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Abstract

We present two algorithms for orthogonal graph drawing in three di-
mensional space. For a graph with n vertices of maximum degree six,
the 3-D drawing is produced in linear time, has volume at most 4.63n3

and has at most three bends per edge. If the degree of the graph is ar-
bitrary, the vertices are represented by solid 3-D boxes whose surface is
proportional to their degree. The produced drawing has two bends per
edge. Both algorithms guarantee no crossings and can be used under an
interactive setting (i.e., vertices arrive and enter the drawing on-line), as
well.
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1 Introduction

Graph drawing addresses the problem of automatically generating geometric
representations of abstract graphs or networks. For a survey of graph draw-
ing algorithms and other related results see the book by Di Battista, Eades,
Tamassia and Tollis [10]. An orthogonal drawing is a drawing in which ver-
tices are represented by points of integer coordinates and edges are represented
by polygonal chains consisting of horizontal and vertical line segments. Vari-
ous algorithms have been introduced to produce orthogonal drawings of planar
[2, 15, 20, 34, 36] or general [2, 24, 27, 33] graphs of maximum degree 4, and
maximum degree 3 [20, 23, 24]. All these algorithms run in linear time, except
for the algorithm in [34]. For drawings of general graphs, the required area can
be as little as 0.76n2 [24, 27], the total number of bends is no more than 2n + 2
[2, 24, 27], and at most two bends can be on the same edge [2, 24, 27].

There has been a recent trend in Graph Drawing to visualize graphs in the
three dimensional space. Although the number of applications that require such
a representation for graphs is still limited [4, 17, 22, 31, 32, 37, 38], there is no
doubt that 3-D Graph Drawing will find many applications in the future.

A number of software systems that produce straight-line 3-D drawings of
graphs have been introduced. In the case of [5], the system is based on the
spring-embedder paradigm [19]. Spring-embedders use a physical model based
on vertices treated as currents exerting a repulsive force, while edges are modeled
as forces attracting the vertices they combine.

Simulated Annealing has also been used [8] to produce straight-line 3-D
drawings of graphs. The idea here is that there is a predefined cost associated
with the current 3-D drawing of the graph, and the system moves to drawings of
lower costs (while sometimes accepting higher cost drawings if they look ‘nice’),
until no further improvement is possible. Other special purpose systems are
described in [11, 32].

Little is known about the theory of 3-D Graph Drawing. The concept of a
visibility representation of a graph [35] has been extended to 3-D space, known
as 3-D visibility representations of graphs. Research in this area [1, 3, 6, 16, 18]
has revealed characterizations of several families of graphs and other theoretical
results. In [7] it is shown that an n-vertex graph has a non-orthogonal 3-D
drawing in a n×2n×2n grid, so that all vertices are located on grid points, and
no two edges cross. In the same paper, a technique to convert an orthogonal 2-D
drawing of area H×V to a 3-D straight-line drawing of volume d√He×d√He×V
is also presented.

Naturally, orthogonal drawing in three dimensional space has also received
attention recently [4, 5, 8, 12, 13, 17, 32]. A 3-D orthogonal drawing typically
has the following properties:

• Vertices are points with integer coordinates in three dimensional space.

• Each edge is a polyline sequence of consecutive straight line segments;
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each one of these line segments is parallel either to the x-axis, y-axis, or
z-axis.

• The meeting point of two consecutive straight line segments of the same
edge is a bend and has integer coordinates.

• Line segments coming from routes of two different edges are not allowed
to overlap.

A very interesting upper bound on the volume for 3-D orthogonal drawings
of graphs of maximum degree 6 is shown in [13]. More specifically, the volume
for such drawings is at most O(

√
n) × O(

√
n) × O(

√
n), while each edge has

at most seven bends, and no two edges cross. This improves the result in [12],
where the volume upper bound was the same but the drawings allowed up to
16 bends per edge. If we require that each edge has at most three bends, then
another algorithm is presented in [13] that requires volume exactly 27n3 (the
produced drawings have no crossings). Both algorithms run in O(n

3
2 ) time.

Note that Kolmogorov and Bardzin [21] show an existential lower bound of
Ω(n

3
2 ) on the volume occupied by 3-D orthogonal grid drawings of graphs of

maximum degree 6.
In this paper we present an algorithm for producing 3-D orthogonal drawings

of simple graphs of maximum degree 6, and a second algorithm that produces 3-
D orthogonal drawings of simple graphs of arbitrary degree. Note that there has
not been any previous work that dealt with the theory of 3-D orthogonal drawing
of graphs of arbitrary degree. Both algorithms are based on the ‘Relative-
Coordinates’ paradigm for vertex insertion [25, 26, 28]. As such, both algorithms
support interactive environments where vertices arrive and enter the drawing
on-line. An important feature of this work is that both algorithms guarantee
no edge crossings.

Given an n-vertex graph G of maximum degree 6, our first algorithm pro-
duces a 3-D orthogonal drawing of G whose volume is at most 4.63n3, in linear
time. Moreover, each edge of the drawing has at most three bends. Hence, our
algorithm outperforms the algorithm of [13] in terms of both running time and
volume of the drawing. Our second algorithm uses solid three dimensional boxes
to represent vertices. The surface of each such box is proportional to the degree
of the represented vertex. The produced 3-D orthogonal drawings have at most
two bends per edge, and volume O((m

3
+ O(n))3), where m is the number of

edges of the drawing.

2 Preliminaries

Clearly, for each graph of maximum degree 6, there is a 3-D orthogonal drawing
according to the definition of the previous section. The system of coordinates
typically used in three dimensional space is based on three axes x, y, z so that
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each one of them is perpendicular to the other two (see Fig. 1a). Three different
planes are formed by the three possible ways we can pair these axes: The xz-
plane is defined by the x, z-axes, the yz-plane is defined by the y, z-axes, and
the xy-plane is defined by the x, y-axes. Each one of these planes is called a
base plane; each base plane is perpendicular to the other two.
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Figure 1: (a) Coordinates system for 3-D drawing, (b) possible directions from
where an edge can enter v, (c) v’s left free direction is blocked.

Each vertex of a 3-D drawing has six possible directions around it from
where incident edges may enter the vertex. The two directions parallel to the
z-axis are top (extending towards the positive part of the z-axis) and bottom
(extending towards the negative part of the z-axis). Front and back directions
are parallel to the y-axis and they extend towards the negative and positive
parts of the y-axis, respectively. The remaining two directions are parallel to
the x-axis and are called left (extending towards the negative part of the x-axis)
and right (extending towards the positive part of the x-axis), see also Fig. 1b.

Two directions parallel to the same axis are opposite directions. Two direc-
tions parallel to two different axes are orthogonal directions. If there is no edge
entering a vertex v from a specific direction of v, this direction is called free
direction of v. A free direction of v is blocked by straight line segment e, if we
can draw a straight line from v along the free direction that intersects e. Such
a situation is depicted in Fig. 1c: v and e are both placed in plane p which is
parallel to the xy-plane. v’s left free direction is blocked since line e′ (which is
parallel to the x-axis and extends towards the negative part of this axis) crosses
line e.

A plane free direction is a left, right, front, or back free direction. Consider
vertices v1, v2, · · ·vr , where r ≥ 2, having plane free directions fd1, fd2, · · ·fdr

which extend towards the same direction (e.g., they are all left free directions).
The set of the fdi’s forms a beam. If the fdi’s are left (resp. right, front,
back) free directions, then their beam is a left (resp. right, front, back) beam.
Vertices v1, v2, · · ·vr are the origins of the beam. Two beams are opposite (resp.
orthogonal) if the free direction of one beam is opposite (resp. orthogonal) to
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the free direction of the other.
The length of a 3-D drawing is the maximum distance between two planes

parallel to the yz-plane containing any part of the drawing. The width of a 3-D
drawing is the maximum distance between two planes parallel to the xz-plane
containing any part of the drawing. The height of a 3-D drawing is the maximum
distance between two planes parallel to the xy-plane containing any part of the
drawing. If a 3-D drawing has length l, width w and height h, its volume is
l × w × h. It is actually the volume of the smallest rectangular parallelepiped
that encloses the 3-D drawing.

