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Abstract

We study the following optimization problem: the input is a multi-
graph G = (V, E) and an integer parameter g. A feasible solution consists
of a (not necessarily proper) coloring of E with colors 1, 2, . . . , g. Denote
by d(v, i) the number of edges colored i incident to v. The objective is
to minimize

∑
v∈V maxi d(v, i), which roughly corresponds to the “im-

balance” of the edge coloring. This problem was proposed by Berry and
Modiano (INFOCOM 2004), with the goal of optimizing the deployment of
tunable ports in optical networks. Following them we call the optimization
problem MTPS - Minimum Tunable Port with Symmetric Assignments.

Among other results, they give a reduction from Edge Coloring show-
ing that MTPS is NP-Hard and then implicitly give a 2-approximation
algorithm. We give a (3/2)-approximation algorithm. Key to this prob-
lem is the following question: given a multigraph G = (V, E) of maximum
degree g, what fraction of the vertices can be properly edge-colored in a
coloring with g colors, where a vertex is properly edge-colored if the edges
incident to it have different colors? Our main lemma states that there is
such a coloring with half of the vertices properly edge-colored. For g ≤ 4,
two thirds of vertices can be made properly edge-colored.

Our algorithm is based on g Maximum Matching computations (total
running time O(gm

√
n + m/g), where n = |V | and m = |E|) and a

local optimization procedure, which by itself gives a 2-approximation. An
interesting analysis gives an expected O((gn + m) log(gn + m)) running
time for the local optimization procedure.
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1 Introduction

Berry and Modiano [2] study the benefits of using tunable electronic ports in
WDM/TDM Optical Networks. They provide formulations for the “tunable”
optimization problems of reducing the number of tunable electronic ports. These
ports are very expensive and optimal placement is very desirable.

They introduce two optimization problem. In this paper we concentrate
on the Minimum Tunable Port with Symmetric Assignments (MTPS) problem:
The input is a multigraph G = (V,E) and an integer parameter g. A feasible
solution consists of a (not necessarily proper) coloring (called a g-edge coloring)
of E with colors 1, 2, . . . , g. Denote by d(v, i) the number of edges colored i
incident to v. The objective is to minimize

∑
v∈V maxi d(v, i).

Actually, the MTPS problem as described in [2, 3] has a different description,
with colors corresponding to wavelengths/time-slots, and maxi d(v, i) being the
number of ports required at vertex v. They give a non-trivial equivalence re-
duction to the formulation above, which they use for proving NP-Completeness
and for approximation algorithms. For g = 3, they show the problem is NP-
Complete by an easy reduction from Edge Coloring in cubic graphs [8]. Indeed,
one can see that a proper 3-edge coloring (that is, a coloring with 3 colors where
no two edges incident to a vertex have the same color) of a cubic graph is the
only way a 3-edge coloring can have objective function in MTPS equal to |V |.
The result of [8] can be used (though we do not prove this here) to show that
MTPS is APX-Hard: that is no (1 + ε)-approximation algorithm exists unless
P=NP [1].

An edge coloring is called equitable [6] if for all vertices v and colors i, j, we
have d(v, i) ≤ d(v, j) + 1. It is not hard to see that if an equitable exists, then
it minimizes the objective function [3]. Certain classes of graphs, for example
simple graphs where no vertex has degree multiple of g, are known to have
equitable g-edge colorings [6].

Berry and Modiano [3] implicitly give a conceptually simple 2-approximation
algorithm, which we describe later. We give a (3/2)-approximation algorithm.
Key to the MTPS problem is the following question: given a graph G = (V,E)
of maximum degree g, what fraction of the vertices can be properly edge-colored
in a g-edge coloring, where a vertex is properly edge-colored (or just proper) if
the edges incident to it have different colors? Our main lemma states that there
is a g-edge coloring with half of the vertices properly edge-colored. For g ≤ 4,
two thirds of vertices can be made properly edge-colored; this bound is tight.
We leave as an open question the problem of finding tight bounds for larger
values of g.

Our algorithm for g > 4 is based on g Maximum Matching computations
(total running time O(gm

√
n+m/g), where n = |V | and m = |E|) and a local

optimization procedure, which by itself gives a 2-approximation. By carefully
implementing this local optimization procedure (that is, removing the freedom
inherent in local optimization thus obtaining a specific algorithm) , we prove it
has an expected O((gn+m) log(gn+m)) running time. This implementation is
needed to ensure the overall running time is not dominated by local optimiza-
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tion. Local optimization would be a top choice of a practitioner, and depending
on the size of the instance, it may be important to have a fast implementation.
For g = 3 and g = 4 we obtain a 4/3-approximation algorithm with running
time of O((n+m) log n) and O(n2 +m2), respectively.

A related problem was considered by Feige et. al. [5] In Maximum Edge
Coloring, given a multigraph G = (V,E) and a parameter g, one seeks a
subgraph with maximum number of edges which can be properly edge-colored
with g colors. They show that Maximum Edge Coloring is Max-SNP Hard,
even for g = 2, and give constant approximation algorithms.

Our paper is organized as follow. The next section presents preliminaries,
the case g = 2, introduces the local optimization procedure, and gives two
simple 2-approximation algorithms. Section 3 gives the approximation ratio of
the algorithms, ignoring implementation details and the analysis of the running
time of the algorithms, which appear in Section 4.

