
Journal of Graph Algorithms and Applications
http://jgaa.info/ vol. 13, no. 3, pp. 349–378 (2009)

Efficient C-Planarity Testing for Embedded Flat
Clustered Graphs with Small Faces

Giuseppe Di Battista 1 Fabrizio Frati 1

1Dipartimento di Informatica e Automazione
Università Roma Tre, Italy

Abstract

Let C be a clustered graph and suppose that the planar embedding of
its underlying graph is fixed. Is testing the c-planarity of C easier than in
the variable embedding setting? In this paper we give a first contribution
towards answering the above question. Namely, we characterize c-planar
embedded flat clustered graphs with at most five vertices per face and
give an efficient testing algorithm for such graphs. The results are based
on a more general methodology that sheds new light on the c-planarity
testing problem.

Submitted:
December 2007

Reviewed:
May 2008

Revised:
August 2008

Accepted:
November 2008

Final:
December 2008

Published:
November 2009

Article type:
Regular paper

Communicated by:
S.-H. Hong and T. Nishizeki

Work partially supported by MUR under Project MAINSTREAM Algorithms for Massive

Information Structures and Data Streams.

E-mail addresses: gdb@dia.uniroma3.it (Giuseppe Di Battista) frati@dia.uniroma3.it (Fabrizio

Frati)

mailto:gdb@dia.uniroma3.it
mailto:frati@dia.uniroma3.it

350 Di Battista and Frati Clustered Graphs Small Faces

1 Introduction

Determining the computational complexity of the c-planarity testing for clus-
tered graphs is one of the main Graph Drawing challenges. However, despite
all the research efforts spent, only for restricted families of clustered graphs
polynomial-time testing algorithms have been found, and the general problem
is still open.

A brief survey on the problem of testing the c-planarity of clustered graphs
can be found in [3]. The classes of clustered graphs for which the problem is
known to be polynomial-time solvable are the following:

• c-connected clustered graphs, in which each cluster induces a connected
subgraph of the underlying graph; the first polynomial-time algorithm for
this class has been presented in [8].

• completely connected clustered graphs, that are c-connected clustered graphs
such that the complement of the subgraph induced by each cluster is conn-
ected; an elegant characterization for this class is shown in [2].

• almost connected clustered graphs, in which either all nodes corresponding
to non-connected clusters are on the same path in the cluster hierarchy,
or for each non-connected cluster its parent and all its siblings are conn-
ected [11].

• extrovert clustered graphs, a generalization of c-connected clustered graphs
with special restrictions on the cluster hierarchy [10].

• cycles of clusters, in which the hierarchy is flat, the underlying graph is
a simple cycle, and the clusters are arranged in a cycle [5]; the clustering
hierarchy is flat if all clusters, but for the root, are at the same level.

• clustered cycles, that are clustered graphs in which the hierarchy is flat,
the underlying graph is a simple cycle, and the clusters are arranged into
an embedded plane graph [4].

Let C be a clustered graph. Suppose that the planar embedding of its
underlying graph is fixed. Is testing the c-planarity of C easier than in the
variable embedding setting? This question is motivated by the existence of
many Graph Drawing problems on planar graphs that are in general NP-hard
and that become polynomial-time solvable if the embedding is fixed. Testing if
a graph admits an orthogonal planar drawing with at most k bends [15, 9] or if
a graph admits an upward planar drawing [1, 9] are examples of such problems.

In this paper we give a first contribution towards answering the above ques-
tion. Namely, we characterize c-planar embedded flat clustered graphs with at
most five vertices per face and give an efficient testing algorithm for such graphs.

Our approach is to look for an augmentation that adds to the embedded un-
derlying graph extra edges such that the resulting clustered graph is c-connected
and c-planar. We call candidate saturating edges those edges that are potential

JGAA, 13(3) 349–378 (2009) 351

candidates for the augmentation. Two of such edges have a conflict if using both
of them in the augmentation causes a crossing. We present a characterization
for single-conflict embedded flat clustered graphs, that are embedded clustered
graphs such that (i) the cluster hierarchy is flat and (ii) each candidate saturat-
ing edge has a conflict with at most one other candidate saturating edge. The
characterization and the algorithm for embedded flat clustered graphs with at
most five vertices per face are a consequence of such a more general result.

Observe that a slightly weaker result, namely a quadratic time algorithm for
c-planarity on 3-connected graphs with faces of size at most four, was indepen-
dently discovered by Jelinkova et al. in [12].

The rest of the paper is organized as follows: In Section 2 we give preliminar-
ies. In Section 3 we characterize c-planar single-conflict embedded flat clustered
graphs and c-planar embedded flat clustered graphs with at most five vertices
per face. In Section 4 we present a linear time and space c-planarity testing
algorithm. Section 5 contains conclusions and open problems. A preliminary
version of this paper appeared in [7].

2 Preliminaries

A graph G is vertex k-connected (resp. edge k-connected) if the removal of any
k − 1 vertices (resp. edges) leaves G connected. A separating edge (sometimes
also called bridge) is an edge whose removal disconnects G.

A drawing of a graph is a mapping of each vertex to a distinct point of
the plane and of each edge to a Jordan curve between the endpoints of the
edge. A planar drawing is such that no two edges intersect except, possibly, at
common endpoints. A planar drawing of a graph determines a circular ordering
of the edges incident to each vertex. Two drawings of the same graph are
equivalent if they determine the same circular orderings around each vertex. A
planar embedding (or combinatorial embedding) is an equivalence class of planar
drawings. A planar drawing partitions the plane into topologically connected
regions, called faces. The unbounded face is the outer face. Two planar drawings
with the same combinatorial embedding have the same faces. However, such
drawings could still differ for their outer face. The dual graph D of a planar
embedded graph G is the graph with a vertex for each face of G and with an
edge e(D) between two vertices if the corresponding faces share an edge e(G);
edge e(D) is dual to edge e(G).

In the following we will deal both with biconnected (that is vertex 2-connected)
and with simply connected (that is vertex 1-connected) embedded planar graphs.
In the former case, the “number of vertices in a face” is trivially defined as the
number of vertices incident to the face, while in the latter one is meant to be
the number of occurrences of vertices on the border of the face.

A clustered graph (see Fig. 1.a) is a pair C(G,T), where G is a graph (see
Fig. 1.b) and T is a rooted tree (see Fig. 1.c) such that the leaves of T are the
vertices of G. Graph G and tree T are called underlying graph and inclusion
tree, respectively. Each internal node µ of T corresponds to the subset V (µ)

352 Di Battista and Frati Clustered Graphs Small Faces

(a)

(b) (c)

Figure 1: (a) A clustered graph C(G,T). (b) The underlying graph G of C. (c)
The inclusion tree T of C.

(called cluster) of the vertices of G that are leaves of the subtree of T rooted
at µ; the subgraph of G induced by the vertices in V (µ) is denoted by G(µ). If
each cluster induces a connected subgraph of G, then C is c-connected, otherwise
C is non-c-connected. In the latter case each cluster generally induces several
connected components of G. The clustered graph in Fig. 1.a is non-c-connected.
An embedded clustered graph is a clustered graph such that G is connected and
embedded, that is, the combinatorial embedding of the underlying graph of C
is fixed.

A drawing of a clustered graph C(G,T) consists of a drawing of G and of a
representation of each node µ of T as a simple closed region R(µ) such that: (i)
R(µ) contains the drawing of G(µ); (ii) R(µ) contains a region R(ν) iff ν is a
descendant of µ in T ; and (iii) the borders of any two regions do not intersect.
Consider an edge e and a node µ of T . If e crosses the boundary of R(µ) more
than once, we say that edge e and region R(µ) have an edge-region crossing. A
drawing of a clustered graph is c-planar if it does not have edge crossings or
edge-region crossings. The drawing in Fig. 1.a is c-planar. A clustered graph

JGAA, 13(3) 349–378 (2009) 353

is c-planar if it admits a c-planar drawing. An embedded clustered graph is c-
planar if it admits a c-planar drawing in which the embedding of G is preserved.

(a) (b)

Figure 2: (a) A flat clustered graph C(G,T). (b) The inclusion tree T of C has
height three.

A flat clustered graph is a clustered graph such that in any path from the
root to a leaf of T there are at most three nodes. The clustered graph in Fig. 2
is flat, while the one in Fig. 1 is not. To simplify the notation, when referring
to a flat clustered graph, given a vertex v of the underlying graph we say that
the cluster of v is its parent in T . Also, we call clusters only the children of the
root.

Consider an embedded flat clustered graph C(G,T). For each face f of G a
set of candidate saturating edges is defined as follows: Let O be the clockwise
circular order of the vertices on the border of f . Subdivide such vertices into
subsets such that each subset Vi contains a maximal sequence of consecutive
vertices in O belonging to the same cluster. Introduce a candidate saturating
edge for each two subsets Vi 6= Vj such that (i) Vi and Vj contain vertices of
the same cluster µk and (ii) Vi and Vj are in different connected components
of G(µk). Candidate saturating edges represent edges that can be added to
the embedded clustered graph to make the subgraph induced by each cluster
connected (see Fig. 3.a and 3.b).

