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Abstract

We extend the classical 0-1 knapsack problem by introducing disjunc-
tive constraints for pairs of items which are not allowed to be packed
together into the knapsack. These constraints are represented by edges
of a conflict graph whose vertices correspond to the items of the knap-
sack problem. Similar conditions were treated in the literature for bin
packing and scheduling problems. For the knapsack problem with conflict
graphs, exact and heuristic algorithms were proposed in the past. While
the problem is strongly NP-hard in general, we present pseudopolyno-
mial algorithms for two special graph classes, namely graphs of bounded
treewidth (including trees and series-parallel graphs) and chordal graphs.
From these algorithms we can easily derive fully polynomial time approx-
imation schemes (FPTAS).
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1 Introduction

In this paper we consider an extension of the standard 0-1 knapsack problem. In
addition to the usual weight constraint there exist incompatibilities for certain
pairs of items. This means that from each such conflicting pair at most one item
can be packed into the knapsack. It is natural to represent these symmetric
conflict relations by means of an undirected conflict graph G = (V,E), where
every vertex corresponds uniquely to one item and an edge (i, j) ∈ E indicates
that items i and j can not be packed together.

For a formal definition of this knapsack problem with conflict graph (KCG),
which is sometimes also referred to as disjunctively constrained knapsack prob-
lem, let n be the number of items, each of them with profit pj and weight wj ,
j = 1, . . . , n, and c the capacity of the knapsack. We define a trivial upper
bound P on the total profit of the knapsack as P =

∑n
i=1 pi. Now we state the

following ILP formulation of KCG:

(KCG) max
n∑

j=1

pjxj (1)

s.t.
n∑

j=1

wjxj ≤ c (2)

xi + xj ≤ 1 ∀ (i, j) ∈ E (3)
xj ∈ {0, 1} j = 1, . . . , n. (4)

The conflict graph G = (V,E) with |V | = n is not necessarily connected
and may contain isolated vertices (i.e. items which can be combined with every
other item). However, w.l.o.g. we can restrict KCG to connected conflict graphs
by introducing a dummy item n + 1 with weight wn+1 = c and profit pn+1 = 0
and inserting edges from vertex n + 1 to every other vertex. This makes every
given conflict graph connected without changing the set of feasible solutions
with positive profit.

As KCG is a generalization of the 0-1 knapsack problem it is easy to see
that this problem is NP-hard (for a given instance of the knapsack problem
introduce a star graph as a conflict graph centered at the above mentioned
dummy vertex).

From a graph theoretical perspective, KCG can also be seen as a generaliza-
tion of the independent set (or stable set) problem which asks for a maximal set
of vertices which are not adjacent to each other. For every given instance of the
independent set problem we can superimpose an instance of KCG by introduc-
ing trivial items for every vertex with profit and weight equal to 1 and capacity
c = n. It follows immediately that KCG for general graphs is strongly NP-hard
(cf. [7]) and does not permit pseudo-polynomial algorithms (under P6=NP).

Motivated by this complexity status and following a line of research exten-
sively pursued for the independent set problem, it is our main task in this paper
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to identify graph classes for which we can prove the existence of a pseudo-
polynomial time and space algorithm for KCG. From these algorithms we can
immediately attain fully polynomial time approximation schemes (FPTAS). In
the following sections we will show that graphs of bounded treewidth (including
trees) and chordal graphs (including interval graphs [7]) used as conflict graphs
in KCG admit pseudo-polynomial algorithms as well as FPTASs. However, for
perfect conflict graphs KCG can be shown to be strongly NP-hard and hence
does not permit an FPTAS.

Note that for unconnected graphs the special properties of some of these
graph classes would be no longer valid after adding the dummy vertex as de-
scribed above. However, all our algorithms are based on dynamic programming
and compute optimal solutions for every capacity value ≤ c. Hence we can in
a first step process the components of the graph independently and then merge
the solutions of all components. Obviously, the corresponding items from dif-
ferent components are all compatible with each other. To avoid technicalities
we will restrict our considerations to KCG with connected conflict graphs.

For simplicity of presentation all our algorithms will be designed to compute
only the optimal solution value of KCG. The computation of the corresponding
solution set of items and other storage issues will be discussed in Section 4.

