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Intersection Graphs in Simultaneous Embedding
with Fixed Edges
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Abstract

We examine the simultaneous embedding with fixed edges problem
for two planar graphs G1 and G2 with the focus on their intersection
S = G1∩G2. In particular, we will present the complete set of intersection
graphs S that guarantee a simultaneous embedding with fixed edges for
(G1, G2). More formally, we define the subset ISEFE of all planar graphs
as follows: A graph S lies in ISEFE if every pair of planar graphs (G1, G2)
with intersection S = G1 ∩ G2 has a simultaneous embedding with fixed
edges. We will characterize this set by a detailed study of topological
embeddings and finally give a complete list of graphs in this set as our
main result of this paper.
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1 Introduction

A simultaneous embedding with fixed edges (SEFE) of two graphs G1 and G2

is a pair of drawings D1 of G1 and D2 of G2 such that each drawing is planar
and the intersection S = G1 ∩ G2 is drawn equally in both drawings. It is
clear by definition that both graphs G1 and G2 need to be planar to allow a
simultaneous embedding with fixed edges. However, not every pair of planar
graphs has a simultaneous embedding with fixed edges. The problem to decide
whether a graph pair has a simultaneous embedding with fixed edges or not
has been studied from different angles. Erten and Kobourov [3] showed that
any pair of a tree and a path always has a simultaneous embedding with fixed
edges. Di Giacomo and Liotta [2] extended this result by showing that any pair
of an outerplanar graph with a cycle has a simultaneous embedding with fixed
edges while Frati [6] showed that any pair of a planar graph and a tree has a
simultaneous embedding with fixed edges. Fowler et al. [5] used Frati’s result as
a starting point to characterize the set of planar graphs that have a simultaneous
embedding with fixed edges with any planar graph in two ways: by a forbidden
minor and by a complete list of graphs with this property. It turns out that any
planar graph and any forest have a simultaneous embedding with fixed edges
but there exist pairs of planar graphs and pseudo-forests without a simultaneous
embedding with fixed edges. It could be shown [4] that the problem for this
specific set of graph pairs can be decided in linear time. The corresponding
problem for three general graphs is NP-complete [7].

So far, all examinations concerning the simultaneous embedding with fixed
edges decision problem are of the same type. Restrict G1 and/or G2 to certain
classes of planar graphs and then make a statement whether any pair of these
graph types has a simultaneous embedding with fixed edges or not. In this paper
we examine the simultaneous embedding with fixed edges problem for two planar
graphs G1 and G2 from a different point of view. We focus on the intersection
graph S = G1 ∩ G2. Rather than forcing G1 or G2 to be a specific graph we
examine which types of intersections allow a simultaneous embedding with fixed
edges for general graphs G1 and G2. In fact, we will present the complete set
of intersection graphs S that guarantees a simultaneous embedding with fixed
edges for (G1, G2). More formally, we define the subset ISEFE of all planar graphs
as follows: A graph S lies in ISEFE if every pair of planar graphs (G1, G2) with
intersection S = G1 ∩ G2 has a simultaneous embedding with fixed edges. We
will present a complete list of graphs in this set as our main result.

So far, the SEFE problem has been mainly studied for the case that both
graphs G1 and G2 have the same node set V (G1) = V (G2). To our knowledge
only Di Giacomo and Liotta [2] explicitly consider the case for special graph pairs
with different node sets. However, the list of obtained results which require same
node sets can be extended to the case where the node sets are different. In this
paper, we loosen the restriction of equal node sets. This condition is irrelevant
for most of our examinations but leads to a nice formulation of our main result
as it is described in Theorem 5.
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2 Preliminaries

A combinatorial embedding of a planar graph G is defined as a clockwise ordering
of the incident edges for each node with respect to a crossing-free drawing of G
in the plane. A planar embedding is a combinatorial embedding together with
a fixed external face.

If a graph G is 2-connected, its SPQR-tree T represents the decomposition of
G into its 3-connected components comprising serial, parallel, and 3-connected
structures; see [1] for a formal definition. The respective structure is given by a
skeleton graph associated with each tree node which is either a cycle (S-node),
a bundle of parallel edges (P-node), or a 3-connected simple graph (R-node).
In addition, Q-nodes serve as representatives for the edges of G.

If G is 2-connected and planar, its SPQR-tree T represents all combinato-
rial embeddings of G. In particular, a combinatorial embedding of G uniquely
defines a combinatorial embedding of each skeleton in T , and fixing the combi-
natorial embedding of each skeleton uniquely defines a combinatorial embedding
of G.

