedge centered at p∗i , delimited by l∗1 and l∗2 , and not containing
C. Refer to Fig. 2.a.

• Property 1. Γi is a greedy drawing.

• Property 2. Γi is entirely contained inside a region R(Γi) delimited by arc

(ai, bi) and by segments p∗i ai and p∗i bi. The angle âip
∗

i bi is αi.

• Property 3. For every vertex v in S(µi) and for every point p internal to
W (p∗i ), there exists in Γi a path (v = v0, v1, . . . , vl = r(µi)) from v to
r(µi) such that d(vj , p) < d(vj−1, p), for j = 1, . . . , l.

• Property 4. For every vertex v in S(µi) and for every point p internal to
W (p∗i ), d(v, p

∗

i ) < d(v, p).

In the base case, block µ has no child. Denote by (r(µ) = u0, u1, . . . , uh−1)
the block of S corresponding to µ. Notice that h ≥ 2. Consider any circle C

with center c. Let p∗ be the point of C with smallest y-coordinate. Consider
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ai

C

bi

pi*l1* l2*
t(pi )*

R(Γi  )
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p0 ph

C
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Figure 2: (a) Illustration for Properties 1–4 of Γi. (b) Base case of the algorithm.
The light and dark shaded region represents R(Γ) (the angle of R(Γ) at p∗ is
α). The dark shaded region represents the intersection of W (p∗, α

2
) with the

disk delimited by C.

the wedges W (p∗, α) and W (p∗, α
2
) with angles α and α

2
, respectively, incident

to p∗ and such that the diameter of C through p∗ is their bisector (see Fig. 2.b).
Place r(µ) at p∗. Denote by p′a and p′b the intersection points (different from p∗)
of the half-lines delimiting W (p∗, α

2
) with C. Denote by A the arc of C between

p′a and p′b and not containing p∗. Consider h+1 points p0, p1, . . . , ph on A such
that p0 = p′a, ph = p′b, and the distance between any two consecutive points pi
and pi+1 is the same. Place vertex ui at point pi, for i = 1, 2, . . . , h− 1. Notice
that, if h = 2, µ corresponds to an edge of S that is drawn as a vertical segment,
with u1 above u0.

In order to show that the constructed drawing Γ satisfies Property 1, consider
any two vertices ui and uj, with i < j. If i = 0, then u0 and uj are joined by
an edge, which provides a distance-decreasing path between them. Otherwise,
we prove that (ui, ui+1, . . . , uj) is a distance-decreasing path from ui to uj , the
proof that (uj , uj−1, . . . , ui) is a distance-decreasing path from uj to ui being
analogous. For each l = i, i + 1, . . . , j − 2, angle ̂ulul+1uj is greater than π

2
,

because triangle (ul, ul+1, uj) is inscribed in less than half a circle with ul+1

as middle point (see Fig. 3.a). Hence, (ul, uj) is the longest side of triangle
(ul, ul+1, uj) and d(ul+1, uj) < d(ul, uj) follows. Drawing Γ satisfies Property
2 by construction. In order to prove that Γ satisfies Property 3, we have to
prove that, for every vertex ui, with i ≥ 1, and for every point p in W (p∗),

d(u0, p) < d(ui, p). Angle p̂p∗pi is at least β + (π
2
− α

4
), which is greater than π

2

(see Fig. 3.b). It follows that segment ppi is the longest side of triangle (p, p
∗, pi),

thus proving that d(u0, p) < d(ui, p). For the same reason d(u0, ui) < d(p, ui),
hence proving Property 4.

Now we discuss the inductive case. Suppose that µ is a node of T having k

children. We show how to construct a drawing Γ of S(µ) satisfying Properties 1–
4 with parameters α and β. Refer to Fig. 4. Denote by (r(µ) = u0, u1, . . . , uh−1)
the block of S corresponding to µ. Remember that h ≥ 2 and that if h = 2, then
the block is an edge, otherwise it is a triangulated cycle. Consider any circle C
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ul+1 ujul
p*β

α/4

p

pi

(a) (b)

Figure 3: (a) Γ satisfies Property 1. (b) Γ satisfies Properties 3 and 4.

with center c. Let p∗ be the point of C with smallest y-coordinate. Consider
the wedges W (p∗, α) and W (p∗, α

2
) with angles α and α

2
, respectively, incident

to p∗ and such that the diameter of C through p∗ is their bisector. Region R(Γ)
is the intersection region of W (p∗, α) with the closed disk delimited by C.

0=p

p*

c

β β

α

p’a p’=pb hA
3α/2

Figure 4: Construction of a drawing Γ in the inductive case of the algorithm.

Consider a second circle C′ with center c intersecting the two lines delimiting

W (p∗, α
2
) in two points p′a and p′b such that angle p̂′acp

′

b =
3α
2
. It is not difficult

to see that such a circle always exists. Denote by A the arc of C′ delimited
by p′a and p′b and farther from p∗. Consider h + 1 points p0, p1, . . . , ph on A

such that p0 = p′a and ph = p′b, and the distance between any two consecutive
points pi and pi+1 is the same. Observe that, for each i = 0, 1, . . . , h− 1, angle
p̂icpi+1 = 3α

2h
.

First, we draw the block of S corresponding to µ. As in the base case,
place vertex u0 = r(µ) at p∗ and, for i = 1, 2, . . . , h − 1, place ui at point
pi. Recursively construct a drawing Γi of S(µi) satisfying Properties 1–4 with
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αi =
3α
16h

and βi =
3α
8h

.

We are going to place each drawing Γi of S(µi) together with the constructed
drawing of the block of S corresponding to µ, thus obtaining a drawing Γ of
S(µ). Notice that not all the h nodes ui are cutvertices of S. However, with a
slight abuse of notation, we suppose that block S(µi) has to be placed at node
ui. Refer to Fig 5. Consider point pi and its “neighbors” pi−1 and pi+1, for
i = 1, 2, . . . , h − 1. Consider lines t(pi−1) and t(pi+1) tangent to C′ in pi−1

and pi+1, respectively. Further, consider circles Ci−1 and Ci+1 centered at pi−1

and pi+1, respectively, and passing through pi. Moreover, consider lines hi−1

and hi+1 tangent to Ci−1 and Ci+1 in pi, respectively. For each point pi, with
i = 0, . . . , h, consider two half-lines ti1 and ti2 incident to pi, forming angles
βi = 3α

8h
with t(pi), and both lying in the half-plane delimited by t(pi) and

containing C′. Denote by W (pi) the wedge delimited by ti1 and by ti2, and
containing c.

pi

li

pi+1pi-1
βi

hi-1

to c

hi+1

Ci-1 Ci+1

t(pi-1)
t(pi+1)

t1i+1 t2i-1

C

C’
to cto c

βi

Figure 5: Lines and circles in the construction of Γ. The shaded areas represent
angles βi and region Ri.

We will place Γi inside (a part of) the bounded region Ri obtained as the
intersection of: (i) the half-plane Hi−1 delimited by hi−1 and not containing
Ci−1, (ii) the half-plane Hi+1 delimited by hi+1 and not containing Ci+1, (iii)
wedge W (pi−1), (iv) wedge W (pi+1), and (v) the disk delimited by C.