The first paper dealing with KCG that we are aware of is Yamada et al. [15]
from 2002. The authors construct a branch-and-bound algorithm with lower
bounds based on a heuristic and upper bounds derived from a Lagrangean re-
laxation of the conflict conditions (3). Hifi and Michrafy [9] recently presented a
metaheuristic approach consisting of a reactive local search algorithm combined
with a tabu list. The same authors develop three different exact algorithms
in [10] invoking reduction and constraint combination. They all compare very
favorably to CPLEX.

Conflict graphs were also considered for other combinatorial optimization
problems such as bin packing and scheduling problems, but we refrain from
giving a full review of these related problems.

2 Graphs of Bounded Treewidth

In this section we treat graphs of bounded treewidth, for example trees, series-
parallel graphs, outerplanar graphs or Halin graphs ([2]). We show that for
KCG on a conflict graph with a given tree-decomposition of constant treewidth
k, there exists a dynamic programming algorithm with O(nP 2) running time.

In [4] a tree-decomposition is defined in the following way: Let G = (V,E) be
a graph, T a tree, and let V = (VI)I∈V (T ) be a family of vertex sets VI ⊆ V (G)
indexed by the vertices I of T . By capital letters we refer to vertices from T ,
whereas by lower case letters we refer to vertices from G. The pair (T,V) is
called a tree-decomposition if it satisfies the following three properties:

1. V (G) =
⋃

I∈T VI ;
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2. for every edge e ∈ G there exists I ∈ T such that both ends of e lie in VI ;

3. VI1 ∩ VI3 ⊆ VI2 whenever I2 lies on the path from I1 to I3 in T .

The width of (T,V) is defined as max{|VI | − 1 : I ∈ T}. The treewidth of
G is the smallest width of any tree-decomposition of G ([4]). By [3] deciding
whether a tree-decomposition of treewidth at most k exists, and if so, finding
such a tree-decomposition can be done in linear time (if k is seen as a constant
and not as part of the input).

2.1 Trees as Conflict Graphs

Since all algorithms in this paper are based on the exploration of a tree, we
briefly discuss explicitly the special case of trees T as conflict graphs, i.e. graphs
of treewidth one. This should facilitate the understanding of the algorithmic
ideas of the paper and in particular the space reduction described in Section 4.

If we consider any vertex i ∈ T , by the property of trees as conflict graphs,
when including i into the knapsack solution, it is not allowed to include the
parent vertex p of i as well as any of the k child vertices c1 . . . ck of i. Indeed
these vertices are the only vertices in T that are in conflict with i. The main idea
of a dynamic programming algorithm for trees as conflict graphs is to process T
in depth-first order starting at some vertex r, which we consider as root vertex
of T . Reaching a leaf vertex l with parent p, we distinguish two cases:

• Including l into the knapsack solution and as a consequence excluding p.

• Excluding l from the knapsack and as a consequence keeping the decision
concerning p open.

We call this procedure merging of l with p. After all children of the vertex p
are merged with p, p itself can be seen as new leaf vertex and the above idea
can be applied recursively. For applying dynamic programming by reaching we
use two arrays: zi(d) describes a solution with minimal weight found in the
subtree T (i)1 of T = T (r) that leads to a profit of d with item i necessarily
included into the knapsack solution. yi(d) describes the solution with minimal
weight found in the subtree T (i) that leads to a profit of d with item i excluded
from the knapsack solution. The update operations applied to these arrays
when merging a leaf to its parent is obvious. Without going into details the
following statement can be derived from the dynamic programming scheme for
the standard knapsack problem.

Theorem 1 KCG with a tree as conflict graph can be solved in O(nP 2) time
and O(nP ) space. �

1T (i) defines the induced subtree of T with root i, where for every j ∈ T (i), i lies on the
unique path from j to r.
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2.2 The Algorithm for the General Case

For algorithmic purposes it is useful to consider a specially structured tree-
decomposition, namely a nice tree-decomposition. This tree-decomposition has
the property of being a binary tree in which adjacent vertices differ by at most
one vertex in the underlying graph G. One vertex R is considered to be the
root of T and each vertex I ∈ T is of one of the following four types ([3]):