A tree with one node of degree k while all other nodes have degree 1 or 2 is
called a degree-k spider. The union of a cycle and a path that share exactly one
end-node of the path is a degree-3 pseudo-spider, see Figure 1.

Figure 1: Visualizations of a degree-3 spider (left) and a degree-3 pseudo-spider
(right).

Hershberger and Suri [8] present an algorithm for the Euclidean Shortest
Path Problem. The problem consists of the computation of a shortest path
between two points in the plane in the presence of polygonal obstacles. If n is
the number of vertices in the obstacles, the algorithm runs in O(n log n) time
which is proven to be optimal. In this paper we use this Euclidean Shortest
Path Algorithm to route edges through an existing planar subdrawing in order
to maintain planarity for the whole drawing. This can be done for edges whose
endpoints lie on one face of the already existing subdrawing without inserting
new crossings.
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3 Combinatorial embeddings

We start by considering all connected planar graphs that have at most two
combinatorial embeddings in order to use them as building blocks for our inter-
section graphs.

Lemma 1 Let G be a connected planar graph that has exactly one combinatorial
embedding. Then G is a path or a cycle.

Proof: Every node of degree at least 3 can have multiple clockwise orders of
its incident edges. Hence, G has only nodes of degree at most 2 and is either a
path or cycle. �

Theorem 1 Let G be a connected planar graph that has exactly two combina-
torial embeddings. Then G is

• a degree-3 spider,

• a degree-3 pseudo-spider,

• a subdivision of K4 \ {e}, or

• a subdivision of a 3-connected graph with at least four nodes.

Proof: Assume first that G does not have any non-trivial 2-connected compo-
nent. Then G is a tree. Every node of degree d can have (d−1)! many clockwise
orders of its incident edges. As the number of combinatorial embeddings of G
is given by the product of all these numbers (d− 1)!, G has exactly one node of
degree 3 and no node with larger degree. Hence, G is a degree-3 spider.

Let now B be a 2-connected component of G. Each cut-vertex can have
multiple clockwise orders of its incident edges even if a combinatorial embedding
of B is fixed (cf. Figure 2). Hence, there is at most one cut-vertex v of B and
it has at most one incident edge not belonging to B. If G \ B is not empty,
the induced subgraph of (G \ B) ∪ {v} is connected, has exactly one planar
embedding and a node with degree 1. By Lemma 1 this subgraph is a path.
Even more, in this situation B has a unique combinatorial embedding and, again
by Lemma 1, is a cycle. Hence, G is a degree-3 pseudo-spider.

From now on, G is biconnected. Let T be the SPQR-tree of G. There is
a bijection between the combinatorial embeddings of G and the set of combi-
natorial embeddings of the skeletons of each node in T . Each R-node has two
planar embeddings, each P-node has (k− 1)! planar embeddings where k is the
number of parallel edges in the corresponding skeleton, and each S- and each
Q-node has only a single planar embedding. As G has two planar embeddings,
T has exactly one P- and no R-node or no P- and one R-node. Furthermore, if
there exists a P-node, its skeleton has exactly three parallel edges.

As any S-node in T yields a subdivision of the corresponding edge, we see
that G is a subdivision of the skeleton graph of the R- or P-node. If T contains
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Figure 2: A cut-vertex v of a 2-connected component B can have multiple
clockwise orders even if a combinatorial embedding of B is fixed.

exactly one R- and no P-node, the graph G is a subdivision of a 3-connected
graph that has at least four nodes. If T contains no R-node but exactly one
P-node whose skeleton has three parallel edges, then G is a subdivision of K4 \
{e}. In this case, at least two of the three parallel skeleton edges need to be
subdivided to avoid parallel edges in the simple graph G. �

An equivalent formulation of the graphs described in Theorem 1 is given in
the following corollary. Here, the close connection of the first three graph types
is taken into account.

Corollary 2 Let G be a connected planar graph that has exactly two combina-
torial embeddings. Then G is a subdivision of

• K4 \ {e1, e2, e3} where e1, e2, e3 form a cycle,

• K4 \ {e1, e2} where e1, e2 form a path,

• K4 \ {e}, or

• a 3-connected graph with at least four nodes.