First, we prove that Ri is “large enough” to contain Γi, namely we claim
that there exists an isosceles triangle T that has an angle larger than αi =

3α
16h

incident to pi and that is completely contained in Ri. Such a triangle will have
the further feature that the angle incident to pi is bisected by the line li through
c and pi.

Lines hi−1 and hi+1 are both passing through pi; we prove that they have
different slopes and we compute the angles that they form at pi. Refer to Fig. 6.
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Line hi−1 forms an angle of π
2
with segment pi−1pi; angle ̂cpipi−1 is equal to

π
2
− 3α

4h
, since p̂icpi−1 = 3α

2h
and since triangle (pi−1, c, pi) is isosceles. Hence,

the angle delimited by hi−1 and li is π − π
2
− (π

2
− 3α

4h
) = 3α

4h
. Analogously, the

angle between li and hi+1 is 3α
4h

. Hence, the intersection of Hi−1 and Hi+1 is a
wedge W (pi, hi−1, hi+1) centered at pi, with an angle of 3α

2h
, and bisected by li.

pi

c

pi-1

t(pi-1)

3α/2h

π/2−
3α/4h

3α/
8h3α
/8h

3α/4h

3α/4h

π/2−
3α/4h

hi-1

li

Figure 6: The angle between li and hi−1.

We claim that each of ti−1

2 and ti+1

1 cuts the border of W (pi, hi−1, hi+1)
twice. The angle between t(pi−1) and pi−1pi is

3α
4h

, because the angle between
t(pi−1) and cpi−1 is π

2
, and angle ̂cpi−1pi is

π
2
− 3α

4h
. The angle between t(pi−1)

and ti−1

2 is βi =
3α
8h

, by construction. Hence, the angle between ti−1

2 and pi−1pi
is 3α

4h
− 3α

8h
= 3α

8h
. Since the slope of both hi−1 and hi+1 with respect to pi−1pi

is greater than 3α
8h

and smaller than π− 3α
8h

, because the slopes of hi−1 and hi+1

with respect to pi−1pi are
π
2
and π

2
− 3α

4h
, respectively (notice that α ≤ π

4
and

h ≥ 2), then ti−1

2 intersects both hi−1 and hi+1. It can be analogously proved
that ti+1

1 intersects hi−1 and hi+1. It follows that the intersection of Hi−1,
Hi+1, W (pi−1), and W (pi+1) contains a triangle T as required by the claim
(notice that the angle of T incident to pi is

3α
2h

). Considering circle C does not
invalidate the existence of T , since C is concentric with C′ and has a bigger
radius, hence T can always be chosen sufficiently small so that it completely lies
inside C.

Now Γi can be placed inside T , by scaling Γi down till it fits inside T (see
Fig. 7.a). The scaling always allows to place Γi inside T , since the angle of
R(Γi) incident to pi is αi =

3α
16h

, that is smaller than the angle of T incident to
pi, which is 3α

2h
. In particular, we choose to place Γi inside T so that li bisects

the angle of R(Γi) incident to pi. This concludes the construction of Γ.
In the following we will prove that the constructed drawing Γ satisfies Prop-
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pi

li
t1i+1
hi-1 hi+1

t2i-1
C

C’

p0αa
t10

t20
βi

βi ’C
c

p*
* W(p )*

W(p )*
β β

ββ

h(c)

l1 *l2

h(p0)

t(p )*

t(p0)

(a) (b)

Figure 7: (a) Placement of Γ inside Ri. Region R(Γ) is the darkest, triangle T

is composed of R(Γ) and of the second darkest region, Ri is composed of T and
of the light shaded region. (b) Illustration for the proof of Lemma 1.

erties 1–4. However, for this purpose, we need some preliminary lemmata.
Consider the tangent t(p∗) to C in p∗. Consider two half-lines l∗1 and l∗2

incident to p∗, lying in the opposite part of C with respect to t(p∗), and forming
angles equal to β with t(p∗). Denote by W (p∗) the wedge centered at p∗,
delimited by l∗1 and l∗2 , and not containing C. We have the following lemmata.

Lemma 1 The closed wedge W (p∗) is completely contained inside the open
wedge W (pi), for each i = 0, 1, . . . , h.

Proof: Consider any point pi. First, observe that pi is contained in the wedge
W (p∗) obtained by reflecting W (p∗) with respect to t(p∗). Namely, pi is con-
tained in W (p∗, α

2
), which is in turn contained inside W (p∗), since α

2
< π− 2β,

as a consequence of the fact that π
4
> β ≥ α. Hence, in order to prove the

lemma, it suffices to show that the absolute value of the slope of each of ti1 and
ti2 is smaller than the absolute value of the slope of the half-lines delimiting
W (p∗). Such latter half-lines form angles of β, by construction, with the x-axis.

The slope of ti1 can be computed by adding the slope of ti1 with respect
to t(pi) and the slope of t(pi). The former slope is equal to βi = 3α

8h
, by

construction. Recalling that t(pi) is the tangent to A in pi, the slope of t(pi)
is bounded by the maximum among the slopes of the tangents to points of A.
Such a maximum is clearly achieved at p0 and ph and is equal to 3α

4
. Namely,

refer to Fig. 7.b and consider the horizontal lines h(c) and h(p0) through c and
p0, respectively, that are traversed by radius (c, p0). Such a radius forms angles
of π

2
with t(p0); hence, the slope of t(p0), that is equal to the angle between t(p0)

and h(p0), is
π
2
minus the angle αa between h(p0) and (c, p0). Angle αa is the

alternate interior of the angle between h(c) and (c, p0), which is complementary
to the half of angle p̂0cph, which is equal to 3α

2
, by construction. Hence, αa is

equal to π
2
− 3α

4
and the slope of t(p0) is

3α
4
.
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It follows that the absolute value of the slope of ti1 is at most 3α
4
+ 3α

8h
, which

is smaller than α, since h ≥ 2, and hence smaller than β. Analogously, the
absolute value of the slope of ti2 is smaller than β, and the lemma follows. �

Corollary 1 Point p∗ is inside the open wedge W (pi), for each i = 1, 2, . . . , h.

Lemma 2 For every pair of indices i and j such that 1 ≤ i < j ≤ k, the
drawing of S(µj) is contained inside W (pi) and the drawing of S(µi) is contained
inside W (pj).

p*

ph
p0

Figure 8: Illustration for the proof of Lemma 2.

Proof: We prove that the drawing of S(µj) is contained inside W (pi), the proof
that the drawing of S(µi) is contained inside W (pj) being analogous. If S(µi)
and S(µj) are consecutive, i.e., the cutvertices parents of S(µi) and S(µj) are
ui and uj, with j = i+ 1, then the statement is true by construction. Suppose
S(µi) and S(µj) are not consecutive. Refer to Fig. 8. Consider the triangle Ti

delimited by (p∗, pi), by ti2, and by the line through p∗ and ph. Such a triangle
contains the triangle delimited by (p∗, pi+1), by ti+1

2 , and by the line through p∗

and ph, which in turn contains the triangle delimited by (p∗, pi+2), by ti+2

2 , and
by the line through p∗ and p′b. The repetition of such an argument shows that

Ti contains the triangle Tj−1 delimited by (p∗, pj−1), by t
j−1

2 , and by the line
through p∗ and ph. By construction, Γj lies inside Tj−1, and the lemma follows.