• Leaf: vertex I is a leaf of T and |VI | = 1

• Join: vertex I has exactly two children, say J1 and J2, and VI = VJ1 = VJ2

• Introduce: vertex I has exactly one child, say J , and there is a vertex
v ∈ V with VI = VJ ∪ {v}

• Forget: vertex I has exactly one child, say J , and there is a vertex v ∈ V
with VJ = VI ∪ {v}

Furthermore, by [3] a nice tree-decomposition with O(n) tree vertices with width
at most k can be found in linear time, given a (not nice) tree-decomposition.
For some vertex I ∈ T we denote the tree-decomposition limited to the subtree
T (I) of T by (T (I),V). Clearly (T (I),V) is no longer a tree-decomposition of
G. Let furthermore GI be the subgraph of G that is induced by (T (I),V), more
precisely by

⋃
J∈T (I) VJ .

Let (T,V) be a nice tree-decomposition of G of bounded treewidth k. Let
UJ be the set of subsets S of vertices from VJ with the property that S is an
independent set (IS) in G and

∑
i∈S w(i) ≤ c (UJ includes the empty set ∅). A

set of vertices in G that is not an independent set is abbreviated by DS. We define
fS

d (J) as the minimum weight of the knapsack including the items S ⊆ VJ with
total profit equal to d, while considering only the limited tree-decomposition
(T (J),V). Then, following an idea presented in [3], KCG is solved by algorithm
AlgTDC which processes the tree-decomposition in depth-first order.

Theorem 2 Algorithm AlgTDC solves KCG with a conflict graph G of bounded
treewidth k to optimality.

Proof: Given a nice tree-decomposition we will show by an induction like
procedure that for each vertex I ∈ T AlgTDC computes an optimal solution
for the subgraph GI of G. First the optimality is proved for leaf vertices of T .
Then for each inner vertex J ∈ T , given that for the at most two children I1

and I2 of J the induced subgraphs GI1 and GI2 are calculated optimally, the
optimality of GJ will be proved. Since G = GR the result follows.

Leaf vertices. Some leaf vertex I of T is the first vertex processed by
AlgTDC. By definition of a nice tree-decomposition, VI consists of exactly one
vertex v ∈ G, so GI equals a subgraph containing only v. By (a) in Algo-
rithm 1 when including v into the knapsack solution (constrained to GI) the
only possible profit d = p(v) has minimal weight w(v).

Inner vertices.
Introduce with respect to vertex v. Let I be an Introduce (part (b) in AlgTDC)



238 U. Pferschy and J. Schauer The Knapsack Problem with Conflict Graphs

Algorithm 1 AlgTDC

AlgTDC((T (r),V)): (e)
if R is Leaf with vertex v ∈ VR: (a)

fv
d (R) =

{
w(v) d = p(v)
c + 1 d 6= p(v)

∀ d ≤ P

f∅d (R) =

{
c + 1 1 ≤ d ≤ P

0 d = 0
∀ d ≤ P

else:
for J ∈ children(R):

AlgTDC((T (J),V)) (e)
if R is Introduce (VR = VJ ∪ {v}) : (b)

for d ∈ [0, P ] :
fS

d (R) = fS
d (J) ∀S ∈ UJ

f
S∪{v}
d (R) = w(v) + fS

d−p(v)(J)
∀S ∈ UJ : (S ∪ {v} IS in G) ∧ (w(v) +

∑
i∈S w(i) ≤ c)

else if R is Forget (VJ = VR ∪ {v}) : (c)
for d ∈ [0, P ] :

fS
d (R) = min{fS

d (J), fS∪{v}
d (J)}

∀S ∈ UJ : (S ∪{v} IS in G)∧ (w(v) +
∑

i∈S w(i) ≤ c)

fS
d (R) = fS

d (J)
∀S ∈ UJ : (S∪{v} DS in G)∨(w(v)+

∑
i∈S w(i) > c)

else if R is Join : (d)
for d ∈ [0, P ] :

if J is the first child of R being processed:
fS

d (R) = fS
d (J) ∀S ∈ UJ

else:
fS

d (R) = mink{fS
d−k(R) + fS

k (J) | k ∈ [0, d]} ∀ S ∈ UJ (f)



JGAA, 13(2) 233–249 (2009) 239

with child vertex J and let us assume that AlgTDC computed the optimal
solution for GJ . We first consider all feasible subsets S from GJ . Since these
subsets are also in GI the algorithm takes the optimal solution calculated from
the limited tree-decomposition (T (J),V) which is optimal by assumption. The
only difference between GI and GJ lies in vertex v and edges adjacent to v, but
so far only solutions excluding v were considered.