Proof: On the one hand, tt is easy to see that K4 \ {e1, e2, e3} where e1, e2, e3

form a cycle is a degree-3 spider. Further, K4 \{e1, e2} where e1, e2 form a path
is a degree-3 pseudo-spider.

On the other hand, these two graphs are the smallest degree-3 spider and
smallest degree-3 pseudo-spider possible and any other degree-3 spider and
degree-3 pseudo-spider is a subdivision of the two, respectively. �

4 Topological embeddings

A combinatorial embedding of a planar graph defines the clockwise order of each
node and hence the faces of the graph in each drawing. However, the relative
positions of the connected components are not specified. This implies that two
planar drawings of the same graph under the same planar embeddings may not
be the same from a topological point of view (cf. Figure 3).
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Figure 3: A disconnected graph may have different drawings from a topological
point of view under the same planar embedding.

Let G be a planar graph and C be the set of its connected components.
Given a set of planar embeddings, one for each c ∈ C, and a set of outer
faces, one for each c ∈ C, we get a set IF of the inner faces of all connected
components. From a topological point of view, |IF|+ 1 is the number of regions
in any planar drawing of G. Let F = IF ∪ {o} be the disjoint union of all inner
faces and the global outer face o. We construct a directed, bipartite auxiliary
graph H = (VH , EH) with VH = F ∪ C. Each node v ∈ IF ⊆ VH has one
outgoing edge pointing to its connected component w ∈ C ⊆ VH . Each node
w ∈ C ⊆ VH has one outgoing edge pointing to an element of F ⊆ VH . This is
the face where this connected component is inserted in a planar drawing. Hence,
every planar drawing of G uniquely defines an auxiliary graph H. Furthermore,
H has a special property: It contains no directed cycle and contains exactly one
sink, i.e., a node with no outgoing edge. It is easy to see that each auxiliary
graph H constructed like this uniquely defines a topological equivalence class of
planar drawings of G.

Figure 4: Auxiliary graphs for the topological embeddings shown in Figure 3.
c2 is the connected component given by the path of length 2, while c1 is the
other connected component. f1 and f ′

1 are the exterior face of c1, respectively,
(and hence the global outer face) and f2 and f ′

2 its interior face, respectively.
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For a planar graph G with a set C of connected components, we define a
topological embedding of G by a set of combinatorial embeddings, one for each
c ∈ C, a set of outer faces, one for each c ∈ C, and a directed, acyclic auxiliary
graph H as defined above. For a connected graph G, H is a tree of depth 2 with
all inner faces having an edge pointing to the only connected component that
has an edge pointing to the outer face. Hence, a combinatorial embedding of a
connected graph G, together with the choice of an outer face, is a topological
embedding of G.

A topological embedding E of a planar graph G uniquely determines a topo-
logical embedding E|S for every subgraph S ⊆ G. Mirroring a given topological
embedding of a planar graph G, that is mirroring all combinatorial embeddings
of the individual connected components, yields again a topological embedding of
G. The mirror image of an embedding of a cycle just swaps the two faces. It is
easy to see that the topological subgraph embedding E|S of a mirror image is the
mirror image of the topological embedding E|S for every subgraph S. A planar
drawing D of G respects E if for each connected component c, the corresponding
sub-drawing respects the corresponding combinatorial embedding including the
choice of the outer face and the placement of the sub-drawings of the connected
components is the same as defined by the auxiliary graph H. Such a topolog-
ical embedding contains a unique outer face. Just like the choice of an outer
face for a connected graph is independent from the choice of the combinatorial
embedding, we define an equivalence class of topological embeddings that are
the same topological embedding modulo the choice of the outer face.

Let E be a topological embedding of some graph G, o its outer face and f
some inner face. We show how to construct a topological embedding of G with
outer face f . The auxiliary graph H is acyclic, has one sink o and each other
node has one outgoing edge. Hence, there exists a unique directed path from f
to o: f = f1 → c1 → f2 → · · · → ck → o. We swap all edges in this path to
construct o → ck → · · · → f2 → c1 → f1 = f . This way, we create a different
auxiliary graph H ′ that has the same properties as the first: It has one sink,
no cycles, and each node except the new sink f has one outgoing edge. For all
components ci, i = 1, . . . , k, in the path we change the outer face from fi+1 to
fi, a former inner face. This uniquely defines another topological embedding of
G that is, besides the choice of the outer face, the same as E .