�

We are now ready to prove that the constructed drawing Γ satisfies Proper-
ties 1–4.

Property 1. We show that, for every ordered pair of vertices w1 and w2,
there exists a distance-decreasing path from w1 to w2 in Γ. Observe that
a distance-decreasing path from w1 to w2 is not necessarily a distance-
decreasing path from w2 to w1. If both w1 and w2 are internal to the
same graph S(µi), the property follows by induction. If w2 = r(µ) and
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w1 is a node in S(µi), then, by Property 3, there exists a path (w1 =
v0, v1, . . . , vl = r(µi)) from w1 to r(µi) such that, for every point p in
W (pi), d(vj , p) < d(vj−1, p), for j = 1, 2, . . . , l. By Corollary 1, p∗ is
contained inside W (pi). Hence, path (w1 = v0, v1, . . . , vl = r(µi), w2 =
r(µ)) is a distance-decreasing path between w1 and w2. If w1 = r(µ) and
w2 is a node in S(µi), then, by induction, there exists a distance-decreasing
path (v1 = r(µi), v2, . . . , vl = w2). By Corollary 1, p∗ is contained inside
W (pi). Hence, by Property 4, d(pi, w2) < d(p∗, w2). It follows that path
(w1 = r(µ), v1 = r(µi), v2, . . . , vl = w2) is a distance-decreasing path
between w1 and w2. If w1 belongs to S(µi) and w2 belongs to S(µk)
then suppose, w.l.o.g., that k > i. We show the existence of a distance-
decreasing path P in Γ, composed of three subpaths P1,P2, and P3. By
Property 3, Γi is such that there exists a path P1 = (w1 = v0, v1, . . . , vl =
r(µi)) from w1 to r(µi) such that, for every point p in W (pi), d(vj , p) <
d(vj−1, p), for j = 1, 2, . . . , l. By Lemma 2, drawing Γk, and hence vertex
w2, is contained inside W (pi). Hence, at every vertex of path P1, the
distance from w2 decreases. Path P2 = (ui = r(µi), ui+1, . . . , uk = r(µk))
is easily shown to be distance-decreasing with respect to w2. In fact, for
each l = i, i+1, . . . , k−2, angle ̂ulul+1uk is greater than

π
2
, because triangle

(ul, ul+1, uk) is inscribed in less than half a circle with ul+1 as middle point.
Angle ̂ulul+1w2 is strictly greater than ̂ulul+1uk, hence it is the biggest
angle in triangle (ul, ul+1, w2), which implies d(ul+1, w2) < d(ul, w2). By
induction, there exists a distance-decreasing path P3 from r(µk) to w2,
thus obtaining a distance-decreasing path P from w1 to w2.

Property 2. Such a property holds for Γ by construction.

Property 3. Consider any node v in S(µi) and consider any point p internal to
W (p∗). By Lemma 1, p is internal to W (pi), as well. By induction, there
exists a path (v = v0, v1, . . . , vl = r(µi)) such that d(vj , p) < d(vj−1, p),
for j = 1, 2, . . . , l. Hence, path (v = v0, v1, . . . , vl = r(µi), vl+1 = r(µ)) is
a path such that d(vj , p) < d(vj−1, p), for j = 1, 2, . . . , l + 1, if and only

if d(r(µ), p) < d(r(µi), p). Angle ̂pp∗r(µi) is at least β + (π
2
− α

2
), which

is greater than π
2
. It follows that (p, r(µi)) is the longest side of triangle

(p, p∗, r(µi)), thus proving that d(p, p∗) < d(p, r(µi)) and that Property 3
holds for Γ.

Property 4. By Property 2, v is contained inside the wedge W (p∗, α) with angle
α, centered at p∗, and bisected by the line through p∗ and c. Consider any
point p inside W (p∗). Angle p̂p∗v is at least β+(π

2
− α

2
), which is greater

than π
2
. It follows that (p, v) is the longest side of triangle (p, p∗, v), thus

proving that d(p, v) < d(p∗, v) and that Property 4 holds for Γ.

When the induction is performed with µ equal to the root ν of the BC-tree
T , we obtain a greedy drawing of S, thus proving the following:

Theorem 2 There exists an algorithm that constructs a greedy drawing of any
triangulated binary cactus.
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4 Spanning a Triangulation with a Binary Cac-

tus

In this section we prove the following theorem:

Theorem 3 Given a triangulation G, there exists a spanning subgraph S of G
such that S is a triangulated binary cactus.

Consider any triangulation G. We are going to construct a binary cactus S
spanning G. First, we outline the algorithm to construct S. Such an algorithm
has several steps. At the first step, we choose a vertex u incident to the outer
face of G and we construct a triangulated cycle CT composed of u and of all its
neighbors. We remove u and its incident edges from G, obtaining a biconnected
internally-triangulated plane graph G∗. At the beginning of each step after
the first one, we suppose to have already constructed a binary cactus S whose
vertices are a subset of the vertices of G (at the beginning of the second step,
S coincides with CT ), and we assume to have a set G of subgraphs of G (at the
beginning of the second step, G∗ is the only graph in G). Each of such subgraphs
is biconnected, internally-triangulated, has an outer face whose vertices already
belong to S, and has internal vertices. All such internal vertices do not belong
to S and each vertex of G not belonging to S is internal to a graph in G. Only
one of the graphs in G may have chords. During each step, we perform the
following two actions:

• Action 1. We partition the only graph GC of G with chords, if any, into
several biconnected internally-triangulated chordless plane graphs; we re-
move GC from G and we add to G all the graphs with internal vertices
into which GC has been partitioned.

• Action 2. We choose a graph Gi from G, we choose a vertex u incident
to the outer face of Gi and already belonging to exactly one block of S,
and we add to S a block composed of u and of all its neighbors internal to
Gi. We remove u and its incident edges from Gi, obtaining a biconnected
internally-triangulated plane graph G∗

i . We remove Gi from G and we add
G∗

i to G.

The algorithm stops when G is empty, that is, when all the vertices of G are
spanned by S. An exemplary execution of the algorithm is shown in Figs. 9–16.

Now we give the details of the above outlined algorithm. At the first step
of the algorithm, choose any vertex u incident to the outer face of G. Consider
all the neighbors (u1, u2, . . . , ul) of u in clockwise order around it. Since G

is a triangulation, C = (u, u1, u2, . . . , ul) is a cycle, hence the subgraph of G
composed of C and of the edges connecting u to its neighbors is a triangulated
cycle CT . Let S = CT . Remove vertex u and all its incident edges from G,
obtaining a biconnected internally-triangulated plane graph G∗.

If G∗ has no internal vertex, then all the vertices of G belong to S and we
have the desired binary cactus spanning G. Otherwise, G∗ has internal vertices.
Let G = {G∗}.
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(a) (b)

Figure 9: First step of the algorithm: (a) A triangulation G, from which a
vertex u and its neighbors are selected. The thick subgraph is the triangulated
cycle CT such that S = CT after Step 1. (b) Graph G∗ obtained from G by
removing u and its incident edges. Two arbitrarily chosen vertices (represented
by black circles) incident to f(G∗) are forbidden for G∗, all others (represented
by white circles) are assigned to it.