In a next step all subsets S ∪ {v} of GI that are independent sets in G and
therefore in GI are considered if they fulfill the capacity constraint. But S is
subset of GJ and by the property of tree-decompositions v was not in (T (J),V).
As v is included in the knapsack solution, a profit of d − p(v) is taken with
minimal weight from GJ (fS∪{v}

d (I) = w(v) + fS
d−p(v)(J)). Furthermore v is

compatible with all vertices that lead to fS
d−p(v)(J): for the set S this is true by

explicit testing. So let us assume that there is a vertex i ∈ GJ packed that is not
in S but adjacent to v. By combining properties 1 and 2 of tree-decompositions
a contradiction follows. The optimum for f∅d (I) follows by the same arguments.

Forget with respect to vertex v. Let I be a Forget with child vertex J
and let us assume that AlgTDC computed the optimal solution for GJ . Then
GI = GJ and in part (c) of AlgTDC we compute the optimal solution for all
feasible subsets S of VI by using solutions from (T (J),V) which are optimal by
assumption.

Join. Let I be a Join with children J1 and J2 ((d) in AlgTDC). For each fea-
sible set S ∈ VI , AlgTDC calculates the minimum weight of a knapsack solution
leading to a profit of d by taking the minimum over all possible combinations
of weights from the subgraphs GJ1 and GJ2 (fS

d (I) = mink{fS
d−k(I) + fS

k (Ji) |
k ∈ [0, d]}). Clearly by assumption both of these parts are optimal.

It remains to show that this combination of vertices from two different sub-
graphs of G is feasible. Clearly when restricting the knapsack solution leading
to the optimal solution of fS

d (I) to GJ1 , all these items are feasible by assump-
tion. The same is true for GJ2 . Now assume that there are vertices v1 ∈ GJ1

and v2 ∈ GJ2 both belonging to the knapsack solution leading to a minimal
weight of fS

d (I) for profit d and v1 and v2 are not in VI and furthermore they
are not allowed to be packed together. Then they are adjacent, so there has to
be some vertex L ∈ T with the property that {v1, v2} ⊆ VL: w.l.o.g if L ∈ T (J1)
then property 3 of the definition of tree-decompositions implies that v2 ∈ I, a
contradiction. If L /∈ T (I) then a contradiction follows with the same argument.

�

Theorem 3 Algorithm AlgTDC can be implemented to run in O(nP 2) time
and O(nP ) space given a nice tree-decomposition (T,V) with O(n) vertices.

Proof:
Time Complexity. Since the nice tree-decomposition has O(n) vertices,

AlgTDC consists of O(n) recursive calls (e) in Algorithm 1. Since for each vertex
VI , I ∈ T , at most 2k+1 subsets of vertices in G have to be considered, AlgTDC
performs a constant number of feasibility tests for subsets S ⊆ VI . The other
relevant part for the time complexity is described by (f) where P 2 combinations
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of weights are used for calculating the minimum weight of a solution leading to
a profit of d. Combining these parts, the time complexity follows.

Space Complexity. For each vertex I ∈ T , each feasible subset S ⊆ VI

and each profit d the minimum weight is stored yielding a space complexity
of O(nP ). By the bounded treewidth the number of independent sets at each
vertex I is constant. �

3 Chordal Graphs as Conflict Graphs

3.1 Definitions

A graph G = (V,E) is called chordal graph, if it does not contain induced cycles
other than triangles ([4]). A clique of a graph G is a complete subgraph of G,
a maximal clique is a clique, that is not properly contained in any other clique.
A clique tree T = (K, E) of a chordal graph G is a tree that has all the maximal
cliques K of G as vertices and for each vertex v ∈ G all the cliques K containing
v induce a subtree in T ([1]). When using a capital letter we will always denote
a vertex in the clique tree T corresponding to a maximal clique in G, when
using a lowercase letter we refer to a vertex in G. It has to be mentioned that
the clique tree of a chordal graph can be computed using O(n + m) time and
space ([6]) where m describes the number of edges in G.

