
Journal of Graph Algorithms and Applications
http://jgaa.info/ vol. 12, no. 3, pp. 293–317 (2008)

Using a Significant Spanning Tree to Draw a

Directed Graph

Martin Harrigan 1 Patrick Healy 1

1Department of Computer Science and Information Systems
University of Limerick

Abstract

A directed graph can model any ordered relationship between objects.
However, visualizing such graphs can be a challenging task. If the graph
is undirected, a popular strategy is to choose a significant spanning tree,
nominate a vertex as the root, for example the vertex whose distance
from all other vertices is minimal, hang the significant spanning subtrees
from this root and add in the remaining edges in some unobtrusive man-
ner [19, 26, 27, 33]. In the directed case the spanning tree is a tree DAG
and not simply a directed tree with one appropriate root. It may have
multiple sources that all warrant root status and so the undirected ap-
proach must be modified somewhat. In this paper, we present a method
of drawing directed graphs that emphasizes a significant spanning tree. It
combines two steps of the Sugiyama framework [31] (leveling and crossing
minimization) by finding, in linear time, a leveling of the graph that is
level planar with respect to some spanning tree and restricting the permu-
tations of the vertices on each level to those that constitute a level planar
embedding of this subgraph. The edges of the spanning tree will therefore
not cross each other. Using a globally oriented Fiedler vector we choose
permutations of the vertices on each level that reduce the number of edge
crossings between the remaining edges.

Submitted:

July 2007
Reviewed:

September 2007
Revised:

January 2008
Accepted:

March 2008

Final:

July 2008

Published:

October 2008

Article type:

Regular Paper
Communicated by:

S.-H. Hong

Supported by the Irish Research Council for Science, Engineering and Technology.

E-mail addresses: martin.harrigan@ul.ie (Martin Harrigan) patrick.healy@ul.ie (Patrick Healy)

mailto:martin.harrigan@ul.ie
mailto:patrick.healy@ul.ie

294 M. Harrigan and P. Healy A Significant Spanning Tree

1 Introduction

A popular strategy when drawing graphs is to extract a spanning tree or hi-
erarchy, draw it using some simpler algorithm and then handle the remaining
edges. When the graph is undirected this spanning tree is a free tree and we can
nominate some vertex as the root [3], draw the spanning tree using the simpler
tree drawing algorithms [29, 32, 5] and add in the remaining edges. However,
in the directed case the spanning tree is not necessarily a directed tree with one
single source; it is a tree DAG (a directed graph without any cycles, directed
or undirected) with potentially multiple sources. It is inappropriate to choose
one of these vertices arbitrarily as the root and so the simpler tree drawing
algorithms are not suitable.

We propose finding a significant spanning tree DAG T using either domain-
specific (e.g. edge weights associated with the graph) or graph-theoretic knowl-
edge. We find a leveling of the graph that is level planar with respect to T by
inserting a small number of dummy vertices and restrict the permutations of the
vertices on each level to those that constitute a level planar embedding of T . In
this way we ensure that any edge crossings in the final drawing do not involve
two significant edges. We use a globally oriented Fiedler vector to choose per-
mutations of the vertices on each level that reduce the number of edge crossings
between the remaining edges. Our main contributions are: a proof that mini-
mizing the number of dummy vertices, even in a simple ‘base case’, is NP-Hard,
a heuristic method that runs in linear time and a demonstration of how this
approach can be used to draw entire directed graphs.

Our approach can be considered a variation of the Sugiyama framework [31].
This framework temporarily removes any directed cycles by reversing a small
number of edges, creates a proper leveling, permutes the vertices on each level to
reduce the number of edge crossings and balances the layout. An alternative goal
when permuting the vertices on each level is to maximize the size of a level planar
subgraph. Even if there are only two levels and the vertices on one are fixed,
both the crossing minimization and maximum level planar subgraph problems
are NP-Hard [11, 10] and so heuristics are generally employed. Once we have
computed a Fiedler vector, our method efficiently combines the leveling and
crossing minimization steps in linear time. We particularly favor our method
when we want a spanning tree of the directed graph to be clear and apparent
from the drawing.

