
Journal of Graph Algorithms and Applications
http://jgaa.info/ vol. 13, no. 1, pp. 5–18 (2009)

Listing All Plane Graphs

Katsuhisa Yamanaka 1 Shin-ichi Nakano 2

1Graduate School of Information Systems, The University of
Electro-Communications

2Department of Computer Science, Gunma University

Abstract

In this paper we give a simple algorithm to generate all connected
rooted plane graphs with at most m edges. A “rooted” plane graph is a
plane graph with one designated (directed) edge on the outer face. The
algorithm uses O(m) space and generates such graphs in O(1) time per
graph on average without duplications. The algorithm does not output the
entire graph but the difference from the previous graph. By modifying
the algorithm we can generate all connected (non-rooted) plane graphs
with at most m edges in O(m3) time per graph.

Submitted:
January 2008

Reviewed:
June 2008

Revised:
July 2008

Accepted:
November 2008

Final:
December 2008

Published:
February 2009

Article type:
Regular Paper

Communicated by:
M. S. Rahman

E-mail addresses: yamanaka@is.uec.ac.jp (Katsuhisa Yamanaka) nakano@cs.gunma-u.ac.jp

(Shin-ichi Nakano)

mailto:yamanaka@is.uec.ac.jp
mailto:nakano@cs.gunma-u.ac.jp

6 K. Yamanaka and S. Nakano Listing All Plane Graphs

Generating all graphs with some property without duplications has many
applications, including unbiased statistical analysis [9]. A lot of algorithms
to solve these problems are known such as [1, 2, 8, 9, 10, 15]. See textbooks
[5, 6, 7, 13, 14].

In this paper we wish to generate all connected “rooted” plane graphs, which
will be defined precisely in Section 2, with at most m edges. Such graphs play
an important role in many algorithms, including graph drawing algorithms such
as [3, 4, 12]. Using our generation algorithm one can test an implementation of
a plane graph drawing algorithm. Our algorithm constructs the complete list of
rooted plane graphs with at most m edges.

To solve these all-graph-generating problems some types of algorithms are
known.

Classical method algorithms [5, p.57] first generate all the graphs with a
given property allowing duplications, but output only if the graph has not been
output yet. Thus this method requires quite a huge space to store a list of graphs
that have already been output. Furthermore, checking whether each graph has
already been output requires a lot of time.

Orderly method algorithms [5, p.57] need not store the list, since they output
a graph only if it is a “canonical” representative of each isomorphism class.

Reverse search method algorithms [1] also need not store the list. The idea is
to implicitly define a connected graph H such that the vertices of H correspond
to the graphs with the given property, and the edges of H correspond to some
relation between the graphs. By traversing an implicitly defined spanning tree
of H, one can find all the vertices of H, which correspond to all the graphs with
the given property without duplication.

The main idea of our algorithms is that for some problems (biconnected
triangulations [8], and triconnected triangulations [10]) we can define a tree
(not a general graph) as the graph H of the reverse search method. Thus our
algorithms do not need to find a spanning tree of H, since H itself is a tree.
With some other ideas we give the following two simple but efficient algorithms.

Our first algorithm generates all simple connected rooted plane graphs with
at most m (m > 0) edges. Simple means there is neither self loops nor multiple
edges. A rooted plane graph means a plane graph with one designated “root”
edge on the outer face. Its precise definition is given in the next section. For
instance there are nine simple connected rooted plane graphs with at most three
edges, as shown in Figure 1(a). The root edges are depicted by thick grey lines.
However, there are only five simple connected (non-rooted) plane graphs with
at most three edges. See Figure 1(b). The algorithm uses O(m) space and runs
in O(g(m)) time, where g(m) is the number of nonisomorphic connected rooted
plane graphs with at most m edges. The algorithm generates each graph in
O(1) time on average without duplications. The algorithm does not output the
entire graph but the difference from the previous graph.