2 Preliminaries

All our graphs are multigraphs, unless stated otherwise. For F ⊆ E(G), we use
G \ F to denote the graph (V (G), E(G) \ F ). For A ⊆ V (G), we use G \ A to
denote the subgraph of G induced by V (G) \A.

The obvious lower bound for the optimum is L =
∑
v∈V d

d(v)
g e, where d(v)

is the degree of vertex v. Berry and Modiano [2] use L as a lower bound, and
we will do the same.

We call a vertex v unbalanced in a g-edge coloring if there are colors i and j
with d(v, i) > d(v, j) + 1, and grossly unbalanced if there are colors i and j with
d(v, i) > d(v, j) + 2. A vertex that is unbalanced but not grossly unbalanced
contributes at most dd(v)g e+ 1 to the objective function. Vertices which are not
unbalanced are called balanced.

The paper [6] describes how to compute the optimum for MTPS when g =
2. We include their method for completeness. We may consider each graph
component separately, so let us assume that G is connected. If G is Eulerian
with even number of edges, then following an Eulerian tour and coloring edges
with alternate colors gives us an equitable 2-edge coloring of G. If G is Eulerian
with an odd number of edges, [6] shows that no equitable 2-edge coloring exists;
following the Eulerian tour and using alternate colors results in a coloring with
one vertex unbalanced but not grossly unbalanced and a 2-edge coloring with
objective L+1. If G is not Eulerian we add extra edges between vertices having
odd degree to make it Eulerian, then use alternate colors on the Eulerian tour,
starting with an extra edge. Removing the extra edges results in a 2-edge
coloring with objective L.

Next we describe a local optimization procedure, called quasibalancing, that
can be used to improve an edge coloring to ensure that no grossly unbalanced
vertices exist, without creating additional unbalanced vertices. Suppose that
d(v, i) > d(v, j) + 2 for some vertex v. Consider the subgraph induced by colors
i and j and let H be the component containing v. Use the g = 2 procedure



404 G. Calinescu and M.J. Pelsmajer Edge colorings to minimize imbalance

1 replace each u ∈ V by dd(v)g e copies ui
2 for each edge e ∈ E(G) with endpoints u, v ∈ V
3 replace the endpoints of e with ui, vj ,

picking i, j such that d(ui) ≤ g and d(vj) ≤ g
4 endfor
5 color the edges with g colors

Figure 1: Pseudocode of the reduction from MTPS to MTPS

to recolor H such that no vertex of H remains unbalanced in i and j except
for possibly v. It is easy to check that this procedure reduces the quantity∑
u∈V

∑
1≤k<l≤g |d(u, k)−d(u, l)| and it does not make balanced vertices unbal-

anced or create any new grossly unbalanced vertices. The repeated application
of the procedure results in a g-edge coloring without grossly unbalanced ver-
tices. At the end, maxi d(v, i) ≤ 1 + dd(v)g e, so

∑
v∈V maxi d(v, i) ≤ L+n ≤ 2L,

which shows that we have a 2-approximation algorithm. Pseudocode for one lo-
cal improvement step appears later in this paper (Figure 3, in Section 4), when
we analyze the running time of our algorithms.

We define the MTPS problem to be the restriction of MTPS to instances
where every vertex has degree at most g. If one uses L as a lower bound (as we
do), MTPS is equivalent from approximation point of view: we give a simple
reduction (also used in [2]) from MTPS to MTPS. Starting with an instance
G of MTPS we construct an instance G′ of MTPS as follows. For every vertex
v ∈ V (G) add to V (G′) vertices vi, for 1 ≤ i ≤ dd(v)g e. Edges of G are processed
one by one, and for edge e ∈ E(G) with endpoints u and v, we choose i, j
smallest such that d(ui) < g and d(vi) < g, then add to G′ the edge e′ with
endpoints ui and vj . Since d(v) ≤ gdd(v)g e, all edges incident to v can be assigned
to vertices vi in this way. Then L = L′ = |V (G′)|. Any g-edge coloring of G′

translates back to G without an increase in the objective function. Pseudocode
appears in Figure 1.

Berry and Modiano’s [3] implicit 2-approximation algorithm works as follows.
Given a multigraph G, replace each vertex v by d3d(v)/(2(g − 1))e copies (their
conference version [2] uses d3d(v)/2ge copies, which is not enough when d = 800
and g = 4, as pointed out by a referee of this paper!) and distribute the
endpoints of edges that had been incident to v evenly among its copies, so that
each copy has degree at most (2/3)g. Then Shannon’s bound [13] gives a proper
g-edge-coloring of the modified graph; transferring the colors to edges of G yields
d(v, i) ≤ 2dd(v)/ge for each vertex v and color i. Thus for g ≥ 4 the objective
is at most 2L, as claimed. For g = 3 one uses dd(v)/2e copies for each v and
colors the resulting graphs of degree 2 with 3 colors.

One may ask why one cannot use newer results on edge coloring such as
[7, 11, 12] instead of the sharp bound of [13]. The newer results use (besides the
maximum degree) the following lower bound on the chromatic index of a graph:
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maxH⊆V |E(H)|/b|H|/2c, where E(H) is the set of edges in the subgraph of G
induced by H. This lower bound does not relate at all to our lower bound L.
We leave open the search for lower bounds better than L.