For a cluster µi of T we define Gi as the embedded multigraph whose vertices
are the connected components of G(µi) and whose edges are the candidate
saturating edges connecting such components. The embedding of Gi is given by
the order of the faces around the vertices of G (Fig. 3.c, 3.d, and 3.e). Observe
that Gi does not have self-loops and is, in general, non-planar. However, possible
crossings are only between edges introduced in the same face of G.

Two candidate saturating edges e1, joining connected components G1(µi)
and G2(µi) of G(µi), and e2, joining connected components G1(µj) and G2(µj)
of G(µj), with µi 6= µj and with e1 and e2 in the same face f of G, have a
conflict if G1(µi), G1(µj), G2(µi), and G2(µj) appear in this order around the
border of f . Informally speaking, two candidate saturating edges have a conflict
if adding both of them to the clustered graph causes a crossing.

The following theorem shows the role of the candidate saturating edges of a
flat embedded clustered graph C in the c-planarity of C. Even if not explicitly

354 Di Battista and Frati Clustered Graphs Small Faces

(a) (b)

(c) (d) (e)

Figure 3: (a) An embedded flat clustered graph C. Different clusters have
different colors. The connected components of each cluster are inside simple
connected regions having the color of the cluster. (b) Clustered graph C and
its candidate saturating edges. Candidate saturating edges of each cluster have
the same color of the cluster. (c)–(d)–(e) Multigraphs Gi for C. The vertices of
Gi are the connected components of G(µi) and the edges of Gi are the candidate
saturating edges connecting such components.

stated, Theorem 1 has been already used in [5].

Theorem 1 An embedded flat clustered graph C(G,T) is c-planar if and only
if: (1) G is planar; (2) there exists a face f in G such that when f is chosen
as outer face for G no cycle composed by vertices of the same cluster encloses
a vertex of a different cluster; (3) it is possible to augment G to a graph G′

by adding a subset of the candidate saturating edges of C so that no two added
edges have a conflict and so that clustered graph C ′(G′, T) is c-connected.

Proof: First, we prove the necessity. The necessity of Condition 1 is trivial.
The necessity of Condition 2 easily descends from the definition of c-planarity.

Namely, suppose that any plane embedding of G contains a cycle C composed by
vertices belonging to cluster µi, such that C encloses a vertex v not belonging
to µi. By definition of c-planar drawing, the region R(µi) representing µi in

JGAA, 13(3) 349–378 (2009) 355

any drawing Γ(C) of C contains C, and hence either R(µi) is not simple, or it
contains v, that does not belong to µi. By definition of c-planar drawing, in
both cases Γ(C) is not c-planar.

To prove that Condition 3 is necessary for the c-planarity of C, consider any
c-planar drawing Γ(C) of C. We show that it is possible to draw candidate
saturating edges augmenting G to a graph G′ so that the subgraph induced by
each cluster in G′ is connected and so that the augmented drawing Γ′(C) is still
c-planar.

Rj(µi)

R(µi) R(µi) R(µi)

(a) (b) (c)

Figure 4: Illustrations for the proof of Theorem 1

Consider the region R(µi) representing in Γ(C) a cluster µi. Subdivide R(µi)
into connected open regions Rj(µi) delimited by the border of R(µi) and by the
edges of G. Consider any region Rj(µi) that has on its border vertices of more
than one connected component of G(µi). Edges connecting vertices of different
connected components can be drawn inside Rj(µi) so that the planarity of the
drawing of G is maintained and so that the connected components of G(µi)
appearing on the border of Rj(µi) form a unique connected component (see
Figs. 4.a and 4.b). Notice that added edges are candidate saturating edges of
C. After this step is repeated for every Rj(µi) all the connected components
of G(µi) form a unique connected component. In fact, having two connected
components in Γ′(C) would imply that there is an edge-region crossing in Γ(C)
(see Fig. 4.c). After the augmentation is performed for every cluster µi the set
of edges added to G satisfies the properties of Condition 3. Namely, no two
added edges have a conflict since edges added to connect G(µi) and G(µj) for
different clusters µi and µj are drawn inside non-overlapping regions R(µi) and
R(µj).

Now we prove the sufficiency of Conditions 1, 2, and 3 for the c-planarity of
C. Consider any planar drawing Γ of G in which no cycle composed by vertices
of the same cluster encloses a vertex of a different cluster (such a drawing exists
by Conditions 1 and 2). Consider a set S of candidate saturating edges of C
satisfying Condition 3. Insert each edge e of S in Γ inside the face of G for
which e is a candidate saturating edge. Since no two edges of S conflict each
other, it is possible to do such an insertion so that the resulting drawing Γ′ of
the augmented graph G′ is planar.

As long as G′ has at least one edge e∗ of S belonging to a cycle in which all
vertices are in the same cluster, remove e∗ from G′ and from Γ′. Clearly, such a
removal leaves each cluster connected in G′. Moreover, after all such deletions
no edge of any cycle in which all vertices are in the same cluster belongs to S.

356 Di Battista and Frati Clustered Graphs Small Faces

For any cluster µ draw a region R(µ) representing µ in Γ′ as a simple closed
connected region surrounding the entire drawing of G′(µ). The border of R(µ)
can be drawn so close to the border of the outer face of G′(µ) that (i) R(µ) does
not enclose vertices that are outside the outer face of G′(µ), (ii) the border of
R(µ) does not touch edges that are not incident to vertices of the outer face of
G′(µ), and (iii) the borders of any two clusters do not intersect.

We prove that the resulting clustered drawing Γ(C) of C is c-planar. By
Condition 1, the drawing of G is planar. By construction, for each cluster µ,
region R(µ) contains the drawing of G′(µ) in its interior. Suppose that a region
R(µ) encloses a vertex v ∈ V (ν), with µ 6= ν. By the construction of region
R(µ), this implies that there exists a cycle in G′(µ) enclosing v. However, since
every cycle of G′ in which all vertices are in the same cluster is also a cycle of
G, this would imply that Condition 2 is not satisfied by C. By the construction
of regions R(µ) no two borders of different clusters intersect in Γ(C). Finally,
an edge-region crossing would imply an edge crossing in G′, that is planar by
Condition 3 and by the definition of saturator. �

Hence, given an embedded flat clustered graph C(G,T), if Conditions 1 and 2
are satisfied by G, the problem of testing the c-planarity of C can be restated
as the problem of testing if it is possible to select from multigraphs Gi a set of
candidate saturating edges to enforce Condition 3 of Theorem 1. If such a set
exists, we call it a saturator of C.

Lemma 1 An embedded flat clustered graph C(G,T) admits a saturator if and
only if it admits an acyclic saturator.

Proof: Consider any saturator S of C and denote by G′ the embedded graph
obtained by inserting each edge e of S inside the face of G for which e is a
candidate saturating edge. As long as G′ has at least one edge e∗ of S belonging
to a cycle in which all vertices are in the same cluster, remove e∗ from G′. After
the removal the edges added to G are still a saturator of C, since, for each cluster
µ, G′(µ) is connected and since the c-planarity of C(G′ \ e∗, T) is a consequence
of the c-planarity of C(G′, T). Finally, observe that after all such deletions are
performed no cycle composed of edges all belonging to S exists in G′. �

Hence, the problem of testing if an embedded flat clustered graph satisfying
Conditions 1 and 2 of Theorem 1 is c-planar is reduced to the one of testing
if there exists a spanning tree of each Gi such that no two edges in different
spanning trees have a conflict.

3 A Characterization

We restrict ourselves to those embedded flat clustered graphs in which each
candidate saturating edge has a conflict with at most one other candidate satu-
rating edge. We call an embedded flat clustered graph satisfying such a property
to be single-conflict. The clustered graph of Fig. 5 is single-conflict, while the
one of Fig. 3 is not.

JGAA, 13(3) 349–378 (2009) 357

Figure 5: A single-conflict flat embedded clustered graph.

Consider a single-conflict embedded flat clustered graph C(G,T) and, for
any cluster µi in T , consider multigraph Gi. We have the following structural
lemma, showing that if two edges e1 = (u, v) and e2 = (x,w) of Gi cross, that is,
vertices u, x, v, and w appear in this order on the border of the face f for which
e1 and e2 are candidate saturating edges, then none of e1 and e2 can possibly
cross an edge e3 of a multigraph Gj , with i 6= j.

Lemma 2 If a graph Gi contains two crossing edges e1 and e2, then e1 and e2
have no conflict with edges of other multigraphs.

u
y z

w x

v

e1

e2

e3

(a) (b)

Figure 6: (a) Illustration for the proof of Lemma 2. (b) Illustration for the proof
of Lemma 3. Graph Gi for the cyan cluster is not connected and there is no way
of adding edges to the clustered graph to make the cyan cluster connected.