By modifying the algorithm we can generate all connected (non-rooted) plane
graphs with at most m edges in O(m3) time per graph.

The rest of the paper is organized as follows. Section 2 gives some definitions.
Section 3 shows a tree structure among connected rooted plane graphs. Section

JGAA, 13(1) 5–18 (2009) 7

(a)
 (b)

Figure 1: (a) Connected rooted plane graphs, and (b) connected (non-rooted)
plane graphs.

4 presents our first algorithm to generate all connected rooted plane graphs.
Then, by modifying the algorithm we give an algorithm to generate all connected
(non-rooted) plane graphs. Section 5 analyzes the running time of our algorithm.
Finally Section 6 is a conclusion.

1 Preliminaries

In this section we give some definitions.
Let G be a connected graph with m edges. In this paper all graphs are

simple, so there is neither self loops nor multiple edges. An edge connecting
vertices u and w is denoted by (u, w). The degree of a vertex v is the number
of neighbors of v in G.

A graph is planar if it can be embedded in the plane so that no two edges
intersect geometrically except at a vertex to which they are both incident. A
plane graph is a planar graph with a fixed planar embedding. A plane graph
divides the plane into connected regions called faces. The unbounded face is
called the outer face, and other faces are called inner faces. We regard the
contour of a face as the clockwise cycle formed by the vertices on the boundary
of the face. We denote the contour of the outer face of plane graph G by Co(G).
For instance, in Figure 2, Co(G) = v0, v1, v2, v3, v4, v5, v6, v7(= v5), v8, v9, v10(=
v5), v11(= v4), v12, v13(= v1), v14(= v0). Note that a vertex may appear several
times on Co(G). We say each vi on Co(G) is an appearance of a vertex. For
instance v5, v7 and v10 are the appearances of the same vertex v5 = v7 = v10.
A rooted plane graph is a plane graph with one designated edge er = (vl, vr)
on Co(G). We assume that vl succeeds vr on Co(G), vl appears in the head on
Co(G), and vr appears at the end on Co(G) except vl. The designated edge is
called the root edge, and vertex vl is called the root vertex. Note that a rooted
plane graph has one or more edges. The root edges and root vertices are denoted
by a grey lines and white circles in all figures, respectively. From now on we
write r for the root vertex.

8 K. Yamanaka and S. Nakano Listing All Plane Graphs

v

5

v

6

v

8v

9

v

3

e
r

v

2

v

7

v

10

= =

v

0

v

14 r= = v

4
v

11
=v

1
v

13
=

v

12

Figure 2: A connected rooted plane graph G.

2 The Removing Sequence and the Family Tree

Let Sm be the set of all connected rooted plane graphs with at most m edges.
In this section we explain a tree structure relating the graphs in Sm.

Let G be a connected rooted plane graph with two or more edges. Let er =
(vk−1, v0) be the root edge of G and Co(G) = v0(= r), v1, v2, . . . , vk−1, v0(= r).
Note that v0 succeeds vk−1 on Co(G).

We classify the edges on Co(G) into three types as follows. If an edge e on
Co(G) is included in a cycle of G then e is a cycle edge. Otherwise, if at least
one vertex of e has degree 1 then e is a pendant. Otherwise e is a bridge. We can
observe if we remove a bridge from G then the resulting graph is disconnected.
For instance, in Figure 2, the edge (v2, v3) is a cycle edge, (v5, v6) is a pendant,
and (v4, v5) is a bridge.

An edge e 6= er on Co(G) is removable if and only if e is either a pendant or a
cycle edge. If e is a removable edge then after removing e from G the remaining
edges induce a connected graph. Note that if e is a cycle edge, removing e,
we have the resultant graph, on the other hand, if e is a pendant, removing
the isolated vertex after removing e, we have the resultant graph. Thus the
resultant graph is connected in both cases. Since G is a rooted plane graph, the
resultant graph after removing a removable edge is also a rooted plane graph
with the same root edge.

