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Abstract

We examine exact algorithms for the NP-hard Graph Bipartization
problem. The task is, given a graph, to find a minimum set of vertices to
delete to make it bipartite. Based on the “iterative compression” method
introduced by Reed, Smith, and Vetta in 2004, we present new algorithms
and experimental results. The worst-case time complexity is improved.
Based on new structural insights, we give a simplified correctness proof.
This also allows us to establish a heuristic improvement that in particu-
lar speeds up the search on dense graphs. Our best algorithm can solve
all instances from a testbed from computational biology within minutes,
whereas established methods are only able to solve about half of the in-
stances within reasonable time.
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mailto:hueffner@tau.ac.il
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1 Introduction

There has been a long history of exponential-time algorithms for finding optimal
solutions to NP-hard problems [37, 15]. Exponential running time at first glance
seems to be impractical. This conception has been challenged by the view of
parameterized complexity [12, 14, 30, 23]. The idea is to accept the seemingly
inevitable combinatorial explosion, but to confine it to one aspect of the prob-
lem, the parameter. If for relevant inputs this parameter remains small, then
even large instances can be solved efficiently. Problems for which this confining
is possible are called fixed-parameter tractable.

The problem we focus on here is Graph Bipartization, also known as
Maximum Bipartite Subgraph or Odd Cycle Transversal. By the
general results on vertex deletion problems, Vertex Bipartization is NP-
hard [25] and MaxSNP-hard [26]. The best known approximation is by a fac-
tor of O(log n) [17]. It has numerous applications, for example in VLSI de-
sign [6, 24], linear programming [19], computational biology [34, 31, 38], register
allocation [39], and RFID reader networks [9].

In a breakthrough paper, Reed et al. [33] proved that the Graph Bipartiza-
tion problem on a graph with n vertices and m edges is solvable in O(4k ·kmn)
time, where k is the number of vertices to delete. The key idea is to construct
size-k solutions from already known size-(k +1) solutions, the so-called iterative
compression. This is an important theoretical result, since it implies fixed-
parameter tractability for Graph Bipartization with respect to k, which was
posed as an open question more than five years earlier [27]. But it is also of
high practical interest for several reasons:

• The given fixed-parameter complexity promises small running times for
small parameter values.

• No intricate algorithmic concepts with extensive implementation require-
ments or large hidden constants are used as building blocks.

• The method is capable of “compressing” any given nonoptimal solution to
a smaller solution. Therefore, it can be used to optimize solutions found
by any known or new heuristic.

We note that building on the iterative compression algorithm, Raman et al.
[32] gave an algorithm running in O(1.62n) time. However, this is unlikely to
be of practical relevance because of the exponential growth of the running time
in the graph size.

Contribution. In Section 3, we give an alternative proof of the result of
Reed, Smith, and Vetta. This also prepares the ground for several algorithmic
improvements, both heuristic and exact in nature with respect to running time
bounds, in Section 4. In Section 5, we present experimental results with real-
world data (Section 5.1), simulated application data (Section 5.2), and random
graphs (Section 5.3). The results demonstrate that iterative compression is
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in fact a worthwhile alternative for solving Graph Bipartization in practice.
Thereby, we also shed more light on the potential of iterative compression, which
has already lead to novel algorithms for several other problems as well [8, 20,
21, 4, 11, 29, 5, 22].

2 Preliminaries

We consider only undirected graphs G = (V,E) without self-loops or multiple
edges, and set n := |V | and m := |E|. We use G[V ′] to denote the subgraph
of G induced by the vertices V ′ ⊆ V . For a set of vertices V ′ ⊆ V , we write
G \ V ′ for the graph G[V \ V ′]. With N(v), we denote the set of neighbors of a
vertex v ∈ V , that is, N(v) := {w ∈ V | {v, w} ∈ E}. We extend this notation
to sets in the natural way, that is, for V ′ ⊆ V we let N(V ′) :=

⋃
v∈V ′ N(v). A

vertex cut between two disjoint vertex sets in a graph is a set of vertices whose
removal disconnects these two sets in the graph.

We frequently use the following characterizations of bipartite graphs from
folklore.

Fact 1 For a graph G = (V,E), the following are equivalent:

1. G is bipartite, that is, V can be partitioned into two sets V1 and V2 called
sides such that there is no {v, w} ∈ E with both v, w ∈ V1 or both v, w ∈ V2.

2. V can be colored with two colors such that for all {v, w} ∈ E the vertices v
and w have different colors. The color classes correspond to the sides.

3. G does not contain odd cycles, that is, cycles of odd length.

Our central object of study is the following NP-hard problem.

Graph Bipartization

Input: An undirected graph G = (V,E) and a nonnegative inte-
ger k.

Task: Find a subset X ⊆ V of vertices with |X| ≤ k such that
each odd cycle in G contains at least one vertex from X, that is, the
removal of all vertices in X from G results in a bipartite graph. We
call X an odd cycle cover.