Proof: Suppose, for a contradiction, that (i) C is a single-conflict embedded flat
clustered graph, (ii) e1 and e2 are edges of Gi, that is, e1 and e2 are candidate
saturating edges for a cluster µi, (iii) e1 and e2 cross inside a face f of G, and

358 Di Battista and Frati Clustered Graphs Small Faces

(iv) e1 has a conflict with an edge e3 of a multigraph Gj , with j 6= i, inside f
(see Fig 6.a).

We claim that e3 has conflicts with at least two edges of Gi and hence C is
not a single-conflict embedded clustered graph. Let u and v, w and x, and y
and z be the end-vertices of e1, e2, and e3, respectively. If e3 crosses e2, the
statement follows. Otherwise we can suppose without loss of generality, up to a
renaming of the vertices, that w, y, u, z, x, and v appear in this order around f .
If vertices u and w do not belong to the same connected component of G(µi),
then there exists in Gi an edge joining u and w that has a conflict with e3 and
the statement follows. Analogously, if vertices u and x do not belong to the
same connected component of G(µi), then there exists in Gi an edge joining u
and x that has a conflict with e3 and the statement follows. However, either u
and w, or u and x belong to different connected components of G(µi), otherwise
u, w, and x would be in the same connected component of G(µi) and e2 would
not be a candidate saturating edge. �

By Lemma 3, we can assume that in the interesting cases the Gi’s are conn-
ected (see Fig. 6.b).

Lemma 3 If there exists a multigraph Gi that is not connected, then C is not
c-planar.

Proof: If a multigraph Gi is not connected, then adding to G any set of candi-
date saturating edges would not connect G(µi). Hence, by Theorem 1, C is not
c-planar. �

There are edges in the Gi’s that must be used in any saturator of C. Con-
versely, there are edges that will never be used in any saturator. Further, there
are edges that can be supposed to belong to a saturator without altering the
possibility to have one. Roughly speaking, such edges do not belong to the
“core” of the problem. Hence, in the following we simplify the Gi’s with an al-
gorithm that either returns that C is not c-planar or returns a structure where
there are no trivial choices. For this purpose, we define two operations on Gi,
that remove or collapse edges, to be used in the simplification phase.

The operation of removing an edge e from Gi, corresponds to the choice of
not using e as an edge of the saturator of C. Notice that, when an edge e is
removed from Gi, an edge of Gj , with i 6= j, that eventually had a conflict with
e does not have a conflict any longer.

The operation of collapsing an edge e with end-vertices u and v in Gi cor-
responds to the choice of using e as an edge of the saturator of C. It consists
of (see Fig. 7): (i) deleting vertices u and v, (ii) removing from Gi all edges be-
tween u and v, and (iii) inserting in Gi a new vertex w whose incident edges are
those of u and v. The embedding of Gi is preserved. The collapsing operation
“preserves” the conflicts. Namely, let ei be an edge of Gi incident to u or to v
but not to both. Suppose that ei has a conflict (has not a conflict) with an edge
ej of Gj , with i 6= j. After collapsing edge e in a new vertex w the edge incident
to w corresponding to ei has a conflict (resp. has not a conflict) with ej . When

JGAA, 13(3) 349–378 (2009) 359

an edge e is collapsed, the edge that conflicts with e, if any, is removed. In fact,
collapsing e corresponds to choosing it in a saturator, hence no edge conflicting
with e can be introduced in the saturator.

u v
w

(a) (b)

Figure 7: The operation of collapsing an edge (u, v): (a) Before collapsing (u, v).
(b) After collapsing (u, v).

The simplification phase is as follows. Repeatedly modify the Gi’s by apply-
ing one of the following simplifications. From now on, Gi denotes the multigraph
obtained from the starting Gi after some simplifications have been performed.

Simplification 1: If there exists an edge e of a multigraph Gi that has no
conflict, then collapse e in Gi.

Simplification 2: If there exist a separating edge ei and a non-separating edge
ej that are in multigraphs Gi and Gj , respectively, and that conflict each
other, then collapse ei in Gi and remove ej from Gj .

Simplification 3: If there exist two separating edges ei and ej that are in
multigraphs Gi and Gj , respectively, and that conflict each other, then
stop because C is not c-planar.

If the algorithm does not stop for non-c-planarity, we call the final multigraph
Gi candidate saturating graph for cluster µi and we denote it by G∗i . Also, we
say that µi admits a candidate saturating graph.

Observe that the above operations modify graphs Gi. However, at any step of
the simplification phase each edge e of Gi is associated with two vertices u and v
and a face f of G meaning that if e is chosen to be in a saturator an edge between
u and v is inserted in f . We preprocess Gi labeling each edge with its endpoints
and with a face. Such labels are never changed by the operations described
below. In the following, each time we add an edge e of Gi to a saturator, we add
to G an edge between the endpoints and within the face specified by the label
of e.

The following properties hold.

Property 1 None of Simplifications 1, 2, and 3 could disconnect any multi-
graph Gi.

360 Di Battista and Frati Clustered Graphs Small Faces

Proof: Simplification 1 collapses an edge of a multigraph Gi. If Gi was conn-
ected before such a simplification, then it is still connected after that. Further,
no edges of other multigraphs are removed when applying Simplification 1. Sim-
plification 2 collapses an edge ei of a multigraph Gi and removes the edge ej
of a multigraph Gj that had a conflict with ei. However, if Gi was connected
before such a simplification, then it is still connected after that, and since ej is
not a separating edge, then Gj remains connected after Simplification 2. Sim-
plification 3 does not modify and hence does not disconnect any multigraph Gi.

�

Property 2 None of Simplifications 1, 2, and 3 can create a self-loop in any
multigraph Gi.

Proof: A self-loop in a multigraph Gi cannot be created by a removing oper-
ation. Further, when an edge e of a multigraph Gi is collapsed in a vertex w,
edges parallel to e are removed. Hence, no self-loop is inserted in Gi. �

Property 3 The subgraphs induced by the collapsed edges are acyclic.

Proof: Suppose that the subgraph induced by the set E of collapsed edges
contains a cycle C. Consider the last simplification sm of the simplification
phase that collapses one of the edges of C, say edge e = (u, v). A path P
connecting u and v exists in E composed of candidate saturating edges that
have been collapsed before sm. The edges of P are collapsed in a single vertex
w at the beginning of step sm. By Property 2, vertex w has no self-loops, hence
no edge connecting two vertices of P exists at step sm. �

Property 4 Candidate saturating graphs are planar embedded and edge 2-con-
nected.

Proof: Each multigraph Gi before the simplification phase is planar embed-
ded and the operations of removing and collapsing edges of Gi leave Gi planar
embedded. By Property 1, multigraph G∗i is connected. Further, if it has a
separating edge e, then either e would be chosen to be in a saturator by one of
Simplifications 1 and 2 (depending on whether e has no conflict or has a conflict
with a non-separating edge) or C would not admit candidate saturating graphs
(if e has a conflict with a separating edge). �

Property 5 Any edge of a candidate saturating graph has exactly one conflict
with an edge of a different candidate saturating graph.

Proof: Any edge of a candidate saturating graph has at most one conflict with
an edge of a different candidate saturating graph, since the embedded flat clus-
tered graph is assumed to be single-conflict and operations of removing and
collapsing edges do not introduce new conflicts. Any edge of a candidate sat-
urating graph has at least one conflict with an edge of a different candidate
saturating graph, otherwise it would be chosen to be in a saturator by Simpli-
fication 1. �

JGAA, 13(3) 349–378 (2009) 361

We now give lemmas in order to prove that each simplification performed
by the algorithm preserves the possibility of finding a saturator of C. Con-
sider simplification sm, that is performed at a certain step of the simplifica-
tion phase. Simplification sm can be one of Simplifications 1, 2, or 3. De-
note by s0, s1, . . . , sm−1 the simplifications that have been performed before
sm. Denote also by E the set of edges that have been collapsed while applying
s0, s1, . . . , sm−1. Inductively, suppose that if an acyclic saturator of C exists,
then there exists an acyclic saturator composed only of the edges of E plus some
of the edges remaining in the Gi’s after simplifications s0, s1, . . . , sm−1. This is
indeed the case when no simplification has been performed yet.

Lemma 4 Consider an edge e of Gi with no conflict. We have that C admits a
saturator only if it admits an acyclic saturator containing e and containing the
edges of E.