Both the 2-approximation obtained by [2, 3] and the one obtained by quasi-
balancing suggest the hardest instances for MTPS are g-regular graphs. Since
we are using L as a lower bound, we restrict the rest of this paper to the MTPS
problem. Note that for MTPS instances a vertex is properly colored if and only
if it is balanced.

3 The approximation ratio

The main result of this section is:

Lemma 1 Given a graph G = (V,E) of maximum degree g, there is a g-edge
coloring with at most b |V |−1

2 c unbalanced vertices. Such a coloring can be ob-
tained in polynomial time.

Proof: The proof is by induction on n+g, where n = |V |. The base cases n = 1
and n = 2 are trivial. If G is not connected, let G1 = (V1, E1) be one connected
component and G2 = (V2, E2) be the remaining graph. Induction gives a g-edge
coloring with at most

b |V1| − 1
2

c+ b |V2| − 1
2

c ≤ b|V1|+ |V2| − 1
2

c

unbalanced vertices. Thus we assume G is connected.
We wish to make use of a maximum matching ofG, so we apply the Edmonds-

Gallai decomposition theorem to the underlying simple graph of G. The state-
ment of this theorem, as in, for example, [9, p94], is described in the next sen-
tence. In polynomial time, using Edmonds’ Maximum Matching Algorithm [4],
we obtain a set A ⊆ V such that G \ A has components B1, B2, . . . , Bk and
D1, D2, . . . Dj such that:

• for each 1 ≤ i ≤ j Di has a perfect matching,

• for each 1 ≤ i ≤ k and each vertex v ∈ Bi, Bi\{v} has a perfect matching.

• any maximum matching of G matches the vertices of A to vertices in
distinct Bi; moreover, the matchings above can be quickly found and
extended to a maximum matching M of G.

If |V | is even and A = ∅, then M is a perfect matching; we color the edges
of M with color g, remove them from G, and apply induction. Any vertex of
G \M that is properly edge-colored with (g − 1) colors will remains properly
edge-colored after adding the edges of M colored g.

If |V | is odd and A = ∅, then there is a matching M that leaves exactly one
vertex (say, v) unmatched. The graph (G \M) \ {v} has maximum degree at
most g − 1 and thus, by induction, has a (g − 1)-edge coloring with at most
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b |V |−2
2 c unbalanced vertices. We use the color g for the edges of M . Then for

edges of the form uv with u ∈ V \ {v}, we use colors from {1, 2, . . . , g− 1} such
that, if u is proper in the (g − 1)-edge coloring, it remains proper; a color for
uv is always available since the degree of u in G does not exceed g. The vertex
v could also be unbalanced, and so the number of unbalanced vertices in the
g-coloring of G is at most b |V |−2

2 c+ 1 = b |V |−1
2 c.

Now we may assume that A 6= ∅. Select in each Bi a vertex vi adjacent to
some vertex of A to specify M so that M restricted to Bi \ {vi} is a perfect
matching. Consider (G\M)\A. It has at least k+j components, and maximum
degree at most g−1: some vertex degrees drop due to being matched in M , and
the remaining vertices are adjacent to vertices in A. Let each Bi have 2bi + 1
vertices and each Di have 2di vertices. We apply recursion to each component,
obtaining a (g−1)-edge coloring with at most

∑k
i=1 bi+

∑j
i=1(di−1) unbalanced

vertices. We use color g for the edges of M , and for edges of type uv with
u 6∈ A and v ∈ A we use colors from {1, 2, . . . , g} such that, if u is proper in
the (g − 1)-edge coloring, it remains proper; a color for uv is always available
since the degree of u in G does not exceed g. For edges with both endpoints
in A, we use arbitrary colors. In the resulting g-edge coloring, the number of
unbalanced vertices is at most |A|+

∑k
i=1 bi +

∑j
i=1(di − 1). Note that G has

|A|+
∑k
i=1(2bi + 1) +

∑j
i=1 2di vertices.

Since M is not a perfect matching we have |A| ≤ k − 1, and therefore

b
|A|+

∑k
i=1(2bi + 1) +

∑j
i=1 2di − 1

2
c = b |A|+ k − 1

2
c+

k∑
i=1

bi +
j∑
i=1

di

≥ |A|+
k∑
i=1

bi +
j∑
i=1

di.

Thus the number of unbalanced vertices does not exceed b |V |−1
2 c. �

Using the procedure of the previous lemma followed by quasibalancing we
obtain an algorithm that produces a g-edge coloring of a graph of maximum
degree g with at most n/2 unbalanced vertices and no grossly unbalanced vertex.
The objective is then at most n + n/2 ≤ 3n/2 = 3L/2, proving the following
theorem:

Theorem 1 There is a (3/2)-approximation algorithm for MTPS.

3.1 Small g

In the case g ≤ 4, we use a second local optimization procedure to improve
Lemma 1. Consider a vertex v with d(v, i) ≥ 2 and d(v, j) = 0, and let u1

and u2 be the two vertices with vu1 and vu2 colored i. If u1 = u2 then, unless
d(u1, j) = 2, recoloring vu1 with color j improves the quantity∑
u∈V

∑
1≤k<l≤g |d(u, k)−d(u, l)| without creating any new unbalanced vertices.