This paper is organized as follows. We begin with some preliminaries in
Sect. 2. In Sect. 3 we show how to choose a significant spanning tree DAG T .
In Sect. 4 we present a recursive algorithm that ensures the level planarity of
T by inserting a small number of dummy vertices. This also implies a simple
embedding algorithm. In Sect. 5 we describe a crossing minimization heuristic
based on a Fiedler vector and show how it can be combined with the previous
step. Section 6 brings all the parts together to draw the dependency relationship
between packages related to the Python programming language and Sect. 7 gives
some concluding remarks.

JGAA, 12(3) 293–317 (2008) 295

(b)

v u v

4

3

2

1

4

3

2

1

(a)

u

Figure 1: A non-level planar and level planar drawing of spanning tree DAGs
(solid edges). All edges point downwards.

2 Preliminaries

A leveling of a directed graph G = (V,E) is a surjective mapping φ : V →
{1, 2, . . . , k} such that φ(v) ≥ φ(u) + 1, ∀(u, v) ∈ E. A leveling is proper if the
relation is strictly equality. If a leveling is not proper then we can make it so
by inserting dummy vertices along edges than span more than one level. In
the following we assume all levelings to be proper. A level drawing of G with
leveling φ is a drawing in which the vertices in φ−1(j), 1 ≤ j ≤ k, are placed on
a horizontal level lj and the edges are drawn as straight-line segments between
the vertices. A level drawing of G with leveling φ is level planar if no two edges
cross except at common endpoints. G with leveling φ is level planar if it has a
level planar drawing. A level embedding of G with leveling φ consists of total
orders <j of the vertices in φ−1(j), 1 ≤ j ≤ k. A level embedding is level planar
if any level drawing of the graph in which the order of the vertices along lj
satisfy <j , 1 ≤ j ≤ k, is level planar.

Every tree DAG T (a directed graph with no cycles, directed or undirected)
has a leveling φ such that all edges are directed uniformly. If T with leveling
φ is not level planar then we can make it so by inserting dummy vertices along
appropriate edges (see the spanning tree DAGs in Fig. 1). Accomplishing this
with a small number of dummy vertices is the main concern of Sect. 4.

The Laplacian L(G) of a graph G is a square matrix defined by

L (G)u,v =







deg (v) if u = v,

−1 if (u, v) ∈ E ∨ (v, u) ∈ E,
0 otherwise.

(1)

L(G) is positive semi-definite and so its eigenvalues, λ1 ≤ . . . ≤ λn, are all
nonnegative. An eigenvector corresponding to the second smallest eigenvalue is
known as a Fiedler vector and can be calculated using power iteration [20] on
the matrix λnI − L(G) or more efficiently using multi-scale methods [13].

296 M. Harrigan and P. Healy A Significant Spanning Tree

3 Choosing a Significant Spanning Tree DAG

Let G = (V,E) be a directed graph. We assume the graph is connected; oth-
erwise we handle each connected component separately. We seek a significant
spanning tree DAG T = (V,ET) of G, i.e. one in which the edges in ET are
deemed more significant than those in E \ET . This can be done using domain-
specific knowledge or any of the numerous methods for measuring significance
(e.g. spanning tree algorithms [22, chap. 2] and structural indices [24]). Re-
cently, [25] combined a number of measures to find a spanning tree or ‘back-
bone’ with a very low average spanner property for the non-tree edges and used
it as input to an undirected tree drawing algorithm. The method we choose in
this paper is to weight each edge (u, v) ∈ E by (~xu − ~xv)2 where ~x is a Fiedler
vector of L(G) and ~xu denotes the entry associated with vertex u. T is then a
minimum weighted spanning tree DAG of G.

Our choice of T is primarily due to the fact that we will be re-using ~x

later. However, we give two reasons to justify T as being a somewhat significant
spanning tree DAG. Firstly, consider the problem of embedding G in the line
so that all edge lengths are kept short. If the location of v ∈ V in the line is ~x′v

then we want to minimize
∑

(u,v)∈E (~x′u − ~x′v)
2 subject to ~x′ ~x′

T
= ~1 (to avoid

the trivial solution of setting ~x′ = ~0). It turns out that a solution is precisely
~x. Secondly, ~xu can be interpreted as a measure of u’s ‘degree-normalized’
eigenvector centrality [2] with ET comprising the edges that propagate most of
this centrality through G. Eigenvector centrality is a measure of the significance
of a vertex in a graph. It assigns relative values to all vertices based on the
principle that incident edges from high-value vertices contribute more to the
value of the vertex in question than incident edges from low-value vertices [24].