At each step of the algorithm, for each graph Gi ∈ G, consider the vertices
incident to f(Gi). Each of such vertices can be either forbidden for Gi or
assigned to Gi. A vertex w is forbidden for Gi if the following choice has
been done: S will contain no block incident to w and spanning a subgraph
of Gi. Conversely, a vertex w is assigned to Gi if a new block incident to w

and spanning a subgraph of Gi could be introduced in S. For example, w is
forbidden for Gi if two blocks of S already exist sharing w as a cutvertex. At
the end of the first step of the algorithm, choose any two vertices incident to
f(G∗) as the only forbidden vertices for G∗. All the other vertices incident to
f(G∗) are assigned to G∗.

At the beginning of the i-th step, with i ≥ 2, we assume that each of the
following holds:

• Invariant A: Graph S is a binary cactus spanning all and only the vertices
that are not internal to any graph in G.

• Invariant B: Each graph in G is biconnected, internally-triangulated, and
has internal vertices.

• Invariant C: Only one of the graphs in G may have chords.

• Invariant D: No internal vertex of a graph Gi ∈ G belongs to a graph
Gj ∈ G, with i 6= j.

• Invariant E: For each graph Gi ∈ G, all the vertices incident to f(Gi) are
assigned to Gi, except for two vertices, which are forbidden.

• Invariant F: Each vertex v incident to the outer face of a graph in G is
assigned to at most one graph Gi ∈ G. If a vertex v incident to the outer
face of a graph in G is assigned to a graph Gi ∈ G, then v is forbidden for
all graphs Gj ∈ G such that v is incident to f(Gj), with j 6= i.
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(a) (b) (c)

(d) (e) (f)

Figure 10: Step 2, Action 1. (a)–(c) Outerplane graphs O0
C , O

1
C , and O2

C = OC ,
and the assignment of vertices to their faces. (d)–(f) Graphs G1, G2, and
G3, where G = {G1, G2, G3}, obtained by partitioning G∗ into biconnected,
internally triangulated, chordless subgraphs.

• Invariant G: Each vertex assigned to a graph in G belongs to exactly one
block of S.

Such invariants clearly hold after the first step of the algorithm. During each
step of the algorithm after the first one, we perform the following two actions.

Action 1: If G does not contain any graph with chords, go to Action 2.
Otherwise, by Invariant C, only one of the graphs in G, say GC , has chords. We
use the chords of GC to partition it into k biconnected, internally-triangulated,
chordless graphs Gj

C , with j = 1, 2, . . . , k.
Consider the subgraph OC of GC induced by the vertices incident to f(GC).

Clearly, OC is a biconnected outerplane graph. To each internal face f of OC

(a) (b)

Figure 11: Step 2, Action 2. (a) Choice of a graph Gi in G (here Gi = G1) and
of a vertex u incident to f(Gi). The thick subgraph is the edge (u, u1) added
to S after Action 2 of Step 2. (b) Binary cactus S after Action 2 of Step 2. Set
G is now {G2, G3}.
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(a) (b)

Figure 12: Step 3, Action 2 (Action 1 of Step 3 is skipped because no graph in
G has chords). (a) Choice of a graph Gi in G (here Gi = G2) and of a vertex u

incident to f(Gi). The thick subgraph is the triangulated cycle CT added to S

after Step 3, Action 2. (b) Binary cactus after Action 2 of Step 3. Set G is now
{G3}.

(a) (b)

Figure 13: Step 4, Action 2 (Action 1 of Step 4 is skipped because no graph in
G has chords). (a) Choice of a graph Gi in G (here Gi = G3) and of a vertex
u incident to f(Gi). The thick subgraph is the triangulated cycle CT added to
S after Step 4, Action 2. (b) Binary cactus S after Action 2 of Step 4. Set G
is now {G∗

3}, where G∗

3 is the graph obtained from G3 by removing u and its
incident edges.

delimited by a cycle C, a graph G
j
C is associated such that Gj

C is the subgraph
of GC induced by the vertices of C or inside C. We are going to replace GC with
graphs Gj

C in G. However, we first show how to decide which vertices incident

to the outer face of a graph G
j
C are assigned to G

j
C and which vertices are

forbidden for Gj
C . Since each graph G

j
C is univocally associated with a face of

OC , in the following we assign vertices to the faces of OC and we forbid vertices
for the faces of OC , meaning that if a vertex is assigned to (forbidden for) a face
f of OC , then it is assigned to (resp. forbidden for) the associated graph G

j
C .

We want to assign the vertices incident to f(OC) to faces of OC so that:

• Property 1: No forbidden vertex is assigned to any face of OC ;

• Property 2: No vertex is assigned to more than one face of OC ;

• Property 3: Each face of OC has exactly two incident vertices which are
forbidden for it; all the other vertices of the face are assigned to it.
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(a) (b)

Figure 14: Step 5, before Action 1. (a) The only graph GC = G∗

3 in G, with its
assigned vertices (white circles) and forbidden vertices (black circles). (b) The
outerplane graph OC induced by the vertices incident to f(GC).

(a) (b) (c) (d)

Figure 15: Step 5, Action 1. (a)–(d) Outerplane graphs O0
C , O

1
C , O

2
C , O

3
C = OC ,

and the assignment of vertices to their faces. Partitioning GC into subgraphs
G

j
C produces only one graph, say G4, with internal vertices. Hence, set G is

now {G4}.

By Invariant E, GC has two forbidden vertices. We construct an assignment
of vertices to the faces of OC in some steps. Let p be the number of chords
of OC . Consider the Hamiltonian cycle O0

C of OC , and assign all the vertices
of O0

C , but for the two forbidden vertices, to the only internal face of O0
C . At

the i-th step, 1 ≤ i ≤ p, we insert into Oi−1

C a chord of OC , obtaining a graph
Oi

C . This is done so that Properties 1–3 are satisfied by Oi
C (with Oi

C instead
of OC). After all the p chords of OC have been inserted, Op

C = OC , and we
have an assignment of vertices to faces of OC satisfying Properties 1–3.

Properties 1–3 are clearly satisfied by the assignment of vertices to the faces
of O0

C . Inductively assume that Properties 1–3 are satisfied by the assignment
of vertices to the faces of Oi−1

C . Let (ua, ub) be the chord that is inserted at the
i-th step. Chord (ua, ub) partitions a face f of Oi−1

C into two faces f1 and f2.
By Property 3, two vertices u∗

1 and u∗

2 incident to f are forbidden for it and
all other vertices incident to f are assigned to it. For each face of Oi

C different
from f1 and f2, assign and forbid vertices as in the same face in Oi−1

C . Assign
and forbid vertices for f1 and f2 as follows:

• If vertices ua and ub are the same vertices as u∗

1 and u∗

2 (see Fig. 17),
assign to f1 and f2 all the vertices incident to it, except for ua and ub.
No forbidden vertex has been assigned to any face of Oi

C (Property 1).
Vertices ua and ub have not been assigned to any face. All the vertices
assigned to f belong to exactly one of f1 and f2 and so they have been
assigned to exactly one face (Property 2). The only vertices of f1 (resp.
of f2) not assigned to it are ua and ub, while all the other vertices are
assigned to such a face (Property 3).
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(a) (b)

(c)

Figure 16: Step 5, Action 2: (a) Choice of a graph Gi in G (here Gi = G4) and
of a vertex u incident to f(Gi). The thick subgraph is the edge (u, u1) added
to S after Step 5, Action 2. (b) Binary cactus S at the end of the algorithm.
(c) The obtained binary cactus S spans G.

u∗
1

u∗
2

f

ua = u∗
1

ub = u∗
2

f1

f2

(a) (b)

Figure 17: Vertices ua and ub are the same vertices as u∗

1 and u∗

2.