If d(u1, j) = 2, using the fact that d(v, i) ≥ 2 and d(u1, i) = 2, there is a color



JGAA, 12(4) 401–417 (2008) 407

j′ with d(u1, j
′) = 0 and d(v, j′) < 2. Recoloring vu1 with color j′ improves the

quantity
∑
u∈V

∑
1≤k<l≤g |d(u, k)−d(u, l)|without creating any new unbalanced

vertices. Thus in the following we assume that u1 6= u2. We say in this case
that v can be fixed by u1 and v can be fixed by u2.

The second local optimization procedure applies when an unbalanced vertex
can be fixed by another unbalanced vertex or if two unbalanced vertices can
be fixed by the same vertex. To describe the procedure we define the following
terminology: We call a vertex v simply unbalanced if there is only one i with
d(v, i) = 2 and doubly unbalanced if there are two such i. (Since g ≤ 4, there
are at most two such i.) Quasibalancing eliminates grossly unbalanced ver-
tices without making balanced vertices unbalanced and without making simply
unbalanced vertices doubly unbalanced. We have the following four cases.

1. Suppose that v is a simply unbalanced vertex that can be fixed by an
unbalanced vertex u. Then we fix v by changing the color of uv. In case
u becomes grossly unbalanced, we apply quasibalancing. We reduce the
number of unbalanced nodes.

2. Suppose that v is a simply unbalanced vertex that can be fixed by a
balanced vertex u, and v1 6= v is an unbalanced vertex that can also be
fixed by u. Then we fix v by changing the color of uv, and reach either
the previous (if v1 is simply unbalanced - v1 goes instead of v) or the next
case (if v1 is doubly unbalanced - again v1 goes instead of v).

3. Suppose that v is doubly unbalanced and can be fixed by an unbalanced
vertex u. By symmetry we assume that v has two edges colored 1, among
them uv, and two edges colored 3. If u does not have incident edges of
color 2 (or 4), then we recolor the edge uv with color 2 (or 4) and make v
simply unbalanced. Thus we assume u has incident edges of color 2 and 4.
Recall that u is unbalanced; it has two edges colored 1, 2, or 4. If u has two
edges colored 4, then the subgraph induced by colors 1 and 4 has a vertex
of odd degree (u), and quasibalancing can recolor it to make every vertex
balanced in the pair of colors (1, 4): this recoloring will make v simply
unbalanced. The case of u having two edges of color 2 is symmetric by
interchanging 2 with 4, and the case of u having two edges of color 1 can
be tackled by the same argument.

4. Suppose that v is doubly unbalanced and can be fixed by a balanced ver-
tex u, and v2 is another unbalanced vertex which can be fixed by u. By
symmetry we assume that v has two edges colored 1, among them uv, and
two edges colored 3. In a first case, v2u has color 2 (the case when v2u
has color 4 is symmetric by interchanging 2 and 4 below). We make uv
of color 2 and v2u of color 1. This keeps u balanced, makes v simply un-
balanced, and either improves v2 (simply unbalanced to balanced, doubly
unbalanced to simply unbalanced; here we use the fact that v2 has an-
other edge colored 2), or leaves v2’s status unchanged, or makes v2 grossly
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unbalanced. In the last case, quasibalancing is then applied to make v2
not grossly unbalanced: in fact it makes v2 simply unbalanced.

We are left with the case when v2u has color 3. Make uv of color 3 and
v2u of color 1. This keeps u balanced, makes v grossly unbalanced, and
either improves v2 (simply unbalanced to balanced, doubly unbalanced to
simply unbalanced), or leaves v2’s status unchanged, or makes v2 grossly
unbalanced. Quasibalancing is applied to make v not grossly unbalanced:
in fact it makes v simply unbalanced. If needed, quasibalancing is ap-
plied again to make v2 not grossly unbalanced: in fact it makes v2 simply
unbalanced.

Whenever a (either simply or doubly) unbalanced vertex can be fixed by
another unbalanced vertex, Cases 1 or 3 apply, and if two unbalanced vertices
can be fixed by the same vertex, Cases 2 or 4 apply. In each case, without cre-
ating grossly unbalanced nodes, the second local optimization procedure either
reduces the number of unbalanced nodes, or the number of doubly unbalanced
nodes without creating unbalanced nodes. Thus, at the end of the second local
optimization procedure each unbalanced vertex v has two private (not shared
with other unbalanced vertices) balanced vertices u1 and u2: the two vertices v
can be fixed by. This implies:

Lemma 2 Assume g ≤ 4. Given a graph G = (V,E) of maximum degree g,
there is a g-edge coloring with at most b |V |3 c unbalanced vertices. Such a coloring
can be obtained in polynomial time.

The lemma is tight: for g = 2 consider a triangle v1v2v3, while for g = 3 or
g = 4 add one or two parallel edges between v1 and v2. Using the procedure
of the previous lemma followed by quasibalancing we obtain an algorithm that
produces, for g ≤ 4, a g-edge coloring of a graph of maximum degree g with at
most n/3 unbalanced vertices and no grossly unbalanced vertex. The objective
is then at most n+ n/3 ≤ 4n/3 = 4L/3, and we have:

Theorem 2 For g ≤ 4 there is a (4/3)-approximation algorithm for MTPS.