Before we present our two algorithms, we repeat very briefly the following
interactive graph drawing terminology: The current drawing is the drawing
before the insertion of new vertex v; the number of vertices of the current
drawing that are going to be connected with v through new edges, is v’s local
degree. We call these vertices adjacent vertices of v. Finally, a plane is to the
top of the topmost plane of the current drawing, if it is parallel to the xy-plane
and located one unit above the point of the current drawing with the highest
z-coordinate. This notion extends similarly to the other directions.

3 Drawing Graphs with Maximum Degree Six

In this section we present our incremental algorithm for producing orthogonal
drawings of graphs of maximum degree 6 in the three dimensional space. The
incremental nature of our algorithm comes from the fact that a user is allowed
to insert vertices (along with edges to existing vertices) into the current drawing
in any order. The algorithm supports such vertex insertions at any moment t,
as long as each request observes the following rules:

• We start the drawing from scratch, that is the very first current drawing
is the empty graph.

• The degree of any vertex of the current drawing at any time t is at most
6.

• The graph represented by the current drawing is always connected.

In the following two subsections, we describe how a new vertex is placed in
the current drawing and how its (at most six) incident edges are routed. Ver-
tices are represented by points. Our technique follows the Relative-Coordinates
scenario. This means that the decision about where a new vertex will be placed
and how its incident edges will be routed depends entirely on the free direc-
tions around the adjacent vertices. The properties of the Relative-Coordinates
scenario [25, 26, 28] are also properties of the 3-D drawings produced by our
algorithm and guarantee a ‘smooth’ transition from the current drawing to the
next. The notation u → p → p′ means that from vertex u we draw a straight
line segment that intersects plane p perpendicularly, and from the intersection
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point we draw another segment to plane p′ that intersects p′ perpendicularly
as well. We use the notation pa,v, where a = x, y, or z and v is some vertex,
to denote the plane which is perpendicular to the a-axis and contains vertex v.
As we will see later, our 3-D orthogonal drawing is built in an upward fashion
(i.e., it grows along the positive z-axis). For this reason, we always keep the
following basic rule during the interactive drawing process:
Basic Rule: No vertex has a bottom free direction in any current drawing.

Most of the edges we route in 3-D follow one of five fundamental routes that
we now explain. Assume that w and w′ are two vertices of the current drawing.
In the first three fundamental routes, edge (w′, w) always enters w′ from its left
free direction.

w’

w
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z,w

w

w’ w’

w’
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w
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(a) (b) (c)

(d)

(e)
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Figure 2: (a) First, (b) Second, (c) Third Fundamental Routes, (d) Same-Plane,
(e) Over-The-Top Routes.

• First Fundamental Route: Edge (w′, w) enters w from its left free
direction. We open up a new plane p to the left of the leftmost plane of
the current drawing. Edge (w′, w) is routed with three bends as follows:
w′ → p → py,w → pz,w → w. This is shown in Fig. 2a. The small empty
circles of this figure denote the three bends of the route.
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• Second Fundamental Route: Vertex w has lower x-coordinate than
w′, and edge (w′, w) enters w from its right free direction. We open
up a new plane p parallel to the yz-plane and one unit to the right of
w. Edge (w′, w) is routed with three bends (see Fig. 2b), as follows:
w′ → p → py,w → pz,w → w.

• Third Fundamental Route: Vertex w has lower x-coordinate and
higher y-coordinate than w′, and edge (w′, w) enters w from its front
free direction. No new plane is opened up and we route edge (w′, w) with
two bends (see Fig. 2c) as follows: w′ → px,w → pz,w → w.

Although we used specific free directions for both w and w′ in order to
describe the first three fundamental routes, we must stress that these routes
generalize to other situations as well. More specifically, if we derive the sym-
metric of the route shown in Fig. 2a with respect to the xy-plane or yz-plane,
we have new legal routes which still fall within the First Fundamental Route
category. Also, rotating the configuration of Fig. 2a or a symmetric of it by a
multiple of a right angle around the z-axis produces additional legal routes of the
First Fundamental Route type. In the same way, we can use symmetry and/or
rotation in the way described before to produce additional legal configurations
for the Second and Third Fundamental Routes.

In the remaining two fundamental routes, edge (w′, w) enters w′ from its top
free direction. We also assume that w has higher z-coordinate than w′.

• Same-Plane Route: Edge (w′, w) may enter w from any one of its plane
free directions. We draw a straight line segment from w′ intersecting plane
pz,w perpendicularly. The remaining portion of edge (w′, w) is routed ex-
clusively in pz,w, and may enter w from any one of its plane free directions
with at most two bends (if two bends are required, then a new plane par-
allel either to the xz or yz-plane has to be inserted). This means that the
whole route has at most three bends. In Fig. 2d we show three examples
of the portions of three routes in plane pz,w.

• Over-The-Top Route: Edge (w′, w) enters w from its top free direction.
A new plane p parallel to the xy-plane is inserted in the drawing, one unit
above w. Edge (w′, w) is routed with three bends (see Fig. 2e) as follows:
w′ → p → px,w → py,w → w. In other words, we draw a straight line
segment intersecting p perpendicularly, route the edge in p bringing it
directly on top of w with one bend, and then just draw the line segment
from that point to w.

Note that if more than one edge is routed to vertex w using the Same-Plane
Route, we have to make sure that: (a) There are no crossings between any two
portions of these edges lying in plane pz,w, and (b) no portion of such an edge
in pz,w blocks any one of w’s remaining (i.e., after all edges are routed) free
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directions. These requirements can always be satisfied as long as: (a) the points
in pz,w where the edges intersect pz,w have general position (i.e., no two points
are in the same row or column of pz,w), and (b) there are no portions of non
Same-Plane Routes in plane pz,w. In Fig. 2d, we show how three edges starting
from generally positioned points are routed to w with at most two bends. Note
that w’s left free direction is not blocked as a result of the routing.

3.1 Overview of the Algorithm - Preprocessing

Assume that we start with an empty graph. The following gives an overview of
the algorithm for placing the next vertex v in the current drawing. The steps
of this algorithm are analyzed in this and the following subsections. Let v1 be
the first vertex to be inserted. Vertex v1 has local degree 0. If v2 is the second
vertex to be inserted, then v2 has local degree 1 and is connected with v1. In
Fig. 3a, we show the first two vertices inserted in an empty drawing. There are
three observations to make about Fig. 3a. First, edge (v1, v2) has three bends.
Second, a total of seven new planes are inserted in the empty drawing. Third,
neither v1 nor v2 has a bottom free direction.

1. IF v is the first or second vertex to be inserted, THEN place them as
discussed above.

2. ELSE

(a) Find v’s adjacent vertices u1, · · ·ul in the current drawing.

(b) Determine connectors (one for each adjacent vertex) by using the
procedure described below.

(c) Find which Routing Case v’s insertion falls into.

(d) WITHIN a Routing Case:

i. IF Routing Case 1, THEN determine anchor vertex ua.
ii. IF Routing Case 2 or 3, THEN

A. IF degree of v is 6, THEN determine cover vertex uc.
B. Determine anchor vertex ua.

iii. Place v.
iv. Route edge (ua, v).
v. Route remaining edges (ui, v) except (uc, v), using the three Fun-

damental Routes and/or the Same-Plane Route.
vi. IF Routing Case 1, THEN determine cover vertex uc.
vii. Route edge (uc, v).