• If vertices ua and ub are both distinct from each of u∗

1 and u∗

2, and u∗

1 and
u∗

2 are either both in f1 or both in f2, say in f1 (see Fig. 18), assign to f1
all the vertices incident to it, except for u∗

1 and u∗

2, and assign to f2 all the
vertices incident to it, except for ua and ub. No forbidden vertex has been
assigned to any face of Oi

C (Property 1). Vertices ua and ub have been
assigned to exactly one face, namely f1. All the other vertices assigned
to f belong to exactly one of f1 or f2 and so they have been assigned to
exactly one face (Property 2). The only vertices of f1 (resp. of f2) not
assigned to it are u∗

1 and u∗

2 (resp. ua and ub), while all the other vertices
are assigned to such a face (Property 3).

• If vertices ua and ub are both distinct from each of u∗

1 and u∗

2 and one of
u∗

1 and u∗

2, say u∗

1, is in f1 while u∗

2 is in f2 (see Fig. 19), assign to f1 all
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u∗
1

u∗
2

f

u∗
1

u∗
2

ub

ua f1

f2

(a) (b)

Figure 18: Vertices ua and ub are both distinct from each of u∗

1 and u∗

2 and both
u∗

1 and u∗

2 are in f1.

the vertices incident to it, except for u∗

1 and ua, and assign to f2 all the
vertices incident to it, except for u∗

2 and ub. No forbidden vertex has been
assigned to any face of Oi

C (Property 1). Vertices ua and ub have been
assigned to exactly one face, namely f2 and f1, respectively. All the other
vertices assigned to f belong to exactly one of f1 and f2 and so they have
been assigned to exactly one face (Property 2). The only vertices of f1
(resp. of f2) not assigned to it are u∗

1 and ua (resp. u∗

2 and ub), while all
the other vertices are assigned to such a face (Property 3).

u∗
1

u∗
2

f

u∗
1

u∗
2

ub

ua

f1

f2

(a) (b)

Figure 19: Vertices ua and ub are both distinct from each of u∗

1 and u∗

2, u
∗

1 is in
f1, and u∗

2 is in f2.

• If one of the vertices u∗

1 and u∗

2 coincides with one of ua and ub, say u∗

1

coincides with ua, and u∗

2 is in one of f1 and f2, say in f1 (see Fig. 20),
assign to f1 all the vertices incident to it, except for u∗

2 and ua, and assign
to f2 all the vertices incident to it, except for ua and ub. No forbidden
vertex has been assigned to any face of Oi

C (Property 1). Vertex ua has not
been assigned to any face and vertex ub has been assigned to exactly one
face, namely f1. All the other vertices assigned to f belong to exactly one
of f1 and f2 and so they have been assigned to exactly one face (Property
2). The only vertices of f1 (resp. of f2) not assigned to it are u∗

2 and ua

(resp. ua and ub), while all the other vertices are assigned to such a face
(Property 3).

Graph GC is removed from G. All the graphs G
j
C having internal vertices

are added to G. We prove that Invariants A–G are satisfied after Action 1.
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u∗
1

u∗
2

f

ua = u∗
1

u∗
2

f1

f2

u∗
2

ub

(a) (b)

Figure 20: Vertex u∗

1 coincides with ua and vertex u∗

2 is in f1.

Invariant A: A vertex is internal to a graph in G after Action 1 if and only if
it is internal to a graph in G before Action 1. Since no block is added to
S during Action 1, then Invariant A holds after Action 1.

Invariant B: By construction, each graph G
j
C inserted into G after Action 1

has internal vertices. Further, Gj
C is the graph contained inside a simple

cycle of a biconnected internally triangulated plane graph, hence it is
biconnected and internally triangulated, as well, satisfying Invariant B.

Invariant C: By Invariant C, before Action 1 only graph GC may have chords
among the graphs in G. After Action 1, however, GC is replaced in G by
chordless graphs and hence no graph in G has chords, satisfying Invari-
ant C.

Invariant D: By Invariant D, each vertex that, before Action 1, is internal
to a graph Gi 6= GC in G does not belong to any graph Gj 6= Gi in G.

Since the set of vertices belonging to graphs Gj
C is a subset of the vertices

of GC , after Action 1 Invariant D holds for all the vertices internal to a
graph Gi 6= G

j
C . An internal vertex of a graph G

j
C is an internal vertex

of GC , as well, hence, by Invariant D, it does not belong to any graph
that has not been introduced in G during Action 1. It remains to prove
that an internal vertex of a graph G

j
C does not belong to any graph Gl

C ,
with l 6= j. By construction, the internal vertices of such graphs are inside
cycles corresponding to distinct faces of OC . Hence, an internal vertex of
G

j
C does not belong to Gl

C .

Invariant E: Invariant E holds for all the graphs that are in G before Action
1 and that are still in G after Action 1. By Property 3, each graph G

j
C

inserted into G after Action 1 satisfies Invariant E.

Invariant F: All the vertices that, before Action 1, are assigned to a graph
Gi 6= GC in G satisfy Invariant F after Action 1. Namely, by Invariant
F before Action 1, if they are incident to f(GC), then they are forbidden
for GC and, by Property 1, they are not assigned to any graph G

j
C . By

Invariant F, before Action 1 each vertex w assigned to GC is not assigned
to any graph Gi 6= GC in G. After Action 1, GC is not a graph in G any
longer, hence w is not assigned to it. By Property 2, after Action 1 each
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vertex is assigned to at most one graph G
j
C , hence Invariant F holds after

Action 1.

Invariant G: Since no block is added to S during Action 1, and since the set
of vertices assigned to graphs in G after Action 1 is a subset of the set of
vertices assigned to graphs in G before Action 1, then Invariant G holds
after Action 1.

Action 2: After Action 1 all graphs in G are chordless. Notice that there
is at least one graph Gi in G, otherwise the algorithm would have stopped
before Action 1. By Invariant B, Gi has internal vertices. Choose any vertex
u that is incident to f(Gi) and that is assigned to Gi (see Fig. 21). By the
biconnectivity of Gi and by the fact that it has internal vertices, f(Gi) has at
least three vertices. Since each graph in G has at most two forbidden vertices (by
Invariant E), a vertex u assigned to Gi always exists. Consider all the neighbors
(u1, u2, . . . , ul) of u internal to Gi, in clockwise order around u. Since G is
biconnected, chordless, internally triangulated, and has internal vertices, then
l ≥ 1. If l = 1, then let CT be edge (u, u1). Otherwise, let CT be the triangulated
cycle composed of cycle (u, u1, u2, . . . , ul) and of the edges connecting u to its
neighbors. Add CT to S. Remove u and its incident edges from Gi, obtaining
a graph G∗

i . Assign to G∗

i all the vertices incident to f(G∗

i ), except for the two
vertices that are forbidden for Gi. Remove Gi from G and insert G∗

i , if it has
internal vertices, into G.

u1

u

u2
u3
G*

ul

i

Figure 21: Action 2 of a step of the algorithm.