We investigate Graph Bipartization in the context of parameterized com-
plexity [12, 14, 30], a general approach for tackling NP-hard problems. The idea
is to determine problem parameters that can be expected to be small in certain
applications, and then develop algorithms that are polynomial except for an ar-
bitrary dependence on the parameter. More precisely, a parameterized problem
is called fixed-parameter tractable if it can be solved in f(k) ·nO(1) time, where f
is a computable function solely depending on the parameter k, not on the input
size n.
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2.1 Algorithms

We describe two conventional approaches and the iterative compression method.

Branch-and-Bound. Wernicke [36] presents an algorithm for Graph Bi-
partization based on branch-and-bound. A branching decision simply tries
for some vertex v the two cases that v is in the odd cycle cover or not. The
improvement over the trivial 2n algorithm comes from the the use of good lower
and upper bounds and from data reduction rules. Wernicke [36] presents some
experimental results on real-world data.

Integer Linear Program. Integer Linear Programs (ILPs) are frequently
used in practice to solve hard problems. The reason is that it is often easy to
model the problems as ILP, and that powerful solvers are available, which profit
from years of research and engineering experience. We refer to the literature [35,
7] for details.

Graph Bipartization can be formulated as an ILP as follows:

c1, . . . , cn : binary variables (cover)
s1, . . . , sn : binary variables (side)

minimize
n∑

i=1

ci

s. t. ∀{v, w} ∈ E : (sv 6= sw) ∨ (cv = 1) ∨ (cw = 1)

where the constraint can be expressed in canonical ILP form as

s. t. ∀{v, w} ∈ E : sv + sw + (cv + cw) ≥ 1
∀{v, w} ∈ E : sv + sw − (cv + cw) ≤ 1

Here, a 1 in cv models that v is part of the odd cycle cover. The variables sv

model the side of the bipartite graph that remains when deleting the vertices
from the odd cycle cover. The first set of constraints enforces that for an edge
either one endpoint has color 1, or the other has color 1, or one of them is in
the cover. In effect, it forbids that both endpoints have color 0 while none of
them is in the cover. Analogously, the second set of constraints forbids that
both endpoints have color 1 while none is in the cover.

Iterative Compression. Our implementation is based on an algorithm by
Reed et al. [33], which we now briefly describe; we give details in Section 3.
The key idea is to use a compression routine that, given a size-(k + 1) solution,
either computes a size-k solution or proves that there is no smaller solution. If
we have such a compression routine, an algorithm for Graph Bipartization
could then simply start with X = V and iteratively compress the trivial odd
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cycle cover X until an optimal one is found. While the basic approach is very
easy, the difficulty lies in finding a compression routine with acceptable running
time bounds. Reed et al. [33] give such a compression routine with running
time O(4k · km), where k is the size of the odd cycle cover X to be compressed.
This can be used to obtain a fixed-parameter algorithm with parameter k. To
obtain the desired running time, we do not start with the whole graph, but
rather build it up inductively. At each step, we obtain an optimal odd cycle
cover for the current partial graph. More precisely, start with V ′ = {v} for
some v ∈ V and X = ∅; clearly, X is a minimum odd cycle cover for G[V ′].
Now add one vertex v′ /∈ V ′ from V to both V ′ and X. Then X is still an odd
cycle cover for G[V ′], although possibly not a minimum one. We can, however,
obtain a minimum one by applying our compression routine. This process is
repeated until V ′ = V . The overall running time is then O(4k · kmn).

As an alternative to the inductive mode of building up a solution, the com-
pression routine can also be employed in a more straight-forward manner by
simply trying to compress an initial heuristic solution (e.g., from Abdullah [1]
or Wernicke [36]) until it cannot be compressed anymore. However, this leads
to a much worse combinatorial explosion: even if there was a factor-c approxi-
mation, the running time would be O(4ck) · nO(1).

2.2 Applications

A recent application for Graph Bipartization is in register allocation for
processors that, to save wiring, have their register set divided into two banks
and require the two operands of an instruction to reside in different banks [39].
Conflicts are modeled by a graph where vertices correspond to operands and
edges connect operands that occur together in an instruction. A minimum
graph bipartization set then yields the minimum size set of operands that have
to be copied into both banks to be able to execute the code.

Another application originates from computational biology. To determine
gene sequences, for technical reasons the DNA is first broken into small frag-
ments (shotgun sequencing), from which the original sequence is reconstructed
by computer. This is complicated by the fact that each gene occurs twice in the
human genome. The two copies are mostly identical, but differ at certain sites
(so-called SNPs). Given a set of gene fragments, the problem of assigning the
fragments to one of these two copies in a consistent manner while dismissing
the least number of SNPs as erroneous is called the Minimum Site Removal
problem [31, 38]. The Minimum Site Removal problem can be solved using
Graph Bipartization algorithms. We evaluate our algorithm in this setting
with synthetic data in Section 5.