However, since the choice of a meaningful spanning tree is crucial, our
method is more suited to graphs whose edges are weighted a priori by domain-
specific knowledge.

4 Ensuring Level Planarity

Level planarity can be tested in O(|V |) time using the PQ-tree data struc-
ture [18, 21] or in O(|V |2) time using the simpler Vertex-Exchange Graph [16,
15]. However, extending either method to ensure level planarity for the special
case of tree DAGs by inserting a small number of dummy vertices is not obvious.

Our algorithm makeTreeDAGLevelPlanar is based on the recursive nature of
a tree DAG. It processes a tree DAG T with leveling φ by recursively decompos-
ing T into smaller tree DAGs with fewer vertices of in-degree greater than one.
It computes a matrix M(T) at each step where each column of M(T) represents
the restrictions imposed on the level planarity of T by each smaller tree DAG.

JGAA, 12(3) 293–317 (2008) 297

Tv

. . .

. . .

r

Figure 2: The base case has exactly one vertex with in-degree greater than one.

4.1 The Base Case

Let T = (V,ET) be a tree DAG with leveling φ and V = {v ∈ V : inDeg(v) > 1}.
We assume |V| > 0 since otherwise T with φ is trivially level planar. In the base
case |V| = 1 and we let this vertex be r. The outgoing and incoming neighbors
of r, N+(r) and N−(r), join r to the roots and vertices of distinct directed
trees respectively (see Fig. 2). We use the notation Tv = (Vv, Ev) to refer to
the maximal subtree that is joined to r through some v ∈ N+(r) ∪ N−(r). To
ensure level planarity, we need only insert dummy vertices along edges joining
N−(r) to r.

We proceed by populating a matrix M(T). For each v ∈ N−(r) we add a
column to M(T) as follows. We visit each vertex v′ along the (undirected) path
from v to the root of its respective tree Tv. If there exists some vertex w that
is a descendant of v′ in Tv such that φ(w) ≥ φ(r) then we set the entry in row
φ(v′) of the new column to φ(w). Otherwise we leave the entry empty. We note
the edge (v, r) that corresponds to each column.

M(T) is a k × |N−(r)| matrix (where k is the number of levels) consisting
of partially populated columns of consecutive non-increasing entries. Entries
containing 0 are considered ‘unpopulated’. The rows with populated entries lie
in the range 1 to φ(r)− 1. Each row represents the restrictions imposed on the
level planarity of T by directed subtrees whose roots lie on the corresponding
level. Each column represents the restrictions imposed on the level planarity
of T by the corresponding Tv. From here on, by referring to, say, the first
entry in a column, we mean the first populated entry. We use first(M(T), j)
and last(M(T), j) to denote the index of the first and last entries in column j
respectively.

In the following lemma we show that if there are at most two entries in any

298 M. Harrigan and P. Healy A Significant Spanning Tree

r

v′1

v2

v′3v′2

Tv1
Tv2

Tv3

j

w1

w2

w3

v1 v3

Figure 3: If row j of M(T) has more than two (populated) entries then T with
leveling φ is not level planar.

one row of M(T), each Tv can ‘hang’ over one side of r.

Lemma 1. If T is a tree DAG with leveling φ and has one vertex of in-degree
greater than one then T is level planar if and only if M(T) has at most two
(populated) entries in any one row.

Proof: Suppose row j of M(T) has three entries. Let {vi} ⊆ N−(r) and
Tvi

= (Vvi
, Evi

), 1 ≤ i ≤ 3, such that Tvi
is a directed tree whose column in

M(T) contains an entry in row j. Let v′i, wi ∈ Vvi
such that φ(v′i) = j and

φ(wi) ≥ φ(r), 1 ≤ i ≤ 3. For any total order <j of the vertices in φ−1(j) there
must be at least one crossing in any level drawing of T (see Fig. 3). However,
the crossings are avoidable if there are at most two populated entries in row j.

�

To insert a dummy vertex along an edge between some v ∈ N−(r) and r

we decrement each entry in the corresponding column, shift the column up one
row (adding extra rows to the top of M(T) if necessary) and repeatedly remove
any last entry in the column whose value is now less than φ(r). We call this
operation shiftUp(M(T), j) where j is the index of the column to shift.