We prove that Invariants A–G are satisfied after Action 2.

Invariant A: The block (u, u1, u2, . . . , ul) added to S is either an edge or a
triangulated cycle. By Invariant A, before Action 2 all vertices internal
to a graph in G are not spanned by S. Further, by Invariant G, before
Action 2 vertex u belongs to exactly one block of S. It follows that S is
still a binary cactus after Action 2. Before Action 2, S spans all and only
the vertices that are not internal to any graph in G. The only vertices
that are internal to a graph in G before Action 2 and that are incident to
the outer face of a graph in G after Action 2 are u1, u2, . . . , ul, which are
spanned by S after Action 2. Hence, S spans all the vertices of G that
are not internal to any graph in G. Before Action 2, no internal vertex of
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a graph in G is spanned by S. The vertices which are added to S during
Action 2 are incident to f(G∗

i ), hence, by Invariant D to be proved below,
they are not internal to any graph in G after Action 2. Hence, S does not
span vertices of G that are internal to a graph in G, satisfying Invariant
A.

Invariant B: By construction, G∗

i is the only graph inserted into G after Ac-
tion 2. However, G∗

i is biconnected and internally triangulated, since it
is obtained from a graph Gi that, by Invariant B before Action 2, is bi-
connected, internally triangulated, chordless, and has internal vertices, by
removing a vertex incident to f(Gi). Further, G∗

i has internal vertices,
otherwise it would not have been inserted into G. Hence, Invariant B is
satisfied after Action 2.

Invariant C: Before Action 2, all graphs in G have no chord. At most one
graph, namely G∗

i , is inserted into G after Action 2, hence Invariant C is
still satisfied.

Invariant D: By Invariant D, before Action 2 no internal vertex of a graph
Gl 6= Gi in G belongs to a graph Gj 6= Gl in G. Since the vertices of G∗

i

are a subset of the vertices of Gi then, after Action 2, Invariant D holds
for each internal vertex of Gl. Further, the internal vertices of G∗

i are a
subset of the internal vertices of Gi and hence, after Action 2, Invariant
D holds also for each internal vertex of G∗

i .

Invariant E: Invariant E holds for all the graphs that are in G before Action
2 and that are still in G after Action 2. By construction, all the vertices
incident to the outer face of G∗

i , except for the two forbidden vertices of
Gi, are assigned to G∗

i , satisfying Invariant E.

Invariant F: The only vertices that are assigned to a graph in G during Action 2
are the vertices incident to the outer face of G∗

i . All the vertices internal to
Gi before Action 2 and incident to the outer face of G∗

i after Action 2 are
assigned exclusively to G∗

i , namely if before Action 2 one of such vertices
is assigned to a graph Gj 6= Gi, then such a vertex would be incident to
the outer face of Gj , contradicting Invariant D. All the vertices that are
assigned to Gi before Action 2 and that are incident to the outer face
of G∗

i after Action 2, are assigned exclusively to Gi before Action 2, by
Invariant F, and hence they are assigned only to G∗

i after Action 2. All
the vertices that are assigned to a graph different from Gi are such that,
if they are incident to the outer face of Gi, then they are forbidden for it.
Since all the vertices forbidden for Gi are forbidden for G∗

i , then Invariant
F holds for such vertices, as well.

Invariant G: The block added to S after Action 2 spans only vertices internal
to Gi and vertex u. Hence, all the vertices assigned to a graph in G and not
belonging to Gi are still spanned by a single block of S. All the vertices
incident to the outer face of Gi, except for u, are not spanned by the
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block added during Action 2. All the vertices internal to Gi and assigned
to G∗

i are spanned by the only block added during Action 2. Finally, after
Action 2, vertex u is not assigned to any graph in G any longer.

When the algorithm stops, i.e., when there is no graph in G, by Invariant A
graph S is a binary cactus spanning all vertices of G, hence proving Theorem 3.

5 Extension to Triconnected Planar Graphs and

Conclusions

In this paper we have shown an algorithm for constructing greedy drawings of
triangulations. The algorithm relies on two main results. The first one states
that every triangulated binary cactus admits a greedy drawing. The second one
states that, for every triangulation G, there exists a triangulated binary cactus
S spanning G.

After the conference version of this paper was submitted, we realized that
slight modifications of the two main arguments, presented in Sect. 3 and Sect. 4,
prove Conjecture 1. In the following we deal with such a result.

First, observe that, given a triangulated binary cactus S spanning a trian-
gulation G, the internal edges of each triangulated cycle of S could be removed,
still leaving S a spanning subgraph of G. Hence, every triangulation can be
spanned by a non-triangulated binary cactus, which is a connected graph such
that: (i) the block associated with each B-node of T is either an edge or a simple
cycle; and (ii) every cutvertex is shared by exactly two blocks of S.

Second, it is not difficult to argue that the algorithm shown in Sect. 3 also
constructs greedy drawings of any non-triangulated binary cactus S. More
specifically, construct the BC-tree T of S; consider each block (r(µ) = u0, u1, . . . ,

uh−1) corresponding to a B-node µ of T and insert a dummy edge between r(µ)
and each node ui, with 1 ≤ i ≤ h− 2; the resulting graph S′ is a triangulated
binary cactus; apply the algorithm described in Sect. 3 to construct a greedy
drawing Γ′ of S′; finally, remove dummy edges from Γ′, obtaining a drawing Γ
of S.

We claim that Γ is a greedy drawing. Notice that the validity of Lemmata 1
and 2 only depends on the angles of the geometric construction. Hence, such
Lemmata hold for Γ. Then, it is enough to prove that at each step of the
induction Γ satisfies Properties 1–4 described in Sect. 3.

Actually, Property 2 and Property 4 are trivially verified, since they only
depend on the angles of the construction.

The proof of Property 1 can be conducted analogously to the one presented
in Sect. 3, namely by proving that, for every pair of vertices w1 and w2, there
exists a distance-decreasing path between them. However, the case in which
the distance-decreasing path contains edge (ui, r(µ)), for some 2 ≤ i ≤ h − 2,
deserves an explicit discussion, because such an edge is no longer an edge of
the graph. Observe that it can be supposed that one out of w1 and w2 is r(µ),
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because in all the other cases the distance-decreasing path between w1 and w2

does not contain (ui, r(µ)).

First, suppose that the path ends at r(µ), i.e., w2 = r(µ). Edge (ui, r(µ)) can
be replaced either by path (ui, ui−1, . . . , u1, u0) or by path (ui, ui+1, . . . , uh−1, u0),
depending on whether i ≤ h

2
or i ≥ h

2
, still leaving the path distance-decreasing.