As the outer face of each connected component is encoded in the auxiliary
graph, we can define the following equivalence class of topological embeddings:
Two topological embeddings are equivalent if for each component the planar em-
bedding is the same, as well as the undirected auxiliary graph. For a connected
graph G, an equivalence class of topological embeddings is a combinatorial em-
bedding without the choice of an outer face.

As a next result, we present a list of planar graphs that have at most two
topological embeddings modulo the choice of an outer face. Here, we identify
two topological embeddings of a graph to be equivalent if we can use the path
technique defined above to get from one embedding to the other. The graph
classes determined in Lemma 1 and Theorem 1 are the building blocks for the
graphs with two topological embeddings.
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Theorem 3 A graph that has at most two topological embeddings, modulo the
choice of an outer face, is

• the disjoint union of k paths with k ≥ 1,

• the disjoint union of a single degree-3 spider and k paths with k ≥ 0,

• the disjoint union of a cycle and at most one path,

• a degree-3 pseudo-spider,

• a subdivision of K4 \ {e}, or

• a subdivision of a 3-connected graph with at least four nodes.

Proof: We start by showing that all graphs from the list have at most two topo-
logical embeddings. The number of topological embeddings (modulo the choice
of an outer face) is given by the product of the number of combinatorial embed-
dings for the connected components and the number of different placements for
the connected components to each other. Each of the given graphs has at most
one of these factors different from 1 and this factor is at most 2. For all but
the union of a cycle and a path, the number of different placements for the con-
nected components is 1 since either the graph is connected or it does not contain
any cycle. In addition, at most one connected component has two combinatorial
embeddings while all the others have only one combinatorial embedding. In the
case of the union of a cycle and a path, both connected components have one
combinatorial embedding and there are two different relative placements of the
connected components to each other. Hence, in all cases there are at most two
topological embeddings.

Next, we show that this list is the complete list of graphs with this property.
Let G be a graph with at most two topological embeddings.

Every connected component has at most two combinatorial embeddings and
is therefore, by Lemma 1 and Theorem 1, a path, a cycle, a degree-3 spider,
a degree-3 pseudo-spider, a subdivision of K4 \ {e} or a subdivision of a 3-
connected graph with at least four nodes.

Consequently, if G is connected, it is one of these graphs. Furthermore, if G
is not connected, at most one connected component may have more than one
combinatorial embedding and hence all but one connected component are paths
or cycles.

Assume that G has three connected components c1, c2, and c3 and at least
one connected component, say c1, contains a cycle. Then c1 has at least two
faces f1 and f2 (where one may be the global outer face). c2 and c3 can be
positioned both in f1, both in f2, or one in f1 and one in f2, and this results
in a list of at least three different topological embeddings. Hence, this situation
may not occur and if G contains more than two connected components, it must
be a forest. But then, it is a disjoint union of paths or a disjoint union of a
single degree-3 spider and some number of paths since paths are the only trees
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with a single planar embedding and degree-3 spiders are the only trees with two
planar embeddings.

From now on, G has exactly two connected components c1 and c2. We
know already that one, say c2, is either a cycle or a path and the other, c1, is
a path, a cycle, a degree-3 spider, a degree-3 pseudo-spider, a subdivision of
K4 \ {e} or a subdivision of a 3-connected graph with at least four nodes. If
c1 has two combinatorial embeddings, the relative placement of the connected
components to each other must be unique. Otherwise, we would have more than
two topological embeddings by creating all combinations. But the component
placement is unique only if there exists a single face, i.e., if G is a forest. Hence,
c1 cannot be a degree-3 pseudo-spider, a subdivision of K4 \{e} or a subdivision
of a 3-connected graph with at least four nodes. In addition, if c1 is a degree-3
spider, c2 cannot be a cycle but only a path.

It remains to check the case of two cycles, but here both connected compo-
nents have two faces. Then, the different relative placements of the components
to each other result in four cases, each leading to a larger number of topological
embeddings. �

It is easy to see that if a graph G has exactly two topological embeddings
E1 and E2, then E2 must be the mirror image of E1. Whenever one connected
component c of G is a graph of Theorem 1, the two topological embeddings
differ only in the combinatorial embedding of c, so they are mirror images of
each other. Otherwise, either G has only one topological embedding (when G
is a single cycle or the union of paths) or G is a cycle and a path. But in this
case, again, the two topological embeddings are mirror images of each other.