3 Graph Bipartization by Iterative Compression

In this section, we give an alternative presentation of the algorithm for Graph
Bipartization by Reed et al. [33]. As opposed to their proof, our presentation



82 F. Hüffner Optimal Graph Bipartization

Figure 1: Input transformation for Compress-OCC. The grey vertices are the
elements of the odd cycle cover X.

does not employ case distinction or contradiction. This also allows us to estab-
lish several improvements in Section 4. Our presentation resembles that by Guo
et al. [20] for the related problem Edge Bipartization.

The global structure is illustrated by the function Odd-Cycle-Cover. It
takes as input an arbitrary graph and returns a minimum odd cycle cover.

Odd-Cycle-Cover(G = (V,E))
1 V ′ ← ∅
2 X ← ∅
3 for each v ∈ V :
4 V ′ ← V ′ ∪ {v}
5 X ← X ∪ {v}
6 X ← Compress-OCC(G[V ′], X)
7 return X

Here, the routine Compress-OCC takes a graph G and an odd cycle cover X
for G, and returns a smaller odd cycle cover for G if there is one; otherwise, it
returns X unchanged. Therefore, it is a loop invariant that X is a minimum-size
odd cycle cover for G[V ′], and since eventually V ′ = V , we obtain an optimal
solution for G.

It remains to implement Compress-OCC. The key idea is to further restrict
the search space for a smaller odd cycle cover X ′ by assuming several additional
properties, in particular that X ′ is disjoint from X. Then, every odd cycle
contains both a vertex from X and a vertex from X ′, a fact that can eventually
be used to find X ′ as a vertex cut.

The properties are:

Property 1 No two vertices from X are neighbors, that is, ∀u, v ∈ X : u /∈
N(v).

Property 2 No vertex in a smaller odd cycle cover X ′ is neighbor of a vertex
in X, that is, N(X ′) ∩X = ∅.

Property 3 X ′ is disjoint from X, that is, X ∩X ′ = ∅.

Properties 1 and 2 can be easily obtained by a simple input transformation:
subdivide each edge adjacent to a vertex in X by a new vertex (see Figure 1).
This is done successively, that is, edges connecting two vertices from X are
subdivided by two vertices. This transformation preserves the parity of the
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(a) (b) (c)

v1
v2 v3

Figure 2: Comparing disjoint odd cycle covers: (a) a graph G with an odd cycle
cover X (grey vertices); a two-coloring CX of G \X is marked with black and
white vertices; (b) another odd cycle cover X ′ of G with Properties 1–3, and a
corresponding two-coloring CX′ ; (c) the comparison function Φ.

length of any cycle C, since for each vertex in C that is in X, two new vertices
are inserted into the edges of C. Therefore, after this transformation, X is still
an odd cycle cover, and any odd cycle cover for the transformed graph can easily
be converted to an odd cycle cover of the same size for the original graph. The
transformation allows us to assume without loss of generality that no vertex v
in X ′ is neighbor of a vertex in X (Property 2). This is because any vertex v
in an odd cycle cover X ′ that is neighbor of a vertex in X must be one of the
newly inserted degree-2 vertices, and can be replaced by the neighbor of v that
is not in X, leading to a solution of the same size.

In contrast, Property 3 comes at a higher price: we use a brute-force enumer-
ation of all 2k partitions of the given solution X into two sets Y and X \Y . For
each partition, we then assume that the smaller solution contains all of X \ Y ,
but none of Y . Clearly, if we differentiate these 2|X| cases, at least once the
assumption is correct. Given a case with a particular partition, we can simplify
the instance by deleting the vertices in X \ Y , since they were already deter-
mined to be part of the smaller solution. The task then remains to find an odd
cycle cover that is smaller than Y , for which we can now assume Property 3.

Intuitively, not allowing the reuse of elements already in a known solution is
a quite strong restriction, cutting down the space of possible smaller solutions
considerably. This step is also crucial in all other iterative compression based
algorithms [8, 20, 4, 11, 29, 5, 22].

At the cost of a factor of 2k in the running time, the task is thus boiled down
to:

Task 1 (Disjoint Compression) Given a graph G with an odd cycle cover X
with Property 1, find a smaller odd cycle cover X ′ with Properties 2 and 3 for G,
or prove that there is no such X ′.

The key to solving Disjoint Compression is to compare the two two-
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colorings of G induced by X and the (yet unknown) X ′ (see Figure 2): some
vertices will have the same color in both colorings, and others will get different
colors. More precisely, let CX and CX′ be fixed two-colorings of G\X and G\X ′,
respectively, and define the comparison function

Φ : V \ (X ∪X ′)→ {#, } : v 7→

{
# if CX(v) = CX′(v);
 if CX(v) 6= CX′(v).

(1)

The decisive property of Φ is given in the following lemma and illustrated
in Figure 2 (c).

Lemma 1 In the setting of Disjoint Compression, the set X∪X ′ is a vertex
cut between the vertex sets #Φ := Φ−1(#) and  Φ := Φ−1( ).