We have the following lemma.

Lemma 1 Every connected rooted plane graph with two or more edges has at
least one removable edge.

Proof: Let G be a connected rooted plane graph with two or more edges, with
the root edge er = (vk−1, v0), and Co(G) = v0(= r), v1, v2, . . . , vk−1, v0. Let e
be the first edge distinct from er on Co(G). Now e must be one of the three
types, that is, a bridge, a pendant or a cycle edge. If e is a pendant or a cycle
edge, it is removable, and we are done. Otherwise e is a bridge, then on Co(G)
the next edge of e is either a pendant, a bridge or a cycle edge. By repeating this
procedure we can find at least one pendant or cycle edge, which is removable.

�

If ea = (va−1, va), a > 1, is removable but none of (v0, v1), (v1, v2), . . . , (va−2,

JGAA, 13(1) 5–18 (2009) 9

va−1) is removable, then ea is called the first removable edge of G. We can ob-
serve that if ea is the first removable edge then each of (v0, v1), (v1, v2), . . . , (va−2,
va−1) is a bridge or the root edge. (So they are not removable.)

For each graph G in Sm except K2, if we remove the first removable edge
then the resulting edge-induced graph, denoted by P (G), is also a graph in Sm

having one less edge. Thus we can define the unique graph P (G) in Sm for each
G in Sm except K2. We say G is a child graph of P (G).

Given a graph G in Sm, by repeatedly removing the first removable edge,
we can have the unique sequence G, P (G), P (P (G)), . . . of graphs in Sm which
eventually ends with K2. By merging those sequences we can have the family
tree Tm of Sm such that the vertices of Tm correspond to the graphs in Sm, and
each edge corresponds to each relation between some G and P (G). For instance
T4 is shown in Figure 3, in which each first removable edge is depicted by a
thick black line. We call the vertex in Tm corresponding to K2 the root of Tm.

3 Algorithms

The outline of our algorithm is as follows. By traversing Tm we can generate all
vertices of Tm and corresponding all connected rooted plane graphs in Sm. If we
can find all child graphs of the current graph in Tm, then with a recursive manner
we can traverse Tm. Thus we only need to design an algorithm to generate all
child graphs of a given current graph in Sm. Similar technique is used in [8, 10]
to efficiently generate some classes of graphs (biconnected triangulations and
triconnected triangulations) but based on different family trees.

Let er be the root edge. Let Co(G) = v0(= r), v1, . . . , vk−1, v0(= r), and
(va−1, va) be the first removable edge of G. Note that k is the number of
appearances of the vertices on the contour of the outer face. Since K2 has no
removable edge, for convenience, we regard e1 = (v0, v1) as the first removable
edge for K2. We denote by G(i), 0 ≤ i < k, the rooted plane graph obtained
from G by adding a new pendant at vi, and by G(i, j), 0 ≤ i < j < k, the rooted
plane graph obtained from G by adding a new cycle edge connecting vi and vj

on the outer face of G, as shown in Figure 4. We can observe that each child of
G is either G(i) or G(i, j) for some i and j, and G(i) or G(i, j) is a child graph
of G if and only if the newly added edge of G(i) or G(i, j) is the first removable
edge.

If (va−1, va) is the first removable edge of G, then edges (v0, v1), (v1, v2), . . . ,
(va−2, va−1) are bridges or the root edge, and vertices v0, v1, v2, . . . , va form a
path on Co(G). We call this path the critical path of G and denote it Pc(G).
For instance, in Figure 2, Pc(G)=(v0, v1, v2).

Now we are going to find all child graphs of G. We have the following two
cases to consider. Let b(i) be the largest integer satisfying vi = vb(i). Thus vb(i)

is the last appearance of vi on Co(G).

Case 1: The first removable edge (va−1, va) of G is a pendant (including the
special case when G is K2).