4 Implementation and Running Time Analysis

We start with an equivalent version of the algorithm of Lemma 1, given in Figure
2. The next paragraph discusses the equivalence.

In the proof of Lemma 1, the third case considered (A 6= ∅) is always followed
by applying to non-trivial components Bj or Dj either the first case (A = ∅ and
|V (G)| even) or the second case (A = ∅ and |V (G)| odd). Trivial components,
(one vertex only, whose only neighbors are in A) give each a proper vertex
immediately. When the algorithm, as described in Figure 2, encounters the
third case, it merges this next application into the same step, removing in Step
5 one vertex from each non-trivial component with odd number of vertices (such
a vertex joins A in the set of vertices we gave up on being proper).
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Input: Positive integer parameter g and graph G = (V,E) of max degree g
Output: Coloring of E(G) with colors 1, 2, . . . , g

1 If g = 1, color all the edges 1 and return
2 Compute a maximum matching M ⊆ E in G
3 Construct, as in Edmonds’ algorithm, alternating forests,

implicitly shrinking the blossoms
4 Let Q be the set of unmatched vertices, A be the set of inner vertices

in the alternating forest, and J be the vertices matched by M to some
vertex of A. Let L be the subset of Q ∪ J consisting of vertices who
have a neighbor outside A.

5 Recurse on (G \ (A ∪ L)) \M with parameter g − 1
6 Assign color g to the edges of M
7 for each edge e incident to some vertex u ∈ A ∪ L
8 if v, the other endpoint of e, is in V \ (A ∪ L)
9 color e such that, if v is proper in (G \A) \ L, then v stays proper
10 else color e arbitrarily
11 return

Figure 2: The algorithm of Lemma 1. The set A above is the set of A of the
proof of the lemma, and we mention that each shrunk blossom becomes an
outer vertex; thus the final inner vertices are vertices of the original graph. L
is designed to have exactly one vertex from each non-trivial odd component of
the subgraph of G induced by V \A.
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For the running time of the algorithm in Figure 2, we first note that g
maximum matchings are computed in the graph G′ = (V ′, E′) which was found
when reducing MTPS to MTPS. G′ has at most n′ := n + 2m/g vertices
and m′ := m edges, where n and m are the number of vertices and edges of the
original graph. Using the algorithm of Micali and Vazirani [10], we obtain a total
running time of O(gm

√
n+m/g). We need to elaborate a bit on steps 7-10. To

ensure that proper vertices remain proper, we keep for each vertex v an array Mv

of size g indicating which color is already used by edges incident to v. In addition
we keep for v an integer jv (initially 0) such that colors 1, . . . , jv are used. An
unused color for an edge incident to v is found by increasing jv and testing (and
eventually updating) the array Mv. Since j only increases, the total time spent
for vertex v on finding unused colors incident to v is O(g(n+m/g)) = O(gn+m).

We move to quasibalancing, which we apply directly to the output of the
algorithm in Figure 2. Thus the input consists of G′, a graph of maximum
degree at most g, and whose edges are colored with colors 1, 2, . . . , g. Applying
quasibalancing to G′, rather than the original graph, does not affect the 1.5
approximation ratio and makes the running time easier to analyze.

As described in Section 2, quasibalancing is clearly polynomial: in O(m +
n) time we reduce the quantity

∑
u∈V

∑
1≤k<l≤g |d(u, k) − d(u, l)|by one, and

the initial
∑
u∈V

∑
1≤k<l≤g |d(u, k) − d(u, l)| ≤ ng3.We can do a much better

analysis if we carefully describe the procedure, changing it a bit and adding
randomization. We describe this specific implementation below. But first, some
intuition.

The goal, roughly speaking, is to bound the number of times Euler tours
are constructed, as in Section 2 or later below. A natural way to obtain such a
bound is to have a potential function which decreases fast whenever we do an
Euler tour construction and recoloring; each such Euler tour comes from edges
colored with only two colors, say i and j. It can reasonably be hoped that
picking i and j such as to decrease the potential the most would be good. But
to show a good pair of colors exists it is natural to compute the average decrease
in potential over pairs i, j. Then we will not even have to pick the best i, j: we
save time by picking them randomly. Such an approach, with potential function∑
v

∑
i(d(v, i)−1)2 would have worked and give the same bound we give on the

running time, provided the recoloring is “perfect” in the sense that all vertices
are left balanced in colors i, j. But one vertex v can be left unbalanced in each
Euler tour; in particular, when d(v, i) = 3 and d(v, j) = 1 no progress may be
done. There exist graphs on which the “random pair of colors” (and also “best
pair of colors”) approach fails. So, instead we use randomization in a more
complicated way.

Recall that d(v, j) is the number of edges incident to v with color j. Thus∑
1≤j≤g d(v, j) ≤ g, and

∑
j,v d(v, j) = 2m. We also think of these d(v, j) as

being values in a matrix M where rows are indexed by colors, and columns by
vertices. Our goal is to ensure no grossly unbalanced vertex remains, which in
our graph of maximum degree bounded by g means that we must reach that
d(v, i) ≤ 2 for all v ∈ V ′ and i ∈ {1, 2, . . . , g}.