Proof: Consider an edge {v, w} ∈ E with v, w ∈ V \ (X ∪ X ′). Since CX

and CX′ are two-colorings, we have CX(v) 6= CX(w) and CX′(v) 6= CX′(w).
Thus, Φ(v) = Φ(w), that is, Φ is constant along any edge that has no endpoint
in X ∪ X ′. Consequently, there can be no path between two vertices with
different values of Φ that does not contain a vertex from X or X ′. 2

Lemma 1 naturally suggests obtaining X ′ from a vertex cut, which is a
polynomial-time task. However, we do not know the value of Φ yet, since it
depends on X ′. But as we will see, it suffices to guess a small part of Φ by brute
force.

For this, consider the value of Φ for the neighbors of some vertex v ∈ X.
Because of Properties 1 and 2, no neighbor of v is in X or in X ′, so Φ is defined
for all neighbors of v. Further, since neither v (by Property 3) nor its neighbors
are in X ′, the value of CX′ is equal for all of v’s neighbors. Therefore, there are
only two possibilities: for all w ∈ N(v) : Φ(w) = CX(w), or for all w ∈ N(v) :
Φ(w) 6= CX(w). Figure 2 (c) shows an example: for all neighbors w of v1 and v2,
we have Φ(w) 6= CX(w), and for all neighbors w of v3, we have Φ(w) = CX(w)

This motivates the following definition.

Definition 1 Consider a graph G and an odd cycle cover X for G, with CX

being a fixed two-coloring of G \ X. Then a coloring Ψ : N(X) → {#, }
is called valid when for all v ∈ X either ∀w ∈ N(v) : Ψ(w) = CX(w) or
∀w ∈ N(v) : Ψ(w) 6= CX(w).

Thus, there are 2|X| valid colorings. We can now state the central lemma of this
section.

Lemma 2 In the setting of Disjoint Compression, for a vertex set X ′ ⊆ V ,
the following are equivalent:

(1) X ′ is an odd cycle cover for G.

(2) There is a valid coloring Ψ of N(X) such that X ′ is a vertex cut be-
tween #Ψ := Ψ−1(#) and  Ψ := Ψ−1( ) in G \X.
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(a) (b) (c)

Figure 3: Illustration of the algorithm for solving Disjoint Compression
(Compress-OCC): (a) Graph G with odd cycle cover X (grey vertices);
(b) G\X with a valid coloring Ψ (black and white vertices); (c) a vertex cut X ′

(dashed vertices) between the black and the white vertices is an odd cycle cover
for G.

Proof: (2) ⇒ (1): Consider a vertex set C that induces an odd cycle in G.
It suffices to show that C ∩ X ′ 6= ∅. Since X is an odd cycle cover, there is
at least one vertex from X in C. For at least one vertex v ∈ C ∩ X, its two
cycle neighbors vl and vr on C have different colors in CX , that is, CX(vl) 6=
CX(vr); otherwise, we could two-color the odd cycle C, since no two vertices
from X are neighbors by Property 1. By the definition of a valid coloring, this
implies Ψ(vl) 6= Ψ(vr). Since X ′ is a vertex cut in G\X between the differently
colored vertices vl and vr, there must be some v′ ∈ X ′ with v′ ∈ C.

(1)⇒ (2): As argued above, Ψ := Φ|N(X) (that is, Φ restricted to the neighbors
of vertices from X) is a valid coloring, and by Lemma 1 X ′ is a vertex cut
between #Ψ and  Ψ in G \X. 2

With Lemma 2, it is now clear that we can solve Disjoint Compression
by trying all 2|X| valid colorings Ψ and determining a minimum vertex cut be-
tween #Ψ and  Ψ. We now have everything in place to present the compression
routine.

Compress-OCC(G0, X0)
1 subdivide edges around each v ∈ X0

2 for each X ⊆ X0:
3 G← G0 \ (X0 \X)
4 for each valid coloring Ψ of N(X):
5 if ∃ vertex cut D in G \X between #Ψ and  Ψ with |D| < |X|:
6 return (X0 \X) ∪D
7 return X0

We now explain Compress-OCC in detail. Given is a graph G0 with an
odd cycle cover X0. First we ensure Properties 1 and 2 by a simple input
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transformation (line 1; see Figure 1). We then examine every subset X of the
known odd cycle cover X0 (line 2). For each X, we look for smaller odd cycle
covers for G that can be constructed by replacing the vertices of X in X0 by
fewer new vertices from V \ X (clearly, for any smaller odd cycle cover, such
an X must exist). Since we thereby decided to retain the vertices in X0 \ X
in our odd cycle cover, we examine the graph G = G0 \ (X0 \X) (an example
is shown in 3 (a)). After line 3, we have Properties 1 and 3 for G and X. If
we now find an odd cycle cover D for G with |D| < |X|, we are done, since
then (X0 \X)∪D is an odd cycle cover smaller than X0 for G0. For this, we try
all valid colorings for N(X) (Figure 3 (b) shows one example). By Lemma 2,
there is some valid coloring where a smaller odd cycle cover forms a vertex cut
between #Φ and  Φ in G\X; and moreover, any such cut is an odd cycle cover.
Therefore, if we find a vertex cut D between #Φ and  Φ that is smaller than X,
we are done (see Figure 3 (c)); conversely, if no valid coloring is successful, it is
not possible to compress X.

