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Abstract

An orthogonal drawing of a plane graph G is a drawing of G in which
each edge is drawn as a sequence of alternate horizontal and vertical line
segments. In this paper we give a linear-time algorithm to find an or-
thogonal drawing of a given 3-connected cubic plane graph with the min-
imum number of bends. The best previously known algorithm takes time
O(n7/4√log n) for any plane graph with n vertices.
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1 Introduction

An orthogonal drawing of a plane graph G is a drawing of G with the given
embedding in which each vertex is mapped to a point, each edge is drawn
as a sequence of alternate horizontal and vertical line segments, and any two
edges do not cross except at their common end. Orthogonal drawings have
attracted much attention due to their numerous practical applications in circuit
schematics, data flow diagrams, entity relationship diagrams, etc. [1, 5, 9, 10,
11]. In particular, we wish to find an orthogonal drawing with the minimum
number of bends. For the plane graph in Fig. 1(a), the orthogonal drawing in
Fig. 1(b) has the minimum number of bends, that is, seven bends.

For a given planar graph G with n vertices, if one is allowed to choose its
planar embedding, then finding an orthogonal drawing of G with the minimum
number of bends is NP-complete [3]. However, Tamassia [10] and Garg and
Tamassia [4] presented algorithms that compute an orthogonal drawing of a
given plane graph G with the minimum number of bends in O(n2 log n) and
O(n7/4

√
log n) time respectively, where a plane graph is a planar graph with a

fixed planar embedding. They reduce the minimum-bend orthogonal drawing
problem to a minimum cost flow problem. On the other hand, several linear-time
algorithms are known for finding orthogonal drawings of plane graphs with a
presumably small number of bends although they do not always find orthogonal
drawings with the minimum number of bends [1, 5].

In this paper we give a linear-time algorithm to find an orthogonal drawing
of a 3-connected cubic plane graph with the minimum number of bends. To the
best of our knowledge, our algorithm is the first linear-time algorithm to find an
orthogonal drawing with the minimum number of bends for a fairly large class
of graphs.

An orthogonal drawing in which there is no bend and each face is drawn as
a rectangle is called a rectangular drawing. Linear-time algorithms have been
known to find a rectangular drawing of a plane graph in which every vertex
has degree three except four vertices of degree two on the outer boundary,
whenever such a graph has a rectangular drawing [6, 8]. The key idea behind
our algorithm is to reduce the orthogonal drawing problem to the rectangular
drawing problem.

An outline of our algorithm is illustrated in Fig. 1. Given a plane graph as
shown in Fig. 1(a), we first put four dummy vertices a, b, c and d of degree two on
the outer boundary of G, and let G′ be the resulting graph. Fig. 1(c) illustrates
G′, where the four dummy vertices are drawn by white circles. We then contract
each of some cycles C1, C2, · · · and their interiors (shaded in Fig. 1(c)) into
a single vertex as shown in Fig. 1(d) so that the resulting graph G′′ has a
rectangular drawing as shown in Fig. 1(e). We also find orthogonal drawings of
those cycles C1, C2, · · · and their interiors recursively (see Figs. 1(d) and (e)).
Patching the obtained drawings, we get an orthogonal drawing of G′ as shown
in Fig. 1(f). Replacing the dummy vertices a, b, c and d in the drawing of G′



M. S. Rahman et al., Orthogonal Drawings, JGAA, 3(4) 31–62 (1999) 33

(d)(c)

(b)(a)

(f)(e)

C2

xy 2
2

z2

C1

y
z1
1

x1

G

C

C

contracted vertex
dummy vertex

1

2

G

G
C 2

G
a

b

c

d

x

y
z

1

1
1

x
y

z

2

2

2 a

b

d

c

a b

c
d

x

y

z

x

11

1

2

2 z2
ya b

cd

x

y

z

1

1

x

z 22

2

y
C1

a

1

b

d c

a

d

b

c

G

G

Figure 1: Illustration of our algorithm.
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with bends, we finally obtain an orthogonal drawing of G as shown in Fig. 1(b).
The rest of the paper is organized as follows. Section 2 gives some definitions

and presents preliminary results. Section 3 presents an algorithm to find an
orthogonal drawing in which the number of bends may not be the minimum but
does not exceed the minimum number by more than four. Section 4 presents an
algorithm to find an orthogonal drawing with the minimum number of bends,
modifying the algorithm in Section 3. Section 5 presents bounds on the grid
size of our orthogonal drawing on the plane grid. Finally Section 6 concludes
the paper. A preliminary version of the paper was presented in [7].

2 Preliminaries

In this section we give some definitions and present preliminary results.
Let G be a connected simple graph with n vertices and m edges. We denote

the set of vertices of G by V (G), and the set of edges of G by E(G). We also
denote by n(G) the number of vertices in G and by m(G) the number of edges
in G. Thus n(G) = |V (G)| and m(G) = |E(G)|. The degree of a vertex v is
the number of neighbors of v in G. If every vertex of G has degree three, then
G is called a cubic graph. The connectivity κ(G) of a graph G is the minimum
number of vertices whose removal results in a disconnected graph or a single-
vertex graph K1. We say that G is k-connected if κ(G) ≥ k.

A graph is planar if it can be embedded in the plane so that no two edges
intersect geometrically except at a vertex to which they are both incident. A
plane graph is a planar graph with a fixed embedding. A plane graph divides
the plane into connected regions called faces. We regard the contour of a face as
a clockwise cycle formed by the edges on the boundary of the face. We denote
the contour of the outer face of graph G by Co(G).

For a simple cycle C in a plane graph G, we denote by G(C) the plane
subgraph of G inside C (including C). We say that cycles C and C ′ in a plane
graph G are independent if G(C) and G(C ′) have no common vertex. An edge
e of G(C) is called an outer edge of G(C) if e is located on C; otherwise, e is
called an inner edge of G(C). An edge of G which is incident to exactly one
vertex of a simple cycle C and located outside C is called a leg of the cycle C.
The vertex of C to which a leg is incident is called a leg-vertex of C. A simple
cycle C in G is called a k-legged cycle of G if C has exactly k legs in G. The
cycle C indicated by a dotted line in Fig. 2(a) is a 3-legged cycle. In Fig. 2(a)
the three legs of C are drawn by thin lines and the three leg-vertices by black
big circles.

Let C be a 3-legged cycle in a 3-connected cubic plane graph G. Then the
three leg-vertices of C are distinct with each other since G is cubic. We denote
by CC the set of all 3-legged cycles of G in G(C) including C itself. For the
cycle C in Fig. 2(a) CC = {C, C1, C2, · · · , C7}, where all cycles in CC are drawn
by thick lines. For any two 3-legged cycles C ′ and C ′′ in CC , we say that C ′′
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is a descendant cycle of C ′ and C ′ is an ancestor cycle of C ′′ if C ′′ is contained
in G(C ′). We also say that a descendant cycle C ′′ of C ′ is a child-cycle of C ′ if
C ′′ is not a descendant cycle of any other descendant cycle of C ′. In Fig. 2(a)
cycles C1, C2, · · · , C7 are the descendant cycles of C, cycles C1, C2, · · · , C5 are
the child-cycles of C, and cycles C6 and C7 are the child-cycles of C4. We now
have the following lemma.

Lemma 1 Let C be a 3-legged cycle in a 3-connected cubic plane graph G. Then
the child-cycles of C are independent of each other.