Proof: Suppose C admits a saturator. Then, by Lemma 1, it admits an acyclic
saturator. Moreover, by inductive hypothesis, it admits an acyclic saturator S
such that E ⊆ S. If S contains e the statement follows. Otherwise, observe
that since S is a saturator, there exists a set S′ ⊆ S of edges forming a path
between the end-vertices u and v of e. Hence, the edges of S′∪{e} form a cycle.
Notice that not all the edges of S′ belong to E, otherwise u and v would not
have been distinct vertices in Gi after simplifications s0, s1, . . . , sm−1. Hence,
the set S∗ of edges obtained from S by inserting e and by removing any edge
of S′ not in E is an acyclic saturator of C containing E and e. Namely, all the
connected components of C are connected by a path of edges in S∗ and since e
has no conflict and S is a saturator, no two edges in S∗ have a conflict. �

Lemma 5 Consider two edges ei and ej of two distinct multigraphs Gi for clus-
ter µi and Gj for cluster µj, respectively. Suppose that ei and ej conflict each
other. Also, suppose that ei is a separating edge, while ej is not. Then C admits
a saturator only if it admits an acyclic saturator containing ei, containing E,
and not containing ej.

Proof: Suppose C admits a saturator. Then, by Lemma 1, it admits an acyclic
saturator. Moreover, by inductive hypothesis, it admits an acyclic saturator S
such that E ⊆ S. Since at step sm end-vertices u and v of ei are in Gi, no path
composed by edges of E connects u and v. Moreover, since ei is a separating
edge, if ei is not in S adding the edges of S to G would not connect G(µi). Hence
ei ∈ S. Since no two conflicting edges can be simultaneously in S, ej /∈ S. �

Lemma 6 Consider two separating edges ei and ej of two distinct multigraphs
Gi for cluster µi and Gj for cluster µj, respectively. Suppose that ei and ej
conflict each other. We have that C is not c-planar.

Proof: Suppose, for a contradiction, that C admits a saturator. Then, by
inductive hypothesis, it admits an acyclic saturator S such that E ⊆ S. Since
at step sm the end-vertices u and v of ei (the end-vertices w and x of ej) are

362 Di Battista and Frati Clustered Graphs Small Faces

in Gi (are in Gj), no path composed by edges of E connects u and v (connects
w and x). Moreover, since ei and ej are separating edges, if ei (ej) is not in
S, adding the edges of S to G would not connect G(µi) (G(µj)). However, S
cannot contain both ei and ej , that conflict each other. �

Let µi and µj be two distinct clusters admitting candidate saturating graphs
G∗i and G∗j , respectively. We define graph G∗i,j as the planar embedded subgraph
of G∗i induced by the edges having a conflict with the edges of G∗j . We have (see
Fig. 8):

(a) (b)

(c) (d) (e) (f) (g)

Figure 8: Illustrations for the statement of Theorem 2. (a) A set of candidate
saturating graphs G∗i for a single-conflict embedded flat clustered graph C. (b)
A saturator of C. (c–g) Each picture contains graphs G∗i,j , G∗j,i, and spanning
trees T ∗i,j , T ∗j,i (in bold).

Theorem 2 A single-conflict embedded flat clustered graph C(G,T) is c-planar
iff:

1. G is planar;

2. There exists a face f in G such that when f is chosen as outer face for
G no cycle composed by vertices of the same cluster encloses a vertex of
a different cluster;

3. Each cluster of C admits a candidate saturating graph;

4. For each pair of distinct clusters µi and µj, G∗i,j is edge 2-connected; and

JGAA, 13(3) 349–378 (2009) 363

5. For each pair of distinct clusters µi and µj, G∗i,j is dual to G∗j,i.

Proof: First, we remark that each vertex of G∗i corresponds to a distinct conn-
ected component of G(µi) after the edges chosen during the simplification phase
have been added into the corresponding faces of G and that an edge connecting
vertices u and v of G∗i corresponds to an edge connecting a vertex of the conn-
ected component corresponding to u to a vertex of the connected component
corresponding to v inside a face of G. Since the simplification phase preserves
the possibility of finding an acyclic saturator S, then S can be found only if a set
of edges can be selected from graphs G∗i so that, after the edges of S are inserted
into the faces of G, all clusters induce connected graphs, no cycle composed of
vertices of the same cluster has been created, and no two edges intersect. It
follows that, in order to obtain an acyclic saturator S of C, a spanning tree of
each G∗i has to be selected such that no two edges of spanning trees of different
graphs G∗i and G∗j have a conflict.

Let S be any acyclic saturator of C and let u and v be any two distinct
vertices of any candidate saturating graph G∗i . We denote by S(u, v) the unique
path connecting u and v in the spanning tree of G∗i contained in S. We remark
that such a path exists, otherwise cluster µi would not induce a connected graph
after adding the edges of S to G, and is unique, otherwise the chosen saturator
S would not be acyclic. If edges ei and ej of different candidate saturating
graphs G∗i and G∗j conflict each other, we write ei ⊕ ej .

The necessity of Conditions 1 and 2 descends from the necessity of Condi-
tions 1 and 2 of Theorem 1. We prove the necessity of Condition 3. Suppose
that C does not admit candidate saturating graphs. Two cases are possible:
Either before the simplification phase one of the Gi’s is not connected, or dur-
ing the simplification phase two separating conflicting edges are found. In the
former case the non-c-planarity of C descends from Lemma 3, in the latter case
from Lemma 6.

Now we deal with Condition 4. Suppose that G∗i,j is not connected and
denote by u1 and u2 vertices in different connected components. Suppose, for a
contradiction, that an acyclic saturator S of C exists. Consider path S(u1, u2)
(see Fig. 10.a). Since u1 and u2 are in different connected components of G∗i,j ,
there exists an edge (u3, u4) ∈ S(u1, u2) such that (u3, u4) ⊕ (w1, w2), where
(w1, w2) ∈ G∗k , with k 6= i, j. Consider path S(w1, w2). Each edge of S(w1, w2)
cannot have a conflict with any edge of S(u1, u2), otherwise S would contain two
conflicting edges, and neither can it have a conflict with any edge (v1, v2) of G∗j,i,
otherwise (v1, v2) would conflict with two candidate saturating edges. Hence,
G∗j,i has at least two connected components. Let v3 and v4 be two vertices in
such components, respectively. Then, S(v3, v4) either contains an edge (v5, v6)
such that (v5, v6)⊕(w3, w4), with (w3, w4) ∈ S(w1, w2), implying that S contains
two conflicting edges, or contains an edge (v5, v6) conflicting with edge (w1, w2),
implying that (w1, w2) conflicts with two candidate saturating edges.

Now suppose that G∗i,j has a separating edge (u1, u2). By construction
(u1, u2) ⊕ (v1, v2), where (v1, v2) ∈ G∗j,i. Suppose, for a contradiction, that a
saturator S of C exists. Fig. 9 shows the strategy of the proof of such a contra-

364 Di Battista and Frati Clustered Graphs Small Faces

(u1,u2) not in S

�ecessity of Condition 4

j,i

(u1,u2) in S

an edge (v3,v4) in
S(v1,v2) is not in G* j,i

all edges in S(v1,v2)
are in G*

i,j
all edges in S(u1,u3)
are in G* i,j

an edge (u5,u6) in
S(u1,u3) is not in G*

Figure 9: Proof of the necessity of Condition 4. Edge (u1, u2) is a separating
edge that has a conflict with an edge (v1, v2). If (u1, u2) ∈ S and all edges of
S(v1, v2) belong to G∗j,i, then (u3, u4) is an edge that has a conflict with an edge
of S(v1, v2). Vertices u1 and u3 are both internal to cycle S(v1, v2) ∪ (v1, v2).

diction.

• If (u1, u2) /∈ S, then consider S(u1, u2) (see Fig. 10.b). Since (u1, u2) is a
separating edge for G∗i,j , there exists an edge (u3, u4) ∈ S(u1, u2) such that
(u3, u4)⊕(w1, w2), where (w1, w2) ∈ G∗k , with k 6= i, j. Hence, S(w1, w2) ei-
ther contains an edge (w3, w4) such that (w3, w4)⊕(u5, u6), with (u5, u6) ∈
S(u1, u2), implying that S contains two conflicting edges, or contains an
edge (w3, w4) conflicting with (u1, u2), implying that (u1, u2) conflicts with
two candidate saturating edges.

• If (u1, u2) ∈ S, then consider S(v1, v2).

– If an edge (v3, v4) ∈ S(v1, v2) is such that (v3, v4) ⊕ (w1, w2), where
(w1, w2) ∈ G∗k , with k 6= i, j, a contradiction is obtained as in the
previous case (see Fig. 10.c).

– Otherwise, all edges of S(v1, v2) belong to G∗j,i. Consider any edge
(v3, v4) ∈ S(v1, v2) and edge (u3, u4) ∈ G∗i,j such that (u3, u4) ⊕
(v3, v4). Let u1 (u3) be the endpoint of (u1, u2) (resp. of (u3, u4))
inside cycle S(v1, v2) ∪ (v1, v2).