Running Time. Reed et al. [33] state the running time of their algorithm
as O(4k · kmn); a slightly more careful analysis reveals it as O(3k · kmn). For
this, note that in effect the two loops in lines 2 and 4 of Compress-OCC iterate
over all possible assignments of each v ∈ X0 to three roles:

• either v ∈ X0 \X,

• or Ψ(w) = CX(w) for all neighbors w of v,

• or Ψ(w) 6= CX(w) for all neighbors w of v.

Therefore, we solve 3k minimum vertex cut problems, and since we can solve
one minimum vertex cut problem in O(km) time by the Edmonds–Karp al-
gorithm [10, 13, 7], the running time for one invocation of Compress-OCC
is O(3k · km). As Odd-Cycle-Cover calls Compress-OCC n times, we ar-
rive at an overall running time of O(3k · kmn).

Theorem 1 Graph Bipartization can be solved in O(3k · kmn) time.

4 Algorithmic Improvements

In this section, we present several improvements over the algorithm by Reed
et al. [33]. We start with two simple improvements that save a constant factor
in the running time. In Section 4.2 we then show how to save a factor of k in the
running time by exploiting the similarity of the subproblems solved. Finally, in
Section 4.3 we present an improvement exploiting the structure of the subgraph
induced by the bipartization set. This improvement gave the most pronounced
speedups in our experiments presented in Section 5.
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4.1 Simple Improvements

It is easy to see that for each valid coloring Ψ there is a symmetric coloring
where the value is inverted at each vertex, leading to the same vertex cuts.
Therefore we can arbitrarily fix the allocation of the neighbors of one vertex,
saving a factor of 2 in the running time.

The next improvement is justified by the following lemma.

Lemma 3 Consider a graph G = (V,E), a vertex v ∈ V , and a minimum-size
odd cycle cover X for G \ {v} with |X| = k. Then no odd cycle cover of size k
for G contains v.

Proof: If X ′ is an odd cycle cover of size k for G, then X ′ \ {v} is an odd cycle
cover of size k − 1 for G[V \ {v}], contradicting that X is of minimum size. 2

With Lemma 3 it is clear that the vertex v we add to X in line 5 of Odd-
Cycle-Cover cannot be part of a smaller odd cycle cover, and we can omit
the case v /∈ X in Compress-OCC, saving a third of the cases.

4.2 Exploiting Subproblem Similarity

In the “inner loop” of Compress-OCC (line 5), we need to find a minimum
size vertex cut between two vertex sets in a graph. This is a classic application
for maximum flow techniques: The well-known max-flow min-cut theorem [7]
tells us that the size of a minimum edge cut is equal to the maximum flow.
Since we are interested in vertex cuts, we create a new, directed graph G′ for
our input graph G = (V,E): for each vertex v ∈ V , create two vertices vin

and vout and a directed edge (vin , vout). For each edge {v, w} ∈ E, we add two
directed edges (vout , win) and (wout , vin). It is not hard to see that a maximum
flow in G′ between Y ′1 :=

⋃
y∈Y1

yin and Y ′2 :=
⋃

y∈Y2
yout corresponds to a

maximum set of vertex disjoint paths between Y1 and Y2. Furthermore, an edge
cut D between Y ′1 and Y ′2 is of the form

⋃
v∈V {(vin , vout)}, and

⋃
(vin ,vout )∈D{v}

is a vertex cut between Y1 and Y2 in G.
Since we know that the cut is relatively small (less than or equal to k), we

employ the Edmonds–Karp algorithm [10, 13, 7]. This algorithm repeatedly
finds a shortest augmenting path in the flow network and increases the flow
along it, until no further increase is possible. We assume in the rest of this
section that the reader is familiar with this algorithm.

The idea is then that the flow problems solved in Compress-OCC are “simi-
lar” in such a way that we can “recycle” the flow networks for each problem. For
this, after line 3 of Compress-OCC, we merge all white neighbors of each v ∈ X
into a single vertex v1, and all black neighbors of each v ∈ X into a single ver-
tex v2. Clearly, this does not change the minimum cut found in line 5. Then,
each flow problem corresponds to one assignment of the vertices in X to the
three roles “v1 source, v2 target”, “v2 source, v1 target”, and “not present”
(v /∈ X). Using a so-called (3, k)-ary Gray code [18], we can enumerate these
assignments in such a way that adjacent assignments differ in only one element.
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For each of these (but the first one), one can solve the flow problem by adapting
the previous flow. One or both of the following actions is needed:

• If the vertex v whose assignment was changed was present previously,
drain the flow along the path with end point v1 and the path with end
point v2 (note that they might be identical). Here, “drain the flow” means
to find an augmenting path in the flow network (as opposed to the residual
network), and zero the flow along this path.