3. END.
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Let v be the next vertex to be inserted in the current drawing and l (1 ≤
l ≤ 6) be v’s local degree. We find the l adjacent vertices u1, u2, · · ·ul of v.
According to the Basic Rule, v must not have a bottom free direction after v
is placed and all its l incident edges are routed. This means that exactly one
of these edges must enter v from the bottom. The vertex which is the other
endpoint of this edge is called anchor vertex, and is denoted by ua. If l = 6,
then the last one of v’s incident edges to be routed enters v from its top free
direction. The other endpoint of this edge is called cover vertex, and is denoted
by uc.

u
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u
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ua

(b)

v

ua

v

u
cv

(d)
v

1

v2

(c)
(a)

Figure 3: (a) Inserting the first two vertices, (b) a Routing Case 1 example, (c)
(ua, v) of Routing Case 1 when ua does not have top connector, (d) (uc, v) of
Routing Case 2 when uc does not have top connector.

For each adjacent vertex ui, we must pick one of its free directions which will
be used for routing edge (ui, v). The free direction picked for each ui is called ui’s
connector. Once a connector for an adjacent vertex ui is determined, it remains
the same throughout the whole process of placing v and routing its incident
edges. If a connector of some ui is a right (left, front, back, top) free direction,
then it is called right (left, front, back, top) connector. Opposite, orthogonal,
and plane connectors are defined in the same way as for free directions. Also,
a beam of connectors is defined similarly to the beam of free directions. Let ci

be ui’s connector. We run the following procedure to determine the connector
of each ui.

1. Choose a free direction fdi for each ui so that:

(a) The number of pairs < fdi, fdj > (i 6= j and 1 ≤ i, j ≤ l) where fdi

and fdj are opposite, is the smallest possible.
(b) fdi is top free direction, only if ui has only this free direction left.

2. IF there are no two opposite beams among the fdi’s, THEN
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(a) FOR each ui:

i. ci := fdi.

(b) RETURN.

3. IF there are two opposite beams B1 and B2, THEN

(a) Consider the beam with the smallest cardinality; say B1.

(b) FOR each origin ui of B1:

i. IF ui’s top free direction is available, THEN ci := top connector.
ii. ELSE ci := fdi.

(c) FOR each ui that is NOT an origin of B1:

i. ci := fdi.

(d) RETURN.

4. END.

3.2 Vertex Placement and Edge Routing

As we will see in this subsection, many of v’s incident edges are routed using
the fundamental routes. When this is the case, vertex v corresponds to w,
and the adjacent vertex ui which is the other end of the route corresponds to
w′. Depending on the types of connectors that v’s adjacent vertices have, we
distinguish three Routing Cases:

Routing Case 1: There is no beam among connectors ci. We distinguish
the following subcases for selecting the anchor vertex ua:

1. First Subcase: There is at least one adjacent vertex with top connector.
We consider the following cases:

• There is exactly one adjacent vertex with plane connector. If this is
left (front) or right (back) connector, then anchor ua is the adjacent
vertex with top connector whose y(x)-coordinate is the median of the
y(x)-coordinates of all adjacent vertices with top connectors.

• If there are exactly two adjacent vertices with plane connectors, we
have two situations:

– One plane connector is left (front) and the other one is right
(back). Anchor ua is the vertex with top connector whose y(x)-
coordinate is the median of the y(x)-coordinates of all adjacent
vertices with top connectors.

– The two plane connectors are orthogonal. If one of them is a left
(right) plane connector, then anchor ua is the vertex with top
connector having the lowest (highest) x-coordinate of all adjacent
vertices with top connectors.
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• If there are exactly three adjacent vertices with plane connectors,
we find the plane connector which is orthogonal to the other two.
If this is a left (resp. back, right, front) connector, then anchor
ua is the adjacent vertex with top connector having the lowest x-
coordinate (resp. highest y-coordinate, highest x-coordinate, lowest
y-coordinate) of all adjacent vertices with top connectors.

• In any other situation, any adjacent vertex with top connector can
be the anchor ua.

We insert a new plane p to the top of the topmost plane of the current
drawing. Vertex v is placed at the intersection of planes p, px,ua, py,ua,
directly above ua. Edge (ua, v) is a simple straight line segment from ua

to v (see Fig. 3b).

2. Second Subcase: There is no adjacent vertex having top connector. In
this situation, any adjacent vertex can be the anchor vertex ua. Assume
that ua has left connector. We insert three new planes p1, p2, p3 so that p1

(p2) (p3) is to the left (back) (top) of the leftmost (backmost) (topmost)
plane of the current drawing. Vertex v is inserted at the intersection of
planes p1, p2, p3. Edge (ua, v) is routed with two bends (see Fig. 3c) as
follows: ua → p1 → p2 → v. This generalizes to cases where ua has a
different plane connector, through a rotation.

Any edge (ui, v) where ui is not the anchor is routed in one of the following
ways: If ui has plane connector, edge (ui, v) is routed with three bends using the
First Fundamental Route (see Fig. 3b for a complete example). If ui has top
connector, edge (ui, v) is routed with two or three bends using the Same-Plane
Route. Finally, note that if l = 6, cover vertex uc has top connector and is
routed with three bends using the Over-The-Top Route.

Routing Case 2: There is at least one beam among connectors ci and
there are no two opposite beams. If there is at least one adjacent vertex with
top connector and l = 6, then any such vertex can be the cover uc. If l = 6 and
there is no adjacent vertex with top connector, then cover uc is the adjacent
vertex with highest z-coordinate which belongs to a beam. Then, we find the
beam Bmax having the highest cardinality without counting uc. Assume that
Bmax is a left beam (the following discussion generalizes through rotation).
Anchor ua is always one of Bmax’s origins. More specifically, it is the vertex
whose y-coordinate is the median of the y-coordinates of all Bmax’s origins.

We insert three new planes p1, p2, p3 parallel to the three base planes, so
that p1 is to the left of the leftmost plane of the current drawing. If there is
at least one adjacent vertex with top connector or if l < 6, then plane p3 is to
the top of the topmost plane of the current drawing. Otherwise, (i.e., l = 6
and there is no adjacent vertex with top connector), we insert p3 one unit to
the bottom of uc (note that p3 is parallel to the xy-plane). We distinguish the
following subcases for plane p2 which is parallel to the xz-plane:
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1. First Subcase: There are no two orthogonal connectors. If Bmax has
cardinality 2, then plane p2 is placed one unit to the front of adjacent
vertex ui which has top connector, is not the cover (if there is one), and has
the highest y-coordinate among all adjacent vertices with top connectors.
If Bmax has cardinality higher than 2 or if such a vertex ui does not exist,
then plane p2 is placed one unit to the back of ua. Vertex v is placed at
the intersection of planes p1, p2, p3. Edge (ua, v) is routed with two bends
(see Fig. 3c) as follows: ua → p1 → p2 → v.

2. Second subcase: There is one pair of orthogonal beams, or there is only one
beam and it is orthogonal to at least one connector. This means that Bmax

is orthogonal either to another beam (which we assume is a back beam) or
to some connector ci (which we assume is a back connector). Plane p2 is
placed to the back of the backmost plane of the current drawing. Placing
v and routing edge (ua, v) is done as in the First Subcase.

We use the First, Second, and Third Fundamental Routes to route the re-
maining edges (ui, v) where ui has a plane connector. These edges eventually
attach only to plane free direction of v. Note that the Third Fundamental Route
can be used only by vertices which are origins of Bmax. Edges that come from
adjacent vertices having top connectors are routed using the Same-Plane Route.
If l = 6 and cover uc has top connector, then edge (uc, v) is routed using the
Over-The-Top Route.

