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Efficient Labeling of Collinear Sites
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Abstract

In this paper we study the map labeling problem where the sites to
be labeled are restricted to a line L. Previous models studied in the map
labeling literature fail to produce label placements (i.e. place each label
next to the site it describes) without label overlaps for certain instances of
the problem with dense point sets. To address this problem, we propose
a new approach according to which, given n sites each associated with
an axis-parallel rectangular label, we aim to place the labels in distinct
positions on the “boundary” of L so that they do not overlap and do not
obscure the site set, and to connect each label with its associated site
through a leader such that no two leaders intersect.

We evaluate our labeling model under two minimization criteria: (i) to-
tal leader length and (ii) total number of leader bends. We show that both
problems are NP -complete if the labels can be placed on both sides of L,
while we present polynomial time algorithms for the case where the labels
can be placed on only one side of L.
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1 Introduction

Due to its extensive use in information visualization, automated map labeling
has been identified as an important research area by the ACM Computational
Geometry Impact Task Force report [8]. Map labeling has received considerable
attention due to the large number of applications that stem from diverse areas
such as Cartography and Geographical Information Systems.

Current research on this topic has been primarily focussed on labeling point-
features. According to the cartographic literature [18, 27], there exist several
parameters that determine the readability and unambiguity of a map. Among
them they suggest that the labels should be pairwise disjoint and close to
the point (also referred to as site or anchor) to which they belong. Unfor-
tunately, the majority of map labeling problems are shown to be NP -complete
[1, 11, 19, 20, 24]. Due to this fact, the map labeling community has sug-
gested various approaches, among them expert systems [2], gradient descent
[16], approximation algorithms [11, 25], zero-one integer programming [28] and
simulated annealing [29]. Strijk and Wolff [26] present an extensive online bib-
liography on label placement.

There exist many variations of the point labeling problem, regarding the
shape of the labels, the location of the sites or some optimization criterion, e.g.
maximizing the size of labels. In this paper, we consider a case which arises
when drawing schematized maps for road or subway networks. We assume that
all sites lie on the same line and are to be labeled with axis-parallel rectangular
pairwise-disjoint labels. Most of the known labeling algorithms for this problem
produce quite legible labelings, when the input sites are sparsely distributed on
the input line. However, if the site set contains a dense 5-tuple of sites they
fail to produce non-overlapping labelings. To see this, w.l.o.g. assume that the
points lie on a horizontal line and define a point set to be dense if the distance
between the leftmost and the rightmost points is smaller than the width of the
labels. Then, is is easy to label a dense set of 4 points (two labels are placed
above the line and two labels are place below it), however, it is not possible to
label a dense set of 5 points with non-overlapping labels (the label corresponding
to the 5th point will overlap one of the previously placed labels). To address the
inability to label dense point sets, we propose a more flexible labeling model,
according to which pairwise-disjoint labels are placed on the “boundary” of the
input line and are connected to their associated sites in a simple and elegant
way by using non-intersecting polygonal lines, called leaders. Such labelings
are referred to as legal or crossing-free labelings (for brevity, they are simply
referred to as labelings).

1.1 Problem Definition

Our labeling model in its primitive form can be described as follows: We are
given a straight line L and a set S of n sites si = (xi, yi) on L. Each site si

is associated with an axis-parallel rectangular label li of dimensions wi × hi.
Without loss of generality, we assume that L is not parallel to the y-axis. The
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“boundary of L” is defined by two lines LT and LB (one on top and one below
L), that are translations of L by c0 towards (0,∞) and (0,−∞), respectively,
where c0 is a predefined, positive constant (see Figure 2a). Labels have to be
placed on the boundary of L, so that they do not overlap and do not obscure
the site set. They also have to be connected to their associated sites by using
leaders.

Our labeling model consists of several parameters (sites, labels, leaders, in-
put line). So, it is reasonable to have several variations of the primitive form
discussed above, each giving rise to different labeling models.

The input line L may be horizontal (see Figure 1) or may have a positive
slope (see Figure 2)1.

L
T

L

L
B

2c0

Figure 1: Horizontal input line.

In general, the labels are of arbitrary sizes, i.e. label li associated with site si

has width wi and height hi (non-uniform labels). However, in real applications
labels usually contain text of the same font size. So, it is reasonable to separately
consider the case, where the labels are of the same width and/or height (uniform
labels). In our model, we further assume that each label can be placed anywhere
on the boundary of L, so that either its bottom right or top left corner lies on
LT or LB, respectively. This implies that the labels do not overlap the input
line and therefore do not obscure the site set.

The leaders which connect the sites to their corresponding labels can also
be of several types. In our approach, we focus on two different types of leaders,
which result in simple and easy-to-visualize labelings:

Type-oxpoxleaders: Leaders of type oxpox (for simplycity, in the rest of the
paper they are referred to as opo-leaders) consist of three line segments.
The first and third line segments are orthogonal (o) to the X-axis, whereas
the second one is parallel (p) to the input line (see Figure 2a). A degen-
erate case of a type-opo leader is a leader of type o, which consists of only
one line segment orthogonal to X-axis (i.e. the length of the p-segment is
zero).

Type-o
L
po

L
leaders: Following the same notation scheme, leaders of type o

L
po

L

consist of three line segments, where the first and third line segments are
orthogonal to the input line L, whereas the second one is parallel to L (see
Figure 2b). Again, a degenerate case of a type-o

L
po

L
leader is a leader of

1The cases of a vertical input line and of a negative slope line are handled symmetrically.
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(a) Type-opo leaders
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(b) Type-o
L

po
L

leaders

Figure 2: Sloping input line

type o
L
, which consists of only one line segment orthogonal to the input

line.