• If v is present in the updated assignment, find an augmenting path from v1

to v2 or from v2 to v1, depending on the current role of v.

Lemma 4 The above procedure correctly updates a maximum flow.

Proof: Setting the flow to zero along (both directions of) an augmenting path
in the flow network clearly does not violate capacity constraints or skew sym-
metry; since each vertex on the path except for the start- and endvertex has one
incoming edge with value 1 and one incoming edge with value −1 cleared, flow
conservation is also preserved. Therefore, the draining procedure yields a valid
flow where v1 and v2 are not source or sink anymore. Augmenting a path is
well-known to provide a valid flow where the endpoints are source resp. target.
Further, the new flow is maximum: if previously there were k′ sources, the flow
had value k′, since otherwise the algorithm would have terminated. Since we
add at most one new source, the new flow can be at most k′ + 1, and therefore
a single augmentation operation suffices to get a maximum flow. 2

Since each of these operations can be done in O(m) time, we can perform
the update in O(m) time, as opposed to O(km) time for solving a flow problem
from scratch. This improves the overall worst case running time to O(3k ·mn).
We call this algorithm OCC-Gray.

Theorem 2 Graph Bipartization can be solved in O(3k ·mn) time.

4.3 Filtering of Valid Colorings

Lemma 2 tells us that for Disjoint Compression, there is a valid coloring
for N(X) such that we will find a cut leading to a smaller odd cycle cover.
Therefore, simply trying all valid colorings will be successful. However, a more
careful examination allows to omit some valid colorings from consideration.
For this, consider two vertices c, d ∈ X that are connected by an edge. After
the input transformation, they are connected by a path containing two fresh
vertices vc and vd. If we now have a valid coloring that assigns different values
to vc and vd, it is not possible to find a vertex cut that disconnects them, since
they are directly connected by an edge. Therefore, any valid coloring that is to
be successful must assign them the same colors.

For notational convenience, we now identify a valid coloring Ψ with a color-
ing CΨ of the vertices in X. We identify the choice ∀w ∈ N(v) : Ψ(w) = CX(w)
with painting v white and the choice ∀w ∈ N(v) : Ψ(w) 6= CX(w) with



JGAA, 13(2) 77–98 (2009) 89

painting v black. Then, the above observation imposes CΨ(v) 6= CΨ(w) for
all {v, w} ∈ E. This means that CΨ is a two-coloring of G[X]. If G[X] is not
bipartite, we can immediately give up trying to find a smaller odd cycle cover;
otherwise, we only have to try all two-colorings of G[X] (there can be more than
one if G[X] is disconnected). This leads to the following algorithm.

Compress-OCC-Enum2Col(G0, X0)
1 subdivide edges around each v ∈ X
2 for each bipartite subgraph B of G[X]:
3 for each two-coloring CΨ of B:
4 if ∃ vertex cut D in G \X between #Ψ and  Ψ with |D| < |X|:
5 return (X0 \X) ∪D
6 return X0

The worst case for Compress-OCC-Enum2Col is that X is an independent
set in G. In this case, every subgraph of G[X] is bipartite and has 2|X| two-
colorings. This leads to exactly the same number of flow problems solved as
for Compress-OCC. In the best case, X is a clique, and G[X] has only O(|X|2)
bipartite subgraphs, each of which admits (up to symmetry) only one two-
coloring.

It is easy to construct a graph where any optimal odd cycle cover is inde-
pendent; therefore the described modification does not lead to an improvement
of the worst-case running time. However, at least in a dense graph, it is “un-
likely” that the odd cycle covers are completely independent, and already a few
edges between vertices of the odd cycle cover can vastly reduce the required
computation.

With a simple branching strategy, one can enumerate all bipartite subgraphs
of a graph and all their two-colorings with constant cost per two-coloring. This
can also be done in such a way that modifications to the flow graph can be
done incrementally, as described in Section 4.2. The two simple improvements
mentioned at the beginning of this section also can still be applied. We call the
thus modified algorithm OCC-Enum2Col.

It seems plausible that for dense graphs, an odd cycle cover is “more likely”
to be connected, and therefore this heuristic is more profitable. Experiments
on random graphs confirm this (see Section 5.3). This is of particular interest
because other strategies (such as reduction rules [36]) seem to have a harder
time with dense graphs than with sparse graphs, making hybrid algorithms
appealing.

5 Experiments

We first evaluated the conventional approaches. The ILP performed quite
well; when solved by GNU GLPK [28], it consistently outperformed the highly
problem-specific branch-and-bound approach by Wernicke [36] on our test data,
sometimes by several orders of magnitude. Therefore, we use the ILP as the
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comparison point for the performance of our algorithms and do not give details
on the branch-and-bound approach.1

Implementation Details. The program is written in the C programming
language and consists of about 1400 lines of code. The source and the test data
are available from http://theinf1.informatik.uni-jena.de/occ/.