We wish to apply shiftUp(M(T), j) a small number of times so that each row
contains at most two entries. Lemma 1 suggests the following heuristic. Find the
last row with more than two entries. Fix two columns whose last entries occur
the latest (jL and jR). If more than two columns meet this criterion, choose
two of these whose first entries occur the latest. If more than two columns meet
both criteria, then the choice between these columns is arbitrary. Apply shift-

Up(M(T), j) to all other columns that have an entry in this row. Then go to
the previous row and repeat. Once all the rows have been processed then M(T)
is left with at most two (populated) entries in any one row. Therefore inserting
the new dummy vertices into T ensures level planarity. We will address the time
complexity of this process in Sect. 4.4 and provide a complete worked example
in Sect. 4.5. Before proceeding to the recursive case, we briefly consider the
computational complexity of minimizing the number of dummy vertices for the
base case.

JGAA, 12(3) 293–317 (2008) 299

4.1.1 Interpreting the Base Case as a Scheduling Problem

The problem of inserting a small number of dummy vertices to ensure the level
planarity of T for the base case can be interpreted as a simple task scheduling
problem. There are two identical processors, pL and pR, where pL handles the
tasks or columns assigned to jL and likewise with pR and jR. There are at most
|N−(r)| independent tasks. The tasks are released in the (descending) order
specified by last(M(T), j) where j is the index of the corresponding column.
The processing times for each task are the number of entries in the corresponding
column but each task has the added peculiarity that making it wait (i.e. inserting
a dummy vertex) may result in the task becoming temporarily unavailable and
requiring a decreased processing time. Our goal is to minimize the sum of the
waiting times for all available tasks so we are employing a shortest task first
algorithm. This is optimal if the value of each entry is sufficiently large so that
the peculiarity does not arise.

This interpretation shows the difficulty in minimizing the number of dummy
vertices even for the base case. The peculiarity we referred to involves tasks with
time dependent processing times: the length of the task depends on the time
at which it is started. In classical task scheduling theory, task processing times
are constant; however, there is a growing interest in scheduling models with
time-dependent processing times, see, e.g. the survey of [1]. We are particularly
interested in a result of [7]. They prove that minimizing the total length of
a schedule (the ‘makespan’) for a set of tasks on one processor with arbitrary
release times and whose processing times decrease linearly at individual rates
with respect to their starting times is strongly NP-Hard. The problem can be
stated more formally as follows:

Problem 1 (MIN-MAKESPAN). We are given a set of n independent tasks
{Tj}. Each task Tj has a release time rj , an initial processing time αj and a
decreasing processing rate wj . rj , αj and wj are all rational numbers. If a
task Tj is scheduled to start at time sj ≥ rj , then its actual processing time is
αj −wjsj ≥ 0. We wish to find a schedule on one processor that minimizes the
makespan,

∑n

i=1 pi.

[7] proved that:

Theorem 2. [7]
MIN-MAKESPAN is strongly NP-Hard.

We can formally state our problem as:

Problem 3 (MIN-DUMMY-VERTICES). Given a tree DAG T with lev-
eling φ and exactly one vertex of in-degree greater than one, find a minimum
number of dummy vertices to ensure level planarity.

This brings us to our result:

Theorem 4. MIN-DUMMY-VERTICES is NP-Hard.

300 M. Harrigan and P. Healy A Significant Spanning Tree

αj − wjsj

Task Tj

r

T

sj = 3

sj = 2

sj = 1

wj

αj

rj

Figure 4: Every possible start time sj ≥ rj for a task Tj such that the actual
processing time is greater than zero contributes a single directed tree to T .

Proof: We reduce MIN-MAKESPAN to MIN-DUMMY-VERTICES. The
parameters in MIN-MAKESPAN may be rational so we first scale them up
to integers. Then, for each task Tj, we add a group of directed trees to a tree
DAG T . Every possible start time sj ≥ rj such that the actual processing time
αj − wjsj > 0 contributes a single directed tree to this group.