Note that in the case of a horizontal input line, terms “oxpox leader” and
“o

L
po

L
leader” both refer to the same type of leader (see Figure 1). Additionally,

for each leader, we insist that its p-segment is located inbetween LT and LB (in
the so-called track routing area) and does not intersect L. We further assume
that the thickness 2c0 of the track routing area is large enough to accommodate
all leaders. This means that we ignore resolution issues and we allow the distance
between adjacent parallel (p)-segments (belonging to different leaders) to be as
small as required, that is, in the worst case smaller than c0/n .

The point where each leader touches its corresponding label is referred to
as port. We assume either fixed ports, where each leader is only allowed to use
a fixed set of ports on some label side (e.g. the middle point of a label side
or some corner of the label; see Figures 2a and 2b) or sliding ports, where the
leader can touch any point of the label’s side (see Figure 1).

Under a labeling model, one can define several optimization problems, adopt-
ing one of the following optimization criteria:

1. Minimize the total number of bends: Find a labeling, such that the
total number of bends is minimum. This is equivalent to maximizing the
number of type-o leaders.

2. Minimize the total leader length: Find a labeling, such that the total
leader length is minimum. Note that only the p-segments of the leaders
contribute to the total leader length, since we assume that the thickness
2c0 of the track routing area is fixed.

The paper is structured as follows: Section 2 reviews basic tools on schedul-
ing required for the development of our algorithms. In Section 3, we consider
the problem of labeling points on a horizontal line with axis-parallel rectangular
labels. We propose efficient algorithms to determine labelings of either mini-
mum total leader length or of minimum number of bends for the case, where
the labels are placed above the input line. For the general case, where the la-
bels can be placed on both sides of the input line we show that both problems
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Input line Labeling
Tllm

FixedP. SlidP.

Tlbm

FixedP. SlidP.

horizontal 1-side open O(n log n) open O(n2)

sloping 1-side O(n log n) open O(n2) open

horizontal 2-sides open O(nW 2)∗ open NP-complete

sloping 2-sides open open open open

Table 1: Running times of our algorithms (in big-Oh-Notation) for various models of
the problem. The polynomial time bounds refer to the case of non-uniform
labels. Thus, they can be also applied for the case of uniform labels, too.
The NP -completeness results refer to the case of non-uniform labels only.
The problem marked by ∗ is NP-complete. The pseudo-polynomial solution
assumes that the input consists exclusively of integers. W = 2

∑n

i=1
wi +

xn − x1, where wi is the width of label li, x1 is the x-coordinate of leftmost
site and xn is the x-coordinate of rightmost site. Tllm, Tlbm, FixedP and
SlidP stand for “Total Leader Length Minimization”, “Total Leader Bend
Minimization”, “Fixed Ports” and “Sliding Ports”, respectively.

are NP -complete. In Section 4, we extend the results of Section 3 to the case,
where the input line has a positive slope. We also propose a new algorithm
for the case of opo-labelings of minimum total leader length with non-uniform
labels that have to be placed on one side of the input line which reduces the
time complexity of [6] from O(n2) to O(n log n) . We conclude in Section 5 with
open problems and future work. Table 1 gives an overview over our results.

1.2 Related Literature

The problem of labeling points on a single line has so far been studied by Garrido
et al. [14] and Chen et al. [9], along two different labeling models: 4P and 4S. In
the fixed-position model 4P a label must be placed so that the site to be labeled
coincides with one of its four corners2 (see Figure 3), whereas in the sliding
model 4S a label can be placed so that the site lies on one of the boundary
edges of the label3 (Figure 4 illustrates the 4S model, where the label can be
shifted continuously as indicated by the arrows). One can also use prefixes 1d-
and Slope- combined with each model to denote the type of the input line; 1d
denotes a horizontal or vertical line, whereas Slope denotes a sloping line.

Garrido et al. showed that the problem of determining a legal label place-
ment under the 1d-4S model is NP -complete and they presented a pseudo-
polynomial time algorithm to solve it. They also showed that several simplifica-
tions, e.g. square labels or fixed position, all have efficient algorithms. Chen et

2The model is called 4P due to the fact that each site has 4 candidate label positions.
3The model is called 4S due to the fact that each site must be labeled such that any edge

of the label contains the site, i.e. the site is “sliding” along a label’s edge.
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al. showed that the problem of determining a legal labeling under the Slope-

4P model with rectangular labels of fixed height can be solved in linear time,
if the order of the input sites is given. They also showed that the problem of
maximizing the size of the rectangular equal-width labels of the sites on a hor-
izontal line with top or bottom edges coinciding with the input line under the
4S model can be solved in O(n2 log n) time.

1 2

34

Figure 3: Illustration of 4P model. Figure 4: Illustration of 4S model.

Labeling where the labels are connected to their associated features by lead-
ers has so far been studied in the map labeling literature by Bekos et al. [4, 5, 7],
Fekete and Plaisant [10], Freeman et al. [12], Müller and Schödl [23] and Zo-
raster [29]. Our labeling model is quite similar to the boundary labeling model
proposed by Bekos et al. [7]. In boundary labeling, the labels are placed on the
boundary of a rectangle R (referred to as enclosing rectangle), which encloses the
set of sites, and they are connected to their associated sites by non-intersecting
leaders. In most of the algorithms presented for boundary labeling, the labels
are considered to be placed in predefined positions along a side of the enclosing
rectangle R and they do not extend beyond the rectangle corners defining that
side. In this paper, we tackle both restrictions, since we do not assume the
existence of the enclosing rectangle.