In fact (see Fig.22.a), denote by p′ the intersection point between C′ and seg-
ment cp∗ and suppose that i ≥ h

2
, the case in which i ≤ h

2
being analogous; angle

̂uiui+1p′ is greater than or equal to π
2
because triangle (ui, ui+1, p

′) is inscribed

in no more than half a circle with ui+1 as middle point; then, angle ̂uiui+1p∗

is also greater than π
2
because it is strictly greater than ̂uiui+1p′; hence, p∗ui

is longer than p∗ui+1; it follows that, when traversing edge (ui, ui+1), the path
decreases its distance from the point p∗ where r(µ) is drawn.

Second, suppose that the path starts at r(µ), i.e., w1 = r(µ). Edge (r(µ), ui)
can be replaced either by path (u0, u1, . . . , ui−1, ui) or by path (u0, uh−1, . . . ,

ui+1, ui), depending on whether i ≤ h
2
or i ≥ h

2
, still leaving the path distance-

decreasing. In fact, suppose that i ≥ h
2
, the case in which i ≤ h

2
being anal-

ogous; as in the previous case, edge (r(µ), uh−1) can be shown to decrease the
distance from w2 by considering triangle (r(µ), uh−1, w2) and arguing that an-

gle ̂p∗uh−1w2 is greater than π
2
. Further, path (uh−1, uh−2, . . . , ui+1, ui, . . . , w2)

can be shown to be distance-decreasing as in the proof of Property 1 in Sect. 3
(in the case in which w1 belongs to S(µi) and w2 belongs to S(µj)).

In order to prove Property 3, it is sufficient to observe that an edge (ui, r(µ))
can be replaced either by path (ui, ui−1, . . . , u1, u0) or by path (ui, ui+1, . . . , uh−1,

u0), still obtaining a path in which at every step the distance from any point in
W (p∗) decreases. In fact (see Fig.22.b), denote by p any point inside W (p∗), and
denote by ai−1,i and ai,i+1 the axes of segments pi−1pi and pipi+1, respectively.
Since ai−1,i and ai,i+1 intersect in the center of C′, we have that p is either
to the left of ai−1,i or to the right of ai,i+1, or both. Suppose that p is to the
right of ai,i+1, the other case being analogous. Then, d(p, pi+1) < d(p, pi). The
repetition of such an argument leads to prove that path (ui, ui+1, . . . , uh−1, u0)
decreases the distance from p at every vertex.

As we proved that there exists an algorithm to construct greedy drawings
of non-triangulated binary cactuses, in order to prove Conjecture 1 it suffices
to show that every triconnected planar graph admits a non-triangulated binary
cactus as a spanning subgraph. In the following we sketch how to extend the
arguments of Sect. 4 in order to prove such a result.

The algorithm to find a non-triangulated binary cactus spanning a given
triconnected planar graph G consists of several steps, in which the cactus is con-
structed incrementally by adding to it one block at a time. As in the triangulated
case, at the beginning of each step after the first one, we suppose to have already
constructed a non-triangulated binary cactus S whose vertices are a subset of
the vertices of G, and we assume to have a set G of subgraphs of G. Further,
we assume that the following invariants hold:

• Invariant A: Graph S is a non-triangulated binary cactus spanning all
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Figure 22: (a) When traversing edge (ui, ui+1), the distance from p∗ decreases.
(b) When traversing edge (ui, ui+1), the distance from p decreases.

and only the vertices that are not internal to any graph in G.

• Invariant B: Each graph in G is biconnected and has internal vertices.

• Invariant C: At most one graph GC ∈ G has separation pairs. However, if
GC exists, each of its separation pairs has both vertices incident to f(GC).

• Invariant D: No internal vertex of a graph Gi ∈ G belongs to a graph
Gj ∈ G, with i 6= j.

• Invariant E: For each graph Gi ∈ G, all the vertices incident to f(Gi) are
assigned to Gi, except for two vertices, which are forbidden.

• Invariant F: Each vertex v incident to the outer face of a graph in G is
assigned to at most one graph Gi ∈ G. If a vertex v incident to the outer
face of a graph in G is assigned to a graph Gi ∈ G, then v is forbidden for
all graphs Gj ∈ G such that v is incident to f(Gj), with j 6= i.

• Invariant G: Each vertex assigned to a graph in G belongs to exactly one
block of S.

During each step, we perform two different actions. Action 1 removes from
G the only graph GC which contains separation pairs, if such a graph exists,
and partitions GC into a set of triconnected planar graphs Gi

C to be added to
G. Action 2 removes from a graph Gi ∈ G a vertex incident to f(Gi) and its
incident edges and creates a new block to be added to S. At the end of each
of the two actions, Invariants A–G are satisfied. The algorithm stops when G is
empty, that is, when all the vertices of G are spanned by S.
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A first difference between the triangulated and the non-triangulated case
concerns the first step of the algorithm. Namely, while in the triangulated case
we select one vertex v of the outer face and we initialize the cactus with the
block composed of v and of its neighbors, in this new algorithm we initialize the
cactus with the cycle delimiting the outer face.

Another important difference lies in Action 1, that is, in the way the graph
GC which may be not triconnected is partitioned into subgraphs. In the triangula-
ted case, such a partition is done by considering the chords of f(GC). In the
non-triangulated case we have to more generally consider separation pairs inci-
dent to f(GC), since we are not guaranteed that every two vertices composing
a separation pair are joined by an edge. Refer to Fig. 23. The partition is
performed by considering one separation pair at a time. At the beginning of
every step of such an algorithm, we have a partition of GC into a set of graphs
Gi. Each graph Gi which still has a separation pair is further partitioned into
two subgraphs G1

i and G2
i and each of the vertices incident to f(Gi) is assigned

to, or forbidden for, G1
i and G2

i by means of the same algorithm described in
Sect. 4. Hence, the assignment of the vertices to the graphs G1

i and G2
i can be

done in such a way that the invariant that each of G1
i and G2

i has at most two
forbidden vertices is maintained. A dummy edge connecting the two vertices
of the separation pair has to be added incident to the outer face of each of G1

i

and G2
i , if it does not exist yet, in order to maintain the invariant that all the

vertices of the outer faces of G1
i and G2

i have already been assigned to some
block of S. Such a dummy edge is incident to the outer faces of G1

i and G2
i

and hence it will not be part of any new block that is added to S in the fol-
lowing steps of the algorithm. It is easy to see that the described procedure for
partitioning a graph into subgraphs does not introduce new separation pairs,
does not introduce multiple edges, and hence it terminates providing a set of
triconnected planar graphs.

Concerning Action 2, while in the triangulated case at every step we add to
the cactus either an edge or a triangulated cycle, in the non-triangulated case
we add either an edge or a simple cycle. Such a cycle is obtained as follows
(see Fig. 24). As in the triangulated case, consider a vertex v incident to the
outer face of a subgraph Gi ∈ G and such that v is assigned to Gi. Consider
the internal faces of Gi that are incident to v, except for the two faces f1 and
f2 sharing an edge with f(Gi). Add to S the cycle that passes through all
the vertices that are incident to such faces. Remove vertex v and its incident
edges from Gi, obtaining a new graph G∗

i . Consider the two vertices v′1 and v′′1
adjacent to v and belonging to f1. A dummy edge (v′1, v

′′

1 ) is added to G∗

1, if it
does not exist yet, incident to f(G∗

i ). Analogously, consider the two vertices v′2
and v′′2 adjacent to v and belonging to f2 and add a dummy edge (v′2, v

′′

2 ) to G∗

i ,
if it does not exist yet, incident to f(G∗

i ). Such dummy edges allow to maintain
the invariant that all the vertices incident to f(G∗

i ) have already been assigned
to some block of S.