5 Compatible embeddings

We now focus on the SEFE problem for two planar graphs and start with the
definition of compatible embeddings. Let G1 and G2 be two planar graphs with
intersection S = G1∩G2 and let Ei be topological embeddings of Gi for i = 1, 2.
We call E1 and E2 compatible embeddings if E1|S = E2|S where Ei|S is the unique
induced topological embedding of S. We will see next that the existence of
compatible embeddings is directly linked to the existence of a simultaneous
embedding with fixed edges.

Lemma 2 Given a planar graph G, let EG be a planar embedding and D′ be a
partial drawing that respects EG. We can extend D′ into a complete crossing-free
drawing of G.

Proof: We show how to extend D′ to a complete planar drawing of G by
extending the partial drawing of D′ with a single edge at a time. Nodes that
are not placed yet will be positioned somewhere in the faces according to EG
keeping some ε distance to any node or edge within this face.

Let S be the subgraph of G that is already drawn. We start inserting those
remaining edges of G \ S that do not create new faces. Let e = (v, w) be such
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an edge. The end nodes v and w belong to different connected components of
S as they would create a cycle (and hence a new face) otherwise. By the planar
embedding EG both v and w lie on the same face f in D′. Furthermore, the
clockwise orderings of the incident edges of v and w in EG imply that the new
edge will start and end in f . Hence, we can use the Euclidean Shortest Path
Algorithm to route this edge through this face.

At some point every new edge creates a new face. However, we can choose
an ordering of the remaining faces such that each edge closes one of the faces of
EG. Let e = (v, w) be such an edge and let P be the walk (v = v1, . . . , vk = w)
that together with e is the boundary of the corresponding face. Furthermore,
let c1, . . . , cl be the connected components of G that lie in this face as given by
(the auxiliary graph of) EG. We can draw e from v to w along P keeping an ε
distance to P not enclosing any other nodes and not crossing any edge in the
newly created face of D′. Of course, the leaving direction of e in v and w is
chosen according to the embedding EG.

w

v

(a)

w

v

(b)

w

v

c1

c2

(c)

w

v

c1

c2

(d)

Figure 5: Possible routings of edge e = (v, w). (a,b): The edge can be routed
along the given path (v = v1, . . . , vk = w) if there are no connected components
that must lie in the newly created face. (c,d): However, for each connected com-
ponent ci this route can be extended by additional routes using the Euclidean
Shortest Path Algorithm to the component and back.

However, for each component ci, i = 1, . . . , l, at some point in our travel from
v to w we stop to include ci in the newly created face. This can be done by
using the Euclidean Shortest Path Algorithm to route from our given position
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to some point of ci, then travel around ci (again keeping an ε distance without
enclosing any other node) and use the route found by the Euclidean Shortest
Path Algorithm to come back to the original position on our route (again keeping
an ε distance to the previous route). See Figure 5 for an example.

Using this approach for any edge, D′ respects EG and becomes a complete
planar drawing of G. �

Theorem 4 Let G1 and G2 be two planar graphs. G1 and G2 have a simulta-
neous embedding with fixed edges if and only if there exists a pair of compatible
embeddings of (G1, G2).

Proof: Let (D1,D2) be a simultaneous embedding with fixed edges of (G1, G2)
and let (E1, E2) be the topological embeddings induced by (D1,D2). As S is
drawn equally in D1 and D2, we get E1|S = E2|S and consequently, (E1, E2) is a
pair of compatible embeddings.

Let (E1, E2) be a pair of compatible embeddings of (G1, G2). We show how
to construct a pair of planar drawings (D1,D2) of (G1, G2) that respect (E1, E2)
and yield a simultaneous embedding with fixed edges. Use E1 to construct a
planar drawing of G1. This can be done by starting with the combinatorial
embeddings of the connected components to construct planar drawings of these
and then use the auxiliary graph to determine the placement of the connected
components to each other. Enlarging or shrinking the drawings of the connected
components to create enough space for the other components when necessary
leads to a planar drawing D1 of G1.

Now let S = G1∩G2 and D′
2 = D1|S be a drawing of S according to drawing

D1. But then D′
2 is a partial drawing of G2 that respects E2 and we can use

Lemma 2 to construct a planar drawing D2 that respects E2. As both D1 and
D2 are planar drawings of G1 and G2, respectively, with D1|S = D2|2, (D1,D2)
is a simultaneous embedding with fixed edges of (G1, G2). �

6 ISEFE

Compatible embeddings of a pair of graphs G1 and G2 are those topological
embeddings that can be used to create a simultaneous embedding with fixed
edges of G1 and G2. Deciding whether a pair of graphs has a pair of compatible
embeddings may not be easy in general. However, if we restrict the intersection
of a graph pair, the requirement E1|S = E2|S may be trivially satisfied for almost
every pair of embeddings. Using this approach, we determine ISEFE, the set of
all intersection graphs with a guaranteed simultaneous embedding with fixed
edges for all graph pairs. We show that ISEFE corresponds exactly to the set of
graphs that we determined in Theorem 3.