Proof: Suppose for a contradiction that a pair of distinct child-cycles C1 and
C2 of C are not independent. Then C1 and C2 have a common vertex. However,
either cannot be a descendant cycle of the other since both are child-cycles of C.
Therefore C2 has a vertex in G(C1) and a vertex not in G(C1). Thus C2 must
pass through two of the three legs of C1. Let v be the leg-vertex of the other
leg of C1. Similarly, C1 must pass through two of the three legs of C2. Let w
be the leg-vertex of the other leg of C2. Then removal of v and w disconnects
G, contrary to the 3-connectivity of G. 2

Lemma 1 implies that the containment relation among cycles in CC is rep-
resented by a tree as illustrated in Fig. 2(b); the tree is called the genealogical
tree of C and denoted by TC .

We have the following two lemmas.

(b)

(a)
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Figure 2: (a) Cycles in CC and (b) genealogical tree TC .

Lemma 2 Let C be a 3-legged cycle in a 3-connected cubic plane graph G. Then

|CC| ≤ n(G(C))/2.
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Proof: It suffices to show that one can assign two vertices of G(C) to each cycle
in CC without duplication; thus each vertex of G(C) is assigned to at most one
cycle in CC . We decide the assignment in the top-down order on the tree TC as
follows.

We first assign any two leg-vertices of C to C. For each child-cycle Ci of C
we next assign two of Ci’s three leg-vertices to Ci. Since the child-cycles of C
are independent of each other by Lemma 1, no two child-cycles of C share any
vertex. Cycles C and Ci share at most one common leg-vertex; otherwise, Ci

would have at least four legs. The common leg-vertex may have been assigned
to C. However, since Ci has three distinct leg-vertices, Ci has at least two leg
vertices which have not been assigned yet. Thus we can assign these two leg-
vertices to Ci. In a similar fashion, for each child-cycle Cj of a child-cycle of C,
we can assign two of Cj ’s leg-vertices to Cj, and so on. Clearly the assignment
above can be done without duplication. 2

Lemma 3 Let C be a 3-legged cycle in a 3-connected cubic plane graph G. Then
the genealogical tree TC can be found in linear time.

Proof: We outline an algorithm to find all 3-legged cycles in CC and construct
TC in linear time. We first traverse the contour of each inner face of G(C)

C

C2
C
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C

C7 C

C

C
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6

C8

9

3

4

Figure 3: Illustration for the proof of Lemma 3.

containing an outer edge of G(C) as illustrated in Fig. 3, where the traversed
contours of faces are indicated by dotted lines. Clearly each outer edge of G(C)
is traversed exactly once, and each inner edge of G(C) is traversed at most twice.
The inner edges of G(C) traversed exactly once form cycles, called singly traced
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cycles, the insides of which have not been traversed. In Fig. 3 C4, C8 and C9 are
singly traced cycles, the insides of which are shaded. During this traversal one
can easily find all 3-legged cycles in CC that share edges with C; C1, C2 and C3

drawn in thick lines in Fig. 3 are these cycles. (Note that a 3-legged cycle in CC

sharing edges with C has two legs on C and the other leg is either an inner edge
which is traversed twice or a leg of C. Using edge-labellings similar to one in [8,
pp. 215-216], one can find such a 3-legged cycle.) Any of the remaining 3-legged
cycles in CC either is a singly traced cycle or is located inside a singly traced
cycle. One can find all 3-legged cycles inside a singly traced cycle by recursively
applying the method to the singly traced cycle. In Fig. 3 cycle C4 ∈ CC is a
singly traced 3-legged cycle, cycles C6, C7 ∈ CC are inside C4, cycle C5 ∈ CC is
inside C8, and there is no 3-legged cycle inside C9. One can also determine the
containment relation of the cycles in CC while finding them. Since the algorithm
traverses the contour of each inner face of G(C) exactly once, each edge of G(C)
is traversed at most twice. Thus the algorithm takes linear time. 2

An orthogonal drawing of a plane graph G is a drawing of G in which each
edge is drawn as a sequence of alternate horizontal and vertical line segments,
and any two edges do not cross except at their common end. A bend is defined
to be a point where an edge changes its direction in a drawing. We denote by
b(G) the minimum number of bends needed for an orthogonal drawing of G.

A rectangular drawing of a plane graph G is a drawing of G such that each
edge is drawn as a horizontal or vertical line segment, and each face is drawn
as a rectangle. Thus a rectangular drawing is an orthogonal drawing in which
there is no bend and each face is drawn as a rectangle. The drawing of G′′

in Fig. 1(e) is a rectangular drawing. The drawing of G′ in Fig. 1(f) is not
a rectangular drawing, but is an orthogonal drawing. The following result on
rectangular drawings is known.

Lemma 4 Let G be a connected plane graph such that all vertices have degree
three except four vertices of degree two on Co(G). Then G has a rectangular
drawing if and only if G has none of the following three types of simple cycles
[12]:

(r1) 1-legged cycles;

(r2) 2-legged cycles which contain at most one vertex of degree two; and

(r3) 3-legged cycles which contain no vertex of degree two.

Furthermore one can check in linear time whether G satisfies the condition
above, and if G does then one can find a rectangular drawing of G in linear
time [8].

In a rectangular drawing of G, the four vertices of degree two are the four
corners of the rectangle corresponding to Co(G). A cycle of type (r1), (r2) or
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Figure 4: Bad cycles C1, C2, C3 and C5, and non-bad cycles C4, C6 and C7.

(r3) is called a bad cycle. Figs. 4(a), (b) and (c) illustrate 1-legged, 2-legged
and 3-legged cycles, respectively. Cycles C1, C2, C3 and C5 are bad cycles. On
the other hand, cycles C4, C6 and C7 are not bad cycles; C4 is a 2-legged cycle
but contains two vertices of degree two, and C6 and C7 are 3-legged cycles but
contain one or two vertices of degree two.

Linear-time algorithms to find a rectangular drawing of a plane graph sat-
isfying the condition in Lemma 4 have been obtained [6, 8]. Our orthogonal
drawing algorithm uses the algorithm in [8], which we call Rectangular-Draw
in this paper.

3 Orthogonal Drawing

In this section we give a linear-time algorithm to find an orthogonal drawing of
a 3-connected cubic plane graph G with at most b(G) + 4 bends. Thus there
are at most four extra bends in a drawing produced by the algorithm.

Let G be a 3-connected cubic plane graph. Since G is 3-connected, G has no
1- or 2-legged cycle. Every cycle C of G has at least four convex corners, i.e.,
polygonal vertices of inner angle 90◦, in any orthogonal drawing of G. Since G
is cubic, such a corner must be a bend if it is not a leg-vertex of C. Thus we
have the following facts for any orthogonal drawing of G.

Fact 5 At least four bends must appear on Co(G).

Fact 6 At least one bend must appear on each 3-legged cycle in G.
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An outline of our algorithm is as follows.
Let G′ be a graph obtained from G by adding four dummy vertices a, b, c and

d of degree two on Co(G) as follows. If there are four or more edges on Co(G),
then add four dummy vertices on any four distinct edges on Co(G), one for each.
If there are exactly three edges on Co(G), then add two dummy vertices on any
two distinct edges on Co and two dummy vertices on the remaining edge.

If the resulting graph G′ has no bad cycle, then by Lemma 4 G′ has a
rectangular drawing, in which the four dummy vertices become the corners of
the rectangle corresponding to Co(G′). From the rectangular drawing of G′ one
can immediately obtain an orthogonal drawing of G with exactly four bends by
replacing the four dummy vertices with bends at the corners. By Fact 5 the
orthogonal drawing of G has the minimum number of bends.