Data structures. Over 90% of the time is spent in finding an augmenting
path within the flow network; all that this requires from a graph data structure
is enumerating the neighbors of a given vertex. The only other frequent opera-
tion is “enabling” or “disabling” vertices as determined by the Gray code (see
Section 4.2). In particular, it is not necessary to quickly add or remove edges,
or query whether two vertices are neighbors. Therefore, we chose a very simple
data structure, where the graph is represented by an array of neighbor lists,
with a null pointer denoting a disabled vertex.

Since the flow simply models a set of vertex-disjoint paths, it is not necessary
to store a complete n×n-matrix of flows; it suffices to store the flow predecessor
and successor for each node, reducing memory usage to O(n).

Experimental Setup. We tested our implementation on various inputs. The
testing machine is an AMD Athlon 64 3700+ with 2.2 GHz, 1 MB cache, and
1 GB main memory, running under the Debian GNU/Linux 3.1 operating sys-
tem. The source was compiled with the GNU gcc 3.3.4 compiler with option
“-O3”. Memory requirements are around 3 MB for the iterative compression
based algorithms and up to 500 MB for the ILP.

5.1 Minimum Site Removal

The first test set originates from computational biology (see Section 2.2). The
instances were constructed by Wernicke [36] from data of the human genome as
a means to solve the so-called Minimum Site Removal problem. We examine
these instances to learn about the performance of our algorithms on real-world
instances, in particular those modeling a data correction task (the graph should
be bipartite, but is distorted, and a most parsimonious reconstruction is sought).
The results are shown in Table 1.

As expected, the running times of the iterative compression algorithms
mainly depend on the size of the odd cycle cover that is to be found. Inter-
estingly, the ILP also shows this behavior; the probable explanation is that it
takes the branch-and-bound part of the solver longer to establish inferiority
of an assignment of the integer variables to an upper bound found previously.
The observed improvement in the running time from “Reed” to “OCC-Gray”
is slightly lower than the factor of k gained in the worst-case complexity, but

1We recently found that more sophisticated mathematical programming approaches have
been suggested [16], although without provable running time guarantees. It would be inter-
esting to extend our comparison to these.

http://theinf1.informatik.uni-jena.de/occ/
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n m density |X| ILP Reed OCC-Gray OCC-Enum2Col

Afr. #31 30 51 11.7 2 0.02 0.00 0.00 0.00
Jap. #19 84 172 4.9 3 0.23 0.00 0.00 0.00
Jap. #24 142 387 3.9 4 1.30 0.00 0.00 0.00
Jap. #11 51 212 16.6 5 0.50 0.00 0.00 0.00
Afr. #10 69 191 8.1 6 3.49 0.00 0.00 0.00
Afr. #36 111 316 5.2 7 16.93 0.01 0.00 0.00
Jap. #18 71 296 11.9 9 73.94 0.09 0.02 0.00
Jap. #17 79 322 10.5 10 100.93 0.27 0.04 0.00
Afr. #11 102 307 6.0 11 3790.99 1.10 0.14 0.02
Afr. #54 89 233 5.9 12 5.13 0.61 0.10
Afr. #34 133 451 5.1 13 9.36 0.98 0.02
Afr. #52 65 231 11.1 14 20.95 2.08 0.02
Afr. #22 167 641 4.6 16 318.95 31.24 0.15
Afr. #48 89 343 8.8 17 1269.01 104.20 0.11
Afr. #50 113 468 7.4 18 5287.68 501.15 0.06
Afr. #19 191 645 3.6 19 1288.85 2.23
Afr. #45 80 386 12.2 20 2774.75 0.23
Afr. #29 276 1058 2.8 21 0.38
Afr. #40 136 620 6.8 22 0.98
Afr. #39 144 692 6.7 23 9.11
Afr. #17 151 633 5.6 25 49.27
Afr. #38 171 862 5.9 26 2.60
Afr. #28 167 854 6.2 27 2.43
Afr. #42 236 1110 4.0 30 78.79
Afr. #41 296 1620 3.7 40 175.14

Table 1: Running times in seconds for different algorithms for Wernicke’s bench-
mark instances [36]. Runs were cancelled after 2 hours without result. We show
only the instance of median size for each value of |X|. The column “ILP” gives
the running time of the ILP given in Section 2 when solved by GNU GLPK [28].
The column “Reed” gives the running time of Reed et al.’s algorithm without
any of the algorithmic improvements from Section 4 except for the obvious im-
provement of omitting symmetric valid partitions. The columns “OCC-Gray”
and “OCC-Enum2Col” give the running time for the respective algorithms
from Sections 4.2 and 4.3.

clearly still worthwhile. The heuristic from Section 4.3 works exceedingly well
and allows to solve even the hardest instances within minutes. In fact, for al-
most all instances that the ILP was able to solve at all, the running time was
below the timer resolution of 10 ms.