More specifically, we create a tree DAG T with one vertex r of in-degree
greater than one. T has a leveling φ with both macro- and micro-levels. The
macro-levels are numbered 1 to M = maxj{αj − wjrj} + 2. There are µ =
maxj{αj −wjrj} micro-levels in between each pair of consecutive macro-levels.
We refer to a macro-level as being the pth macro-level and to a micro-level as
being the qth micro-level above or below the pth macro-level, ∀1 ≤ q ≤ µ and
1 ≤ p ≤M . We place r on the M − 1th macro-level.

For each task Tj , we add a group of directed trees to T and join each one
to r as follows. We add a directed tree for every possible start time sj ≥ rj

JGAA, 12(3) 293–317 (2008) 301

Directed trees from task T2Directed trees from task T1 Directed tree from task T3

r

TTask T1

Task T2

Task T3

w1 = 2

w2 = 3

α2 = 25

w2 = 5

9

10

α2 = 11

r2 = 1

r2 = 4

1

2

3

4

5

6

8

7

r1 = 1

α1 = 6

Figure 5: The three tasks T1, T2 and T3 contribute three groups of directed
trees to T .

such that the actual processing time αj − wjsj > 0. We place the root of this
directed tree on the M − (αj − wjsj) − sj − 1th macro-level, extend a branch
down to a vertex on the M − sj − 1th macro-level, then extend one branch from
here to join r and another down to a vertex on the (αj − wjsj)th micro-level
below the M − 1th macro-level. Figure 4 exemplifies this process for one task
which results in the addition of three directed trees to T .

We repeat this process for each task. Figure 5 shows three groups of directed
trees representing three tasks; the first having two directed trees, the second
having three and the third having just one.

Finally, when the groups of directed trees for each task have been added, we
add one last directed tree. We place the root of this tree on the 1st macro-level,
extend a branch to a vertex on the M−2th macro-level, then extend one branch
from here to join r and another down to a vertex on the M th macro-level. In
effect, this directed tree keeps one of the two ‘processors’ (sides of r), pL or pR

(jL or jR), occupied throughout. This is required since MIN-MAKESPAN is
formulated in terms of one processor.

Within each group of directed trees for some task Tj , at most one directed
tree can ‘hang’ on the free side of r. All others will be pushed up by the
insertion of dummy vertices. The macro-level of the only degree-3 vertex in
this directed tree, M − sj − 1, determines the scheduled starting time sj of the
task Tj. This directed tree then occupies the free side of r for a number of

302 M. Harrigan and P. Healy A Significant Spanning Tree

macro-levels equivalent to the duration of its processing time, αj − wjsj . If all
the directed trees in the group are pushed up then the task Tj is never started
and its processing time is left decay to zero.

The final uppermost occupied macro-level of T determines the makespan
of the schedule. If we minimize the number of dummy vertices then we are
keeping this level as low as possible. The total number of vertices in T is
bounded by a polynomial in the parameters of MIN-MAKESPAN and, since
MIN-MAKESPAN is strongly NP-Hard, our theorem follows.

�

4.2 The Recursive Case

We now return to the recursive case of algorithm makeTreeDAGLevelPlanar.
If |V| > 1 then we choose some r ∈ V that maximizes φ(r). Note that the
order in which we choose each r can be pre-computed. We proceed as before by
populating a matrix M(T). However, if any Tv is not a directed tree, we need to
recursively ensure its level planarity. Let M(Tv) be the final matrix associated
with Tv. We populate a new column jTv

of the present matrix M(T) in two
steps. Firstly, we visit each vertex v′ along the (undirected) path from v to its
earliest ancestor whose in-degree is anything other than one and set the entries
as in the base case. Secondly, we populate column jTv

of M(T) bottom-up by
setting M(T)i,jTv

to







max(maxRow,maxCol) if M(T)i,jTv
> 0 ∧maxRow > 0

maxCol if M(T)i,jTv
> 0 ∧maxRow = 0

0 if M(T)i,jTv
= 0 ∧maxRow = 0

(2)

where maxRow = maxj M(Tv)i,j and maxCol = maxi′ M(T)i′,jTv
. This new

column can be considered a substitute that is at least as restrictive as Tv on the
level planarity of T .

An additional complication occurs if some Tv smothers r (see Fig. 6 for a
typical example). In this case Tv, whose level planarity we have already ensured,
has three vertices rTv

, wL, wR ∈ Vv such that rTv
has in-degree greater than one,

φ(wL), φ(wR) ≥ φ(r) and the least common ancestors of the pairs wL, rTv
and

rTv
, wR are on the same level. In other words, in any level planar drawing of Tv

the undirected paths from rTv
to wL and from rTv

to wR ‘hang’ on either side
of r.