Thus we may assume that G′ has a bad cycle. Since G has no 1- or 2-legged
cycle, every bad cycle in G′ is a 3-legged cycle containing no dummy vertex of
degree two like C5 in Fig. 4(c). A bad cycle C in G′ is defined to be maximal
if C is not contained in G′(C ′) for any other bad cycle C ′ in G′. In Fig. 5(a)
C1, C2, · · · , C6 are the bad cycles, C1, C2, · · · , C4 are the maximal bad cycles
in G′, and C5 and C6 are not maximal bad cycles since they are contained in
G′(C4). The 3-legged cycle C7 indicated by a dotted line in Fig. 5(a) is not a
bad cycle in G′ since it contains a dummy vertex a. Since G is a 3-connected
cubic plane graph, all maximal bad cycles in G′ are independent of each other
similarly as in Lemma 1. Let C1, C2, · · · , Cl be the maximal bad cycles in G′.
(In Fig. 1(c) l = 2, and in Fig. 5(a) l = 4.) Let G′′ be the graph obtained from
G′ by contracting G′(Ci) into a single vertex vi for each maximal bad cycle
Ci, 1 ≤ i ≤ l, as illustrated in Figs. 1(d) and 5(b). Clearly G′′ has no bad
cycle. We find a rectangular drawing of G′′, and recursively find a “suitable”
orthogonal drawing of G′(Ci), 1 ≤ i ≤ l, with the minimum number of bends,
defined later and called a feasible drawing, and finally patch them to get an
orthogonal drawing of G. (See Figs. 1, 5 and 12.)

We define the following terms for each 3-legged cycle C in G in a recursive
manner based on its genealogical tree TC . Each 3-legged cycle C in G is divided
into three paths P1, P2 and P3 by the three leg-vertices x, y and z of C as
illustrated in Fig. 6. These three paths P1, P2 and P3 are called the contour
paths of C. Each contour path of C is classified as either a green path or a red
path. In addition, we assign an integer bc(C), called the bend-count of C, to each
3-legged cycle C in G. We will show later that G(C) has an orthogonal drawing
with bc(C) bends and has no orthogonal drawing with fewer than bc(C) bends,
that is b(G(C)) = bc(C). Furthermore we will show that, for any green path
of C, G(C) has an orthogonal drawing with bc(C) bends including a bend on
the green path. On the other hand, for any red path of C, G(C) does not have
any orthogonal drawing with bc(C) bends including a bend on the red path.
We define the bc(C), red paths and green paths in a recursive manner on the
genealogical tree TC , as follows.

Let C be a 3-legged cycle in G, and let C1, C2, · · · , Cl in CC be the child-
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cycles of C. Assume that we have already defined the classification and the
assignment for all child-cycles of C and are going to define them for C. There
are three cases.
Case 1: C has no child-cycle, that is, l = 0, and hence TC consists of a single
vertex (see Fig. 6(a)).

In this case, we classify all the three contour paths of C as green paths, and
set

bc(C) = 1. (1)

(By Fact 6 we need at least one bend on C. In Fig. 6(a) green paths of C are
indicated by dotted lines.)
Case 2: None of the child-cycles of C has a green path on C.

In this case, we classify all the three contour paths of C as green paths, and
set

bc(C) = 1 +
l∑

i=1

bc(Ci). (2)

(In Fig. 6(b) the child-cycles of C are C1, C2, · · · , C5, and all green paths of
them, drawn by thick lines, do not lie on C. Since none of C1, C2, · · · , Cl and
their descendant 3-legged cycles has a green path on C as known later, the
orthogonal drawings of G(C1), G(C2), · · · , G(Cl) with the minimum number of
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bends have no bend on C and hence we need to introduce a new bend on C
in an orthogonal drawing of G(C). In Fig. 6(b) the three green paths of C are
indicated by dotted lines.)
Case 3: Otherwise (see Fig. 6(c)).

In this case at least one of the child-cycles C1, C2, · · · , Cl, for example C1, C4

and C5 in Fig. 6(c), has a green path on C. Classify a contour path Pi, 1 ≤ i ≤ 3,
of C as a green path if a child-cycle of C has its green path on Pi. Otherwise,
classify Pi as a red path. Thus at least one of P1, P2 and P3 is a green path.
We set

bc(C) =
l∑

i=1

bc(Ci). (3)

(In Fig. 6(c) P1 and P2 are green paths but P3 is a red path. For a child-cycle
Cj having a green path on C, G(Cj) has an orthogonal drawing with bc(Cj)
bends including a bend on the green path, and hence we need not to introduce
any new bend on C.)

We have the following lemmas.

Lemma 7 At least one of the three contour paths of every 3-legged cycle in G
is a green path under the classification above.

Proof: Immediate. 2

Lemma 8 Let C be a 3-legged cycle in G. Then the classification and assign-
ment for all descendant cycles of C can be done in linear time, that is, in time
O(n(G(C))), where n(G(C)) is the number of vertices in G(C).

Proof: By Lemma 3 TC can be found in linear time. Using TC , the classification
and assignment for all descendant cycles of C can be done in linear time. 2
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Lemma 9 Let C be a 3-legged cycle in G, then G(C) has at least bc(C) vertex-
disjoint 3-legged cycles of G which do not contain any edge on red paths of C.

Proof: We will prove the claim by induction based on TC .
We first assume that C has no child-cycle. According to the classification

and assignment, all the three contour paths of C are green paths, and bc(C) = 1.
Clearly G(C) has a 3-legged cycle C of G which does not contain any edge on
red paths of C. Thus the claim holds for C.

We next assume that C has at least one child-cycle, and suppose inductively
that the claim holds for any descendant 3-legged cycle of C. Let C1, C2, · · · , Cl

be the child-cycles of C, then the hypothesis implies that, for each Ci, 1 ≤ i ≤ l,
G(Ci) has at least bc(Ci) vertex-disjoint 3-legged cycles of G which do not
contain any edge on red paths of Ci. There are the following two cases to
consider.
Case 1: None of the child-cycles of C has a green path on C (see Fig. 6(b)).

In this case, all the three contour paths of C are green, and bc(C) = 1 +∑l
i=1 bc(Ci) by (2). For each i, 1 ≤ i ≤ l, a child-cycle Ci of C has no green

path on C, and hence all Ci’s contour paths on C are red. By the induction
hypothesis G(Ci) has bc(Ci) vertex-disjoint 3-legged cycles which do not contain
any edge on red paths of Ci. Therefore, these bc(Ci) cycles do not contain any
edge on C. Furthermore by Lemma 1 the child-cycles C1, C2, · · · , Cl of C are
independent of each other. Therefore G(C) has

∑l
i=1 bc(Ci) vertex-disjoint 3-

legged cycles of G which do not contain any edge on C. Since G is cubic, C
and these

∑l
i=1 bc(Ci) 3-legged cycles are vertex-disjoint. Trivially C does not

contain any edge on red paths of C since all the contour paths of C are green.
Thus G(C) has at least bc(C) = 1 +

∑l
i=1 bc(Ci) vertex-disjoint 3-legged cycles

of G which do not contain any edge on red paths of C.
Case 2: At least one of the child-cycles of C has a green path on C (see
Fig. 6(c)).

In this case, bc(C) =
∑l

i=1 bc(Ci) by (3). By the induction hypothesis each
cycle Ci, 1 ≤ i ≤ l, has bc(Ci) vertex-disjoint 3-legged cycles which do not
contain any edge on red paths of Ci. Furthermore by Lemma 1 the child-cycles
Ci, 1 ≤ i ≤ l, are independent of each other. Therefore G(C) has

∑l
i=1 bc(Ci)

vertex-disjoint 3-legged cycles which do not contain any edge on red paths of any
child-cycle Ci. These

∑l
i=1 bc(Ci) cycles may contain edges on green paths of Ci,

but any green path of Ci is not contained in a red path of C by the classification
of contour paths. Therefore, G(C) has at least bc(C) =

∑l
i=1 bc(Ci) vertex-

disjoint 3-legged cycles which do not contain any edge on red paths of C. 2

Lemma 10 Every 3-legged cycle C of G satisfies b(G(C)) ≥ bc(C).