Having a clique tree T and choosing two adjacent vertices K and K ′, then
T

(KK′)
K denotes the subtree that results from T when removing the edge between

K and K ′ and including K. S(KK′) ⊂ V is defined as the intersection between
the cliques K and K ′ (S(KK′) = K ∩K ′ = S(K′K)). Furthermore, by summing

up over all cliques C in T
(KK′)
K we define the vertex set V

(KK′)
K ⊂ V by

V
(KK′)
K =

 ⋃
C∈T

(KK′)
K

{v ∈ C}

− S(KK′).

V
(KK′)
K therefore denotes the vertices in G that are in the cliques represented by

vertices of the subtree T
(KK′)
K , but excluding all the vertices that are in S(KK′).

These definitions refine [1].

3.2 Algorithm AlgCh

The basic idea for treating chordal graphs as conflict graphs in KCG lies in
utilizing the special separation properties of the clique-tree of a chordal graph.
A subset S ⊂ V is called vertex separator of G if there are two vertices a and
b in one component C of G, such that the removal of the vertices in S from G
separates a and b, i.e. a and b are in different components of G − S. S is then
called ab-separator. By V (G) we denote all the vertices of G (V (G) = V ).

The algorithm presented in this section uses these properties by means of
the following two lemmas, that can be found with detailed proofs in [1].
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Lemma 1 The sets V
(KK′)
K , V

(KK′)
K′ and S(KK′) form a partition of the vertices

V in G.

Lemma 2 S(KK′) is a minimal vw-separator for every pair of vertices v ∈
V

(KK′)
K and w ∈ V

(KK′)
K′ .

Let G = (V,E) be a chordal graph, T (R) a clique-tree of G with vertex R
as root vertex (by definition R is a maximal clique of G). Furthermore let T (I)
be the induced subtree of T (R) with root I for some clique I. fv

d (I) is defined
as the minimum weight of the knapsack including item v ∈ I with total profit
equal to d, while considering only the subtree of the clique tree of G that has
I as its root. Then a recursive algorithm that solves KCG for chordal graphs
as conflict graphs is given by Algorithm 2. If the algorithm is executed with
some vertex R′ seen as root vertex of some clique tree T of G (AlgCh(T (R′)),
the optimal solution of KCP with the chordal conflict graph G is computed and
stored in one of the fv

d (R′) with v ∈ R′ or in f∅d (R′).

Theorem 4 Algorithm AlgCh solves KCG with a chordal conflict graph to op-
timality.

Proof: By Lemma 2, for two maximal cliques I and J which are adjacent in
a clique tree representation T of G, S(IJ) is a separator for all vertices a ∈
(I \ S(IJ)) and b ∈ (J \ S(IJ)) in G. If we consider a leaf vertex L1 of T and
its parent vertex P1, by Lemma 1 the graph G can be decomposed into three
parts (not necessarily components), namely V

(L1P1)
L1

, S(L1P1) and V
(L1P1)
P1

(seen

as induced subgraphs). Obviously when including a vertex v ∈ V
(L1P1)
L1

in
the knapsack, this vertex cannot be in conflict with any vertex v ∈ (G \ L1).
When considering any parent vertex J of T with k child vertices (I1 . . . Ik), then
the graph G can be decomposed into k + 2 parts, namely V

(I1J)
I1

, . . . ,V
(IkJ)
Ik

,

(S(I1J)∪ . . .∪S(IkJ)) and (G\ (T (I1J)
I1

∪ . . .∪T
(IkJ)
Ik

)) (here the subtrees are seen
as induced subgraphs of G). By recursively applying this decomposition idea in
the processing order of AlgCh on the maximal cliques of T (depth-first), we can
consider G as being iteratively constructed by the resulting parts.

In the remainder of the proof, we show that the algorithm computes the
optimum for each subgraph of G that is induced by T (I), for some clique I.
This is done by an induction like procedure, starting with the leaf vertices and
moving upwards in the tree thus showing the optimality of the subgraph induced
by T (I) under the assumption of optimality of all trees T (Ji) with Ji being child
vertex of I. The proof finishes with the subgraph induced by T = T (R), which
obviously equals G.