If cover uc does not have top connector, then, by the way it was chosen,
it has the following properties: (a) uc has higher z-coordinate than v, and (b)
uc has either left (if it is an origin of Bmax), or back (if it is an origin of the
other beam different from Bmax) connector. If it has left (back) connector, it is
routed with two bends as follows: uc → p1(p2) → p2(p1) → v. Figure 3d shows
an example of this route when uc has left connector.

Routing Case 3: There are two opposite beams among connectors ci’s.
Clearly, in this routing case, we have that l ≥ 4. Bmax is the beam with the
highest cardinality. Let us assume that Bmax is a left beam (the discussion
generalizes through rotation). Let B be the beam which is opposite to Bmax.
We first discuss the situation where (a) l ≤ 5, or (b) l = 6 and there is at least
one adjacent vertex with top connector (this vertex is cover uc and edge (uc, v)
is routed using the Over-The-Top Route).

Anchor ua is the median of the origins of beam Bmax with respect to their
y-coordinates. We open up three new planes p1, p2, p3 as follows: p1 is to the
left of the leftmost plane of the current drawing, and p3 is to the top of the
topmost plane of the current drawing. Plane p2 is parallel to the xz-plane and
between the two origins of beam B. Vertex v is inserted at the intersection of
planes p1, p2, p3. We route edge (ua, v) with two bends (see Fig. 3c) as follows:
ua → p1 → p2 → v.

If Bmax has two origins, then there can be at most one adjacent vertex u′

with front, back, or top connector (u′ is not the cover vertex). If u′ has front or
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ucuB

v

(a) (b)

v

Figure 4: Routing Case 3: (a) routing the edge coming from vertex uB when
uB is an origin of the beam opposite to Bmax, (b) edge (uc, v) when uc does not
have top connector.

back connector, then edge (u′, v) is routed using the First Fundamental Route.
If u′ has top connector, then edge (u′, v) is routed using the Same-Plane Route.
In this case, edge (u′, v) enters vertex v from its front (back) free direction if
the y-coordinate of u′ is lower (higher) than that of v.

Consider the case where Bmax has three origins. If the y-coordinate of
anchor ua is lower (higher) than that of v, let u′ be the origin of Bmax whose
y-coordinate is lower (higher) than that of ua. Edge (u′, v) is routed using the
Third Fundamental Route entering v from its front (back) free direction.

The remaining incident edges of v are routed as follows: Let u′′ be Bmax’s
origin whose edge has not been routed yet. We route edge (u′′, v) using the
First Fundamental Route. As a result of routing v’s incident edges so far, either
v’s back or v’s front free direction is available. If v’s back (front) free direction
is available, let uB be the origin of B having higher (lower) y-coordinate than
that of v. We open up a new plane p′ to the right of the rightmost plane of
the current drawing, and route edge (uB , v) with three bends (see Fig. 4a) as
follows: uB → p′ → p3 → p1 → v.

Note that edge (uB, v) is routed on top of the current drawing, all the way
from the rightmost to the leftmost side of the drawing. Although this edge
passes directly over uB , this will not create any crossings in the future since
uB’s top free direction is not available. Let u′B be the other origin of B. Edge
(u′B, v) is routed using the First Fundamental Route.

Let us now consider the situation where l = 6 and there is no adjacent vertex
with top connector. If B has cardinality 3, then cover uc is the origin of B which
is between the other two origins of B with respect to the y-coordinate. If B
has cardinality 2, then cover uc is the origin of B with the lowest (highest) y-
coordinate of the two if there is an adjacent vertex with front (back) connector.
Anchor ua is the median of the origins of Bmax with respect to the y-coordinate.
Planes p1, p3 are inserted as described in the previous case, and plane p2 is
identical to py,uc . Vertex v is placed at the intersection of planes p1, p2, p3, and
edge (ua, v) is routed with two bends as described in the previous case.
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If there are adjacent vertices with front or back connectors, the edges that
come from them are routed using the First Fundamental Route. Any edge
coming from an origin of B (different from uc) is routed in the way uB was
routed (see Fig. 4a), only if the front and/or back free directions of v are
available. If neither of these two free directions of v is available, then the edge
coming from B’s origin (different from uc) is routed to the right free direction of
v using the First Fundamental Route. Edges coming from the origins of Bmax

are routed using the First, Second, and Third Fundamental Routes.
Two new planes pc and p′c are inserted so that pc is to the right of the

rightmost plane of the current drawing and p′c is parallel to p3 and one unit to
the top of it. Edge (uc, v) is routed with three bends (see Fig. 4b) as follows:
uc → pc → p′c → p1 → v. The top free direction of uc is not available, so
there can be no future edge incident to uc crossing edge (uc, v). Finally, note
that since placing v and routing edge (ua, v) requires only two new planes (i.e.,
p1, p3), the total number of new planes that we open up in order to route all six
of v’s incident edges is at most eight.

3.3 Routing Properties - Analysis

Placing a new vertex v and routing its incident edges has several cases which
were described in detail in the previous subsection. We believe that this de-
scription of all the involved cases was necessary especially if this algorithm is
to be implemented. We saw that vertex v is usually placed at the intersection
point of three planes, at least two of which are new.

Placing a vertex v directly to the top of vertex u (when routing edge (u, v))
happens only when u had current degree 5 before this edge insertion. This way,
edges that enter u and v from their same plane free direction cannot cross. In
any other case that two vertices have the same either x or y-coordinate, the
one with the lower z-coordinate does not have an available top free direction
(see Routing Case 3). Note that, although it is possible for two vertices to have
the same x and/or y-coordinate, there are never two vertices with the same
z-coordinate.

An important feature of our edge routing technique is that no two edges
cross. The route of each edge is naturally decomposed in three different stages.
Let us consider an edge e from u to v, where v is the vertex most recently placed
in the drawing. The first stage contains the portion of the route that lies entirely
in plane pz,u. This portion consists of a straight line segment that goes all the
way until it hits a new plane positioned outside the current drawing. This line
segment does not cross any other edges in its way, because no available free
direction is ever blocked.

When it hits the new plane, the line segment of the first stage may bend
staying always in plane pz,u. This new segment does not cross any other edge
either, since it runs entirely outside the current drawing. In the second stage,
we have the portion of the route consisting of a straight line segment running
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vertically from plane pz,u to plane pz,v. This segment always lies entirely outside
the current drawing, so it does not cross any other edge.

Finally, the third stage consists of the portion of the route that runs entirely
in plane pz,v. This portion is typically a straight line segment entering v. If
this portion needs to have one or two bends in plane pz,v, then the routing is
done without (a) crossing portions of other edges lying in pz,v, and (b) blocking
v’s free directions that may be used in the future (see Same-Plane Route and
Routing Case 3).

If there is a portion of the third stage lying in px,v or py,v, then it does not
cross line segments of other edges that are perpendicular to pz,v since neither
px,v nor py,v can be used to route edges that are not incident to v. The only
exception to this would be the case where there was a vertex w so that v was
placed directly to the top of w. But in that case, w would have degree 6 that is
no future incoming vertices will be adjacent to it.

If there is a portion s of the third stage lying in px,u or py,u, then we
distinguish two cases: In the first case, edge e leaves u from its top free direction.
The portion of any future edge (u, v′) which is perpendicular to pz,v will lie
outside the current drawing, so it cannot cross s. In the second case, edge e
leaves u from one of its plane free directions (in other words, we have Routing
Case 3). In this case, u’s top free direction was used in the past to route some
other edge e′. The whole route of e′ lies entirely below v, so no portion of this
route can cross s. Hence we have:

Lemma 1 Our routing technique for 3-D orthogonal graph drawing guarantees
that each edge has at most three bends and no two edges cross (in a current
drawing).