JGAA, 12(4) 401–417 (2008) 411

1 Let H be the subgraph of G′ induced by the edges colored 1 and j
2 Apply the following to each connected component C of H
3 If C is not Eulerian, add “fake” edges between vertices of odd degree

to obtain graph C ′

4 Compute T , an Eulerian tour of C ′

5 if there is a fake edge
6 start T with a fake edge, colored arbitrarily
7 else
8 if there is v ∈ V (C) with d(v, 1) = 2 and d(v, j) = 0,

or with d(v, 1) = 0 and d(v, j) = 2
9 start T with an edge incident with v, colored j
10 else
11 if there is v ∈ V (C) with d(v, 1) 6= d(v, j)
12 start T with an edge incident with v, colored 1
13 else
14 start T with an arbitrary edge, colored arbitrarily
15 Follow T , assigning colors to its edges alternating 1 and j
16 Remove the fake edge, if any

Figure 3: Balancing colors 1 and j

The basic move is to pick two colors and “balance” them. For this an Euler
tour is produced; it is important for the analysis that a certain edge is picked
as the first edge of the tour, and a color is assigned to this edge. Pseudocode
appears in Figure 3, with one of the colors being 1. To analyze the total running
time of quasibalancing, we give a special role (to be described later) to color 1.

The running time of the procedure is O(n′+|E(H)|) = O(
∑
v∈V ′(1+d(v, 1)+

d(v, j))). The procedure results in |d(v, 1) − d(v, j)| ≤ 1 at every vertex of the
component C except perhaps one vertex v (where the Eulerian tour starts and
ends), in which case |d(v, 1) − d(v, j)| = 2. Here we choose which of d(v, 1)
or d(v, j) is larger: If the two values are 0 and 2, we make d(v, 1) = 0 and
d(v, j) = 2; otherwise we make d(v, 1) > d(v, j).

For each vertex v, let ||v||j = [max{d(v, j)− 2, 0}]2 and let ||v|| =
∑
j ||v||j .

||v|| is defined to measure, roughly speaking, the progress of a balancing: when
||v|| = 0, we have d(v, j) ≤ 2 for all j. More formally, we define the progress(v)
of a balancing as ||v|| − ||v′||, where ||v′|| is ||v|| after balancing.

Lemma 3 For any balancing of two rows i and j, progress(v) is a non-negative
integer. Moreover, if we balance rows with values d(v, i) and d(v, j) being M,m,
with m ≤ M , and after the balancing d(v, i) and d(v, j) are (not necessarily
in this order) M ′,m′, with m′ ≤ M ′, then progress(v) ≥ 1 unless M = m,
M = m+ 1, M = M ′ = m+ 2 = m′ + 2, or M ≤ 2.

Proof: Clearly progress(v) is an integer.
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If M = m+1 then there is a “fake” edge added at v, which eventually yields
M ′ = m′+1. If M = m then the Eulerian tour through v either has even length
or it does not start at v; this yields M ′ = m′. In each case progress(v) = 0, so
we may assume that M ≥ m+ 2.

If m,m′,M,M ′ are each at least 2, then progress(v) = (m − 2)2 + (M −
2)2 − [(m′ − 2)2 + (M ′ − 2)2]. According to the algorithm in Figure 3 we get
M ′ ≤ m′ + 2. Since M + m = M ′ + m′, the average of the two values does
not change. Thus we have m ≤ m′ ≤ M+m

2 ≤ M ′ ≤ M . It follows that
(m− 2)2 + (M − 2)2 − [(m′ − 2)2 + (M ′ − 2)2] is non-negative, with equality if
and only if m = m′ and M ′ = M .

If M ≥ 4 and m is 0 or 1, progress(v) is at least

(M − 2)2 − [(m′ − 2)2 + (M ′ − 2)2]

≥ (M − 2)2 − [(
M +m

2
− 3)2 + (

M +m

2
− 1)2]

= (M − 2)2 − [2(
M +m

2
− 2)2 + 2]

≥ (M − 2)2 − 2(
M + 1

2
− 2)2 − 2

=
1
2
M2 −M − 5

2
≥ 0.

If M = 3 and M ′ ≤ 2 then m,m′ ≤ 2 and progress(v) = 1. Otherwise M = M ′

or M ≤ 2 and progress(v) = 0. �

Consider the subsequence of rows r = σ(1) < σ(2) < . . . < σ(k) for which
d(v, r) 6= 1.

Claim 3 Suppose that d(v, σ(j)) ≥ 3, d(v, σ(j + 1)) = 0, and either d(v, σ(j −
1)) = 0 or j = 1. If σ(j) 6= 1 then balancing row 1 with rows σ(j−1), . . . , σ(j+1)
yields progress(v) ≥ ||v||σ(j)/80. The same progress is achieved when σ(j) = 1
by balancing row 1 with rows 2, . . . , σ(2).

Proof: Let y = d(v, σ(j)). If σ(j) > 1, let b be the value of d(v, 1) just after
balancing row σ(j) and row 1. Since the value of d(v, 1) before this balancing
was non-negative, b ≥ y

2 − 1. If σ(j) = 1 (in which case j = 1 and y = d(v, 1)),
then we let b = y. Suppose that b ≥ 4.