2 Preliminaries on Scheduling

A key component that is heavily used in the description of our algorithms, is
a formulation of our problem as a Single Machine Scheduling problem with due
windows and symmetric earliness-tardiness penalties4, according to which we are
given a set of n jobs J1, J2, . . . , Jn, which are to be executed on one machine.
Each job Ji is associated with a processing time pi and a time window (bi, di). If
a job Ji is processed entirely within its time window, it incurs no penalty. On the
other hand, if the starting time σi of Ji commences prior to bi (or the completion
time ci = σi+pi of Ji exceeds di), an earliness (tardiness) penalty Ei (Ti) incurs
equal to the corresponding deviation. Thus, Ei = max{bi − σi, 0} and Ti =
max{ci − di, 0}. There are no restrictions on time windows, preemption is not
allowed and the machine is continuously available. The objective is to determine

4Extensive surveys on the most important aspects of scheduling research are given in
[3, 15, 17].
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a schedule, so that either the total earliness-tardiness penalty
∑n

j=1(Ej + Tj)
or the number of penalized jobs is minimized.

Scheduling to minimize the total earliness-tardiness penalty: The
general case of the problem of determining a schedule, so that the total earliness
and tardiness penalty is minimized, is shown to be NP -complete, since it can be
viewed as a generalization of the single-machine earliness-tardiness problem with
distinct due dates d1, d2 . . . dn, which is a well-known NP -complete problem
[13]. In the case of distinct due dates, a job Ji is considered to be on time if
its completion time ci is equal to di. In the case, where ci is greater than di,
Ji is considered to be tardy. Finally, a job Ji is early if its completion time ci

is smaller that di. In other words, this problem is equivalent to the one where
each job Ji is associated with a time window of the form [di − pi, di], i.e. the
length of each time window is equal to the processing time of its associated job.
If the jobs are to be scheduled in a fixed predefined order, Garey et al. [13]
have proposed an efficient algorithm, which determines an optimal schedule –by
inserting idle time between jobs– in O(n log n) time for the cases of distinct due
dates. Koulamas [21] has extended this result for the case of time windows.

Scheduling to minimize the number of penalized jobs: In general, the
problem of determining a schedule, so that the total number of penalized jobs
is minimized can be solved in O(n2) time by employing a greedy algorithm of
Lann and Mosheiov [22]. For the special case, in which the jobs are required to
be scheduled in a predefined order, Lann and Mosheiov [22] have also proposed a
dynamic programming based algorithm, which determines an optimal schedule
in O(n2) time for the special case of distinct due dates d1, d2 . . . dn (instead of
time windows). In the following theorem, we generalize the algorithm of Lann
and Mosheiov [22] to support time windows of any length.

Theorem 1 Given a set of n jobs J1, J2, . . . , Jn, which are to be executed on
one machine in this order, a processing time pi and a time window (bi, di) for
each job Ji, we can compute in O(n2) time a schedule, so that the number of
penalized jobs is minimized.

Proof: Our dynamic programming algorithm employs a table T of size (n +
1)× (n + 1). For 0 ≤ k ≤ i ≤ n, entry T [i, k] contains the minimum completion
time for the subproblem consisting only of the first i jobs, such that at least k
out of them are scheduled on time (i.e. they do not incur a penalty). If it is
impossible to obtain a schedule for this setting, we set T [i, k] to ∞. Therefore,
all table entries T [i, k], with i < k are ∞.

As usual, the table entries are computed in a bottom-up fashion. Assuming
that we have scheduled the first i−1 jobs, we try to schedule the i-th job Ji. We
distinguish two cases based on whether Ji is scheduled on time or not. From the
two alternatives, we select the one, which minimizes the total completion time.
Thus, for computing entry T [i, k] we only need to know entries T [i − 1, k − 1]
and T [i − 1, k].

Case 1: di ≤ T [i − 1, k − 1] + pi.
Refer to Figure 5a. In this case, it is obvious that Ji cannot be scheduled
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i − 1 jobs pi

t

T [i − 1, k − 1] di

Ji

(a) di ≤ T [i − 1, k − 1] + pi

i − 1 jobs pi

t

T [i − 1, k − 1] di

bi Ji

(b) di ≤ T [i − 1, k − 1] + pi & bi ≤ T [i − 1, k − 1]

i − 1 jobs pi

t

T [i − 1, k − 1] di

bi Ji

(c) di ≤ T [i − 1, k − 1] + pi & bi > T [i − 1, k − 1]

Figure 5: Different schedules obtained for the i-th job Ji.

on time. Therefore, T [i, k] can have a finite value only if T [i − 1, k] is
finite. In this subcase, we simply schedule job Ji exactly after the i − 1
already scheduled jobs, and obtain a schedule of total completion time
T [i − 1, k] + pi. If on the other hand, T [i − 1, k] = ∞, no solution with k
on time jobs exists and thus T [i, k] = ∞. Both subcases can be described
by the equation:

T [i, k] = T [i − 1, k] + pi (1)

Case 2: di > T [i − 1, k − 1] + pi.
Consider first the subcase where bi ≤ T [i − 1, k − 1] (refer to Figure 5b).
In this subcase, the total completion time is T [i − 1, k − 1] + pi. In the
subcase where bi > T [i − 1, k − 1] (refer to Figure 5c), we can schedule
Ji, so that σi = bi. Both subcases can be described by the equation:
T [i, k] = max{T [i − 1, k − 1], bi} + pi. However, if T [i − 1, k] is finite,
then a different solution is also possible. The total completion time of this
solution is T [i − 1, k] + pi. The above subcases can be expressed by the
equation:

T [i, k] = min{T [i− 1, k], max{T [i − 1, k − 1], bi}} + pi

Based on the above cases, we conclude that T [i, k] can be computed using
the following recurrence relation:
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T [i, k] =

{

T [i − 1, k] + pi, if di ≤ T [i − 1, k − 1] + pi

min{T [i − 1, k], max{T [i − 1, k − 1], bi}} + pi, if di > T [i − 1, k − 1] + pi

Algorithm MinPenalizedJobs outputs the maximum possible number of
non-penalized jobs and it is directly based on the above recurrence relation (see
block 1 of the algorithm). Block 2 of Algorithm MinPenalizedJobs computes
the maximum possible number of non-penalized jobs by identifying the largest
j with 0 ≤ j ≤ n such that T [n, j] < ∞.

Algorithm MinPenalizedJobs needs O(n2) time and space, since it main-
tains a (n+1)×(n+1) table and each entry of this table is computed in constant
time. By using an extra table of the same size as T , the algorithm can easily
be modified, such that it also computes the starting times σ1, σ2, . . . σn of jobs
J1, J2, . . . Jn, respectively in the optimal solution.

Algorithm 1: MinPenalizedJobs

Input : A set of n jobs J1, J2, . . . , Jn, which are to be executed on one
machine, a deterministic processing time pi and a time window
(bi, di) for each job si.

Output: The maximum number of non-penalized jobs.
Require: Job Ji should be executed before Jj , if i < j.

{Fill dynamic programming table T }1

T [0, 0] = 0
for i = 1 to n do

T [i, 0] = T [i − 1, 0] + pi

T [i − 1, i] = ∞
for k = 1 to i do

if di > T [i − 1, k − 1] + pi then
T [i, k] = T [i − 1, k] + pi

else
T [i, k] = min{T [i − 1, k], max{T [i − 1, k − 1], bi}} + pi

{Compute maximum possible number of non-penalized jobs}2

for j = n down to 0 do
if T [n, j] < ∞ then

return j
break

2

3 Sites on a Horizontal Line

In this section, we consider the case, where the sites to be labeled are restricted
to a horizontal line5 L. W.l.o.g. we assume that L is the X-axis, i.e. L : y = 0.

5Sites positioned on a vertical line are treated similarly.



366 M. A. Bekos et al. Efficient Labeling of Collinear Sites

We want to obtain legal type-opo6 labelings either of minimum total leader
length or of minimum number of bends. Recall that in the case of a horizontal
line, the boundary of L is defined by lines LT : y = c0 and LB : y = −c0. This
implies that either the bottom or the top boundary edge of each label should
coincide with either LT or LB, respectively. Moreover, each type-opo leader
should have its p-segment either between LT and L or between L and LB (see
Figure 1).

Before we proceed with the description of our algorithms, we make some
observations regarding opo-labelings. It is easy to see that the problem of deter-
mining a labeling of minimum total leader length is equivalent to the problem
of determining a labeling, so that the sum of the lengths of the p-segments of all
leaders is minimum. This is because we assumed that the thickness 2c0 of the
track routing area is fixed and large enough to accommodate all leaders. We
also observe that in any legal opo-labeling, the horizontal order of the sites with
labels positioned above (or below) the input line is identical to the horizontal
order of their corresponding labels.

3.1 Labels above the input line

We first consider the case where the labels are restricted to the same side of the
input line L. W.l.o.g. we assume that all labels will be placed above L. This
implies that the bottom boundary edge of each label should coincide with LT

(see Figure 6). We consider the more general case of labels with sliding ports,
i.e. the leader connecting the site to the label simply has to touch some point
in the perimeter of the label.

3.1.1 Total leader length minimization

We describe how to compute in O(n log n) time a labeling with leaders of type
opo, so that the total leader length is minimum. To solve this problem, we
will reduce it to the single-machine scheduling problem with due windows and
symmetric earliness and tardiness penalties. The reduction we propose can be
achieved in linear time. For each site si = (xi, 0), we introduce a job Ji. The
processing time pi of job Ji is equal to the width wi of label li. The corresponding
due window (bi, di) of job Ji is (xi − wi, xi + wi) and its length is equal to 2wi

(see Figure 6).

L

xi − wi

Ji

wi

LT

xi + wi

si = (xi, 0)

Figure 6: For each site si, a job Ji of processing times wi is introduced.

6Note that in the case of a horizontal line, a leader of type-opo is identical to a leader of
type-o

L
po

L
.



JGAA, 12(3) 357–380 (2008) 367

We proceed by applying Koulamas’ algorithm [21] to obtain a schedule
σopt, which minimizes the total earliness-tardiness penalty. The exact posi-
tions of labels are then determined based on the starting times σ1, σ2, . . . , σn

of jobs J1, J2, . . . , Jn, respectively, under schedule σopt. More precisely, the x-
coordinate of the lower left corner of label li is σi and since the y-coordinate of
each of the lower left corners is equal to c0, the exact positions of all labels are
well-specified.

If a job Ji is placed entirely within its time window, the corresponding leader
ci, which connects label li with site si, is of type o, which implies that leader
ci does not contribute to the total leader length. On the other hand, if job Ji

deviates from its time window, then leader ci contributes to the total leader
length a penalty equal to the corresponding deviation. So, the total leader
length is equal to the total earliness-tardiness penalty of the implied scheduling
problem. The above result is summarized in Theorem 2.