10 K. Yamanaka and S. Nakano Listing All Plane Graphs

(0)

(1)

(0)

(1)

(0)

(1)

(0)

(1)

(2)

(0,2)

(0)

(1)

(0,4)

(0)

(1)

(2)

(0,2)

(0,4)

(0)

(1)

(2)

(3)

(0,2)

(0,3)

(0,4)

(1,3)

(0)

(1)

(2)

(0,2)

(0)

Figure 3: The family tree T4.

JGAA, 13(1) 5–18 (2009) 11

vi

v
0

= r

er

vi

v
0

= r

er

(a) G(i)

vj

(b) G(i,j)

Figure 4: Illustration for (a) G(i) and (b) G(i, j).

Consider graphs G(i), 0 ≤ i ≤ k. For each i, 0 ≤ i ≤ a, the newly added
edge in G(i) is the first removable edge of G(i), thus P (G(i)) = G. For each i,
a < i < k, (va−1, va) is still the first removable edge of G(i), so P (G(i)) 6= G.

Then consider graphs G(i, j), 0 ≤ i < j < k. For each i and j, (i < j), if
(1) vi 6= vj , (2) 0 ≤ i ≤ a− 1, (3) (vi, vj) is not an edge of G, and (4) j < b(i),
then the newly added edge in G(i, j) is the first removable edge of G(i, j), thus
P (G(i, j)) = G. Note that if vi = vj edge (vi, vj) is a self loop (even if i 6= j),
and so G(i, j) is not simple. Also if G already has the edge (vi, vj) then G(i, j)
has a multiple edge, and so G(i, j) is not simple. If i ≥ a, then the newly
added edge in G(i, j) is not the first removable edge of G(i, j), since (va−1, va)
is still removable, thus P (G(i, j)) 6= G. Otherwise, 0 ≤ i ≤ a− 1 and j > b(i)
holds. Let s(j) be the smallest integer satisfying vj = vs(j). Note that s(j) < i
holds. Now edges (vs(j), vs(j)+1), (vs(j)+1, vs(j)+2), . . . , (vi−1, vi) are cycle edges
in G(i, j) since adding edge (i, j) to them completes a cycle. Thus the newly
added edge (i, j) is not the first removable edge of G(i, j) so P (G(i, j)) 6= G.

Case 2: The first removable edge (va−1, va) of G is a cycle edge.
Consider graphs G(i), 0 ≤ i < k. For each i, 0 ≤ i ≤ a− 1, the newly added

edge in G(i) is the first removable edge of G(i), so P (G(i)) = G. For each i,
a ≤ i < k, (va−1, va) is still the first removable edge of G(i), so P (G(i)) 6= G.

Then consider graphs G(i, j), 0 ≤ i < j < k. For each i and j, (i < j), if
(1) vi 6= vj , (2) 0 ≤ i ≤ a− 1, (3) (vi, vj) is not an edge of G, and (4) j < b(i),
then the newly added edge in G(i, j) is the first removable edge of G(i, j), thus
P (G(i, j)) = G. Note that if vi = vj edge (vi, vj) is a self loop (even if i 6= j),
and so G(i, j) is not simple. Also if G already has the edge (vi, vj) then G(i, j)
has a multiple edge, and so G(i, j) is not simple. If i ≥ a, then the newly
added edge in G(i, j) is not the first removable edge of G(i, j), since (va−1, va)
is still removable, thus P (G(i, j)) 6= G. Otherwise, 0 ≤ i ≤ a− 1 and j > b(i)
holds. Let s(j) be the smallest integer satisfying vj = vs(j). Note that s(j) < i
holds. Now edges (vs(j), vs(j)+1), (vs(j)+1, vs(j)+2), . . . , (vi−1, vi) are cycle edges

12 K. Yamanaka and S. Nakano Listing All Plane Graphs

in G(i, j) since adding edge (i, j) to them completes a cycle. Thus the newly
added edge (i, j) is not the first removable edge of G(i, j) so P (G(i, j)) 6= G.