In terms of M(T), Tv smothers r if M(T) has more than one entry in any
one row whose index is less than φ(rTv

) and whose value is greater than or
equal to φ(r). The solution is much the same as in the base case where we were
required to shift the columns so that each row was left with at most two entries.
We start with the last row with more than one entry whose index is less than
φ(rTv

) and whose value is greater than or equal to φ(r). Using the same criteria
as before, we fix one column (jF) and apply shiftUp(M(Tv), j) to the others.

JGAA, 12(3) 293–317 (2008) 303

r

Tv

wL wR

rTv

T

Figure 6: Tv is smothering r.

Then go to the previous row and repeat.

Algorithm 1: makeTreeDAGLevelPlanar

Input: T = (V,ET), φ
Output: M(T)
M(T)← empty;1

col ← 1;2

Choose r ∈ {v ∈ V : inDeg(v) > 1} that maximizes φ(r);3

foreach v ∈ N−(r) do4

while v 6= empty do5

entry ← φ(v) + height(the tree in Tv rooted at v);6

if entry ≥ φ(r) then7

M(T)φ(v),col ← entry;8

v ← parent(v); /* empty if inDeg(v) 6= 1 */9

if Tv is not a directed tree then10

M(Tv)← makeTreeDAGLevelPlanar(Tv, φ);11

Use shortest task first heuristic when applying shiftUp(M(Tv), j)12

to leave at most one (populated) entry in certain rows of M(Tv)
(see Sect. 4.2);

Combine M(Tv) into column col of M(T);13

col ← col + 1;14

Use shortest task first heuristic when applying shiftUp(M(T), j) to leave15

at most two (populated) entries in any one row of M(T) (see Sect. 4.1);
return M(T);16

304 M. Harrigan and P. Healy A Significant Spanning Tree

(a) (c) (d)(b)

Figure 7: The four MLNP tree patterns: (a) P1 (b) P2 (c) P3 (d) P4.

4.3 Proof of Correctness

In this section we prove the correctness of our algorithm, makeTreeDAGLevel-
Planar. Before this we introduce the concept of level non-planar patterns.

A pattern is a set of graphs that are homeomorphically equivalent. Any
graph matching a level non-planar pattern (LNP) is itself level non-planar. Re-
moving any edge from a graph that matches a minimum level non-planar pattern
(MLNP) results in a graph that is level planar. [8] provided three MLNPs for
hierarchies and proved their necessity and sufficiency. [17] refined these to cover
all leveled graphs but their characterization was shown to be incomplete. [12]
have completed the characterization for leveled trees. The four MLNP patterns
for trees, P1, P2, P3 and P4, which are formally described in the work of [12]
are shown in Fig. 7. A tree T with leveling φ is level non-planar if and only if T
has a subtree matching one of the MLNPs P1, P2, P3, or P4. We use this result
as the basis for our proof of correctness.

Theorem 5. Given a tree DAG T with leveling φ, the algorithm
makeTreeDAGLevelPlanar(T, φ) inserts dummy vertices to ensure level pla-
narity.

Proof: We show that every subtree of T matching one of the MLNPs P1, P2,
P3, or P4 will have dummy vertices inserted so that it no longers matches any
MLNP. P1 has three vertices of in-degree greater than one. makeTreeDAGLevel-
Planar will recurse to the tree dag whose root has the lowest φ(r). This tree
dag is level planar and will be combined into a single column and added to
the tree dag whose root has the next lowest φ(r). This causes smothering and
requires the insertion of dummy vertices (see Fig. 8(a)) to ensure level planarity.
Finally, this will be combined into a single column and added to the tree dag
whose root has the next lowest φ(r). We have now traversed the entire pattern
P1 but the insertion of the dummy vertices has made it level planar. Analogous
arguments handle subtrees of T that match P2, P3, or P4 (see Fig. 8(b) - (d)).

�

JGAA, 12(3) 293–317 (2008) 305

(d)(b)(a) (c)

Figure 8: The four MLNP tree patterns with dummy vertices inserted: (a) P1

(b) P2 (c) P3 (d) P4.