Theorem 2 Given a set S of n sites on a horizontal line L, each associated
with a rectangular (wi×hi)-label li that has to be placed above L, we can compute
in O(n log n) time a legal opo-labeling of minimum total leader length.

3.1.2 Leader bend minimization

We use the same reduction to obtain a labeling of minimum number of bends.
In this case, we proceed by applying algorithm MinPenalizedJobs to obtain
a schedule of minimum number of penalized jobs. Observe that if a job Ji is
on time (i.e. it does not incur a penalty), the corresponding leader ci, which
connects label li with site si, is of type o, which implies that leader ci does
not contribute to the total number of bends. On the other hand, if job Ji is
either early or tardy, then leader ci contributes two bends to the total number
of bends. So, the total number of leader bends is equal to twice the total
number of penalized jobs of the implied scheduling problem. The above result
is summarized in Theorem 3.

Theorem 3 Given a set S of n sites on a horizontal line L, each associated
with a rectangular (wi×hi)-label li that has to be placed above L, we can compute
in O(n2) time a legal opo-labeling of minimum number of bends.

3.2 Labels on both sides of the line

In this section, we show that if non-uniform labels can be placed on both sides
of L the problem of determining a legal labeling of either minimum total leader
length or of minimum number of bends is NP -complete.

3.2.1 Total leader length minimization

We show that the decision problem “Is there a labeling with total leader length
no more than k?” is NP -complete and hence the corresponding optimization
problem is at least as hard. We also do give a pseudo-polynomial time algorithm
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for this problem, establishing that the problem is NP-complete in the ordinary
sense.

Theorem 4 Given k ∈ Z
+ and a set S of n sites on a horizontal line L, each

associated with a rectangular label li of dimensions wi × hi, it is NP -complete
to determine if there exists a legal opo-labeling with labels on both sides of L,
such that the total leader length is at most k.

Proof: Membership in NP follows from the fact that a nondeterministic algo-
rithm needs only guess for each label li, i = 1, 2, . . . , n whether it lies above or
below the horizontal line, defining in this way two independent one-sided sub-
problems, which can be solved in polynomial time by applying the algorithm
of Section 3.1.1 twice, i.e., once for the labels that lie above the input line and
once for the corresponding labels that lie below it. Then, we can trivially check
that the sum of the lengths of the p-segment of all leaders7 is no more than k,
by summing the total leader lengths of the solutions of the two subproblems.

We will reduce the problem of determining a legal labeling under the 1d-4S
sliding model, which is known to be NP -complete [14], to our problem. Recall
that in 1d-4S, all sites lie on a horizontal line and each label must be placed,
so that the site lies on one of the boundary edges of the label. Let I1d-4S be an
instance of the problem of determining a legal labeling under the 1d-4S sliding
model. I1d-4S consists of n sites s1, s2 . . . sn on a horizontal line L. Each site
si is associated with a rectangular, axis-parallel, (wi × hi)-label li. We use the
same setting to construct an instance IL of our problem.

The reduction we propose is “somewhat” by restriction. It is based on the
fact that a legal labeling for I1d-4S implies a solution of IL, where each site is
attached to its label through a type-o leader and vice versa. More precisely, we
can easily observe that there exists a legal labeling for I1d-4S if and only if there
exists a solution of IL with total leader length at most k = 0, i.e., the total
length of all p-segments is equal to zero. 2

Theorem 4 implies that we can not expect to find an algorithm, which runs
in polynomial time with respect to the number of sites, unless P = NP . So,
we assume that the input consists exclusively of integers and propose a pseudo-
polynomial time algorithm, which runs in polynomial time in terms of both the
number of sites n and W = 2

∑n

i=1 wi + xn − x1, where xi is the x-coordinate
of site si.

Theorem 5 Assume a set P of n sites on a horizontal line L, each associated
with a rectangular (wi × hi)-label li and let W = 2

∑n

i=1 wi + xn − x1, where
xi is the x-coordinate of site si. Then, there is an O(nW 2) time algorithm
that places all labels on both sides of L and attaches each point to its label with
non-intersecting type-opo leaders, such that the total leader length is minimum.

7Recall that we consider only the lengths of the p-segments of all leaders when measuring
the total leader length.
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Proof: We observe that in an optimal solution, the lower left (right) corner
of the leftmost (rightmost) label cannot have x-coordinate smaller than W1 =
x1 −

∑n

i=1 wi (greater than W2 = xn +
∑n

i=1 wi). So, our problem can be easily
formulated as a boundary labeling problem of minimum total leader length
with non uniform sliding labels. Bekos et al. [7] showed how to compute a legal
boundary labeling of minimum total leader length in O(nW 2) time. 2

3.2.2 Leader bend minimization

In the following theorem, we show that the decision problem “Is there a labeling
with the total number of bends no more than k?” is NP -complete and hence
the corresponding optimization problem is at least as hard.

Theorem 6 Given k ∈ Z
+ and a set S of n sites on a horizontal line L, each

associated with a rectangular label li of dimensions wi × hi, it is NP -complete
to determine whether there exists a legal opo-labeling with labels on both sides
of L, such that the total number of bends is at most k.

Proof: Membership in NP follows from the fact that a nondeterministic algo-
rithm needs only guess for each label li, i = 1, 2, . . . , n whether it lies above or
below the horizontal line, defining in this way two independent one-sided sub-
problems, which can be solved in polynomial time by applying the algorithm
of Section 3.1.2 twice, i.e., once for the labels that lie above the input line and
once for the corresponding labels that lie below it. Then, we can trivially check
that the total number of leader bends is no more than k, by summing the total
number of leader bends of the solutions of the two subproblems.