We choose to present the algorithm for triangulations as the main contribu-
tion of this paper because a proof of Conjecture 1 was very recently and inde-
pendently presented by Leighton and Moitra at the Symposium on Foundations
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(a)

(b)

Figure 23: Partition of a biconnected graph having all separation pairs incident
to the outer face into a set of triconnected planar graphs.

of Computer Science ’08 [13]. Surprisingly, the approach used by Leighton and
Moitra is exactly the same as ours. In fact, in [13] the authors define a class
of graphs, called Christmas cactus graphs, which coincides with the class of
non-triangulated binary cactuses; they show an algorithm to construct greedy
drawings of Christmas cactus graphs and they show that every triconnected
planar graph is spanned by a Christmas cactus graph. However, the way such
results are achieved differs from ours. Such an issue is discussed below.

Concerning the geometric construction of greedy drawings of Christmas cac-
tus graphs, the algorithm by Leighton and Moitra is quite similar to ours, even if
a slightly different construction is used. Their algorithm places the nodes of the
graph on a set of concentric circles C0, C1, . . . , Ck, so that the block correspond-
ing to the root ν of the BC-tree T has its nodes placed on C0 and each block µ

at depth i (where the depth is meant to be the number of B-nodes in the path
from ν to µ in T ) is placed on Ci, except for the C-node parent of µ, which is
placed on Ci−1. The difference between the radii of two consecutive circles (and
hence the length of the edges of the drawing) exponentially decreases with i.

Concerning the construction of a Christmas cactus graph spanning a given
triconnected planar graph, we have the main differences between our techniques
and Leighton andMoitra’s ones. In fact, in order to show that every triconnected
planar graph is spanned by a Christmas cactus graph, they use some results from
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Figure 24: Action 2. The thick cycle is added to S. The dotted edges are inserted
incident to f(G∗

i ), in order to maintain the invariant that all the vertices incident
to f(G∗

i ) have already been assigned to some block of S.

a paper [8] by Gao and Richter.
Define a circuit graph to be an ordered pair (G,C) such that: (1) G is 2-

connected and C is a polygon in G; (2) there exists an embedding of G in the
plane such that C bounds a face; and (3) every separation pair of G has both ver-
tices belonging to C. Hence, circuit graphs are a superclass of triconnected pla-
nar graphs. Define a chain of blocks Bi,1, bi,1, Bi,2, bi,2, . . . , Bi,ki−1, bi,ki−1, Bi,ki

to be a connected graph such that each block contains at most two cutvertices
and each cutvertex is shared by exactly two blocks.

In [8], Gao and Richter prove some strong structural results about circuit
graphs, which are briefly described below. Gao and Richter prove that, given a
circuit graph (G,C) and given two vertices x and y belonging to C, there exists a
partition of V (G)−V (C) into subsets V1, V2, . . . , Vm and there exist distinct ver-
tices v1, v2, . . . , vm ∈ V (C)−{x, y} such that, for 1 ≤ i ≤ m: (i) the subgraph in-
duced by Vi∪{vi} is a chain of blocksBi,1, bi,1, Bi,2, bi,2, . . . , Bi,ki−1, bi,ki−1, Bi,ki

,
and (ii) vi ∈ V (Bi,1) \ {bi,1}.

Gao and Richter used this structural result in order to inductively prove
that every triconnected planar graph (in fact, every circuit graph) has a closed
2-walk, which is a walk on the graph starting and ending at the same vertex
and passing through each vertex of the graph at least once and at most twice.

The same result is used by Leighton and Moitra to inductively prove that,
for every circuit graph (G,C) (and hence every triconnected planar graph G), a
Christmas cactus graph S spanning G exists. In fact, the outline of their algo-
rithm for spanning G consists of the following steps: (i) Use Gao and Richter’s
structural result in order to find chains of blocks Bi,1, bi,1, Bi,2, bi,2, . . . , Bi,ki−1,

bi,ki−1, Bi,ki
spanning all the vertices of G not in C; (ii) inductively compute

Christmas cactus graphs spanning each block Bi,j (which is in turn a circuit
graph); (iii) glue the Christmas cactus graphs spanning the blocks and C into
a unique Christmas cactus graph spanning G.
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Our spanning algorithm, as discussed above, finds the spanning graph of
G without using Gao and Richter’s result. Moreover, once one has a non-
triangulated binary cactus spanning a triconnected planar graph G, it is easy to
find a closed 2-walk that passes only through the edges of such a spanning graph.
Hence, our algorithm for spanning triconnected planar graphs also provides a
proof that every triconnected planar graph has a closed 2-walk alternative to
Gao and Richter’s one.

It is interesting to observe that our algorithm for spanning a triconnected
planar graph with a non-triangulated binary cactus works more generally for
circuit graphs (as the Leighton and Moitra’s algorithm). In fact, in our algo-
rithm, the only graph which may contain separation pairs before Action 1 is
actually a circuit graph, since all its separation pairs are incident to the outer
face. A spanning cactus for such a graph can hence be found with the same
algorithm described above.

The main drawback of our algorithm (and of Leighton and Moitra’s algo-
rithm, as well) is that it uses real coordinates, hence it constructs drawings
requiring exponential area once a finite resolution rule has been fixed. This
leads to the following question:

Problem 1 What are the area requirements of greedy drawings of triangulations
and triconnected planar graphs?

Several results related to the above problem have been recently shown.
Namely, Eppstein and Goodrich [7] proved that every graph has a greedy draw-
ing in the hyperbolic plane in which the vertex coordinates can be represented
by O(log n) bits; Goodrich and Strash [10] proved that every triconnected planar
graph has a greedy drawing in the Euclidean plane in which the vertex coordi-
nates can be represented by O(log n) bits; Angelini et al. [1] proved that there
exist trees requiring exponential area in any greedy drawing (that is, there exist
trees that, in any greedy drawing in the Euclidean plane, require a polynomial
number of bits to represent the Cartesian coordinates of the vertices).

While every triconnected planar graph admits a greedy drawing, not all bi-
connected planar graphs and not all trees admit a greedy drawing. For example,
in [13] it is shown that a complete binary tree with 31 nodes does not admit
any greedy drawing. Hence, the following problem is worth studying:

Problem 2 Characterize the class of trees (resp. of biconnected planar graphs)
that admit a greedy drawing.

In the conference version [14] of [15], Papadimitriou and Ratajczak conjec-
ture that every triconnected planar graph admits a convex greedy drawing, that
is, a greedy drawing that is also planar and convex. Although some partial
positive results are known [6, 9], the following problem is still open:

Problem 3 Does every triconnected planar graph admit a convex greedy draw-
ing?
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Finally, most of the known algorithms for constructing greedy graph draw-
ings rely on the knowledge of the entire graph topology. Designing distributed
algorithms for computing greedy drawings or proving that such algorithms do
not exist would be theoretically interesting and useful in practice for greedy
routing.
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