Leaf vertices. The first vertices completed by the algorithm are leaf ver-
tices of T , namely (L1 . . . Lm) for some m with parent vertex P . The induced
subgraphs (T (L1P )

L1
. . . T

(LmP )
Lm

) are exactly (L1 . . . Lm). So by (a) in Algorithm 2
fv

d (I) represents the optimal solution for all profits d and all v ∈ I given that
I ∈{L1 . . . Lm}.
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Algorithm 2 AlgCh

AlgCh(T (R)):
if R is leaf: (a)

fv
d (R) =

{
w(v) d = p(v)
c + 1 d 6= p(v)

∀ v ∈ R ∧ ∀ d ≤ P

f∅d (R) =

{
c + 1 1 ≤ d ≤ P

0 d = 0
∀ d ≤ P

else:
for J ∈ children(R):

AlgCh(T (J))
if J is the first child of R being processed: (b)

for v ∈ R

if v ∈ S(RJ):
for d ∈ [0, P ] :

fv
d (R) = fv

d (J)
else:

for d ∈ [0, p(v)− 1] :
fv

d (R) = c + 1
for d ∈ [p(v), P ] :

fv
d (R) = w(v) + mini{f i

d−p(v)(J) | i ∈ (J \ S(RJ) ∪ ∅)}

f∅d (R) = mini{f i
d(J) | i ∈ (J \ S(RJ) ∪ ∅)} ∀ d ≤ P (d)

else: (c)
for v ∈ R:

if v ∈ S(RJ) :
for d ∈ [p(v), P ] :

fv
d (R) = mink{fv

k (R) + fv
d−k+p(v)(J) | k ∈ [p(v), d]}

fv
d (R) = fv

d (R)− w(v)
else:

for d ∈ [p(v), P ] :
fv

d (R) = mini,k{fv
k (R) + f i

d−k(J) | k ∈ [p(v), d], (d)
i ∈ (J \ S(RJ) ∪ ∅)}

for d ∈ [0, P ] :
f∅d (R) = mini,k{f∅k (R) + f i

d−k(J) | k ∈ [p(v), d],
i ∈ (J \ S(RJ) ∪ ∅)}
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Inner vertices. Assume that AlgCh computes the optima for all subtrees
(Th−1

1 . . . Th−1
l ) with height up to h − 1. We will show that also the subtrees

Th
1 . . . Th

k with height h, being supergraphs of some of the (Th−1
1 . . . Th−1

l ), will
be solved to optimality.

Case 1. Assume that the tree Th(I) with root vertex I is a supergraph of
exactly one tree with height up to h− 1 and root J (Th−1(J) = T IJ

J ). Clearly
this means that I has J as its only child vertex (Figure 1).

Figure 1: Case 1 in the proof of Theorem 4

In the algorithm in this case we are in the “if part” corresponding to (b).
There we calculate fv

d (I) for each profit d and vertex v ∈ I. If v ∈ S(IJ) by
the optimality of fv

d (J) also fv
d (I) has to be optimal (v was already considered

in the clique J and is in conflict with all other vertices in I). If v /∈ S(IJ),
fv

d (I) is calculated by fv
d (I) = w(v) + mini{f i

d−p(v)(J) | i ∈ (J \ S(IJ) ∪ ∅)}. By
Lemma 1, v cannot be in Th−1(J). By definition of fv

d (I) we include item v into
the knapsack, so we have to add the weight w(v) to fv

d (I). As v adds a value
equal to p(v) to the profit d, we take the best solution so far (by assumption)
represented by i of (J \S(IJ) ∪ ∅) with minimum weight f i

d−p(v)(J) leading to a
profit of d− p(v). The same argument works with f∅d (I), which means that we
do not pack any item included in the maximal clique I. So Case 1 is proved.

Case 2. Assume that the tree Th(I) with root vertex I is supergraph of
k trees with height at most h − 1 (Th−1(J1). . .Th−1(Jk)). This means that
I has (J1. . . Jk) as its child vertices. The algorithm merges Th(I) with its
subtrees (Th−1(J1). . .Th−1(Jk)). The merging of Th−1(J1) to Th(I) is optimal
by Case 1, so in AlgCh we are in the part denoted by (c). Now we assume that
the merging procedure is done optimally for the trees (Th−1(J1). . .Th−1(Jl−1))
for some l ≥ 2 (P1 in Figure 2).