Based on the case analysis above we can find all child graphs of any given
graph in Sm. If G has l child graphs, then we can find them in O(l) time
with a suitable data structure, which will be described in Section 5. This is an
intuitive reason why our algorithm generates each graph in O(1) time per graph
on average.

Recursively repeating this process from the root of Tm corresponding to K2

we can traverse Tm without constructing the whole part of Tm at once. During
the traversal of Tm, we assign a label (i) or (i, j) to each edge connecting G and
either G(i) or G(i, j) in Tm, as shown in Figure 3. Each label denotes how to
add a new edge to G to generate a child graph G(i) or G(i, j), and each sequence
of labels on a path starting from the root specifies a graph in Sm. For instance,
the sequence (1)(0, 2)(0) specifies the right-bottom graph in Figure 3. During
our algorithm we will maintain these labels only on the path from the root to
the “current” vertex of Tm, because those labels carry enough information to
generate the “current” graph. To generate the next graph, we need to maintain
more information only for the graphs on the “current” path, which has length
at most m, and each graph can be represented as a constant size of difference
from the preceding one. This is an intuitive reason why our algorithm uses only
O(m) space, while the number of graphs may not be bounded by a polynomial
in m.

Our algorithm is as follows.

Procedure find-all-child-graphs(G)
begin

01 Output G {Output the difference from the previous graph.}
02 Assume (va−1, va) is the first removable edge of G.
03 if G has exactly m edges then return
04 for i = 0 to a− 1 {Cases 1 and 2}
05 find-all-child-graphs(G(i))
06 if (va−1, va) is a pendant then {Case 1}
07 find-all-child-graphs(G(a))
08 for i = 0 to a− 1 {Cases 1 and 2}
09 for j = i + 2 to b(i)− 1
10 if vi 6= vj and (vi, vj) is not an edge of G then
11 find-all-child-graphs(G(i, j))

end

Algorithm find-all-graphs(Tm)
begin

1 Output K2

2 G = K2

JGAA, 13(1) 5–18 (2009) 13

3 find-all-child-graphs(G(0))
4 find-all-child-graphs(G(1))

end

We have the following theorem. The proof is given in Section 5.

Theorem 1 The algorithm uses O(m) space and runs in O(g(m)) time, where
g(m) is the number of nonisomorphic connected rooted plane graphs with at most
m edges.

We can modify our algorithm so that it outputs all connected (non-rooted)
plane graphs with at most m edges, as follows. At each vertex v of the family
tree Tm, the graph G corresponding to v is checked whether the sequence of
labels of G (with the root edge) is the lexicographically first one among the k
sequences of labels of G for the k choices of the root edge on Co(G), and only if
so, G is output. Thus we can output only the canonical representative of each
isomorphism class. A similar method has appeared in [8, 10].

Lemma 2 The algorithm uses O(m) space and runs in O(m3 · h(m)) time,
where h(m) is the number of nonisomorphic connected (non-rooted) plane graphs
with at most m edges.

Proof: For each graph corresponding to a vertex of Tm we construct k ≤ m of
sequences of labels corresponding to the k choices for the root edge on Co(G) in
O(m) time for each sequence, and find the lexicographically first one in O(km)
time. And for each output graph, our tree may contain k of isomorphic ones
corresponding to the k choices for the root edge. Thus the algorithm runs in
O(k2m · h(m)) = O(m3 · h(m)) time. The algorithm clearly uses O(m) space.

�

4 Proof of Theorem 1

In this section we give a proof of Theorem 1, that is if G has l child graphs how
we can find them in O(l) time.

Given a connected rooted plane graph G in Sm with at most m − 1 edges,
we are going to find all child graphs of G by algorithm find-all-child-graphs.
Let (vk−1, v0) be the root edge of G, Co(G) = v0(= r), v1, v2, . . . , vk−1, v0(= r),
and (va−1, va) be the first removable edge of G.