∗ If u1 = u3 or if all edges of S(u1, u3) have conflicts with edges
of G∗j,i (see Fig. 10.d), consider path S(u2, u4). Then there ex-
ists an edge (u5, u6) ∈ S(u2, u4) such that (u5, u6) ⊕ (w1, w2),
where (w1, w2) ∈ G∗k , with k 6= i, j, otherwise (u1, u2) would not
be a separating edge. Hence, S(w1, w2) either contains an edge
(w3, w4) such that (w3, w4)⊕ (u7, u8), with (u7, u8) ∈ S(u3, u4),
implying that S contains two conflicting edges, or an edge (w3, w4)

JGAA, 13(3) 349–378 (2009) 365

such that (w3, w4)⊕(u3, u4) implying that (u3, u4) conflicts with
two candidate saturating edges.

∗ If u1 6= u3 and S(u1, u3) contains at least one edge (u5, u6) such
that (u5, u6) ⊕ (w1, w2), where (w1, w2) ∈ G∗k , with k 6= i, j (see
Fig. 10.e), then S(w1, w2) contains: (i) either an edge (w3, w4)
such that (w3, w4) ⊕ (v5, v6), with (v5, v6) ∈ S(v1, v2), implying
that S contains two conflicting edges, (ii) or an edge (w3, w4)
such that (w3, w4)⊕ (u7, u8), with (u7, u8) ∈ S(u2, u3) implying
that S contains two conflicting edges, (iii) or an edge (w3, w4)
such that (w3, w4)⊕(u3, u4), implying that (u3, u4) conflicts with
two candidate saturating edges, (iv) or an edge (w3, w4) such
that (w3, w4)⊕ (v1, v2), implying that (v1, v2) conflicts with two
candidate saturating edges.

u1
w1

w2

u3
u4v3
v4

u2 u1

u3 u4

u2
v2
v1 w1

w2

v2v1
u1
u2
v3 v4
w1

w2
(a) (b) (c)

u1=u3
u2

v2
v1

v4

v3

u4
u5 u6
w1

w2 v2

v1
u2u1u3

u4 v4

v3 u5 u6
w1

w2

v1

u1

w2

w1 u3
u4
u2

v2

(d) (e) (f)

v1 v3
v2

w1

w2

v4 v1
v2v3

v4
u1

u2

u5

u3

w1
w2

v1
v2

v3 v4
u1

u2

u5

u4

u3
w1
w2

(g) (h) (i)

Figure 10: Illustrations for the necessity of the conditions of Theorem 2. Edges
of G∗i are red, edges of G∗j are light blue, and edges of G∗k are green.

Now we prove the necessity of Condition 5. By definition, each edge of
G∗i,j has a conflict with (and hence is dual to) one edge of G∗j,i and vice versa.
Moreover, by the necessity of Condition 4, we can assume that both G∗i,j and
G∗j,i are edge 2-connected. Hence G∗i,j is not dual to G∗j,i only if there is a face
of G∗i,j that contains in its interior two vertices of G∗j,i, or vice versa. Suppose
w.l.o.g. that a face f of G∗i,j contains in its interior two vertices v1 and v2 of
G∗j,i. Suppose, for a contradiction, that a saturator S of C exists. Consider path

366 Di Battista and Frati Clustered Graphs Small Faces

S(v1, v2). Fig. 11 shows the strategy of the proof of such a contradiction.

S(v1,v2) has vertices
outside f

ecessity of Condition 5

j,i

all vertices of S(v1,v2)
are inside f

an edge (v3,v4) in
S(v1,v2) is not in G* j,i

all edges in S(v1,v2)
are in G*

i,j
all edges in S(u1,u3)
are in G* i,j

an edge (u4,u5) in
S(u1,u3) is not in G*

Figure 11: Proof of the necessity of Condition 5. Vertices v1 and v2 are both in
face f . If all edges of S(v1, v2) belong to G∗j,i , then (u1, u2) is an edge that has
a conflict with an edge of S(v1, v2). Vertex u3 is in f .

• If S(v1, v2) is composed in part by vertices inside f and in part by vertices
outside f (see Fig. 10.f), consider two vertices u1 and u2 in different conn-
ected components, disconnected by S(v1, v2), of f . Consider S(u1, u2).
There exists an edge (u3, u4) ∈ S(u1, u2) such that (u3, u4) ⊕ (w1, w2),
where (w1, w2) ∈ G∗k , with k 6= i, j, otherwise f would not be a face. Hence,
S(w1, w2) either contains an edge (w3, w4) such that (w3, w4) ⊕ (u5, u6),
with (u5, u6) ∈ S(u1, u2), implying that S contains two conflicting edges,
or contains an edge (w3, w4) conflicting with an edge (u5, u6) ∈ f , implying
that (u5, u6) conflicts with two candidate saturating edges.

• Otherwise, S(v1, v2) is composed by vertices all lying inside f .

– If there exists an edge (v3, v4) ∈ S(v1, v2) such that (v3, v4)⊕(w1, w2),
where (w1, w2) ∈ G∗k , with k 6= i, j (see Fig. 10.g), then S(w1, w2)
contains: (i) either an edge (w3, w4) such that (w3, w4)⊕(v5, v6), with
(v5, v6) ∈ S(v1, v2), implying that S contains two conflicting edges,
(ii) or an edge (w3, w4) such that (w3, w4)⊕(u1, u2), with (u1, u2) ∈ f ,
implying that (u1, u2) conflicts with two candidate saturating edges,
(iii) or an edge (w3, w4) such that (w3, w4)⊕(v5, v6), with (v5, v6) dual
to an edge of f , implying that (v5, v6) conflicts with two candidate
saturating edges.

– Otherwise, each edge of S(v1, v2) is dual to an edge of G∗i,j . Consider
any edge (u1, u2) dual to an edge of S(v1, v2).

∗ If u1 ∈ f or if there exists a vertex u3 ∈ f such that all edges of
S(u1, u3) conflict with edges of G∗j,i (see Fig. 10.h), then u2 /∈ f

JGAA, 13(3) 349–378 (2009) 367

and there exists no vertex u4 in f such that all edges of S(u2, u4)
conflict with edges of G∗j,i, otherwise f would not be a face. Con-
sider any vertex u5 ∈ f and path S(u2, u5). Then, there exists an
edge in S(u2, u5) that has a conflict with an edge (w1, w2) in G∗k ,
with k 6= i, j. Hence, path S(w1, w2) contains: (i) either an edge
(w3, w4) such that (w3, w4) ⊕ (v5, v6), with (v5, v6) ∈ S(v1, v2),
implying that S contains two conflicting edges, (ii) or an edge
(w3, w4) such that (w3, w4)⊕ (u6, u7), with (u6, u7) ∈ S(u2, u5),
implying that S contains two conflicting edges, (iii) or an edge
(w3, w4) such that (w3, w4)⊕(u6, u7), with (u6, u7) ∈ f , implying
that (u6, u7) conflicts with two candidate saturating edges, (iv)
or an edge (w3, w4) such that (w3, w4) ⊕ (v5, v6), with (v5, v6)
dual to an edge in f , implying that (v5, v6) conflicts with two
candidate saturating edges.

∗ If u1 /∈ f and there exists no vertex u3 ∈ f such that every edge
of S(u1, u3) conflicts with an edge of G∗j,i (see Fig. 10.i), then
there exists a vertex u3 ∈ f such that S(u1, u3) contains an edge
(u4, u5) such that (u4, u5) ⊕ (w1, w2), with (w1, w2) ∈ G∗k , with
k 6= i, j, and a contradiction is derived as in the previous case.

Now we prove the sufficiency of Conditions 1, 2, 3, 4, and 5, for the c-
planarity of C(G,T). Consider any planar drawing of G satisfying Conditions 1
and 2 and hence satisfying Conditions 1 and 2 of Theorem 1. We show how
to construct an acyclic saturator S of C satisfying Condition 3 of Theorem 1.
Apply the simplification phase. As a result, get an acyclic set E of edges already
chosen to be in S and a candidate saturating graph G∗i for each cluster µi (this
can be done since C satisfies Condition 3).

Order the clusters in whichever way µ1, µ2, . . . , µm. For any pair of clusters
µi and µj , with i < j, choose a spanning tree T ∗i,j of G∗i,j (a spanning tree of G∗i,j
can always be found since, by Condition 4, G∗i,j is edge 2-connected). Remove
from G∗j,i all edges dual to edges of T ∗i,j , obtaining a graph T ∗j,i. We claim that
T ∗j,i is a spanning tree of G∗j,i. By Condition 5, G∗i,j and G∗j,i are dual graphs,
and, since they are edge 2-connected, the edges of a cycle in G∗i,j are dual to the
edges of a cutset in G∗j,i, and vice versa (Lemma 1.4 of [14]). Hence, if T ∗j,i has
more than one connected component, then the edges removed from G∗j,i form a
cutset for G∗j,i, and the edges of T ∗i,j form a cycle, contradicting the hypothesis
that T ∗i,j is a tree. Moreover, if a set of edges of T ∗j,i is a cycle, then the edges
dual to such a cycle form a cutset for G∗i,j , contradicting the hypothesis that T ∗i,j
is spanning for G∗i,j .