Proof: By Fact 6 at least one bend must appear on each of the 3-legged cycles.
By Lemma 9 G(C) has at least bc(C) vertex-disjoint 3-legged cycles. Therefore
any orthogonal drawing of G(C) has at least bc(C) bends, that is, b(G(C)) ≥
bc(C). 2
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Conversely proving b(G(C)) ≤ bc(C), we have b(G(C)) = bc(C) for any 3-
legged cycle C in G. Indeed we will prove a stronger claim later in Lemmas 11
and 12 after introducing the following definition.

Let x, y and z be the three leg-vertices of C in G. One may assume that x, y
and z appear on C in clockwise order. For a green path P with ends x and y on
C, an orthogonal drawing of G(C) is defined to be feasible for P if the drawing
satisfies the following properties (p1)–(p3):

(p1) The drawing of G(C) has exactly bc(C) bends.

(p2) At least one bend appears on the green path P .

(p3) The drawing of G(C) intersects none of the the following six open halflines.

• the vertical open halfline with the upper end at x.

• the horizontal open halfline with the right end at x.

• the vertical open halfline with the lower end at y.

• the horizontal open halfline with the left end at y.

• the vertical open halfline with the upper end at z.

• the horizontal open halfline with the left end at z.

The property (p3) implies that, in the drawing of G(C), any vertex of G(C)
except x, y and z is located in none of the following three areas (shaded in
Fig. 7): the third quadrant with the origin x, the first quadrant with the origin
y, and the fourth quadrant with the origin z. It should be noted that each leg
of C must start with a line segment on one of the six open halflines above if
an orthogonal drawing of G is extended from an orthogonal drawing of G(C)
feasible for P . Fig. 7 illustrates an orthogonal drawing feasible for a green
path P .

We will often call an orthogonal drawing of G(C) feasible for a green path
of C simply a feasible orthogonal drawing of G(C).

Lemma 11 For any 3-legged cycle C of G and any green path P of C, G(C)
has an orthogonal drawing feasible for P .

Proof: We give a recursive algorithm to find an orthogonal drawing of G(C)
feasible for P , as follows. There are three cases to consider.
Case 1: C has no child-cycle (see Fig. 6(a)).

In this case bc(C) = 1 by (1). We insert, as a bend, a dummy vertex t
of degree two on an arbitrary edge on the green path P in graph G(C), and
let F be the resulting graph. Then every vertex of F has degree three except
four vertices of degree two: the three leg-vertices x, y and z, and the dummy
vertex t. Since C has no child-cycle, trivially F has no bad cycle. Therefore
by Algorithm Rectangular-Draw in [8] one can find a rectangular drawing
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Figure 7: An example of a feasible drawing.

of F with four corners on x, y, z and t. The drawing of F immediately yields
an orthogonal drawing of G(C) having exactly one bend at t, in which C is a
rectangle. Thus the drawing satisfies (p1)–(p3), and hence is feasible for P .
Case 2: None of the child-cycles of C has a green path on C (see Fig. 6(b)).

Let C1, C2, · · · , Cl be the child-cycles of C, where l ≥ 1. First, for each i,
1 ≤ i ≤ l, we choose an arbitrary green path of Ci, and find an orthogonal
drawing D(G(Ci)) of G(Ci) feasible for the green path in a recursive manner.

Next, we construct a plane graph F from G(C) by contracting each G(Ci),
1 ≤ i ≤ l, to a single vertex vi. Fig. 8(a) illustrates F for the graph G(C) in
Fig. 6(b) where the green path P is assumed to be P1. One or more edges on
P are contained in none of Ci, 1 ≤ i ≤ l, and hence these edges remain in F .
Add a dummy vertex t on any of these edges of P as shown in Fig. 8(b), and
let H be the resulting plane graph. All vertices of H have degree three except
the four vertices x, y, z and t on Co(H) of degree two, and H has no bad cycle.
Therefore, by Rectangular-Draw, we can find a rectangular drawing D(H) of
H with four corners on x, y, z and t. D(H) immediately yields an orthogonal
drawing of F with exactly one bend at t. Fig. 8(c) illustrates a rectangular
drawing of H for C and P = P1 in Fig. 6(b).

Finally, as explained below, patching the drawings D(G(C1)), D(G(C2)),
· · · , D(G(Cl)) into D(H), we can construct an orthogonal drawing of G(C) with
bc(C) = 1+

∑l
i=1 bc(Ci) bends (see Fig. 8). As illustrated in Fig. 9(b), there are

twelve distinct embeddings of a contracted vertex vi and the three legs incident
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Figure 8: F , H , D(H) and D(G(C)) for Case 2.

to vi, depending on both the directions of the three legs and the chosen green
path of Ci, where the ends of the path are denoted by x and y. For each of the
twelve cases, we can replace a contracted vertex vi with an orthogonal drawing
of G(Ci) feasible for the green path or a rotated one shown in Fig. 9(c), where
the drawing of G(Ci) is depicted as a rectangle for simplicity. For example, the
embedding of the contracted vertex v1 with three legs in Fig. 8(c) is the same
as the middle one of the leftmost column in Fig. 9(b) (notice the green path
of C1 drawn in a thick line in Fig. 6(b)); and hence v1 in D(H) is replaced by
D(G(C1)), the middle one of the leftmost column in Fig. 9(c). Clearly t is a
bend on P , and C is a rectangle in the drawing of G(C). Thus the drawing is
feasible for P . We call the replacement above a patching operation.1

Case 3: Otherwise (see Fig. 6(c)).
Let C1, C2, · · · , Cl be the child-cycles of C, where l ≥ 1. In this case, for

1A replacement operation similar to our patching operation is used in [5].
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Figure 9: (a) A 3-legged cycle, (b) twelve embeddings of a vertex vi and three
legs incident to vi, and (c) twelve feasible orthogonal drawings of G(Ci) and
rotated ones.
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any green path P on C, at least one of C1, C2, · · · , Cl has a green path on P .
One may assume without loss of generality that C1 has a green path Q on the
green path P of C, that the three leg-vertices x1, y1 and z1 of C1 appear on C1

clockwise in this order, and that x1 and y1 are the ends of Q as illustrated in
Fig. 6(c).

We first construct a plane graph F from G(C) by contracting each G(Ci), 1 ≤
i ≤ l, to a single vertex vi. Fig. 10(a) illustrates F for G(C) in Fig. 6(c). Replace
v1 in F with a quadrangle x1ty1z1 as shown in Fig. 10(b) where t is a dummy
vertex of degree two, and let H be the resulting plane graph. Thus all vertices
of H have degree three except four vertices on Co(H) of degree two: the dummy
vertex t and the three leg-vertices x, y and z of C. Furthermore H has no bad
cycle. Therefore, by Rectangular-Draw, we can find a rectangular drawing
D(H) of H with four corners on t, x, y and z, in which the contour x1ty1z1 of a
face is drawn as a rectangle. Fig. 10(c) illustrates a rectangular drawing of H
for G(C) in Fig. 6(c).

We next find feasible orthogonal drawings D(G(C1)), D(G(C2)), · · ·,
D(G(Cl)) in a recursive manner; D(G(C1)) is feasible for the green path Q, and
D(G(Ci)) is feasible for an arbitrary green path of Ci for each i, 2 ≤ i ≤ l.