If G has l child graphs of type G(i), by only maintaining the critical path
v0, v1, . . . , va, we can find such child graphs in O(l) time. See lines 04–07 of
find-all-child-graphs.

On the other hand, if G has l
′

child graphs of type G(i, j), we need to
maintain a slightly complicated data structure to find all such child graphs in
O(l

′
) time. Note that if either (1) vi = vj , or (2) G has an edge (vi, vj), then

G(i, j) is not simple and G(i, j) is not a child graph of G, so we need to efficiently
skip such j’s at line 10. For each of the other j’s, we need to generate G(i, j),
since those are child graphs of G.

14 K. Yamanaka and S. Nakano Listing All Plane Graphs

P
3

3

P
3

8

P
3

10

P
3

12

P
3

18

P
3

23

v
11

v
9

v
7 108

v = v = v
6

v
4

v
2

v
1

v = r
0

v
12 v

14

v
17

: a trace of skipping each dead path

5 13
v = v = v

15 24
= v = v

3

v = v
16 18

v
19

v
20

v
21 v

22

v
23

Figure 5: An illustration for the zombie list of v3.

Our idea is as follows. Let vi be an appearance of a vertex on the critical
path of G. We say that an appearance vj on Co(G) is dead with respect to vi

if either (1) vi = vj , or (2) G has an edge (vi, vj). To skip dead appearances
efficiently, for each vertex vi on the critical path, we maintain a list of succes-
sive dead appearances with respect to vi, which allows us to skip each run of
successive dead appearances in O(1) time. After each time skipping successive
dead appearances we can always generate a child graph of G corresponding to
the next “non-dead” appearance. Thus l

′
child graphs of type G(i, j) can be

generated in O(l
′
) time. The details are as follows.

Let va(i) and vb(i) be the first and last appearances of vi on Co(G). Let
Pi be the subpath from va(i) to vb(i) on Co(G). A maximal subpath P c

i of
Pi is called a dead path of vi if all appearances vc, vc+1, . . . on P c

i are dead
with respect to vi. For example, the graph in Figure 5 has 6 dead paths of
v3: P 3

3 = (v3, v4, v5, v6), P 8
3 = (v8), P 10

3 = (v10), P 12
3 = (v12, v13, v14, v15, v16),

P 18
3 = (v18, v19, v20, v21) and P 23

3 = (v23, v24). They appear on Co(G) in this
order. For each vi (0 ≤ i ≤ a− 1), we maintain all dead paths as a list, and we
call the list as the zombie list of vi. Using the zombie list we can skip each run
of successive dead appearances in O(1) time. After each time we skip a dead
path, we can always generate at least one child graph. Thus, we can generate
each child graph of type G(i, j) in O(1) time.

Now we show how to prepare those data structures for each child graph.
Given a connected rooted plane graph G and the zombie list of each vertex

on the critical path, we are going to generate all child graphs, and for each child
graph we prepare the zombie list of each vertex on the new critical path by
modifying the list for G.

We have the following two cases.

Case 1: Child graphs of type G(i).

JGAA, 13(1) 5–18 (2009) 15

We have the following two cases.

Case 1(a): i = a.
The first removable edge of G is a pendant, since otherwise the first remov-

able edge of G is a cycle edge and G(i) is not a child graph of G. Adding the
new pendant at vi on the critical path of G generates the critical path of G(i)
with one more length. The zombie list of each vl, 0 ≤ l ≤ a − 2, for G(i) is
identical to the ones in G.

The zombie list of va−1 for G(i) is derived by dividing the first dead path
P of va−1 in G as follows. Let P = (va−1, va, v

′

1, v
′

2, . . .) then we divide P into
two dead paths P1 = (va−1, va) and P2 = (va, v

′

1, v
′

2, . . .). Note that adding the
new edge generates one more appearance of va. See an example in Figure 6(a).
The dead path P 2

2 in Figure 6(a) is divided into P 2
2 and P 3

2 . Other dead paths
of va−1 in G(i) are identical to the ones in G.