For both improvements, the savings in running can be completely explained
by the reduced number of flow augmentations.

5.2 Synthetic Data from Computational Biology

In this section, we examine solving the Minimum Fragment Removal prob-
lem [31] with Graph Bipartization. The motivation is similar as in Sec-
tion 5.1, except that the goal is to remove the minimum number of fragments
(presumably those that contain read errors) to obtain consistent data.
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c |V | |E| |X| ILP Reed OCC-Gray OCC-Enum2Col

2 25 23 1.4 0.02 0.00 0.00 0.00
3 50 61 3.5 2.00 0.00 0.00 0.00
4 82 116 6.1 224.33 0.05 0.00 0.00
5 112 173 8.3 1.17 0.05 0.02
6 143 253 10.4 39.86 1.64 0.16
7 174 321 11.6 7245.40 254.10 1.10
8 211 431 14.8 627.84 4.54
9 243 561 17.9 181.48
10 289 710 21.0 186.36
11 328 839 23.3 2493.82

Table 2: Running times in seconds for different algorithms for synthetic Mini-
mum Fragment Removal instances [31]. Here, c is a model parameter. Each
entry is an average over 20 instances.

We generate synthetic Graph Bipartization instances using a model sug-
gested by Panconesi and Sozio [31]. A random binary string h1 of length n is
generated, and h2 is generated as a copy of h1 where a proportion of d bits is ran-
domly flipped. These strings represent the two copies of the haplotype. Next,
fragments are generated by breaking h1 and h2 each into k pieces by select-
ing k− 1 breakpoints randomly. The fragment generation process is repeated c
times, such that every position in h1 or h2 occurs c times in some fragment.
Finally, each fragment is mutated by flipping each bit with probability p. From
the fragments, the conflict graph is constructed, where the fragments are the
vertices and an edge is drawn between two fragments if they differ at some
position.

Following Panconesi and Sozio [31], we choose the parameters n = 100,
d = 0.2, k = 20, p = 0.02, and c varying (see Table 2).

The results are consistent with those of Section 5.1. The ILP is outperformed
by the iterative compression algorithms; for OCC-Gray, we get a speedup by
a factor somewhat below |X| when compared to “Reed”. The speedup from
employing OCC-Enum2Col is very pronounced, but still far below the speedup
observed in Section 5.1. A plausible explanation is the lower average vertex
degree of the input instances; we examine this further in Section 5.3. Note that
even with all model parameters constant, running times varied by a factor of up
to several orders of magnitude for all algorithms for different random instances.

5.3 Random Graphs

The previous experiments have established OCC-Enum2Col as best perform-
ing algorithm. Therefore, we now focus on charting its tractability border. We
use the following method to generate random graphs with given number of ver-
tices n, edges m, and odd cycle cover size at most k: Pre-allocate the roles
“black” and “white” to (n − k)/2 vertices each, and “odd cycle cover” to k
vertices; select a random vertex and add an edge to another random vertex
consistent with the roles until m edges have been added.
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Figure 4: Running time of OCC-Enum2Col (Section 4.3) for random graphs
of different density (n = 300). Each point is the average over at least 30 runs.

In Figure 4, we display the running time of OCC-Enum2Col for different
sizes of the odd cycle cover and different graph densities for graphs with 300
vertices. Note that the actual optimal odd cycle cover can be smaller than the
one “implanted” by our model; the figure refers to the actual odd cycle cover
size k.

At an average degree of 3, the growth in the measurements closely matches
the one predicted by the worst-case complexity O(3k). For the average degree 16,
the measurements fit a growth of O(2.6k), and for average degree 64, the growth
within the observed range is about O(1.6k). This demonstrates the effectiveness
of OCC-Enum2Col for dense graphs, at least in the range of values of k we
examined.

6 Conclusions

We evaluated the iterative compression algorithm by Reed et al. [33] for Graph
Bipartization and presented several improvements. The implementation per-
forms better than established techniques, and allows to solve instances from
computational biology that previously could not be solved exactly. In partic-
ular, a heuristic (Section 4.3) yielding optimal solutions performs very well on
dense graphs. This result makes the practical evaluation of iterative compression
for other applications [8, 20, 21, 4, 11, 29, 5, 22] appealing.

Future Work. The best way to improve the presented programs further for
practical applicability seems the incorporation of data reduction rules. In par-
ticular, Wernicke [36] reports them to be most effective for sparse graphs. This
makes a combination with OCC-Enum2Col (Section 4.3) attractive, since in
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contrast, this algorithm displays the worst performance for sparse graphs. It
would also be interesting to see whether the quest for better data reduction leads
to a problem kernel, that is, a reduced instance whose size depends only on the
parameter k, as it was recently achieved for the related problem Feedback
Vertex Set [3, 2].
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