For any pair of clusters µi and µj , with i < j, add the edges of T ∗i,j and the
edges of T ∗j,i to S. We claim that S is an acyclic saturator of C. Namely, we
prove that (1) no two edges of S have a conflict, (2) adding the edges of S to
G connects the subgraph induced by each cluster, and (3) adding the edges of
S to G does not create cycles composed by vertices all belonging to the same
cluster.

1. No two edges of S have a conflict: Edges chosen in the simplification phase

368 Di Battista and Frati Clustered Graphs Small Faces

do not conflict each other by construction. Such edges do not conflict with
edges of trees T ∗i,j . In fact, an edge in T ∗i,j conflicts only with an edge in
G∗j , with i 6= j. By construction, edges of the T ∗i,j ’s do not conflict each
other.

2. Adding the edges of S to G connects the subgraph induced by each cluster:
Distinct connected components of G(µi) are represented after the simpli-
fication phase by distinct vertices in G∗i , that is edge 2-connected and that
is partitioned in edge 2-connected subgraphs G∗i,j . Since a spanning tree
is chosen to be in S for any G∗i,j , we have that

⋃
j T ∗i,j is spanning for G∗i

and G′(µi) has exactly one connected component. Recall that G′(µi) is
the graph obtained by adding the edges of the saturator to G(µi).

3. Adding the edges of S to G does not create cycles composed by vertices all
belonging to the same cluster: Suppose thatG′(µi) has a cycle C containing
an edge of S. By construction, edges chosen in the simplification phase
only join different connected components of G(µi) and no edge of C could
belong to some G∗i,j , otherwise G′(µj) would be disconnected.

Since S is an acyclic saturator of C, the conditions of Theorem 1 are satisfied
by C, that hence is c-planar. �

Theorem 3 An embedded flat clustered graph C(G,T) with at most five vertices
per face is c-planar if and only if:

1. G is planar;

2. There exists a face f in G such that when f is chosen as outer face for
G no cycle composed by vertices of the same cluster encloses a vertex of
a different cluster;

3. Each cluster of C admits a candidate saturating graph;

4. For each pair of distinct clusters µi and µj, G∗i,j is edge 2-connected; and

5. For each pair of distinct clusters µi and µj, G∗i,j is dual to G∗j,i.

Proof: Consider any face f of G. Since f has at most five vertices, it has at
most two connected components of each cluster, so it has at most one candidate
saturating edge for each cluster. Since at least two vertices are necessary for
each candidate saturating edge, f contains candidate saturating edges for at
most two clusters. Hence, C is a single-conflict embedded flat clustered graph
and the statement follows from Theorem 2. �

4 An Efficient c-Planarity Testing Algorithm

In this section we use Theorem 3 to derive a linear time and space c-planarity
testing algorithm for embedded flat clustered graphs with at most five vertices

JGAA, 13(3) 349–378 (2009) 369

per face. The algorithm can be extended to test the c-planarity of single-conflict
embedded flat clustered graphs relying on Theorem 2. However, it turns out
that such an extension exploits several technicalities, in order to deal with a
number of candidate saturating edges that can be asymptotically more than
linear in the number of vertices of the clustered graph. Hence, to improve the
readability of the section, we give the algorithm for the case of embedded flat
clustered graphs with at most five vertices per face, while emphasizing the steps
of the algorithm that have to be modified to deal with single-conflict embedded
flat clustered graphs.

Let C(G,T) be an n-vertex embedded flat clustered graph with at most five
vertices per face. To test Condition 1 of Theorem 3, it is sufficient to test if
G is a planar embedding. This can be done in O(n) time and space with the
techniques in [13].

To test Condition 2, we observe that a face exists satisfying such a condition
if and only if the embedded clustered graph is hole-free, that is, chosen an
arbitrary face as external, there exists no cycle C that is composed by vertices
of the same cluster µ and that separates two vertices both belonging to clusters
different from µ (see Fig. 12).

Figure 12: A hole in an embedded clustered graph. A hole consists of a cycle
that is composed by vertices of the same cluster µ and that separates two ver-
tices both belonging to clusters different from µ. An embedded clustered graph
having no hole is said to be hole-free.

A linear-time algorithm for checking if an embedded clustered graph is hole-
free has been provided in [6] in the case of c-connected clustered graphs. We
can use the same algorithm because of the following lemma.

Lemma 7 Let C(G,T) be an embedded clustered graph. Let C ′(G,T ′) be the
embedded c-connected clustered graph obtained from C as follows. Each node ν
of T is replaced in T ′ by nodes ν1, . . . , νh, one for each of the h ≥ 1 connected
components of G(ν). Let µ1, . . . , µk be the nodes replacing the parent µ of ν.
The parent of νj in T ′ is the node µi such that G(νj) is a subgraph of G(µi).
We have that C is hole-free if and only if C ′ is hole-free.

Proof: Suppose that C is hole-free and suppose, for a contradiction, that C ′

is not hole-free. Choose arbitrarily in G an external face. Then, a cycle C of G

370 Di Battista and Frati Clustered Graphs Small Faces

exists composed by vertices of the same cluster µi ∈ T ′ such that C has a vertex
v1 inside and a vertex v2 outside both belonging to clusters in T ′ different from
µi. Consider cluster µ ∈ T that is replaced in T ′ by a set of clusters among
which there is µi. By construction the vertices of C belong to µ in C.

We claim that there exists a vertex inside C that does not belong to µ. Since
v1 /∈ µi, there are two cases: Either v1 /∈ µ, or v1 ∈ µ. In the first case the
claim directly follows. In the second case, since v1 and C belong to µ but are in
different clusters in C ′, they belong to different connected components of G(µ).
Consider any path internal to C connecting v1 to a vertex of C. Such a path
exists, otherwise G would not be connected. The vertices of such a path cannot
all belong to µ, otherwise v1 and C would be in the same connected component
of G(µ). Hence, there exists a vertex internal to C not belonging to µ and the
claim follows. A similar argument proves that there exists a vertex outside C
that does not belong to µ, that gives the desired contradiction.

Now suppose C ′ is hole-free and suppose, for a contradiction, that C is not
hole-free. Choose arbitrarily in G an external face. Then, a cycle C of G exists
composed by vertices of the same cluster µ ∈ T such that C has a vertex v1
inside and a vertex v2 outside both belonging to clusters in T different from µ.
Then, consider cluster µi containing C in C ′. Since v1, v2 /∈ µ, we have that
v1, v2 /∈ µi, that gives the desired contradiction. �

In order to test Condition 3 we need to create multigraphs Gi. This is done
in O(n) time as follows.

• Connected Components. For each node µ of T compute the connected
components of G(µ). This is easily done in linear time and space. Each
vertex v of G(µ) is labelled by a name uniquely associated with the conn-
ected component of G(µ) vertex v belongs to.

• Candidate saturating edges. We insert candidate saturating edges inside
the faces of G. Consider a face f . Construct maximal sequences of vertices
that are consecutive on the border of f and that belong to the same cluster.
For any two sequences V1 and V2 that have vertices belonging to the same
cluster µ, take a vertex v1 ∈ V1 and a vertex v2 ∈ V2. Test in constant
time if the connected component Gi(µ) of G(µ) labelling v1 is different
from the connected component Gj(µ) labelling v2. If Gi(µ) is not the
same connected component of Gj(µ), then insert a candidate saturating
edge between v1 and v2. As already discussed in the proof of Theorem 3,
at most two edges are inserted inside f . Since f has at most five vertices,
the described insertion can be performed in constant time and hence in
linear time for all the faces of G.

This step is more tricky when considering single-conflict clustered graphs,
where faces can have a linear number of vertices. In that case, in order to
achieve linear time special care must be taken when considering groups of
candidate saturating edges between vertices of the same cluster and when
determining the conflicts between candidate saturating edges.

JGAA, 13(3) 349–378 (2009) 371

Namely, consider a face f and a cluster µ having connected components
G1(µ), . . . , Gk(µ) in f .

If k = 1 no candidate saturating edge is inserted in f .

If k > 2 (see Fig. 13.a), then we insert in f one candidate saturating edge
between any vertex of Gi(µ) and any vertex of Gi+1(µ), for i = 1, . . . , k−1.
In fact, in this case, since C is single-conflict, none of such edges has a
conflict with any other candidate saturating edge e (otherwise e would
have more than one conflict). Hence, since such edges are conflict-free no
other edge is required in order to connect the components of cluster µ
in f .