Lemma 3 Given two planar graphs Gi, i = 1, 2, such that S = G1 ∩ G2 has
at most two topological embeddings that are mirror images of each other, then
every pair of topological embeddings Ei of Gi, i = 1, 2, yields a pair of compatible
embeddings in which E2 is possibly mirrored.
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Proof: Let Ei be any planar embedding of Gi for i = 1, 2. If E1 and E2 do not
yield the same embedding E1|S = E2|S , we mirror E2 and the demanded equality
holds and guarantees a pair of compatible embeddings. �

The following theorem states our main result. Using the complete list of the
planar graphs with at most two topological embeddings of Theorem 3, we show
that this set of graphs is exactly the set ISEFE.

Theorem 5 ISEFE is the set of all planar graphs that have at most two topo-
logical embeddings.

Proof: Let S be a planar graph with at most two topological embeddings. Then
these embeddings are mirror images of each other. If a pair of planar graphs
G1 and G2 has the intersection S = G1 ∩ G2, then Lemma 3 states that any
pair (E1, E2) of topological embeddings of (G1, G2) yields a pair of compatible
embeddings by possibly mirroring E2. In particular, G1 and G2 have a pair
of compatible embeddings. But then Theorem 4 guarantees the existence of a
simultaneous embedding with fixed edges.

Let S be a planar graph that has a pair of topological embeddings E1 and
E2 that are not mirror images of each other. We show how to construct two
graphs G1 and G2 with intersection S = G1 ∩ G2 but without a simultaneous
embedding with fixed edges. Gi is obtained by triangulating S while respecting
the embedding Ei. This straightforward graph transformation constructs a 3-
connected graph Gi. It may happen that we add an edge e to G1 and G2

that would enlarge their intersection G1 ∩G2. If this is the case, we substitute
e in G2 with a path of length 2 by introducing a new node. This way we
guarantee G1 ∩G2 = S. G2 may not be 3-connected anymore but it becomes a
subdivision of a 3-connected graph. Consequently, both graphs G1 and G2 are
connected and have a unique planar embedding (up to mirroring). The unique
induced topological embedding of S in Gi is Ei (or its mirror image). Hence, by
Theorem 4, G1 and G2 cannot have a simultaneous embedding with fixed edges
as they have no pair of compatible embeddings. �

An example for the construction of G1 and G2 as given in the proof to
Theorem 5 is presented in Figure 6. Notice that the two resulting graphs G1

and G2 may have different node sets since we add dummy nodes in order to
avoid increasing their intersection.

Corollary 6 A planar graph belongs to ISEFE if and only if it is one of the
following:

• the disjoint union of k paths with k ≥ 1,

• the disjoint union of a single degree-3 spider and k paths with k ≥ 0,

• the disjoint union of a cycle and at most one path,

• a degree-3 pseudo-spider,

• a subdivision of K4 \ {e}, or

• a subdivision of a 3-connected graph with at least four nodes.
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(a) (b)

(c) (d)

Figure 6: An example of how to construct a pair of graphs without simultaneous
embedding with fixed edges from a pair of topological embeddings that are no
mirror images of each other. (a) and (b) show an intersection graph S with
different topological embeddings E1 and E2. (c) and (d) show two connected
graphs G1 and G2 with unique planar embeddings (up to mirroring and the
choice of the outer face). Their intersection G1 ∩ G2 = S has the induced
topological embeddings E1 and E2, respectively.

7 Conclusion

In this paper we studied the simultaneous embedding with fixed edges problem
for a graph pair (G1, G2) with a focus on the intersection graph G1∩G2. We de-
fined ISEFE as the set of all intersection graphs S that guarantee a simultaneous
embedding with fixed edges for any pair (G1, G2) with S = G1 ∩G2. Using the
new construction of compatible embeddings, we could characterize ISEFE as the
set of all planar graphs with at most two topological embeddings. Our detailed
study of topological embeddings results in a complete list of all graphs in ISEFE.
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