Finally, patching the drawings D(G(C1)), D(G(C2)), · · · , D(G(Cl)) into
D(H), we can construct an orthogonal drawing D(G(C)) of G(C) feasible for P ;
we replace the rectangle x1ty1z1 of D(H) by D(G(C1)), and replace each vertex
vi, 2 ≤ i ≤ l, by D(G(Ci)). In this case C is not always a rectangle in D(G(C)).
One can observe with the help of Fig. 9 that each of the replacement above
can be done without introducing any new bend or edge-crossing and without
any conflict of coordinates of vertices as illustrated in Fig. 10. Note that the
resulting drawing always expands outwards, satisfying the property (p3). Since
we replace the rectangle x1ty1z1 in D(H) by D(G(C1)) and we have already
counted the bend corresponding to t for C1, we need not count it for C. Thus
one can observe that the drawing D(G(C)) has exactly bc(C) =

∑l
i=1 bc(Ci)

bends. Since a bend of D(G(C1)) appears on Q, the bend appears on the green
path P of C in D(G(C)). Hence D(G(C)) is an orthogonal drawing feasible for
P . 2

The definition of a feasible orthogonal drawing and Lemmas 10 and 11 im-
mediately imply the following Lemma 12.

Lemma 12 For any 3-legged cycle C in G, b(G(C)) = bc(C), and a feasible
orthogonal drawing of G(C) has the minimum number b(G(C)) of bends.

The algorithm for finding a feasible orthogonal drawing of G(C) described
in the proof of Lemma 11 above is hereafter called Feasible-Draw. We have
the following lemma on Feasible-Draw.

Lemma 13 Algorithm Feasible-Draw finds a feasible orthogonal drawing of
G(C) for a 3-legged cycle C in linear time, that is, in time O(n(G(C))).
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Figure 10: F , H , D(H) and D(G(C)) for Case 3.

Proof: Denote by TRG(G) the computation time of Rectangular-Draw(G).
Since TRG(G) = O(n) [8], there is a constant c such that

TRG(G) ≤ c ·m(G) (4)

for any connected plane graph G. By Lemma 3 one can find the genealogical
tree TC of C in linear time. By Lemma 8 one can classify the three contour
paths as green or red paths for all cycles in CC in linear time.

We first consider the time needed for contraction and patching operations.
During the traversal of all inner faces of G(C) for constructing TC , we can find
the three leg-vertices for each cycle in CC . Given the three leg-vertices of a
3-legged cycle, we can contract the 3-legged cycle to a vertex in constant time.
Since |CC| ≤ n(G(C))/2 by Lemma 2, the contraction operations in Feasible-
Draw take O(n(G(C))) time in total. Similarly the patching operations in
Feasible-Draw take O(n(G(C))) time in total.
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We then consider the time needed for operations other than the contractions
and patchings. Denote by T (G(C)) the time needed for Feasible-Draw(G(C))
excluding the time for the contractions and patchings. We claim that T (G(C)) =
O(n(G(C))). The number m(G(C)) of edges in a plane graph G(C) satisfies
m(G(C)) ≤ 3n(G(C)). Furthermore |CC| ≤ n(G(C))/2 by Lemma 2. Therefore
it suffices to prove that

T (G(C)) ≤ c ·m(G(C)) + 4 · c · |CC|. (5)

We prove (5) by induction based on TC .
First consider the case where C has no child-cycle. Then |CC| = 1. In this

case Feasible-Draw adds a dummy vertex on C to obtain a graph F from G(C).
Therefore m(F ) = m(G(C)) + 1. Feasible-Draw finds a rectangular drawing
of F by Rectangular-Draw. Hence, by (4) we have T (G(C)) = TRG(F ) ≤
c ·m(F ). Thus T (G(C)) ≤ c ·m(G(C)) + 4 · c · |CC|, as desired.

Next consider the case where C has child-cycles C1, C2, · · · , Cl where l ≥ 1.
Suppose inductively that (5) holds for each Ci, 1 ≤ i ≤ l:

T (G(Ci)) ≤ c ·m(G(Ci)) + 4 · c · |CCi |. (6)

Algorithm Feasible-Draw constructs a plane graph F from G(C) by contract-
ing each G(Ci), 1 ≤ i ≤ l, to a single vertex, and then constructs a graph H
from F by either adding a dummy vertex on Co(F ) or replacing exactly one
contracted vertex on Co(F ) by a quadrangle as illustrated in Figs. 8 and 10.
Therefore one can observe that

m(H) +
l∑

i=1

m(G(Ci)) ≤ m(G(C)) + 4. (7)

Algorithm Feasible-Draw recursively finds drawings of G(Ci), 1 ≤ i ≤ l, and
patches them into a rectangular drawing D(H) of H found by Rectangular-
Draw. Therefore we have

T (G(C)) = TRG(H) +
l∑

i=1

T (G(Ci)). (8)

By (4) we have

TRG(H) ≤ c ·m(H). (9)

Using (6), (7), (8) and (9), we have

T (G(C)) ≤ c ·m(H) +
l∑

i=1

(c ·m(G(Ci)) + 4 · c · |CCi |)
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= c · (m(H) +
l∑

i=1

m(G(Ci))) + 4 · c ·
l∑

i=1

|CCi |

≤ c · (m(G(C)) + 4) + 4 · c ·
l∑

i=1

|CCi|. (10)

Since CC = {C} ∪ (
l∪

i=1
CCi), we have

|CC| = 1 +
l∑

i=1

|CCi |. (11)

By using (10) and (11), we have

T (G(C)) ≤ c · (m(G(C)) + 4) + 4 · c · (|CC| − 1) = c ·m(G(C)) + 4 · c · |CC|.
2

We are now ready to present our algorithm for orthogonal drawings of G,
which is shown in Fig. 11.

Algorithm Orthogonal-Draw(G)
begin

1 add four dummy vertices of degree two on Co(G);
{if Co(G) has four or more edges, then add four dummy vertices on
four distinct edges, otherwise, add two dummy vertices on two
distinct edges and two dummy vertices on the remaining edge.}

2 let G′ be the resulting graph;
3 let C1, C2, · · · , Cl be the maximal bad cycles in G′;
4 for each i, 1 ≤ i ≤ l, construct genealogical trees TCi and determine

green paths and red paths for every cycle in TCi ;
5 for each i, 1 ≤ i ≤ l, find an orthogonal drawing D(G(Ci)) of G(Ci)

feasible for an arbitrary green path of Ci by Feasible-Draw;
6 let G′′ be a plane graph derived from G′ by contracting each G(Ci),

1 ≤ i ≤ l, to a single vertex vi; {G′′ has no bad cycle.}
7 find a rectangular drawing D(G′′) of G′′ by Rectangular-Draw;
8 patch the drawings D(G(C1)), D(G(C2)), · · · , D(G(Cl)) into D(G′′) to

get an orthogonal drawing of G
end.

Figure 11: Algorithm Orthogonal-Draw.

Fig. 12(a) illustrates a rectangular drawing of G′′ in Fig. 5(b). The specified
green path of each of the maximal bad cycles C1, C2, C3 and C4 of G′ is drawn
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by a thick line in Fig. 5(a). Fig. 12(b) illustrates a final orthogonal drawing of
G′ in Fig. 5(a).
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Figure 12: (a) A rectangular drawing of G′′ and (b) an orthogonal drawing of
G′.

We now have the following theorem.

Theorem 1 Let G be a 3-connected cubic plane graph, let G′ be the graph ob-
tained from G by adding four dummy vertices in Algorithm Orthogonal-Draw,
and let C1, C2, · · · , Cl be the maximal bad cycles in G′. Then
Orthogonal-Draw finds an orthogonal drawing of G with exactly 4+

∑l
i=1 bc(Ci)

bends in linear time. Furthermore, we have 4 +
∑l

i=1 bc(Ci) ≤ 4 + b(G).

Proof: (a) Number of bends.
There are two cases.

Case 1: G′ has no bad cycle.
In this case we have a drawing with exactly four bends. By Fact 5 it is a

drawing with the minimum number of bends.
Case 2: Otherwise.