By Lemma 2, V
(JlI)
Jl

= (Th−1(Jl) \ (S(JlI)) (seen as induced subgraph of
G) is separated by S(JlI) from all vertices that were considered in the merg-
ing procedure so far. Furthermore all fv

d (Jl) were calculated optimally by as-
sumption (P2 in Figure 2). If v ∈ SIJl

, fv
d (I) is calculated as the minimum

over the set {fv
k (I) + fv

d−k+p(v)(Jl)} with all combinations of profits that lead
to a total profit of d. By assumption both expressions in this set are opti-
mal. If v /∈ SIJl

, fv
d (I) is calculated as the minimum over all combinations

of profits and feasible vertex combinations leading to a total profit of d, i.e.
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Figure 2: Case 2 in the proof of Theorem 4

mini,k{fv
k (R) +f i

d−k(J) | k ∈ [p(v), d], i ∈ (J \S(IJ)∪∅)}. Again by assumption
both expressions in this calculation are optimal. The same argument works with
f∅d (I). So Case 2 is proved. �

Theorem 5 Algorithm AlgCh can be implemented to run in O((n+m)P 2) time
and O((n + m)P ) space.

Proof:
Time Complexity. Denoting by K the maximal cliques of G represented

as vertices of T and by |K| the number of vertices in clique K the following
inequality holds ([6]): ∑

K∈T

|K| ≤ n + m (5)

As the algorithm traverses each vertex K ∈ T and each vertex v ∈ K once, by
(5) no more than n + m steps are executed in AlgCh. Furthermore at each of
these steps P ·P combinations of profits are considered and in part (d) of AlgCh
the minimum over O(n) vertices of the corresponding child clique is computed,
resulting in a time complexity of O((n + m)nP 2).

But this time complexity can be reduced to O((n + m)P 2) by the following
observation: Referring to (d) we argued that each vertex of a clique K in T is
combined with O(n) vertices in its child clique K ′. But each vertex v ∈ G has
the property in T to be in some clique J with parent clique I, so that v /∈ S(IJ)

and this happens exactly once for each vertex (with the exception of vertices in
the root clique). Therefore during the whole algorithm in the part described by
(d), each v is used at most once for updating the parent clique with its child
clique, where v is seen as part of the child clique.

Space Complexity. For every induced subtree T (K) of T with root K and
each vertex v ∈ K the algorithm stores the optimal solution calculated so far,
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given that v ∈ K is included in the knapsack, namely fv
d (K). Thereby exactly

P + 1 different profits are considered. By (5) an overall space complexity of
O((n + m)P ) follows. �

Remark. AlgCh also solves the maximum weight independent set problem
for chordal graphs by setting the profits and weights of each item to 1 and the
capacity of the knapsack to n in KCG. However, the complexity of AlgCh for
this case is outperformed by the classical approach described in [5].

4 Space Requirements

Excessive memory consumption is frequently pointed out as a major drawback of
dynamic programming approaches and approximation schemes based on these.
Hence, we briefly discuss the space requirements of our algorithms and point
out two general improvement techniques.

It was pointed out in the Introduction that our algorithms report only the
optimal solution values. Keeping track of the corresponding solution sets would
require an additional factor of log n for all complexity results if we used a binary
encoding for each subset. However, this factor can be avoided by applying an
adaption of the general recursive storage reduction scheme given by Pferschy [13]
(see also [11, ch. 3.3]).

Going into the technical details of this modification is beyond the scope of
this paper where we concentrate on identifying polynomially solvable special
cases. The crucial point is that a given problem instance can be partitioned
into two instances of roughly equal size which are then solved recursively and
their solutions combined to an overall optimal solution. Such a bipartitioning
can be achieved for both graph classes by splitting the respective tree into two
parts after computing the median vertex of the tree.