As in the proof of Theorem 4, we will reduce the problem of determining a
legal labeling under the 1d-4S sliding model to our problem. The reduction is
again by restriction. Let I1d-4S be an instance of the problem of determining a
legal labeling under the 1d-4S sliding model, consisting of n sites s1, s2 . . . sn on
a horizontal line L, each associated with a rectangular, axis-parallel label. We
use the same setting to construct an instance IL of our problem. Observe now
that there exists a legal labeling for I1d-4S if and only if there exists a solution of
IL with total number of leader bends at most k = 0, i.e., all sites are connected
to their associated labels through leaders of type-o. 2

4 Sites on a Sloping Line

In this section, we extend the results of Section 3.1 to the case where the input
line has a positive slope φ (i.e. 0 < φ < 90). We assume that each label can be
placed anywhere on the boundary of L, so that its bottom right corner lies on
LT (recall that LT is a translation of L by c0 towards to (0,∞); see Figure 2a).
We further assume that each leader can touch its label only at the bottom right
corner of the label (i.e. the point which slides along LT ). We want to obtain
legal labelings of either minimum number of bends or of minimum total leader
length. We first consider the case of unit height labels with type-opo leaders
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(Section 4.1) and later on we describe how to extend our approach to support
non-uniform labels (Section 4.2) and leaders of type o

L
po

L
(Section 4.3).

4.1 Labels of unit height

4.1.1 Total leader length minimization

We describe how to compute in O(n log n) time a labeling with leaders of type
opo, so that the total leader length is minimum. Our approach is quite similar to
the one presented for the case of a horizontal line in Section 3.1. In this case, we
will reduce our problem to the single-machine scheduling problem with distinct
due dates and symmetric earliness and tardiness penalties. Note that since we
assume fixed label ports, we use distinct due dates instead of time windows.

The reduction we propose can be achieved in linear time. For each site
si = (xi, yi), we introduce a job Ji. The due date di of job Ji is xi. The
processing time pi of job Ji is equal to the minimum horizontal distance between
the bottom right corner vi−1 of label li−1 and the bottom right corner vi of
label li, when the y-coordinate of vi−1 is less than the y-coordinate of vi and
labels li−1 and li do not overlap (see Figures 7a and 7b). We will refer to
corners vi−1 and vi as sliding corners of labels li−1 and li, respectively. Since
we assume that all labels are of unit height, the computation of the minimum
horizontal distance between the sliding corners of labels li−1 and li demands
only a geometric analysis of the possible positions of labels li−1 and li. It is
easy to see that cot φ is equal to the corresponding horizontal distance between
the sliding corners of labels li−1 and li, in the case where label li is of unit width
(in Figure 7a, cotφ is the length of the line segment ab). We distinguish two
cases based on whether the width wi of label li is greater than cotφ or not.

Case 1 (wi > cotφ): Refer to Figure 7a. In this case, the minimum horizontal
distance between the sliding corners of labels li−1 and li can be computed
by placing label li on top of label li−1 and is equal to ab or equivalently
equal to cotφ, since we assume that all labels are of unit height.

Case 2 (wi ≤ cotφ): Refer to Figure 7b. In this case, the minimum horizontal
distance between the sliding corners of labels li−1 and li can be computed
by placing label li next to label li−1 and is equal to wi.

Based on the above cases, the processing time pi of Job Ji is computed by
using the following relation:

pi = min{wi, cotφ}

We proceed by applying the algorithm of Garey et al. [13] to obtain a sched-
ule σopt that minimizes the total earliness-tardiness penalty. The exact posi-
tions of labels l1, l2, . . . , ln are then determined based on the completion times
c1, c2, . . . , cn of jobs J1, J2, . . . , Jn, respectively, under schedule σopt. More pre-
cisely, the x-coordinate of the sliding corner vi of label li is ci, and since the
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li−1

li

LT

L

pi
φ

a b

1

wi > cot φ

(a) wi > cot φ

li−1

li

LT

L

pi

1

wi ≤ cot φ

φ

(b) wi ≤ cot φ

Figure 7: Processing time pi of job Ji.

y-coordinate of vi is implied by the slope of LT , which is given, the exact posi-
tions of all labels are well-specified.

Next we show that the total leader length of our labeling problem is equal
to 1/ cosφ times the total earliness-tardiness penalty of the scheduling problem.
Observe that if a job Ji is on time (i.e., it does not incur a penalty), the cor-
responding leader ci, which connects label li with site si, is of type o, which
implies that leader ci does not contribute to the total leader length. On the
other hand, if job Ji is either early or tardy, then leader ci contributes to the
total leader length a penalty equal to 1/ cosφ times the corresponding deviation.
The processing times pi of jobs Ji, i = 1, 2, . . . , n ensure that in an optimal so-
lution no two labels overlap and hence the implied labeling is legal. The above
result is summarized in Theorem 7.

Theorem 7 Given a set S of n sites on a sloping line L, each associated with
a rectangular (wi × 1)-label li that has to be placed above L, we can compute in
O(n log n) time a legal opo-labeling of minimum total leader length.