From the hypothesis, d(v, σ(j + 1)) = 0, and if σ(j + 1) > σ(j) + 1, then by
the definition of the σ’s we have d(v, σ(j) + 1) = 1. Thus, there a 0 or 1 in row
σ(j) + 1, and therefore after balancing rows 1 and σ(j) + 1, the new entries are
either b+1

2 ± ε or b
2 ± ε, integers with ε ∈ {0, 1

2 , 1}. Thus ||v||1 + ||v||j becomes
at most ( b+1

2 + ε−2)2 + ( b+1
2 − ε−2)2 or ( b2 + ε−2)2 + ( b2 − ε−2)2. The largest
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this could be is ( b+1
2 − 1)2 + ( b+1

2 − 3)2, so progress(v) is at least

(b− 2)2 − [(
b+ 1

2
− 1)2 + (

b+ 1
2
− 3)2]

= (b− 2)2 − [2(
b+ 1

2
− 2)2 − 2]

=
1
2
b2 − b− 5

2
.

Since 9
20b

2 − b − 5
2 > 0 when b ≥ 4, progress(v) ≥ 1

20b
2 ≥ 1

80 (y − 2)2, which
suffices.

If b ≤ 3 then (y − 2)2/80 ≤ 36/80 < 1, so progress(v) ≥ 1 would suffice.
If σ(j) = 1 (and j = 1) then d(v, 1) ≥ 3 at first, and is balanced only with 1s

until row σ(j + 1). Each balancing with a 1 that doesn’t yield positive progress
must begin and end with d(v, 1) = 3. Thus, if there has been no progress until
row 1 is balanced with row σ(j + 1), then at that point 0 is balanced with a 3
(or d(v, 1) ≥ 3 if σ(j + 1) = σ(1) + 1), for positive progress.

If j = 1 and σ(j) 6= 1, then d(v, 1) is 0 or 1 until row 1 is balanced with
row σ(j), which yields positive progress or makes d(v, 1) = 3. In the latter case,
the situation is identical to the previous case, and thus will later yield positive
progress.

If j > 1 and no progress is made balancing row 1 and row σ(j − 1), then
d(v, 1) becomes 0 or 1, after which it follows the previous case. �

Each pass of the algorithm randomly orders the colors (redefining the rows),
then balances row 1 with rows 2, . . . , g in sequence. See Figure 4.

Lemma 4 One pass takes O(n′g) time.

Proof: Recall that balancing rows 1 and j takes time O(
∑
v∈V ′(1 + d(v, 1) +

d(v, j))). Let t(v, j) = 1+d(v, 1)+d(v, j) and t(v) =
∑g
j=2 t(v, j); note however

that d(v, 1) changes after each balancing. It is enough to show that t(v) = O(g)
for all v ∈ V ′.

We employ a credit scheme for the proof. Row j starts with 2d(v, j) + 3
credits. We maintain the invariant that row 1 has at least 2d(v, 1) credits.
Consider the rebalancing of row 1 with row j. Let d′(v, 1) be the number of
edges colored 1 incident to v after the rebalancing. Row j brings 2d(v, j) + 3
credits, and we have 2d(v, 1) credits in row 1. Of these, 1 + d(v, 1) + d(v, j) go
toward t(v, j), and we are left with d(v, 1) + d(v, j) + 2 credits. Since d′(v, 1) ≤
1+(d(v, 1)+d(v, j))/2, the credit invariant is maintained. Thus t(v) ≤

∑g
j=1(3+

2d(v, j)) ≤ 3g + 2g = O(g), completing the proof. �

We continue with estimating the total number of passes. Consider any vertex
v with maxj d(v, j) ≥ 3, and let Xq = Xq(v) be the value of ||v|| after q passes.
Each Xq is a random variable, and X0 is a constant bounded by the maximum
possible value of ||v||, which is clearly (g − 2)2. We begin by showing that
E[Xq|X0, . . . , Xq−1] ≤ (1279/1280)Xq−1.
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1 Randomly reorder colors 1, . . . , g, redefining the rows
2 for j = 2, . . . , g
3 balance row 1 and row j according to the algorithm in Figure 3
4 endfor

Figure 4: One pass of the algorithm through the colors

As above, we consider the subsequence of rows r = σ(1) < σ(2) < . . . < σ(k)
for which d(v, r) 6= 1. Since

∑g
j=1 d(v, j) ≤ g, at least half of these d(v, r) are

0s. Each color which has degree 3 or more is now in a row r = σ(j) for some
1 ≤ j ≤ k. We are happy with the color in row σ(j) if the entry in row σ(j + 1)
is 0 (and j + 1 ≤ k) and the entries in rows σ(j − 1) and σ(j − 2) are either 0
or undefined (in case j is 1 or 2). By Claim 3, any happy row r = σ(j) with
1 ≤ j < k yields progress at least ||v||r/80 from balancing row 1 with rows
σ(j), . . . , σ(j + 1) (rows 2, . . . , σ(j + 1) if σ(j) = 1). Observe that there are at
least two rows between happy rows in the subsequence σ(1), . . . , σ(k), so the
progress counted for one happy row does not overlap with progress counted for
another happy row.