In order to measure the volume of the current 3-D drawing at time t, we
count the total number of planes that were inserted in the drawing up to time
t. Placing v and routing edge (ua, v) requires two or three new planes. Routing
any other edge (ui, v) (where ui is not the cover) adds at most one new plane.
Routing edge (uc, v) requires one or two new planes. However, whenever two
new planes are required to route edge (uc, v), placing v and routing edge (ua, v)
requires only two new planes (see Routing Case 3).

From this it follows that if v’s local degree is l ≥ 1, then at most l + 2 new
planes need to be inserted when v is placed in the current drawing. Vertex
v2 (i.e., the second vertex to be inserted in the drawing) is the only exception
and requires four new planes, although it has local degree 1 (see Fig. 2a). Let
n1(t), n2(t), n3(t), n4(t), n5(t), n6(t) be the total number of vertices with local
degree 1, 2, 3, 4, 5, 6, respectively, and n(t) be the total number of vertices of
the current drawing at time t. Also recall that v1 (i.e., the first vertex to be
inserted) introduces three planes. If P (t) is the total number of planes inserted
in the drawing at time t, then we have:

P (t) ≤ 3 + 3n1(t) + 1 + 4n2(t) + 5n3(t) + 6n4(t) + 7n5(t) + 8n6(t)
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≤ (n1(t) + 2n2(t) + 3n3(t) + 4n4(t) + 5n5(t) + 6n6(t))
+(2n1(t) + 2n2(t) + 2n3(t) + 2n4(t) + 2n5(t) + 2n6(t)) + 4

≤ 3n(t) + 2(n(t)− 1) + 4
≤ 5n(t) + 2.

Let Px(t), Py(t), Pz(t) be the total number of planes perpendicular to the x, y, z-
axes, respectively, inserted in the current drawing up to time t, so that Px(t) +
Py(t) + Pz(t) = P (t). The volume V (t) of the current drawing at time t is:
V (t) = (Px(t) − 1) × (Py(t) − 1) × (Pz(t) − 1), and it is maximized when:
Px(t) = Py(t) = Pz(t) = P(t)

3 = 5n(t)+2
3 . From this it follows that V (t) ≤

(5n(t)+2
3 − 1)3 ≤ (5n(t)

3 )3 ≈ 4.63n3(t).
Clearly, each edge route has a constant number of bends and each vertex

insertion requires a constant number of planes to be added to the current draw-
ing. However, in order to guarantee constant time when a plane is inserted at
a particular position in the middle of the current drawing, we have to use the
data structure by Dietz and Sleator [9]. A vertex insertion can be completed in
constant time as long as the system does not have to produce the new drawing.
If a drawing is required, then the time is linear per vertex insertion operation.
From the above discussion and Lemma 1 we have:

Theorem 1 There is a 3-D orthogonal graph drawing algorithm for graphs of
maximum degree 6 that allows on-line vertex insertion so that the following hold
at any time t:

• after each vertex insertion, the coordinates of any vertex or bend of the
current drawing shift by a small constant amount of units along the x, y, z-
axes, effectively maintaining the general shape of the drawing,

• there are at most three bends along any edge,

• no two edges cross,

• the volume of the drawing is at most 4.63n3(t), where n(t) is the number
of vertices in the drawing at time t, and

• vertex insertion takes constant time (if the screen needs to be refreshed
after each vertex insertion, then it takes linear time).

Our incremental algorithm can be used to produce a 3-D orthogonal drawing
of a graph by first numbering its vertices and then inserting each vertex one at
a time, according to its number. A numbering with the following property will
guarantee that each placed vertex has local degree at least 1: If j (j > 1)
is the number assigned to vertex vj, then there is at least one edge (vi, vj)
in the graph, where i < j. Consider the directed acyclic graph that results
from the given graph when each edge is directed from the lower to the higher
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Figure 5: 3-D orthogonal drawing of K7 produced by our algorithm.

numbered vertex. What the above condition means is that the resulting directed
graph has one source and at least one sink. A simple Depth-First-Search (DFS
[14]) or Breadth-First-Search (BFS [14]) can provide such a numbering for any
connected graph. Hence we have the following:

Theorem 2 Consider an n-vertex connected graph G of maximum degree 6.
There is a linear time algorithm that produces a 3-D orthogonal drawing of G,
so that each edge has at most three bends, no two edges cross, and the volume
of the drawing is at most 4.63n3.

In Fig. 5 we show the 3-D orthogonal drawing of K7 produced by our
algorithm. The numbers in the vertices denote the order in which the vertices
were inserted. The volume of this drawing is 8 × 8 × 8 = 512 ≤ 1.5n3, where
n = 7. Observe that out of K7’s 21 edges, there is one edge with no bends, 12
edges require two bends each, and the remaining eight edges are routed with
three bends each. The algorithm has been implemented within 3DCube [29]
and we present preliminary experimental results in the Conclusions.



Papakostas and Tollis, Incremental 3-D Drawing , JGAA, 3(4) 81-115 (1999) 98

4 A Model for Vertices of High Degree

In this section we describe a model to support high degree interactive three
dimensional orthogonal graph drawing based on the Relative-Coordinates sce-
nario. Our model allows vertices to arrive on-line and the degree of the vertices
to increase arbitrarily. At any time there is a change in the drawing, our target
is to maintain the general shape of the current drawing. Our model and the
drawing algorithm which is based on it, apply also to non-interactive settings.
In these settings, the whole graph is known in advance and the user provides
the order in which the vertices are considered for placement.

The first issue that has to be addressed is the way that vertices are repre-
sented. In the previous section, it sufficed to map vertices to points in space
since the degree of any vertex was at most 6 at any time during the drawing
process. Clearly, we now need a different approach to accommodate arbitrary
vertex degrees. We choose to represent vertices using 3-D boxes of volume
(initially) at least one cubic unit, regardless of the degree of the vertices.

When a vertex is inserted into the drawing, it is represented by a cubic box
with size depending on the degree of the vertex. Edges that are adjacent to a
vertex are attached to the surface of its box. The points on the box surface where
edges can be attached are called connectors, and they have integer coordinates.
Each box has six sides, and each side is a rectangle parallel to one of the base
planes. If d× d′ is the size of one side of a box, then both d and d′ are integers
and there are (d + 1)(d′ + 1) connectors on this side.

Let us consider a vertex v and the box that represents it. The two sides of
the box that are parallel to the xy-plane are called top and bottom sides, with
top being the side located at a higher z-coordinate between the two. The two
sides parallel to the yz-plane are called left and right sides, with right being the
side located at a higher x-coordinate between the two. Similarly, the remaining
two sides are the front and back sides, with back being the side located at a
higher y-coordinate between the two. The six sides of box v are shown in Fig.
6a, and the connectors of the front side are shown in Fig. 6b, where v is a
4× 4× 4 cube.

Note that all connectors located along the line where two sides meet are
shared by both sides. Also, the single connector located at the point where
three sides meet is shared by all three sides. The distance between the left and
right sides is called length of the box. Similarly, the distance between the front
and back sides is called width, and the distance between the top and bottom
sides is called height of the box. In a d1×d2×d3 box the length is d1, the width
is d2 and the height is d3.

Edge routing follows the Relative-Coordinates scenario, and tries to keep
both volume and number of bends as low as possible. However, as a result of
this routing, edges may require to attach to specific sides of incident boxes. If
there are no available connectors on that side, we need to grow the box creating
new connectors on that side. Our model for representing vertices in 3-D space
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(a) (b)

Figure 6: (a) Every box has six rectangular sides, (b) front side connectors of a
box.

supports box growing.
Let us assume that we have a d1 × d2 × d3 box representing vertex v. There

are two ways to grow a box by increasing its length: one way is to increase the
length towards the right direction (see Fig. 7a), and the other is to increase the
length towards the left direction (see Fig. 7b). In either case, the result is a
(d1 + 1)× d2 × d3 box v. Also notice that the resulting box has:

• d2 − 1 new connectors on its top side,

• d2 − 1 new connectors on its bottom side,

• d3 − 1 new connectors on its front side,

• d3 − 1 new connectors on its back side,

• one new connector shared by the top (bottom) and back (front) sides,

• one new connector shared by the top (bottom) and front (back) sides.