4.4 Implementation

By storing M(T) in sparse form, makeTreeDAGLevelPlanar can be modified to
run in O(|V |) time. For each column, we list an edge identifier, an offset, the
index of the first row where the column has a populated entry, the number of
pairs of entries and the entries themselves (see Fig. 9). The edge identifier is
the edge into which we insert dummy vertices when applying shiftUp(M(T), j).
The offset is used by shiftUp(M(T), j) to update all entries in the column in
constant time. When a column is shifted up the offset is first decremented. The
entries are encoded as pairs of values where the first is the number of times the
second value appears consecutively, e.g. the entries 8, 7, 7, 5, 5 are encoded as
1, 8, 2, 7, 2, 5. If a column with those values is shifted up for the first time we
set its offset to −1 and, if the second value in the last pair plus the offset is less
than φ(r), we remove the last pair from the entries and decrement the number
of distinct entries. The sparse form allows the first(M(T), j), last(M(T), j)
and shiftUp(M(T), j) operations to be performed in O(1) time.

The shortest task first heuristics (Lines 12 and 15 of Algorithm 1) can easily
be implemented using two nested for loops. However, we need only visit the
populated entries in each matrix. Using the sparse form of M(T) in Line 12

we can sort the columns in descending order by last(M(Tv), j) using bucket
sort (since the range of values is the range of levels occupied by the graph
and must be less than or equal to the number of vertices) and then process each
bucket from left to right as follows. Choose one of the columns with the greatest
first(M(Tv), j) to be jF, apply shiftUp(M(Tv), j) to the other columns and
add them to the next bucket. A similar approach can be used in Line 15.

4.5 A Worked Example

In this section we illustrate the workings of makeTreeDAGLevelPlanar with an
example. Consider the tree DAG T in Fig. 10. It has two vertices of in-degree
greater than one, namely r1 and r2. The algorithm visits r1 but finds that one
of its neighbors in N−(r1) is a tree DAG and needs to recursively ensure its level
planarity first. After traversing the (undirected) paths from each v ∈ N−(r2)

306 M. Harrigan and P. Healy A Significant Spanning Tree

(u, v)

1 2

4

3

2

1

5

M(T)

Column indices

first index

the number of ‘pairs’ of entries

offset

edge identifier

1 2

(w, x) 0

0

3

2

1

4

Figure 9: M(T) can be stored in a sparse form.

to the roots of their respective trees, we get a matrix for the sub-tree DAG T ′

(the graph induced by the shaded vertices in Fig. 10):

M(T ′) =





















(v1, r2) (v2, r2) (v3, r2) (v4, r2)

1 6

2 6 6 7

3 7 5

4 7

5
...

...
...

...





















.

By Lemma 1, T ′ is not level planar. We fix the second and third columns
and perform shiftUp(M(T ′), 4) to get the following matrix:

M(T ′) =





















(v1, r2) (v2, r2) (v3, r2) (v4, r2)

1 6 6

2 6 6

3 7 5

4 7

5
...

...
...

...





















.

JGAA, 12(3) 293–317 (2008) 307

v4

1

5

9

7

6

r1

r2

4

10

8

T

3

v1 v2 v3

2

Figure 10: T has two vertices with in-degree greater than one, namely r1 and
r2. We focus on the shaded sub-tree DAG rooted at r1 first.

308 M. Harrigan and P. Healy A Significant Spanning Tree

4

1

5

9

7

6

3

10

8

T

r2

r1

v1 v2 v3

2

Figure 11: We focus on the entire tree DAG rooted at r2.

JGAA, 12(3) 293–317 (2008) 309

This equates to inserting a dummy vertex along the edge (v4, r2). T
′ is now

level planar and we can turn to the level planarity of the entire tree T (see
Fig. 11). After traversing the (undirected) paths from each v ∈ N−(r1) to the
roots of their respective trees and combining M(T ′) into the first column using
Eqn. 2, we get a matrix for T :

M(T) =

























(v1, r1) (v2, r1) (v3, r1)

1 9

2 9

3 9

4 9

5 9 8 9

6 8
...

...
...

























.

By Lemma 1, T is not level planar. We fix the second and third columns
and perform shiftUp(M(T), 1) to get the following matrix:

M(T) =































(v1, r1) (v2, r1) (v3, r1)

0 8

1 8

2 8

3 8

4 8

5 8 9

6 8
...