Suppose that k ≥ 5. Each color with d(v, j) ≥ 3 is placed in a row j with
j 6= k with probability k−1

k . The probability that such a color is happy is at least
( k/2k−1 )(k/2−1

k−2 )(k/2−2
k−3 ) = 1

8
k(k−4)

(k−1)(k−3) ≥
1
16

k
k−1 . Thus the expected progress for

one pass at v is at least the sum of 1
16 (||v||r/80) over all r such that dr(v) ≥ 3.

Since ||v||r = 0 whenever dr(v) ≤ 2, also
∑
r

1
1280 ||v||r = 1

1280 ||v||. Therefore
E[Xq|X0, . . . , Xq−1] ≤ (1279/1280)Xq−1 as desired.

If k is 3 or 4, using maxj d(v, j) ≥ 3, it follows that exactly one row of the
subsequence has a nonzero entry. Hence the color with d(v, j) ≥ 3 is happy
with probability 1/3 or 1/4. As this is greater than 1

16 , in this case we still have
E[Xq|X0, . . . , Xq−1] ≤ (1279/1280)Xq−1 in this case.

Let Yq be the value of
∑
v ||v|| after q passes. Then Yq is the sum of Xq(v)

over all vertices v for which maxj d(v, j) ≥ 3. By linearity of expectation,
we have E[Yq|Y0, . . . , Yq−1] ≤ (1279/1280)Yq−1. It immediately follows that
E[Yq] = E[Yq|Y0] ≤ (1279/1280)qY0. By Markov’s inequality, Pr(Yq > 0) <
(1279/1280)qY0. Let q = 2 log1279/1280(n′(g − 2)2). Then (1279/1280)qY0 ≤
(n′(g − 2)2)−2+1 < 1/n, so Yq = 0 with high probability. That is, after
O(log(n′g)) passes, ||v|| is zero w.h.p. Since each pass takes time O(n′g), the
total time needed is O(n′g log n′g).

With n′ ≤ n+ 2m/g, the main result of this paper is:

Theorem 4 There is a randomized O(gm
√
n+m/g) algorithm that gives a

1.5 approximation to MTPS.
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4.1 Running time for g = 3 and g = 4

The algorithms are described in Subsection 3.1. First, consider g = 3, for which
we have a faster algorithm. In this case, only cases 1 and 2 apply in Subsection
3.1. Each time one of these cases applies to a vertex, this vertex becomes
balanced in O(1) time, possibly making some other vertex grossly unbalanced.

Quasibalancing can make sure that no grossly unbalanced vertices exist. If
we look at the algorithm, we see that the remaining unbalanced vertices are of
two types: content vertices have two private (not shared with other unbalanced
vertices) balanced vertices, while unfinished vertices do not have these two bal-
anced vertices. We get better running time if we alternate the following two
steps:

1. Make sure no grossly unbalanced vertices exist.

2. Make a list of unbalanced vertices. If there are more than n/3 elements in
this list, traverse the list once ignoring the content vertices and processing
the unfinished ones. Any grossly unbalanced vertex produced by this
processing is put aside.

Looking at one pass as described in Figure 4, since a column corresponding
to a grossly unbalanced vertex has one 3 and two 0s, a grossly unbalanced vertex
cannot remain grossly unbalanced. Thus Step 1 above takes O(n′) time.

Let q be the number of elements in the list at the beginning of Step 2, of which
c are content and u are unfinished. Using the private balanced vertices of content
unbalanced vertices, we obtain 3c+ u ≤ n′. Using 3c+ 3u = 3q, we obtain u ≥
(3q−n′)/2. At least half of the unfinished vertices are processed (processing one
unfinished vertex can make another grossly unbalanced). Processing a vertex
takes O(1) of time, and makes the vertex balanced. Thus Step 2 takes in total
O(n′) time, and reduces the quantity (3q−n′) by a constant factor. As an aside,
note that content vertices stay content in Step 2, but can become unfinished
in Step 1 - this can happen when the edges incident to such an unbalanced
content vertex v change colors during Step 1, and the two vertices which can
fix v are not the same as before Step 1. Hence we instead measure progress by
the decrease in (3q − n′), and do not plan to eliminate all unfinished vertices.

Thus after repeating Steps 1 and 2 O(log n) times, we have at most n/3
unbalanced vertices. Therefore:

Theorem 5 There is a O((n+m) log n) algorithm giving a 4/3-approximation
for MTPS when g = 3.

For g = 4, we follow exactly the proof from Subsection 3.1. It takes O(n′)
time to find an unfinished vertex, if there is one. In each case from the proof
we process this unfinished vertex without creating other unbalanced vertices
but possibly making another unbalanced vertex grossly unbalanced. One or
two balancing thus might follow this processing. Thus a processing takes O(n′)
time. There are at most n′ processing of Case 1, since each processing balances
a vertex. Note that at most one other vertex can become doubly unbalanced
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in each processing. Cases 3 and 4 reduce the number of doubly unbalanced
vertices, giving in total at most 2n′, since at most n′ vertices can start doubly
unbalanced, and only Case 1 can increase the number of doubly unbalanced
vertices, by one for each Case 1 processing. Finally, each Case 2 is followed
by Case 1 or Case 3, so there are at most 3n of Case 2 processing. Since
n′ = n+ 2m/4, we obtain:

Theorem 6 There is a O(n2 + m2) algorithm giving a 4/3-approximation for
MTPS when g = 4.
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