Let C1, C2, · · · , Cl be the maximal bad cycles in G′. For each i, 1 ≤ i ≤ l,
an orthogonal drawing D(G(Ci)) feasible for an arbitrary green path of Ci has
exactly bc(Ci) bends. Furthermore the rectangular drawing D(G′′) has exactly
four bends corresponding to the four dummy vertices. Algorithm Orthogonal-
Drawing patches the drawings D(G(C1)), D(G(C2)), · · · , D(G(Cl)) into D(G′′)
to get an orthogonal drawing of G. Therefore we have an orthogonal drawing of
G with exactly 4 +

∑l
i=1 bc(Ci) bends. Since the 3-legged cycles C1, C2, · · · , Cl

are independent of each other, by Lemma 9 G has at least
∑l

i=1 bc(Ci) vertex-
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disjoint 3-legged cycles. Therefore Fact 6 implies that
∑l

i=1 bc(Ci) ≤ b(G).
Thus 4 +

∑l
i=1 bc(Ci) ≤ 4 + b(G).

(b) Time complexity.
By a method similar to one in the proof of Lemma 3 we can find all maximal

bad cycles in G′ in linear time. Orthogonal-Draw calls Rectangular-Draw
for G′′ and Feasible-Draw for G(Ci), 1 ≤ i ≤ l. Both Rectangular-Draw
and Feasible-Draw run in linear time. Since cycles Ci, 1 ≤ i ≤ l, are inde-
pendent of each other,

∑l
i=1 n(G(Ci)) ≤ n. Therefore the total time needed by

Feasible-Draw is O(n). Furthermore all contraction operations and all patch-
ing operations can be done in time O(n) in total. Therefore Orthogonal-Draw
runs in linear time. 2

4 Bend Minimization

Algorithm Orthogonal-Draw in the preceding section finds an orthogonal
drawing of a 3-connected cubic plane graph G with at most b(G) + 4 bends.
In this section, by modifying Orthogonal-Draw, we obtain a linear-time algo-
rithm Minimum-Bend to find an orthogonal drawing of G with the minimum
number b(G) of bends. Our idea behind Minimum-Bend is as follows.

If a 3-legged cycle in G has a green path on Co(G), then we can save one
of the four bends mentioned in Fact 5, because a bend on the green path can
be a bend on Co(G) and a bend on the 3-legged cycle at the same time; hence
one of the four bends mentioned in Fact 5 has been accounted for by the bends
necessitated by Fact 6. We therefore want to find as many such 3-legged cycles
as possible, up to a total number of four. We had better to find a 3-legged cycle
which has a green path on Co(G) but none of whose child-cycles has a green
path on Co(G), because a bend on such a cycle can play also a role of a bend on
its ancestor cycle. We call such a cycle a “corner cycle”, that is, a corner cycle
is a 3-legged cycle C in G such that C has a green path on Co(G) but no child-
cycle of C has a green path on Co(G). (In Fig. 14(a) C ′

1 and C ′
2 drawn in thick

lines are corner cycles. On the other hand, the two 3-legged cycles indicated by
dotted lines are not corner cycles since C ′

1 is their descendant cycle.) If G has
k(≤ 4) independent corner cycles C ′

1, C
′
2, · · · , C ′

k, then we can save k bends. By
a method similar to one given in the proof of Lemma 3 one can find independent
corner cycles of G as many as possible in linear time.

We are now ready to give the algorithm Minimum-Bend to find an orthog-
onal drawing with the minimum number of bends, which is shown in Fig. 13.

We have the following lemma.

Lemma 14 Let C ′
i be a corner cycle of a 3-connected cubic plane graph G.

Then none of the child-cycles of C ′
i has a green path on C ′

i, and all contour
paths of C ′

i are green. (See Fig. 15 where C ′
i is indicated by a dotted line.)
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Algorithm Minimum-Bend(G)
begin

1 find as many independent corner cycles C ′
1, C

′
2, · · · , C ′

k of G as possible,
up to a total number of four; {k ≤ 4. In Fig. 14(a) k = 2.}

2 let P ′
i1, 1 ≤ i ≤ k, be the green path of C ′

i on Co(G);
3 let x′i, y

′
i and z′i be the leg-vertices of C ′

i, and let x′i and y′i be the
ends of P ′

i1;
4 replace each subgraph G(C ′

i), 1 ≤ i ≤ k, in G with a quadrangle x′it
′
iy
′
iz

′
i

where t′i is a dummy vertex of degree two, and let G∗ be the resulting
graph; {See Figs. 14(a) and (b).}

5 add 4− k dummy vertices t1, t2, · · · , t4−k on edges of Co(G∗) so that
these vertices are adjacent to none of t′1, t′2, · · · , t′k as in step 1 of
Orthogonal-Draw, and let G′ be the resulting graph; {See Fig. 14(c).}

6 let C1, C2, · · · , Cl be the maximal bad cycles in G′ with respect to the
four dummy vertices t′1, t

′
2 · · · , t′k and t1, t2 · · · , t4−k of degree two;

{In Fig. 14(c) l = 2, and the insides of the two maximal bad cycles C1

and C2 are shaded.}
7 let G′′ be a plane graph derived from G′ by contracting each G(Ci),

1 ≤ i ≤ l, to a single vertex vi; {G′′ has no bad cycle. See Fig. 14(d).}
8 find a rectangular drawing D(G′′) of G′′ by Rectangular-Draw;

{The drawing of Co(G′′) in D(G′′) has exactly four corners t′1, t
′
2 · · · , t′k

and t1, t2 · · · , t4−k, and the quadrangle x′it
′
iy

′
iz

′
i is drawn as a rectangle

for each i, 1 ≤ i ≤ k, in D(G′′). See Fig. 14(e).}
9 find an orthogonal drawing D(G(C ′

i)) of G(C ′
i) feasible for P ′

i1 for each
i, 1 ≤ i ≤ k, and find an orthogonal drawing D(G(Ci)) of G(Ci)
feasible for an arbitrary green path of Ci for each i, 1 ≤ i ≤ l,
by Feasible-Draw; { See Fig. 14(f).}

10 patch the drawings D(G(C ′
1)), D(G(C ′

2)), · · · , D(G(C ′
k)) and

D(G(C1)), D(G(C2)), · · · , D(G(Cl)) into D(G′′) to get an
orthogonal drawing D(G) of G { See Fig. 14(g).}

end.

Figure 13: Algorithm Minimum-Bend.
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Proof: Let P ′
i1, P

′
i2 and P ′

i3 be the contour paths of C ′
i. According to the

definition of a corner cycle, one of them, say P ′
i1, is a green path on Co(G), but

none of the child-cycles of C ′
i has a green path on Co(G). (In Fig. 15 all green

paths of the child-cycles of C ′
i are drawn by thick lines.) Since P ′

i1 is on Co(G),
none of the child-cycles of C ′

i has a green path on P ′
i1.

Furthermore none of the child-cycles of C ′
i has a green path on P ′

i2 or P ′
i3.

Otherwise, according to Case 3 of the classification of contour paths, P ′
i1 would

be a red path, a contradiction.
Thus none of the child-cycles of C ′

i has a green path on C ′
i. Therefore,

according to Case 1 or 2 of the classification of contour paths, all contour paths
P ′

i1, P
′
i2 and P ′

i3 of C ′
i are green. 2

G

C

Ci

Ci

C 2i

i

iP

PiPi

Cij

z

ix

i

yi

3

1

1

3

2

Figure 15: Corner cycle C ′
i, its child-cycles, and their child-cycles.

We now have the following theorem.

Theorem 2 Algorithm Minimum-Bend produces an orthogonal drawing of a
3-connected cubic plane graph G with the minimum number b(G) of bends in
linear time. Furthermore, we have

b(G) =
k∑

i=1

bc(C ′
i) +

l∑

i=1

bc(Ci) + 4− k, (12)
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where k, C ′
1, C ′

2, · · · , C ′
k and C1, C2, · · · , Cl are defined as in algorithm Minimum-

Bend.