G1(µ)

G2(µ)

e
G3(µ)

V1,1(µ)
V1,2(µ)

V2,1(µ)

V2,2(µ)

V1,1(µ)
V2,k (µ)2

V2,1(µ)
V2,2(µ)

(a) (b) (c)

Figure 13: Candidate saturating edges for a cluster µi in a single-conflict clus-
tered graph: (a) k > 2. (b) k = 2, k1 > 1, and k2 > 1. (c) k = 2 and k1 = 1.
The candidate saturating edges that are added to the graphs Gi’s are solid.
Dashed cyan edges correspond to candidate saturating edges that cannot exist,
otherwise the clustered graph would not be single-conflict. Dashed red edges
correspond to candidate saturating edges that are not needed to connect the
components of µi in f .

Suppose that k = 2 and let V1,1(µ), . . . , V1,k1(µ) (V2,1(µ), . . . , V2,k2(µ)) be
the maximal sequences of vertices that are consecutive on the border of f
and that belong to G1(µ) (resp. to G2(µ)).

If both k1 > 1 and k2 > 1 (see Fig. 13.b), we add a candidate saturating
edge between any vertex of V1,1(µ) and any vertex of V2,1(µ). Such an
edge is conflict-free and we can repeat the above arguments to show that
no other edge is required to connect the components of µ in f .

If either k1 = 1 or k2 = 1, say k1 = 1 (see Fig. 13.c), we add edges be-
tween any vertex of V1,1(µ) and any vertex of V2,i(µ) (with i = 1, . . . , k2).
Observe that such edges might have conflicts.

By the above discussion, the number of candidate saturating edges inserted
for each cluster µ inside f is linear in the number of maximal sequences
of vertices that are consecutive on the border of f and that belong to
G(µ). It follows that a total linear number of candidate saturating edges

372 Di Battista and Frati Clustered Graphs Small Faces

are inserted into the faces of G. Further, such edges are sufficient to find
a saturator for the clustered graph, if any such a saturator exists.

At this point we detect conflicts. We traverse the border of f in clockwise
direction starting at any vertex. During the traversal, we maintain a list
of encountered edges in a stack P . At each encountered vertex v we do
what follows: We consider the candidate saturating edges incident to v in
clockwise order; for each edge e, if e has never been encountered we insert
e into P ; otherwise, the first end-vertex of e has already been encountered
and e is already in P . We check if e has a conflict with the top edge
e′ of P . If yes, we record the conflict and remove e and e′ from P . If
not, we remove e from P . Such a procedure detects all conflicts among
candidate saturating edges. In fact, the conflict structure of the candidate
saturating edges is parenthetic, due to the restriction to single-conflict
clustered graphs.

• Multigraphs Gi. Consider cluster µi. Add a vertex to Gi for each conn-
ected component of G(µi). For each of the above mentioned candidate
saturating edges (u, v), insert an edge between the connected components
of u and v. For each edge e in a multigraph Gi, we record the edge e∗ that
has a conflict with e, if any. The construction of the Gi’s can be done such
that their embeddings are those induced by the adjacencies of the faces
of G. Further, such a construction can be done in linear time and space
because of the following:

Property 6
∑
µi
|Gi| = O(n), where |Gi| is the size of the graph.

Proof: The total number of vertices of the Gi’s is at most the number of
vertices of G, hence it is bounded by n.

If each face of G has at most five vertices the proof is trivial. In fact, there
are at most two candidate saturating edges for each face. Hence, the total
number of edges of the Gi’s is O(n).

On the other hand, when considering single-conflict embedded flat clus-
tered graphs, that can generally have faces with a linear number of incident
vertices, we apply the algorithm described above, that inserts for each face
f only a number of edges that is linear in the size of f . �

Now we show how to test if Condition 3 of Theorem 3 is satisfied. First, test
if the Gi’s are connected. If not, return non-c-planar.

We equip each Gi with a data structure supporting the following update
operations, which are trivial graph operations and that can be hence performed
in constant time: Remove an edge, collapse (identify the end-vertices of) an edge
and merge the embeddings of its end-vertices. Observe the difference between
the above definition of the collapse operation and the one given in Section 3,
where the edges between the end-vertices are removed.

JGAA, 13(3) 349–378 (2009) 373

Next, we show how to apply the simplification phase. We first deal with
conflict-free edges, that are edges with no conflict, and we will apply Simpli-
fication 1 till the multigraphs Gi’s have no conflict-free edge. Second, we will
handle separating edges by either applying Simplification 2 till the multigraphs
Gi’s have no separating edge or the non-c-planarity of C has been established.

• Conflict-free edges. Extract from all Gi’s the candidate saturating edges
that have no conflict. Insert all such edges into a set called F . For each
edge e of F compute the set E of edges parallel to e. Such computations
are easily performed in linear time.

Construct the set F ′ of the edges of any spanning forest of F . Let F ′′
be the set containing the edges that have no conflict after the edges of F ′
have been collapsed. We construct F ′′ as follows. Initialize F ′′ = ∅. Take
each edge e1 of F ′. Consider the set E of edges parallel to e1. For each
edge e2 6= e1 in E , if e2 has a conflict with an edge e∗2, add e∗2 to F ′′. After
this work has been performed on all the edges of F ′, collapse all of such
edges, removing self-loops. We have the following:

Lemma 8 The edges of set F ′′ do not have parallel edges.

Proof: Suppose, for a contradiction, that after Simplification 1 has been
performed on all edges of F ′, F ′′ contains an edge e1 ∈ Gi joining vertices
u and v, such that there exists an edge e2 ∈ Gi also joining vertices u and
v. Since e1 ∈ F ′′, there exists an edge e3 joining vertices w and x that
has been removed when applying Simplification 1 to collapse an edge e4
also joining vertices w and x. Consider the step si of Simplification 1 in
which e4 has been collapsed. Since e3 cannot have a conflict with both
e1 and e2, vertices w and x are before step si one inside and one outside
the cycle composed of the edges e1 and e2 (see Fig. 14). Hence, before
step si, e4 either intersects e1 or e2, that gives us a contradiction, since
e4 is supposed to be a conflict-free edge, otherwise it would have not been
collapsed during an application of Simplification 1. �

e3

e4

e4

e2 e1

u x
w

v

Figure 14: Illustration for the proof of Lemma 8

Compute any spanning forest of the edges of F ′′ and perform Simplifica-
tion 1 on all the edges of such a forest. The above lemma guarantees that
after this second pass no new conflict-free edge can be originated.

374 Di Battista and Frati Clustered Graphs Small Faces

• Separating edges. After the end of the previous step, a set of current
multigraphs Gi’s is returned. Exploiting such multigraphs, a set H of
separating edges is constructed as follows. First, associate a name to each
face of each multigraph Gi. Second, for each edge e in each multigraph Gi,
record the names of the two faces incident to e. Third, for each edge e in
each multigraph Gi, verify if the faces incident to e are the same. If yes,
then add e to H. Observe that H is a set containing edges coming from all
Gi’s. Each edge e is labelled with a value indicating that e is a separating
edge. This computation takes time linear in the number of edges in the
Gi’s.

After the set H has been created, for each edge e in H, check if the edge
e∗ conflicting with e is a separating edge. If yes, return non-c-planar.
Otherwise, delete e∗ and collapse e. Observe that e has no parallel edges,
otherwise it would not be a separating edge. After this has been done
for all edges in H, it is easy to see that no conflict-free edge has been
created. On the other hand, some edges in Gi could now be separating
edges. However, if this happens, then we can conclude that C is not
c-planar as stated in the following lemmas:

Lemma 9 Consider a face f of Gi. Suppose that f contains a separating
pair composed by edges (u1, u2) and (u3, u4). Suppose that (u1, u2) has a
conflict with an edge (v1, v2) that is a separating edge, and that (u3, u4)
has a conflict with an edge (v3, v4). We have that C is not c-planar.

v2v1
v3 v4

u3
u1

u2 u4

v2v1
v3 v4

u3
u1

u2 u4

(a) (b)

Figure 15: Illustrations for the proof of Lemma 9

Proof: Suppose w.l.o.g. that (v1, v2) ∈ Gj and that removing (u1, u2)
and (u3, u4) disconnects Gi in two connected components G1

i and G2
i such

that u1, u3 ∈ G1
i and u2, u4 ∈ G2

i . By Lemma 5, C admits a saturator only
if it admits an acyclic saturator S such that (v1, v2) ∈ S and (u1, u2) /∈
S. Since (u1, u2) and (u3, u4) compose a separating pair, (u3, u4) ∈ S,
otherwise no path in S could connect G1

i and G2
i . Consider paths S(u1, u3)

and S(u2, u4) connecting u1 and u3, and connecting u2 and u4 in S (such
paths are single vertices if u1 = u3 and/or u2 = u4).