The zombie list of va consists of one dead path P = (va, vx, va), where vx is
the other end vertex of the new edge.

Thus we can modify the zombie list of each vertex on the critical path in
O(1) time.

Case 1(b): Otherwise.
The critical path of G(i) is v0, v1, . . . , vi, vx, where vx is the other end vertex

of the new edge.
The zombie list of each vl, 0 ≤ l ≤ i − 1 for G(i) is identical to the zombie

list for G.
The zombie list of vi is derived by appending (vi, vx) as the prefix to the

first dead path of vi. See an example in Figure 6(b). By appending (v2, vx) into
the dead path P 2

2 of v2 in G, the dead path P 2
2 of G(i) is derived. Note that

the other dead path of vi in G(i) is identical to the ones in G.
Thus we can modify the zombie list of each vertex on the critical path in

O(1) time.

Case 2: Child graphs of type G(i, j).
The critical path of G(i, j) is v0, v1, . . . , vi, vj .
Note that vi+1, vi+2, . . . , vj−1 are not on Co(G(i, j)). So we need not main-

tain the zombie lists of those. Also each vj+1, vj+2, . . . , va are not on the critical
path of G(i, j). So we need not maintain the zombie lists of those.

The zombie list of each vl, 0 ≤ l ≤ i − 1, is identical to the zombie list for
G(i).

The zombie list of vi is derived by removing dead paths of vi up to vj on
Co(G). If vj+1 is dead with respect to vi in G, then appending (vi, vj) into the
dead path P j+1

i = (vj+1, vj+2, . . .) generates the zombie list of vi for G(i, j).
See an example in Figure 6(c). By appending (v2, v5) into the dead path P 6

2 of
v2 in G, the dead path P 2

2 of v2 in G(i, j) is derived. Otherwise if vj+1 is not
dead then we append a new dead path P i

i = (vi, vj) into the zombie list of vi.
Other dead paths remain as they are.

Thus we can modify the zombie list of each vertex on the critical path in
O(1) time.

16 K. Yamanaka and S. Nakano Listing All Plane Graphs

v = v
3 c

(b) Case 1(b)

(c) Case 2

v = r
0

v = r
0

v = r
0

v = r
0

v = v
1 10

v = v
1 10

v
3

v
3

v
3

v
5

v
5

v
3

v
3v

4

v
7

v
7

v
x

v
x

v
5 v

5

v
7

v
6

v
9

v
10

v
9

v
10

v
7

P
0
10 P

0
10

P
0
0 P

0
0P

1
1

P
0
0 P

1
1

P
0
0 P

1
1 P

0
0 P

1
1

P
0
0 P

1
1

P
1
1

P
2
2

P
2
2

P
2
2

P
2
2

P
2
6

P
2
2

P
2
2

P
2
3

P
3
3

P
1
8

v = v
1 9

v = v
1 13

P
0
9

P
0
13

P
1
8

P
1
12 v = r

0
v = v
1 13P

0
13 P

1
12

v = r
0

v = v
1 9P

0
9 P

1
8

P
1
8P

2
7

P
2
7

P
2
11 P

2
11

P
2
7

P
2
7

v = v
6 8

v = v
5 7

v = v
4 6 v = v

4 6

v = v
8 11

v = v
8 11

v
4

v
6

v = v
5 7

v = v
2 8

v = v
2 12

v = v
2 12

v = v
6 8

(a) Case 1(a)

v = v = v
2 4 9

v = v
2 8

v = v = v
2 4 9

Figure 6: An update of a zombie list for (a), (b) G(i) and (c) G(i, j).

By the above case analysis, we can prepare the zombie list of each child
graph of G in O(1) time.

Next we estimate the space for zombie lists.