Proof: (a) Number of bends.
We first show that Minimum-Bend(G) produces an orthogonal drawing of

G with exactly
∑k

i=1 bc(C ′
i)+

∑l
i=1 bc(Ci)+ 4− k bends. For each i, 1 ≤ i ≤ k,

an orthogonal drawing D(G(C ′
i)) feasible for P ′

i has exactly bc(C ′
i) bends. Also,

for each i, 1 ≤ i ≤ l, an orthogonal drawing D(G(Ci)) feasible for an arbitrary
green path of Ci has exactly bc(Ci) bends. The rectangular drawing D(G′′)
has exactly four dummy vertices t′1, t

′
2 · · · , t′k and t1, t2 · · · , t4−k of degree two,

as illustrated in Fig. 14(e). Algorithm Minimum-Bend patches the drawings
D(G(C ′

1)), D(G(C ′
2)), · · · , D(G(C ′

k)) and D(G(C1)), D(G(C2)), · · · , D(G(Cl))
into D(G′′) to get an orthogonal drawing of G. The rectangle x′it

′
iy

′
iz

′
i in D(G′′)

is replaced by D(G(C ′
i)) for each i, 1 ≤ i ≤ k as illustrated in Fig. 14(g), and

the bend corresponding to t′i in the final drawing has been counted by bc(C ′
i).

Therefore only t1, t2, · · · , t4−k among the four dummy vertices in G′′ should be
counted as bends with Co(G) in the final drawing. Thus the final orthogonal
drawing of G has exactly

∑k
i=1 bc(C ′

i) +
∑l

i=1 bc(Ci) + 4− k bends.
Thus it suffices to show that b(G) ≥ ∑k

i=1 bc(C ′
i) +

∑l
i=1 bc(Ci) + 4 − k.

There are two cases.
Case 1: k = 4.

Since cycles C ′
1, C

′
2, · · · , C ′

k and C1, C2, · · · , Cl are independent of each other
in G, by Lemma 9 G has at least

∑k
i=1 bc(C ′

i) +
∑l

i=1 bc(Ci) vertex-disjoint 3-
legged cycles. Thus by Fact 6 b(G) ≥ ∑k

i=1 bc(C ′
i)+

∑l
i=1 bc(Ci) =

∑k
i=1 bc(C ′

i)+∑l
i=1 bc(Ci) + 4− k.

Case 2: k ≤ 3.
For a corner cycle C ′

i, 1 ≤ i ≤ k, let C ′
i1, C

′
i2, · · · , C ′

ili
be the child-cycles

of C ′
i in CCi where li ≥ 0. By Lemma 14 all three contour paths P ′

i1, P
′
i2 and

P ′
i3 of C ′

i are green, and none of C ′
i1, C

′
i2, · · · , C ′

ili
has a green path on C ′

i. (In
Fig. 15 C ′

i is indicated by a dotted line, and all green paths of C ′
i1, C

′
i2, · · · , C ′

ili
are drawn by thick lines.) Therefore, by (1) or (2) we have

bc(C ′
i) = 1 +

li∑

j=1

bc(C ′
ij). (13)

By Lemma 9 G(C ′
ij), 1 ≤ j ≤ li, has bc(C ′

ij) vertex-disjoint 3-legged cycles which
do not contain any edge on red paths of C ′

ij. Therefore, if such a cycle contains
an edge on C ′

ij, then the edge is necessarily on a green path of C ′
ij, which is not

on C ′
i. Thus none of these cycles contains any edge on C ′

i, and hence contains
any edge on Co(G). Therefore, by (13), G(C ′

i) has
∑li

j=1 bc(C ′
ij) = bc(C ′

i) − 1
vertex-disjoint 3-legged cycles which do not contain any edge on Co(G).

Since k ≤ 3, none of the maximal bad cycles Ci, 1 ≤ i ≤ l, of G′ has a green
path on Co(G); otherwise, such a cycle Ci or its descendant cycle would be a
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corner cycle of G and hence G would have k+1 (≤ 4) independent corner cycles,
a contradiction. Therefore only a red path of Ci can be on Co(G). However, by
Lemma 9, G(Ci) has bc(Ci) vertex-disjoint 3-legged cycles of G which do not
contain any edge on red paths of Ci. Hence these bc(Ci) cycles in G(Ci) do not
contain any edge on Co(G).

Thus G has
∑k

i=1(bc(C
′
i) − 1) +

∑l
i=1 bc(Ci) vertex-disjoint 3-legged cy-

cles which do not contain any edge on Co(G) since cycles C ′
1, C

′
2, · · · , C ′

k and
C1, C2, · · · , Cl are independent of each other. Therefore by Fact 6 at least∑k

i=1(bc(C
′
i) − 1) +

∑l
i=1 bc(Ci) bends must appear in the proper inside of

Co(G). By Fact 5 at least four bends must appear on Co(G). Thus we have
b(G) ≥ ∑k

i=1(bc(C
′
i)−1)+

∑l
i=1 bc(Ci)+4 =

∑k
i=1 bc(C ′

i)+
∑l

i=1 bc(Ci)+4−k.
This completes a proof of (12).
(b)Time complexity.
Similar to (b) in the proof of Theorem 1. 2

5 Grid Drawing

In this section we give our bounds on the grid size for an orthogonal grid drawing
corresponding to an orthogonal drawing obtained by the algorithm Minimum-
Bend.

An orthogonal drawing is called an orthogonal grid drawing if all vertices
and bends are located on integer grid points. Given an orthogonal drawing, one
can transform it to an orthogonal grid drawing in linear time [10, 2 (pp. 157–
161)]. Let W be the width of a grid, that is the number of vertical lines in
the grid minus one, and let H be the height of a grid. Let n be the number of
vertices, and let m be the number of edges in a given graph. It is known that
any orthogonal drawing using b bends has a grid drawing on a grid such that
W + H ≤ b +2n−m− 2 [1]. It is also known that any 3-connected cubic plane
graph has an orthogonal grid drawing using at most n

3
+3 bends on a grid such

that W ≤ n
2

and H ≤ n
2

[1, 5].
Given a 3-connected cubic plane graph G, one can find in linear time an

orthogonal drawing of G with the minimum number b(G) of bends using our
algorithm Minimum-Bend, then one can also transform it in linear time to an
orthogonal grid drawing with the same number of bends using the algorithm in
[10, 2]. The grid size of a produced drawing satisfies W+H ≤ b(G)+2n−m−2 =
b(G) + 1

2n− 2 [1].
In the rest of this section we will prove that any orthogonal drawing produced

by our algorithm Minimum-Bend can be transformed to an orthogonal grid
drawing on a grid such that W ≤ n

2 and H ≤ n
2 . We have the following known

result on the grid size of a rectangular grid drawing [8].

Lemma 15 Any rectangular drawing of a plane graph G produced by Algorithm
Rectangular-Draw can be transformed to a rectangular grid drawing on a grid



M. S. Rahman et al., Orthogonal Drawings, JGAA, 3(4) 31–62 (1999) 58

such that W + H ≤ n
2 .

We now show that the following lemma holds for an orthogonal grid drawing
of G(C) for a 3-legged cycle C in G.

Lemma 16 Let C be a 3-legged cycle in a 3-connected cubic plane graph G.
Then an orthogonal drawing of G(C) produced by Algorithm Feasible-Draw
can be transformed to an orthogonal grid drawing on a grid such that W ≤
n(G(C))−1

2
and H ≤ n(G(C))−1

2
.

Proof: We only give a proof for the bound on W since the proof for the bound
on H is similar. We prove the bound on W by induction based on TC .