JGAA, 13(3) 349–378 (2009) 375

If (v3, v4) ∈ Gj (see Fig. 15.a), then let v1 (v2) be the one out of v1 and
v2 that is outside (resp. inside) f and let v4 (v3) be the one out of v3 and
v4 that is outside (resp. inside) f . Then, v3 (v4) is inside (resp. outside)
cycle C = S(u1, u3)∪(u3, u4)∪S(u2, u4)∪(u1, u2). Consider path S(v2, v3)
connecting v2 and v3 in S. Notice that S(v2, v3) lies completely inside
C, otherwise S(v2, v3) would contain an edge conflicting with an edge of
S(u1, u3), or an edge conflicting with an edge of S(u2, u4), or an edge
conflicting with (u3, u4), implying that S contains two conflicting edges.
Consider path S(v2, v4) connecting v2 and v4 in S. Since v2 is inside C
and v4 is outside C, S(v2, v4) lies in part inside and in part outside C. It
follows that either there exists an edge of S(v2, v4) conflicting with an edge
of S(u1, u3), or an edge conflicting with an edge of S(u2, u4), or an edge
conflicting with (u3, u4), implying that S contains two conflicting edges,
or S(v2, v4) contains edge (v1, v2). However, since (v1, v2) is a separating
edge no path excluding (v1, v2) and connecting v1 to v4 exists in Gi.
If (v3, v4) ∈ Gk, with k 6= i, j, then vertices v3 and v4 lie one inside and one
outside C. Hence, any path connecting v3 and v4 in S either contains an
edge conflicting with an edge of S(u1, u3), or with an edge of S(u2, u4), or
with (u3, u4) implying that S contains two conflicting edges, or contains
an edge conflicting with (u1, u2), implying that (u1, u2) has two conflicting
edges, respectively. �

Lemma 10 Suppose that each edge of H has a conflict with a non-separating
edge. Collapse the edges in H, repeatedly applying Simplification 2. Either
the resulting multigraphs Gi are edge 2-connected or C is not c-planar.

Proof: Order the edges of H in whichever way {e1, e2, . . . , ek}. Let ej ,
with 1 ≤ j ≤ k, be the first edge in {e1, e2, . . . , ek} such that (i) collapsing
edges e1, e2, . . . , ej−1 from the Gi’s does not create new separating edges
and (ii) collapsing edge ej creates a new separating edge. Suppose, for
a contradiction, that a saturator of C exists. Then, by Lemma 5, there
exists a saturator S containing edges e1, e2, . . . , ej−1 and not containing
the edges that have conflicts with edges e1, e2, . . . , ej−1. Consider the Gi’s
after edges e1, e2, . . . , ej−1 have been collapsed (and the edges that have
conflicts with edges e1, e2, . . . , ej−1 have been removed). Refer to Fig. 15.
Since collapsing edge ej = (v1, v2) creates a new separating edge (u3, u4),
(u1, u2) and (u3, u4) compose a separation pair for a multigraph Gi, where
(u1, u2) is the edge that has a conflict with (v1, v2). Hence, there exists
a face of Gi containing (u1, u2) and (u3, u4). Since no edge (and hence
neither (u3, u4)) is conflict-free, the statement follows from Lemma 9. �

After the collapse of all the edges in H and the removal of their conflicting
edges, a set of current multigraphs Gi’s is returned. Exploiting such multigraphs,
Condition 3 can be tested as follows. First, associate a name to each face of each
multigraph Gi; second, for each edge e in each multigraph Gi, record the names

376 Di Battista and Frati Clustered Graphs Small Faces

of the two faces incident to e, and third, for each edge e in each multigraph Gi,
verify if the faces incident to e are the same. If this is true for at least one edge,
by the previous lemmas we can return that the input graph is not c-planar,
otherwise the current Gi’s are the candidate saturating graphs of the clusters.

For each pair of distinct clusters µi and µj , we check if G∗i,j is edge 2-
connected (Condition 4 of Theorem 3) and if G∗i,j is dual to G∗j,i (Condition 5 of
Theorem 3). This is easily done in linear time because of the following property.

Property 7
∑
i,j |G∗i,j | = O(n), where |G∗i,j | is the size of the graph.

Proof: It trivially follows from Property 6. �

Hence, we can conclude the section with the following theorem.

Theorem 4 The c-planarity of an n-vertex embedded flat clustered graph C(G,T)
with at most five vertices per face can be tested in O(n) time and space.

As a consequence of the arguments discussed in this section, we remark
that a theorem analogous to Theorem 4 holds even for single-conflict clustered
graphs.

5 Conclusions

In this paper we have shown that the c-planarity of embedded flat clustered
graphs with at most five vertices per face and, more generally, the c-planarity
of single-conflict embedded flat clustered graphs can be efficiently tested.

We remark that the simplification phase described in Section 3 is a pre-
processing that can be performed on any embedded flat clustered graph. This
allows to reduce the problem of testing the c-planarity of such graphs to the one
of deciding whether a set of edge 2-connected candidate saturating graphs ad-
mits a set of non-conflicting spanning trees. However, it’s rather easy to see that
the characterization shown in Theorem 2 does not hold for general embedded
flat clustered graphs.

We conclude by providing a list of families of embedded clustered graphs for
which, in our opinion, determining the time complexity of a c-planarity testing
is worth of interest: (i) single-conflict general (non-flat) embedded clustered
graphs; (ii) embedded flat clustered graphs such that for each face of the un-
derlying graph there are at most two (or a constant number of) vertices of the
same cluster; and (iii) embedded flat clustered graphs.

JGAA, 13(3) 349–378 (2009) 377

References

[1] P. Bertolazzi, G. Di Battista, G. Liotta, and C. Mannino. Upward drawings
of triconnected digraphs. Algorithmica, 12(6):476–497, 1994.

[2] S. Cornelsen and D. Wagner. Completely connected clustered graphs. Jour-
nal of Discrete Algorithms, 4(2):313–323, 2006.

[3] P. F. Cortese and G. Di Battista. Clustered planarity. In J. S. B. Mitchell
and G. Rote, editors, Proc. Symposium on Computational Geometry, pages
32–34, 2005.

[4] P. F. Cortese, G. Di Battista, M. Patrignani, and M. Pizzonia. On embed-
ding a cycle in a plane graph. In P. Healy and N. S. Nikolov, editors, Proc.
Graph Drawing, volume 3843 of LNCS, pages 49–60, 2006.

[5] P. F. Cortese, G. Di Battista, M. Patrignani, and M. Pizzonia. Clustering
cycles into cycles of clusters. Journal of Graph Algorithms and Applications,
9(3):391–413, 2005.

[6] E. Dahlhaus. A linear time algorithm to recognize clustered graphs and its
parallelization. In C. L. Lucchesi and A. V. Moura, editors, Proc. Latin
American Theoretical Informatics, volume 1380 of LNCS, pages 239–248,
1998.

[7] G. Di Battista and F. Frati. Efficient c-planarity testing for embedded
flat clustered graphs with small faces. In S.-H. Hong, T. Nishizeki, and
W. Quan, editors, Proc. Graph Drawing, volume 4875 of LNCS, pages
291–302, 2008.

[8] Q. Feng, R. F. Cohen, and P. Eades. Planarity for clustered graphs. In
P. G. Spirakis, editor, Proc. European Symposium on Algorithms, volume
979 of LNCS, pages 213–226, 1995.

[9] A. Garg and R. Tamassia. On the computational complexity of upward
and rectilinear planarity testing. SIAM J. Comput., 31(2):601–625, 2001.

[10] M. T. Goodrich, G. S. Lueker, and J. Z. Sun. C-planarity of extrovert
clustered graphs. In P. Healy and N. S. Nikolov, editors, Proc. Graph
Drawing, volume 3843 of LNCS, pages 211–222, 2006.

[11] C. Gutwenger, M. Jünger, S. Leipert, P. Mutzel, M. Percan, and
R. Weiskircher. Advances in c-planarity testing of clustered graphs. In
S. G. Kobourov and M. T. Goodrich, editors, Proc. Graph Drawing, vol-
ume 2528 of LNCS, pages 220–235, 2002.

[12] E. Jelinkova, J. Kara, J. Kratochvil, M. Pergel, O. Suchy, and T. Vyskocil.
Clustered planarity: Small clusters in eulerian graphs. In S.-H. Hong,
T. Nishizeki, and W. Quan, editors, Proc. Graph Drawing, volume 4875 of
LNCS, pages 303–314, 2008.

378 Di Battista and Frati Clustered Graphs Small Faces

[13] D. G. Kirkpatrick. Establishing order in planar subdivisions. Discrete &
Computational Geometry, 3:267–280, 1988.

[14] T. Nishizeki and N. Chiba. Planar Graphs: Theory and Algorithms. North-
Holland, 1988.

[15] R. Tamassia. On embedding a graph in the grid with the minimum number
of bends. SIAM J. Comput., 16(3):421–444, 1987.

	Introduction
	Preliminaries
	A Characterization
	An Efficient c-Planarity Testing Algorithm
	Conclusions