Since the number of dead paths of vertex v is bounded by the degree of v,
the space to store the zombie lists for G is bounded by O(m) = O(n).

By maintaining the zombie lists, if G has l
′

child graphs of type G(i, j),
we can find all such child graphs in O(l

′
) time. Thus, the algorithm runs in

O(g(m)) time, where g(m) is the number of nonisomorphic connected rooted
plane graphs with at most m edges.

JGAA, 13(1) 5–18 (2009) 17

5 Conclusion

In this paper we have given a simple algorithm to generate all connected plane
graphs with at most m edges. Our algorithm first defines a family tree whose
vertices correspond to graphs, then outputs each graph without duplications by
traversing the tree.

By slightly modifying our algorithm with the technique in [11] one may
generate all connected rooted plane graphs having exactly m edges in O(1) time
for each. We need to design a family tree in which each vertex corresponds to
a connected rooted plane graph with m edges.

Can we efficiently generate all “non-rooted” plane graphs? By modifying our
algorithm with the technique in [8, 10] one can design an algorithm to generate
all “non-rooted” plane graphs having exactly m edges in O(m3) time for each.

Acknowledgements

This research was partially supported by the Ministry of Education, Science,
Sports and Culture, Grant-in-Aid for JSPS Fellows, 19-6714, 2007.

18 K. Yamanaka and S. Nakano Listing All Plane Graphs

References

[1] D. Avis and K. Fukuda. Reverse search for enumeration. Discrete Appl.
Math., 65(1-3):21–46, 1996.

[2] T. Beyer and S. Hedetniemi. Constant time generation of rooted trees.
SIAM J. Comput., 9(4):706–712, 1980.

[3] M. Chrobak and S. Nakano. Minimum-width grid drawings of plane graphs.
Comput. Geom. Theory and Appl., 11(1):29–54, 1998.

[4] H. de Fraysseix, J. Pach, and R. Pollack. How to draw a planar graph on
a grid. Combinatorica, 10(1):41–51, 1990.

[5] L. Goldberg. Efficient algorithms for listing combinatorial structures. Cam-
bridge University Press, New York, 1993.

[6] D. Knuth. The art of computer programming, volume 4, fascicle 2, gener-
ating all tuples and permutations. Addison-Wesley, 2005.

[7] D. Kreher and D. Stinson. Combinatorial algorithms. CRC Press, Boca
Raton, 1998.

[8] Z. Li and S. Nakano. Efficient generation of plane triangulations without
repetitions. In Proc. The 28th International Colloquium on Automata,
Languages and Programming, (ICALP 2001), volume 2076 of Lecture Notes
in Computer Science, pages 433–443. Springer, 2001.

[9] B. McKay. Isomorph-free exhaustive generation. J. Algorithms, 26(2):306–
324, 1998.

[10] S. Nakano. Efficient generation of triconnected plane triangulations. Com-
put. Geom. Theory and Appl., 27(2):109–122, 2004.

[11] S. Nakano and T. Uno. Constant time generation of trees with specified
diameter. Proc. the 30th Workshop on Graph-Theoretic Concepts in Com-
puter Science, (WG 2004), LNCS 3353:33–45, 2004.

[12] W. Schnyder. Embedding planar graphs on the grid. In Proc. the 1st
Annual ACM-SIAM Symposium on Discrete Algorithms, (SODA 1990),
pages 138–148, 1990.

[13] R. Stanley. Enumerative combinatorics, volume 1. Cambridge Univ. Press,
1997.

[14] R. Stanley. Enumerative combinatorics, volume 2. Cambridge Univ. Press,
1999.

[15] R. Wright, B. Richmond, A. Odlyzko, and B. McKay. Constant time gen-
eration of free trees. SIAM J. Comput., 15(2):540–548, 1986.

	Preliminaries
	The Removing Sequence and the Family Tree
	Algorithms
	Proof of Theorem 1
	Conclusion