Similarly, we can grow box v by increasing its width by one unit (towards
the front or the back direction), or its height by one unit (towards the top or the
bottom direction). Regardless of the way we choose to grow a box, we always
insert a new plane in the middle of the current 3-D drawing. This insertion
affects the coordinates of some connectors and bends which shift by one unit
along the x, y or z-axes. The general shape of the drawing, though, remains the
same. Finally, note that although the box of every vertex starts out having a
cubic configuration (when it is inserted for the first time), this is not necessarily
the case later. This happens because a box may grow its size in several different
ways in the course of the drawing process.
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Figure 7: (a) Increasing the length of a box towards the (a) right or (b) left
direction creates new connectors.

5 Drawing Graphs of High Degree

In this section we present a drawing algorithm based on the Relative-Coordinates
scenario for producing orthogonal drawings of graphs in the three dimensional
space. Since this algorithm allows vertices to arrive on-line, the order of vertex
insertion is decided by the user. In order to simplify our presentation, we as-
sume that the local degree of any vertex that is about to be inserted cannot be
greater than 16. We will discuss how to easily generalize our technique at the
end of this section. We compute bounds on the volume and the total number of
bends that each (current) drawing requires at time t, when we start the drawing
from scratch.

A typical user request consists of the name of the vertex to be inserted, say v,
and a list of its adjacent vertices in the current drawing. Our algorithm produces
a 3-D drawing considering and placing one vertex at a time. The placement of
vertex v follows the Relative-Coordinates paradigm. In other words, it tries
to maintain the general shape of the current drawing after v is inserted. For
this reason, the selection of the position where v will be placed depends on the
following factors:

• Vertex v’s local degree.

• The connector availability situation on the sides of the boxes of v’s adja-
cent vertices.

• The relative position of v’s adjacent vertices in the current drawing.
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5.1 Placing a New Vertex

Again, assume that v is the next vertex to be inserted in the current 3-D drawing.
Let k (k ≤ 16) be v’s local degree, and let u1, u2, · · ·uk be v’s adjacent vertices.
For each vertex ui we find the sides of box ui that have available connectors.
Recall that some connectors are shared by two or even three sides. Then we find
the side of the adjacent boxes on which most of these boxes have at least one
available connector. This is the side where the edges connecting v with each ui

will be attached.
For example, assume that k = 10, there are three adjacent boxes that have

available connectors on their back side, and for any other side (i.e., top, bottom,
right, left, front) there are no more than two adjacent boxes having available
connectors on that side. Then, for each one of the ten adjacent boxes, the edge
that connects this box with v will attach to a back side connector of that box. If
there is any adjacent box which does not have available connectors on its back
side, then we grow the box. This can be done by increasing either the length
or the height of the box by one unit, as described in the previous section. Such
an increase will create more than one connectors which lie not only on the back
side but on other sides as well. These connectors may be used at a later stage.

The next step is to create the box representing v and place it in the current
3-D drawing. Box v is a 1 × 1 × 1 cube. Each newly inserted box is placed in
such a way so that none of its connectors have the same x, y or z-coordinate as
any other connector of any box of the current drawing. This means that our
3-D drawing has the property that there are no two connectors of two different
boxes lying on a plane parallel to a base plane. We call this the no-common-
plane property of the 3-D drawing. Next we show how v’s exact position in the
drawing is calculated so that this property is maintained.

For the sake of description, let us consider the case where all k edges con-
necting v with its adjacent vertices attach to the back sides of these vertices.
Also, let c1, c2, · · · ck be the connectors of the adjacent boxes where these edges
will be attached. We insert a new plane p′ to the back of the backmost plane
of the current drawing (clearly, p′ is parallel to the xz-plane).

We compute the projections of connectors c1, c2, · · · ck on the xz-plane. Be-
cause of the no-common-plane property, there are no two projection points
sharing the same row or column in the xz-plane. We find the projection point
c′i whose x-coordinate is the median of the x-coordinates of all projection points;
if there are two medians, we take the one with the higher x-coordinate. Also,
we find the projection point c′j whose z-coordinate is the median of the z-
coordinates of all projection points; in case there are two medians, we take the
one with the higher z-coordinate. Note that it is possible for c′i and c′j to be the
same point. In Fig. 8a we show points c′i and c′j chosen from a set of 11 points
placed in the xz-plane.

If c′i is the projection of connector ci located on the back side of box ui,
we insert a new plane pi in the 3-D drawing parallel to the left side of ui at a
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Figure 8: (a) Choosing the median points along x and z-axes, (b) projection of
v’s position and connectors on xz-plane.

distance of one unit from that. If c′j is the projection of connector cj located on
the back side of box uj , we insert a new plane pj in the 3-D drawing parallel to
the bottom side of uj at a distance of one unit from that.

The three planes p′, pi and pj intersect at a single point. This is the point
where the connector shared by the top, right and front sides of box v is going
to be placed. Notice that the exact coordinates of a specific connector of box v
determine the location of v. We open up new planes (if required) in the middle
of the drawing to accommodate the size of v. Figure 8b shows the relative
position of v and the 11 projection points of the example of Fig. 8a. Note that
Fig. 8b is the projection of that portion of the 3-D drawing on the xz-plane.
Notice that there are no two points (with at most one of them belonging to
box v) sharing the same row or column in the xz-plane (i.e., no-common-plane
property).

Similarly, we compute the coordinates of a newly inserted box v in the cases
where all connectors c1, c2, · · · ck lie on the top, bottom, front, right or left sides
of v’s adjacent vertices. From the above discussion regarding the position where
a new vertex is inserted, we have the following three propositions:

Proposition 5.1 At any time t, the 3-D drawing has the no-common-plane
property, that is there is no plane parallel to one of the three base planes con-
taining two connectors of two different boxes.

Proposition 5.2 If c1, c2, · · · ck are the connectors of the adjacent boxes of a
newly inserted vertex v where v’s incident edges will be attached, then all these
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connectors lie on the ‘same’ side of their boxes (i.e., they are all either on the
top, bottom, right, left, front, or back sides of their boxes).

Proposition 5.3 Consider the case of placing a new vertex v with local degree
k, so that the edges connecting v with its adjacent vertices attach to the back
sides of the boxes of the adjacent vertices. Compute the projections of v and the
connectors of the adjacent boxes where the edges attach, on the xz-plane. The
following hold:

• there are dk
2e (bk

2c) projection points lying strictly above (below) v’s top
(bottom) side,

• there are dk
2
e (bk

2
c) projection points lying strictly to the right (left) of v’s

right (left) side.

This generalizes accordingly depending on the way the new vertex v is placed in
the 3-D drawing.

5.2 Routing Edges with Two Bends

The step that concludes the insertion of v is routing the edges that connect v
with its adjacent vertices. For each edge ei we have that one endpoint of the
edge is connector ci of adjacent box ui, and the other endpoint is a connector of
some side of v. The portion of edge ei between its two endpoints is routed in an
orthogonal fashion in three dimensional space. In the description that follows,
we assume that v has been placed as described above, and we continue with the
routing of v’s incident edges.

Let us first route the edges that come from connectors having z-coordinate
greater than the z-coordinate of any point on v’s top side. Because of the
no-common-plane property, some of these connectors have x-coordinate smaller
than the x-coordinate of any point on v’s left side, and the remaining connectors
have x-coordinate greater than the x-coordinate of any point on v’s right side.
We call the connectors of the first group outleft, and the connectors of the second
group outright.