4.1.2 Leader bend minimization

We use the same reduction to obtain a labeling of minimum number of bends.
In this case, we proceed by applying the algorithm of Lann and Mosheiov [22] to
obtain a schedule of minimum number of penalized jobs. Observe that if a job
Ji is on time, the corresponding leader ci, which connects label li with site si, is
of type o, which implies that leader ci does not contribute to the total number
of bends. On the other hand, if job Ji is either early or tardy, then leader ci

contributes two bends to the total number of bends. So, the total number of
leader bends is equal to twice the total number of penalized jobs of the implied
scheduling problem. Moreover, the processing times pi of jobs Ji, i = 1, 2, . . . , n
ensure that in an optimal solution no two labels overlap and hence the implied
labeling is legal. The above result is summarized in Theorem 8.

Theorem 8 Given a set S of n sites on a sloping line L, each associated with
a rectangular (wi × 1)-label li to be placed above L, we can compute in O(n2)
time a legal opo labeling of minimum number of bends.
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4.2 Non-uniform labels

The algorithms of unit height labels of Section 4.1 can be extended to support
non-uniform labels. In the case of non-uniform labels, a label of large height
can effect the placement of a label later in the order (see Figure 8). Thus, the
processing time pi of job Ji cannot be computed based only on the previous
label li−1.

LT

L

pi

Figure 8: A label of large height affects the placement of a label later in the order

A straightforward computation of the processing time pi corresponding to
label li can be done in O(i) time by considering all previous labels l1, l2, . . . , li−1.
Thus, the computation of all processing times requires O(n2) time and therefore
the complexity of algorithm of Theorem 7 would become O(n2), instead of
O(n log n).

However, it is possible to compute the processing times of all jobs in O(n log n)
time by employing a binary search like technique. To achieve this, we have to
introduce the notions of the shadow of a label l and the frontier of k already
placed labels (see Figures 9 and 10, respectively).

Definition 1 The shadow s(l) of a label l is the quadrant of the plane that
contains l and is defined by the top right corner of l and the two adjacent sides
of l.

Definition 2 The frontier F (k) of k already placed labels l1, l2, . . . , lk is the
union of their shadows, i.e. F (k) = ∪k

i=1s(li).

l

s(l)

L
T

L

Figure 9: Shadow of label l.

L
T

L

F (4)

Figure 10: The frontier F (4) of 4 labels.

Assume that we have placed the labels l1, l2, . . . , lk, which correspond to sites
s1, s2, . . . , sk, respectively, so that the horizontal distance between the sliding
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corners of labels lj−1 and lj is minimum, for each pair of labels lj−1 and lj ,
j ∈ {2, 3, . . . k}.

The placement of label lk+1 has to satisfy the following: (i) the bottom right
corner of lk+1 is on LT and to the right of all previously placed labels, (ii)
lk+1 does not overlap with previously placed labels and (iii) the x-coordinate of
the bottom right corner of lk+1 is as small as possible, i.e. lk+1 touches some
previously placed label but does not overlap with it.

L
T

L

F (3)

Figure 11: Step B.i of Label Place-

ment procedure: the case
where vf does not exist.

L
T

L

F (3)

vf

Figure 12: Step B.ii of Label Place-

ment procedure: the case
where vf does exist.

Our approach consists of two steps and is described in Procedure Label

Placement. Figures 11 and 12 illustrate Steps B.i and B.ii, respectively, of
the Label Placement procedure.

4.2.1 The frontier data structure

We use a data structure which maintains the frontier of a set of labels and
supports the following operations:

a. add(label): The new label is placed so that:

i. Its bottom right corner is on LT .

ii. Its bottom right corner is to the right of all previously placed labels.

iii. It does not overlap with previously placed labels.

iv. The x-coordinate of its bottom right corner is as small as possible, i.e.
the label touches some previously placed label but does not overlap with
it.

b. position(label): Returns the x-coordinate of the lower left corner of the
label (the y-coordinate is implied by the slope of LT which is given).

Based on the discussion in the preceding section, we can implement the
add(label) operation in logarithmic time with respect to the number of labels
that “contribute” to the frontier, i.e., their top-right corners are on the boundary
of the frontier. We say that these labels are “on the frontier”.
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Procedure Label Placement(lk+1)

Input : A positive sloped input line L, the Frontier F (k) of k already
placed labels l1, l2 . . . lk and a label lk+1 to be properly placed.

{Step A.}
Determine a corner vf of F (k) (if any), which: (i) is convex, (ii) has the
greatest possible x-coordinate and (iii) if we place the bottom-left corner of
lk+1 on it, then label lk+1 does not intersect LT . Note that since we insist
only on convex corners, vf will be the top-right corner of some label.

{Step B. Based on the existence of corner vf , we proceed as follows}
if corner vf does not exist then
{Case i: Refer to Figure 11} We place lk+1, so that (i) its sliding corner
touches LT and (ii) its bottom boundary edge coincides with the topmost
horizontal edge of F (k).

else
{Case ii: Refer to Figure 12} We initially place the bottom-left corner of
lk+1 on that vertex and we start sliding it vertically until either its sliding
corner “hits” LT or its bottom boundary edge touches the horizontal
boundary edge of F (k) immediately below and to the right of vf . In the
latter case, we may also have to slide the label horizontally until the
sliding corner of lk+1 “hits” LT , resulting into the desired placement.

More precisely, the frontier data structure is implemented by employing a
sorted array, where we store the labels on the frontier in increasing order of the
x-coordinates of their top-right corners. Note that since we only store the labels
on the frontier, this also implies that the labels are ordered in decreasing order
of the y-coordinates of their top-right corners. By applying a binary search
on this array, Step A of Procedure Label Placement can be implemented in
O(log n) time. Having determined corner vf , the position of the label can be
determined in constant time following a similar geometric analysis as the one in
Section 4.1.