Beside this technical aspect of set representation, we also sketch a general
space reduction technique applicable to all algorithms in this paper, in fact to all
algorithms following a similar depth first search strategy on a tree T . Assume
that in every vertex of the tree we generate an array of length P . Merging a
child vertex to its parent as in Section 2.1 requires 2O(P ) space and the storage
space used for the child vertex can be deallocated after the merging. This yields
a straightforward space complexity of O(nP ).

The crucial point of the argument is the selection among the k child vertices
j1 . . . jk of parent i to be explored next in the depth-first order. Choosing a
child vertex jl with the largest induced subtree, i.e.

|T (jl)| = max
i
{|T (ji)| : i ∈ 1 . . . k} (6)

yields the following improvement.

Lemma 3 The tree T can be fully explored in depth-first order using at most
(log2(n) + 1)O(P ) space.
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Proof: For n = 2, the tree T contains two vertices which can be merged within
2O(P ) space by assumption. Assuming that the statement is true for all trees
with less than n vertices, we will show that the statement also holds for n
vertices by considering the largest subtree T (i1) of the root r of T . Obviously,
all other subtrees must contain less than n/2 vertices.

Then by assumption the processing of T (i1) is done by using at most (log2(n−
1) + 1)O(P ) space. After merging T (i1) to r this space can be deallocated, but
O(P ) space is used at vertex r, which has to be kept until the algorithm has
finished. Then the processing of T (ij), j ≥ 2, is done using by assumption
at most (log2(n

2 ) + 1)O(P ) = log2(n)O(P ) space. After merging each of these
subtrees to r this space can be deallocated, but the O(P ) space used at vertex
r has to be kept until completion of the algorithm. This yields a total space
requirement of (log2(n) + 1)O(P ). �

Since all algorithms in this paper follow in principle an exploration of a
tree in depth-first order, condition (6) can be easily incorporated as a selection
criterion. We do not explicate the full technical details but summarize the
resulting improved space complexities in Table 1.

problem space
KCG on trees O(n + P log(n))
KCG on graphs of bounded treewidth O(n + P log(n))
KCG on chordal graphs O(min {m, n log(n)}P + m)

Table 1: Improved space complexities.

5 Approximation Results

The algorithms described in this paper all admit an FPTAS, i.e. an approxi-
mation algorithm with a performance guarantee of (1 − ε) and a running time
polynomial in n and 1/ε. Such an approximation scheme could be derived in
a straightforward way from the standard FPTAS for the classical 0-1 knapsack
problem which can be found in [11]. However, an FPTAS can be also imme-
diately deduced from a more general result due to Pruhs and Woeginger [14].
Roughly speaking, they define the following subset selection problem:

Given a ground set X with n elements each of them with positive profit p(x)
for x ∈ X, we are looking for a feasible subset of X with maximum total profit.
Assume that the feasibility of a subset can be decided in polynomial time. Then
it is shown in [14] in a more general setting that if there exists an exact algorithm
for this problem with running time polynomial in n and P :=

∑
x∈X p(x), then

there exists also an FPTAS.
It is easy to see that KCG belongs to this family of subset selection problems.

Moreover, all the algorithms of this paper fulfill the required condition of pseudo-
polynomial running time. Hence we conclude:
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Theorem 6 There exists an FPTAS for KCG on conflict graphs of bounded
treewidth and on cordal conflict graphs. �

After deriving dynamic programming schemes and FPTASs for chordal graphs
the natural next step would be the more general class of perfect graphs, since
the maximum weighted independent set problem is efficiently solvable on per-
fects graphs (cf. [8]) as well as on all the classes we considered. However, this
question can be settled by a result due to Milanič and Monnot [12].

Theorem 7 KCG is strongly NP-hard on perfect graphs.

Proof: It was shown in [12] that the exact weighted independent set problem
(EWIS) for perfect graphs is strongly NP-complete. In fact it was shown, that
EWIS is already strongly NP-complete for bipartite graphs of degree at most
3. Having an instance of EWIS one asks if a given independent set with weight
exactly w exists where each vertex j has weight wj . Now consider an instance
of KCG that results by setting the profits pj equal to wj and the capacity
c to w. Then by solving this KCG-instance one can immediately answer the
corresponding EWIS-instance. �

Clearly the result of Milanič and Monnot also implies that KCG is strongly
NP-hard on general bipartite graphs and rules out the existence of an FPTAS
on perfect conflict graphs.
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