Assume that the outleft connectors are fewer than the outright ones; this
means that the number of the outleft connectors is less than dd k

2 e
2 e. Since k can

be at most 16, we have that the outleft connectors are at most four, which is
the maximum number of connectors lying on a single side of box v. The edges
that start from outleft connectors are routed to connectors lying on the top side
of box v.

More specifically, let us route edge ei from outleft connector ci to connector
cv of v (see Fig. 9a). From connector ci, we draw a straight line parallel to
the y-axis that intersects plane py,cv at point bi forming a right angle. Then we
draw another straight line from bi along plane py,cv and parallel to the x-axis,
that intersects plane px,cv at point b′i forming a right angle. Then, we simply
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Figure 9: Routing edges to the top side of box v when ci is to the (a) left and
(b) right of v.

draw a straight line between b′i and connector cv. The full route is depicted in
Fig. 9a. Observe that it follows the orthogonal paradigm. Also, edge ei has
exactly two bends, one at point bi and one at point b′i.

Connector cv of v is picked so that line segment bib
′
i does not block the top

free direction of any other connector of v (see Fig. 9a). Also, if it turns out
that there is a connector c′i of box ui whose back free direction is blocked by
line segment bib

′
i, then we use c′i as the other endpoint of edge ei instead of ci.

The edges that start from the remaining outleft connectors are routed in a
similar fashion, that is with exactly two bends per route. The edges that start
from the outright connectors are routed to connectors of the top side of box v
that are still available, and the routing is done in the way described above. If
there are still outright connectors whose edges have not been routed, then these
edges are routed to connectors of the right side of v. In Fig. 9b we show an
example of the routing of such an edge. Notice that the routing can still be done
with two bends, and the line between the two bends is parallel to the z-axis.

If there are fewer outright than outleft connectors, then we first route the
edges of the outright connectors to the top side of v, and then the edges of the
outleft connectors to the top and (if necessary) left side of v. In either case,
from Proposition 5.3 and the fact that v’s local degree is at most 16, it follows
that routing the edges of all the outleft and outright connectors requires at most
two sides of v.

So far in this subsection we have discussed how to route edges that come from
outleft and outright connectors with z-coordinates greater than the z-coordinate
of any point on v’s top side. We follow a similar procedure to route the edges
coming from connectors whose z-coordinates are lower than the z-coordinate of
any point on v’s bottom side. This means that we first split these connectors
into outleft and outright ones, find which one of the two sets has the smallest
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cardinality, and then route the individual edges using the connectors lying on
the other two sides of v.

After the end of the routing of all incident edges of v, the insertion operation
of v is complete. We used a specific situation for the position of v in order to
describe our edge routing technique. It is easy to generalize this technique to
any other case of box positioning in the 3-D drawing, as long as the principles
and properties described in the following routing lemma are maintained:

Lemma 2 Let v be the next vertex to be inserted in a 3-D drawing. Let e be
the edge connecting v with its already placed adjacent vertex u. Let connector
cu of u be one endpoint, and connector cv of v be the other endpoint of edge e.
Also, let fdcu and fdcv be cu’s and cv’s free directions, respectively, used by e.
The following hold:

1. If connector cu belongs to side su which is perpendicular to fdcu and con-
nector cv belongs to side sv which is perpendicular to fdcv , then the planes
containing sides su and sv are perpendicular to each other.

2. Edge e connecting cu and cv is routed orthogonally with exactly two bends.

3. If b1 is the bend adjacent to connector cu and b2 is the bend adjacent to
connector cv then:

• if ε is the straight line perpendicular to side su at point cu and p is
the plane parallel to side su containing cv, then bend b1 lies at the
intersection of line ε and plane p,

• if ε′ is the straight line of plane p parallel to side sv containing bend
b1 and ε′′ is the straight line of plane p perpendicular to side sv con-
taining point cv, then bend b2 lies at the intersection of lines ε′ and
ε′′,

• line segment b1b2 does not block the free direction of any other con-
nector of u and v.

4. The connectors of v used for routing all v’s incident edges lie on at most
four sides of v.

5.3 No-Crossing Routing

Our routing scheme guarantees that each edge of every newly inserted vertex v
can be routed so that there are no edge crossings in the resulting 3-D drawing.
In order to show this, we first give some definitions.

Each edge consists of three straight line segments since it has two bends (see
above lemma). We call these line segments legs. More specifically, a leg with a
connector as one of its two endpoints is called an end leg, and a leg whose both
endpoints are bend-points is called a middle leg. Let v be the next vertex to
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be inserted and e be the edge between v and an adjacent vertex u (u is already
placed). We insert v and route e, according to the algorithm. We show that no
leg of edge e crosses a leg of any edge of the current drawing.

Recall that if two line segments cross each other, then the four endpoints
of the two segments lie in the same plane. Because of the no-common-plane
property (see Proposition 5.1), it is never the case that an end leg of e crosses
an end leg of any other edge of the current drawing. Otherwise we would have
two connectors of two different boxes lying in a plane which is parallel to one
of the base planes.

cr
cr

v
e

e’

p
u

e e’

(b)(a)

Figure 10: Crossings occurring when e blocks the free direction of other con-
nectors.

The middle leg of edge e lies completely outside the current drawing. Because
of this, it does not cross a leg of any other edge of the current drawing. Also,
since the middle leg of edge e does not block the free direction of any connector
of boxes u and v, crossing situations similar to the ones shown in Fig. 10 cannot
happen. Figure 10a shows a situation where e blocks the back free direction of
some connector of u, and Fig. 10b shows a situation where e blocks the top free
direction of some connector of v. If a future edge e′ uses these connectors, then
e and e′ will cross at point cr. Therefore we have:

Lemma 3 There are no edge crossings in any 3-D orthogonal drawing produced
using the techniques for vertex placement and edge routing described in the pre-
vious sections.

5.4 Volume and Bend Analysis

From the discussion in previous subsections we have that if m(t) is the total
number of edges in the drawing at time t, then the drawing has 2m(t) bends. In
what follows we express both the bends and the volume of the drawing in terms
of the number of vertices n(t) and the average vertex degree da(t) at time t.
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We have assumed that every time a new vertex is inserted, its local degree
is at most 16. Since this is the case, every vertex is represented by a 1 × 1× 1
box the moment it is placed in the drawing. Clearly, when a new box is placed,
we open up two new planes parallel to each one of the three base planes. In
other words, each of the length, width, and height of the drawing increases by
two units.

When a new box is placed, we may have to grow the boxes of some adjacent
vertices. We insert a new plane in the drawing when we grow a box. In the worst
case, we have to grow the boxes of all adjacent vertices of each vertex inserted
in the drawing up to time t. Assume that dloc is the local degree of some newly
inserted vertex, so that dloc ≤ 16. Let l, w and h be the numbers of new planes
we open up as a result of vertex growth, parallel to the yz-plane, xz-plane, and
xy-plane, respectively. In the worst case we have that: l + w + h = dloc.

Lemma 4 Let r be a positive number; let d be a positive constant so that integer
variables x, y and z satisfy: x+y+z = d, where x, y, z ≥ 0. Then it holds that:
(r + x)(r + y)(r + z) ≤ (r + d

3
)3.

Proof. It is well known that if we have three positive numbers a, b, c and a
positive constant s, then it always holds that: abc ≤ ( s

3)3 as long as a+b+c = s.
If we set: a = r + x, b = r + y, c = r + z and s = 3r + d, we have the above
lemma. 2

The first vertex inserted to an empty drawing is a 1×1×1 cube, so the volume
of the drawing after this insertion is 13 = 1. Let the volume of the current
drawing right before the insertion of new vertex v be at most r3. Then the
volume of the resulting drawing after the insertion of v is at most (r + dloc

3 +2)3

(see Lemma 4). The number 2 in the expression giving the volume comes from
the size of the box of inserted vertex v. Routing v’s incident edges does not
affect the volume since all these edges are routed along existing planes. Also
note that the above expression for the volume holds even if inserted vertex v
has local degree 0.