First consider the case where C has no child-cycle. In this case Feasible-
Draw adds a dummy vertex on C to obtain a graph F from G(C). There-
fore n(F ) = n(G(C)) + 1. Feasible-Draw finds a rectangular drawing of F
by Rectangular-Draw. By Lemma 15 the rectangular drawing of F can be
transformed to a rectangular grid drawing on a grid such that W +H ≤ n(F )

2 =
n(G(C))+1

2
. The rectangular grid drawing of F immediately gives an orthogonal

grid drawing of G(C) on the same grid regarding the dummy vertex as a bend.
Therefore the width W and the height H of the grid required for the orthogonal
grid drawing of G(C) satisfies W + H ≤ n(G(C))+1

2 . One can easily observe
that H ≥ 1 for any orthogonal grid drawing of G(C). Therefore, for a grid re-
quired for the orthogonal grid drawing of G(C) corresponding to the orthogonal
drawing of G(C) obtained by Feasible-Draw, W ≤ n(G(C))+1

2
−1 = n(G(C))−1

2
.

Next consider the case where C has child-cycles C1, C2, · · · , Cl where l ≥ 1.
Suppose inductively that the following bound on the width Wi of a grid required
for the orthogonal grid drawing of each G(Ci), 1 ≤ i ≤ l holds:

Wi ≤ n(G(Ci)) − 1
2

. (14)

Algorithm Feasible-Draw constructs a plane graph F from G(C) by contract-
ing each G(Ci), 1 ≤ i ≤ l, to a single vertex, and then constructs a graph F ′

from F by either adding a dummy vertex on Co(F ) or replacing exactly one
contracted vertex on Co(F ) by a quadrangle as illustrated in Figs. 8 and 10
where F ′ = H .

Consider the case where F ′ is constructed from F by adding a dummy vertex.
In this case n(F ′) = n(F ) + 1. Algorithm Feasible-Draw patches orthogonal
drawings of G(Ci), 1 ≤ i ≤ l, into a rectangular drawing D(F ′) of F ′ found by
Rectangular-Draw. Therefore

W ≤ WF ′ +
l∑

i=1

Wi, (15)
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where WF ′ is the width of the grid required for the rectangular grid drawing of
F ′. By Lemma 15 WF ′ +HF ′ ≤ n(F ′)

2 = n(F )+1
2 , where HF ′ is the height of the

grid required for the rectangular grid drawing of F ′. Since F ′ has at least four
vertices, HF ′ ≥ 1. Hence

WF ′ ≤ n(F ) + 1
2

− 1

=
n(F )− 1

2
. (16)

From (14), (15) and (16) we have

W ≤ n(F )− 1
2

+
l∑

i=1

n(G(Ci))− 1
2

=
n(F ) +

∑l
i=1(n(G(Ci)) − 1)− 1

2
. (17)

During the patching operation exactly one contracted vertex is replaced by the
orthogonal drawing of each G(Ci), and hence

n(F ) +
l∑

i=1

(n(G(Ci)) − 1) = n(G(C)). (18)

From (17) and (18) we have W ≤ n(G(C))−1
2 .

We now consider the case where F ′ is constructed from F by replacing
exactly one contracted vertex on Co(F ) by a quadrangle. In this case n(F ′) =
n(F )+3. As in the former case, Algorithm Feasible-Draw patches orthogonal
drawings of G(Ci), 1 ≤ i ≤ l, into a rectangular drawing D(F ′) of F ′ found by
Rectangular-Draw. During the patching operation one of G(Ci), 1 ≤ i ≤ l,
say G(C1), replaces the quadrangle, and each G(Ci), 2 ≤ i ≤ l replaces exactly
one contracted vertex in F ′. Furthermore, any drawing of a quadrangle on a
grid has width at least one. Therefore the following equation holds:

W ≤ WF ′ + (W1 − 1) +
l∑

i=2

Wi, (19)

where WF ′ is the width of the grid required for the rectangular grid drawing of
F ′. By Lemma 15 WF ′ +HF ′ ≤ n(F ′)

2 = n(F )+3
2 , where HF ′ is the height of the

grid required for the rectangular grid drawing of F ′. Since HF ′ ≥ 1,

WF ′ ≤ n(F ) + 1
2

. (20)
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From (14), (19) and (20) we have,

W ≤ n(F ) + 1
2

+
n(G(C1))− 1

2
− 1 +

l∑

i=2

n(G(Ci))− 1
2

=
n(F ) +

∑l
i=1(n(G(Ci)) − 1)− 1

2
. (21)

Clearly

n(F ) +
l∑

i=1

(n(G(Ci)) − 1) = n(G(C)). (22)

From (21) and (22) we have W ≤ n(G(C))−1
2 . 2

We are now ready to show W ≤ n
2

and H ≤ n
2

for a grid required for an
orthogonal grid drawing corresponding to an orthogonal drawing of G produced
by Minimum-Bend. We here use the same notations used in Minimum-
Bend. By Lemma 15, the rectangular drawing of G′′ has a corresponding
rectangular grid drawing on a grid such that WG′′ + HG′′ ≤ n(G′′)

2 , where WG′′

and WG′′ respectively are the width and the height of the grid. Since G is a
3-connected plane graph, HG′′ ≥ 2. Hence

WG′′ ≤ n(G′′)
2

− 2. (23)

Algorithm Minimum-Bend patches the orthogonal drawings of G(C ′
1),

G(C ′
2), · · · , G(C ′

k) and G(C1), G(C2), · · · , G(Cl) into the rectangular drawing
of G′′ and get an orthogonal drawing of G. During the patching operation, the
drawing of each G(C ′

i), 1 ≤ i ≤ k, replaces the drawing of a quadrangle, and
the drawing of each G(Ci), 1 ≤ i ≤ l, replaces a contracted vertex in G′′. The
width of a quadrangle on a grid is at least one. Thus one can observe that the
width W of a grid required for an orthogonal grid drawing of G obtained by
algorithm Minimum-Bend satisfies the following relation.

W ≤ WG′′ +
k∑

i=1

(W ′
i − 1) +

l∑

i=1

Wi, (24)

where W ′
i is the width of the grid required for an orthogonal grid drawing of

G(C ′
i) for 1 ≤ i ≤ k and Wi is the width of the grid required for an orthogonal

grid drawing of G(Ci) for 1 ≤ i ≤ l. Then by Lemma 16, Eqs. (23) and (24) we
have

W ≤ n(G′′)
2

− 2 +
k∑

i=1

(
n(G(C ′

i)) − 1
2

− 1) +
l∑

i=1

n(G(Ci)) − 1
2

=
n(G′′) +

∑k
i=1 (n(G(C ′

i)) − 3) +
∑l

i=1 (n(G(Ci))− 1)− 4
2

. (25)
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One can observe that

n(G′′) +
k∑

i=1

(n(G(C ′
i)) − 3) +

l∑

i=1

(n(G(Ci)) − 1) − 4 = n. (26)

From (25) and (26) we have W ≤ n
2 . Similarly we can prove H ≤ n

2 . Thus we
have the following theorem.

Theorem 3 Let G be a 3-connected cubic plane graph with n vertices. Any
orthogonal drawing of G with the minimum number b(G) of bends produced by
Algorithm Minimum-Bend has a corresponding orthogonal grid drawing on a
grid with width H and height H such that W +H ≤ b(G)+ 1

2n− 2, W ≤ n
2 and

H ≤ n
2
.

6 Conclusions

In this paper we have presented a linear-time algorithm to find an orthogonal
drawing of a 3-connected cubic plane graph with the minimum number of bends.
It is left as future work to find a linear-time algorithm for a larger class of graphs.

Acknowledgement: We wish to thank the three anonymous referees for their
valuable comments and suggestions for improving the presentation of the paper.
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