However, the add(label) operation requires some additional effort, so that
the data structure represents the new frontier (i.e. the one obtained after the
addition of the new label). This is done as follows: Initially, the new label
–since it is on the frontier– has to be placed in the proper position in the array
representing the frontier.

If corner vf does not exist (case B.i of Procedure Label Placement), the
array should only contain the new label. This case is illustrated in Fig-
ure 11.

If corner vf does exist (case B.ii of Procedure Label Placement), there
exists two alternatives:

• If the new label is placed so that its top-right corner is below vf , the
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new label has to be placed after the label containing vf . Moreover,
all labels to the right of the new label have to be removed from the
array representing the frontier, since they are not on the frontier any
more. This case is illustrated in Figure 13.

• In the case where the top-right corner of the new label is placed
above vf , the new label has to replace the label containing vf . This
is because the label containing vf is not on the frontier any more. As
in the previous case, all labels to the right of the new label have to
be removed from the array representing the frontier. However, this
case requires some additional effort. More precisely, all labels to the
left of the new label whose top-right corners lie below the top-right
corner of the new label have to be removed from the array. This is
not performed by searching all elements of the array. We only search
the (immediate) left neighbors of the new label until we identify the
rightmost one whose top-right corner lie above the top-right corner
of the new label. This case is illustrated in Figure 14.

L
T

L

F (4)

vf

l1 l2 l3
l4

Figure 13: Labels l3 and l4 are not on
the new frontier.

L
T

L

F (4)

vf

l1 l3
l4l2

Figure 14: Labels l2, l3 and l4 are not
on the new frontier.

Since each label is removed at most once from the array representing the fron-
tier, the total time needed to perform all updates concerning the data structure
is O(n). Therefore the total time needed to perform all add(label) operations
is O(n log n). Note that having implemented the add(label) operation the oper-
ation position(label) implies an O(1) additional time. The following theorems
summarize our results.

Theorem 9 Given a set S of n sites on a sloping line L, each associated with
a rectangular (wi ×hi)-label li that has to be placed above L, we can compute in
O(n log n) time a legal opo-labeling of minimum total leader length.

Theorem 10 Given a set S of n sites on a sloping line L, each associated with
a rectangular (wi ×hi)-label li that has to be placed above L, we can compute in
O(n2) time a legal opo-labeling of minimum number of bends.
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li−1

li

LT

L

pi

φ δ

(a) The sites are connected with their
labels using leaders of type opo

li−1

li

LT

L

pi

φ δ

(b) The sites are connected with their
labels using leaders of type o

L
po

L

Figure 15: The total earliness-tardiness penalty incurred is equal in both cases. Note
that the sites are equally spaced in both cases, denoted by δ in the Figure.

4.3 The o
L
po

L
Model

As mentioned earlier, our approach can be extended to support leaders of type
o

L
po

L
. In the case of o

L
po

L
-leaders, the processing time pi of job Ji can be cal-

culated as in Section 4.1 assuming uniform labels, or, as in Section 4.2 assuming
non-uniform labels. This ensure that in an optimal solution no two labels over-
lap and hence the implied labeling is legal. However, the due date di of job Ji

is now the x-coordinate of the projection of the site si to the line LT . This is
interpreted as follows: A job Ji is considered to be on time, if its associated
label li can be connected with site si through a leader of type o

L
. On the other

hand, if job Ji is either early or tardy, then leader ci contributes i) two bends
to the total number of leader bends and ii) a penalty equal to 1/ cosφ times the
corresponding deviation to the total leader length.

Note also that under this setting, the total earliness-tardiness penalty in-
curred in the case of o

L
po

L
-leaders is equal to the penalty incurred in the case

where opo-leaders are used to connect the sites with their labels. This is illus-
trated in Figure 15. The following theorems summarize our results.

Theorem 11 Given a set S of n sites on a sloping line L, each associated with
a rectangular (wi ×hi)-label li that has to be placed above L, we can compute in
O(n log n) time a legal o

L
po

L
-labeling of minimum total leader length.

Theorem 12 Given a set S of n sites on a sloping line L, each associated with
a rectangular (wi ×hi)-label li that has to be placed above L, we can compute in
O(n2) time a legal o

L
po

L
-labeling of minimum number of bends.

5 Open Problems and Future Work

In this paper, we considered the problem of labeling collinear sites with “float-
ing” labels on the boundary on the input line. We presented efficient algorithms
to determine opo- and o

L
po

L
-labelings of either minimum total leader length or

of minimum number of leader bends for the case, where the labels are placed
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above the input line. For the general case, where the labels can be placed on
both sides of the input line, we showed that both problems are NP -complete.

Several problems arise from our research that need to be addressed. Among
them, we distinguish the following:

• Straight line leaders (instead of opo- or o
L
po

L
) can be used to connect each

site with its corresponding label. Moreover, a combination of different
types of leaders could also be of particular interest.

• It would be interesting to derive labeling that combine the traditional
labeling models 4P and 4S with our model, i.e., labelings that use leaders
to connect labels with their corresponding sites only in the case where it
is not possible to place the labels using the 4P and/or 4S models.

• It is intuitive that the quality of the labelings can be improved by allowing
the labels to be placed “beyond” the boundary of L, without restricting
them to slide along the lines LT and LB. No algorithms exist for this
model.

• Several labeling problems were shown to be NP-complete if labels can be
placed at both sides of the line. It is worth trying to derive approximation
algorithms for these problems.

• To the best of our knowledge no algorithms exist –in the map labeling
literature in general– regarding the case of labeling sites on a (rectilinear)
polygonal line. So, another line of research is to try to evaluate our labeling
model for this setting.
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