Theorem 3 There is an algorithm to produce 3-D orthogonal drawings of graphs
(not necessarily connected) which allows vertices to arrive on-line. Each in-
serted vertex is adjacent to at most 16 other vertices at the time of insertion.
The drawings have the following properties at any time t:

• vertices are represented by boxes and the surface of each box is at most six
times the current degree of the vertex,

• each edge has two bends,

• no two edges cross,

• the volume is (m(t)
3

+2n(t))3, where m(t) and n(t) are the number of edges
and vertices in the drawing at time t, respectively, and
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• vertex insertion takes constant time.

Proof. From the description of edge routing in Section 5.2 and Lemma 2 we
have that every edge in the drawing has two bends. From Lemma 3 it follows
that no two edges cross at any time t during the drawing process.

For every box v in the drawing, v’s incident edges attach to connectors
located on the sides of the box. Box v grows only when there are no available
connectors on the side of v where one of v’s incident edges needs to attach. The
worst case happens when v’s incident edges always attach to the same side of
v; let sv be this side. Also, let t be the current time and degt(v) be the current
degree of v. The surface of side sv is at most degt(v), and the total surface of
all sides of v is at most 6× degt(v).

We saw above that the volume of the 3-D orthogonal drawing after the
insertion of a vertex v is at most (r + dloc(v)

3 + 2)3, where r3 is the volume
before the insertion and dloc(v) is v’s local degree. Let m(t) be the number
of edges in the drawing at time t and G(t) be the underlying graph. It holds
that:

∑
v∈G(t)

dloc(v)
3

= m(t)
3

. Hence, we obtain the upper bound shown in the
theorem for the volume of the drawing.

Let v be the next vertex to be inserted into the current drawing. Creating a
box for v and placing v takes constant time. At most dloc(v) other boxes of the
current drawing need to grow and exactly dloc(v) edges are routed as a result of
v’s insertion. Growing a box and routing an edge takes constant time, therefore
v’s insertion takes O(dloc(v)) time. Since dloc(v) ≤ 16, this time is constant. 2

In practice, we expect the volume to be smaller than the upper bound given
in the above theorem. This is because our analysis assumed that for each vertex
insertion the boxes of all the adjacent vertices had to grow. We expect a box
to grow very infrequently, since each box has several connectors on its sides.
If da(t) is the average vertex degree of the graph represented by the drawing

at time t, we have that da(t) is given by: da(t) =
∑

v
degt(v)

n(t) = 2m(t)
n(t) , where

degt(v) is the degree of vertex v at time t. Another expression for the volume
of the drawing is given by the following corollary:

Corollary 5.1 If the average vertex degree at time t is da(t), then a 3-D orthog-
onal drawing produced by our algorithm has volume (da(t)+12

6 n(t))3, in addition
to the properties discussed in Theorem 3.

It is worth noting that, in terms of volume, the performance of this algorithm
for graphs of average degree 6, is the same or better than the one of the algorithm
in [13]. For example, if the average vertex degree is 6, the volume of the drawing
is at most (3n)3, which is the same as the exact volume required by the algorithm
in [13] for 3-D orthogonal graph drawing. However, the drawing approach of
[13] represents vertices with points, handles only vertices of degree at most 6,
allows three bends per edge, and requires that the whole graph be known in
advance.
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The algorithm for 3-D orthogonal graph drawing and the analysis we pre-
sented in this section apply to the case of a non-interactive setting as well. In
this case, the whole graph is known ahead of time. Our algorithm produces a
3-D orthogonal drawing of the graph in O(m) time (m is the number of edges in
the graph), as long as it is supplied with any vertex numbering. This numbering
determines the order of vertex placement. Figure 11 shows the 3-D orthogonal
drawing of K5 as produced by our algorithm. The box numbers denote the
vertex insertion order.

4

1

2

3

5

Figure 11: 3-D orthogonal drawing of K5 representing vertices with boxes.

If we allow the insertion of a vertex v having local degree higher than 16,
then the only thing that changes in the above algorithm is the size of the box
representing v. Recall that a new box placed in the current drawing is always
of cubic configuration. In addition to that, its incident edges attach to at most
four of its six sides. A 2 × 2 × 2 cube has nine connectors on each side and
can represent a vertex with local degree at most 36. Similarly, a 3× 3× 3 cube
has 16 connectors on each side and can represent a vertex with local degree at
most 64. In this way, we can accommodate the insertion of a vertex of any local
degree.

The insertion of a 2×2×2 box requires opening up three new planes parallel
to each one of the base planes (nine new planes total). Similarly, the insertion
of an r × r × r box requires opening up r + 1 new planes parallel to each one
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of the base planes (3(r + 1) new planes total). From the volume analysis we
presented in this subsection, we have that the general formula for the volume
is: V ≤ (m

3 + 2n1..16 + 3n17..36 + · · ·+ rn4(r−1)2+1..4r2 + · · ·)3, where ni..j is the
number of vertices in the current drawing at time t with local degrees in the
range from i to j.

6 Conclusions and Open Problems

We presented two incremental algorithms for producing orthogonal graph draw-
ings in three dimensional space with no edge crossings.

The first algorithm deals with simple graphs of maximum degree 6. For any
n-vertex graph, the produced drawing has volume at most 4.63n3. No edge has
more than three bends. This improves the best known [13] volume requirement
of exactly 27n3 significantly, while maintaining the same upper bound for the
number of bends per edge. It is also important to underline that our algorithm
requires linear time to produce a 3-D orthogonal drawing of an n-vertex graph,
whereas the algorithm in [13] runs in O(n

3
2 ) time.

The algorithm has been implemented within 3DCube [29] along with the
algorithms of [12, 13, 21] and a new algorithm introduced in [29]. The discussion
here is based on the preliminary experimental results of the implementation of
our algorithm sent to us by Maurizio Patrignani [30]. He applied our algorithm
on 1920 random, simple, connected graphs of maximum degree 6, such that the
number of edges is always twice the number of nodes. More extensive results on
several 3D orthogonal algorithms will be presented in a forthcoming paper [30].

The graphs of the experimental results are presented in Figs. 12 and 13.
These preliminary results indicate that:

• the volume is on the average 1.5n3 + O(n2),

• for medium and large size graphs the average number of bends per edge
is about 2.25, and

• as expected, the average edge length grows linearly with respect to the
number of nodes.

The second algorithm introduces 3-D orthogonal drawing for simple graphs
of degree higher than 6. Vertices are represented by solid 3-D boxes whose
surface is proportional to the degree of the vertex. The number of bends per
edge is only two.

Improving our volume upper bounds is a natural open problem. Although
there have been better volume upper bounds [13] at the expense of allowing
more bends per edge (seven bends per edge are allowed in [13]), cubic upper
bounds are the best known so far when we allow at most three bends per edge.
It is clear that there is a trade-off between volume and number of bends per
edge, or between volume and edge crossings. Determining the trade-offs is a
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Figure 12: Graphs of the experimental findings: (a) volume; (b) bends.



Papakostas and Tollis, Incremental 3-D Drawing , JGAA, 3(4) 81-115 (1999)112

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 E
dg

e 
Le

ng
th

Nodes

Figure 13: Graphs of the experimental findings: edge length.

very interesting problem. Finally, if one restricts his/her attention to drawings
of graphs that are known ahead of time, is there a numbering of the vertices that
guarantees better performance with respect to volume and/or other aesthetic
measures?
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