...
...































.

This equates to inserting a dummy vertex along the edge (v1, r1). T is now
level planar and we are done.

4.6 Violating the Leveling

While ensuring the level planarity of T , we may be violating the leveling with
respect to G (see the edge (u, v) in Fig. 1(b)). These upwardly directed edges
can be deceptive when trying to understand the graph visually. However, we
can insert compensating dummy vertices whenever the leveling with respect to
G is violated.

We previously defined a leveling of G to be a surjective mapping φ : V →
{1, 2, . . . , k} where φ(v) specifies the level of each vertex v and, implicitly, the
number of dummy vertices along each edge to make it proper. Alternatively, we
can define a leveling of G to be a mapping ψ : E → ZZ+ where ψ(e) specifies the
number of dummy vertices along each edge e to make it proper and, implicitly,
the level of each vertex.

310 M. Harrigan and P. Healy A Significant Spanning Tree

1

e6

e2
e7

e8e4

e9 e12

e10

e11

e17e14

e15 e18

e3

e5

e1

e13 e16

4

3

2

5

G

Figure 12: Every edge in E \ ET (the dashed edges) completes a fundamental
cycle.

At the same time, every edge in E\ET completes an (undirected) fundamen-
tal cycle C in T (see Fig. 12). By traversing each C in some arbitrary direction,
we get the cycle vector χ(C) (with coordinates χ(C)e, ∀e ∈ E) defined by

χ (C)e =







1 if e is directed with the traversal of C,
−1 if e is directed against the traversal of C,

0 if e is not in C.
(3)

We say that a cycle is balanced if
∑

χ(C) = 0. The set of vectors corre-
sponding to a set of fundamental cycles C constitute a basis for the cycle vector
space of G.

Now, suppose we partition the edge set E =
⋃

S = s1 ∪ . . . ∪ st such that
each subset sj , 1 ≤ j ≤ t, is the maximal set of edges shared between the same
subset of cycles in C (see Fig. 13). In other words, two edges belong to the same
subset if they are both bridges or both belong to the same S-vertex of an SPQR-
tree [9] of the same biconnected component of the underlying undirected graph
of G. Then, if ψ is some leveling of G, any dummy vertex along an edge e ∈ sj ,
1 ≤ j ≤ t, can be moved to any other similarly directed edge (with respect
to any cycle) in sj . In fact, we can specify an equivalence class of levelings
of G using two mappings ψ+ : S → ZZ+ and ψ− : S → ZZ+ where ψ+ and ψ−

specify the number of dummy vertices along the edges in either direction in each
subset sj . To make sure that the directions are consistent, we use a fundamental
cycle-edge subset incidence matrix F defined by

FC,s =























1 if the directions of the edges in s
are consistent with the traversal of C,

−1 if the directions of the edges in s
are inconsistent with the traversal of C,

0 if s is not in C.

(4)

JGAA, 12(3) 293–317 (2008) 311

s6

e5

e6

e7

e1

e4

e3
e8

e9

e2

e17

e15 e18

e16

e11

e12

e14

e10
e13

s8 s2

s3

s9 s1s7

s5 s4 s10

Figure 13: The partitioning of the edge set in Fig. 12.

For example, a fundamental cycle-edge subset incidence matrix for the DAG
in Fig. 12 is

F =















s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

C1 0 1 0 0 0 0 1 0 0 0

C2 0 −1 0 0 0 0 0 1 1 0

C3 1 0 0 1 1 0 0 0 0 0

C4 0 −1 1 1 0 1 0 1 0 0

C5 0 −1 1 1 1 0 0 1 0 1















.

We define the vectors ~w (with coordinates ~ws, ∀s ∈ S, in the order of the

columns of F) by ~ws = ψ+(s) − ψ−(s) and ~b (with coordinates ~bC , ∀C ∈ C, in

the order of the rows of F) by ~bC =
∑

χ(C). Now, if ψ+ and ψ− specify a
leveling of G then

F ~w = ~b, (5)

i.e. the dummy vertices balance the fundamental cycles. This formulation has
been used by [14] to find a leveling of a DAG G with the minimum number of
dummy vertices.

So if we start with an initial leveling of G and add dummy vertices to ensure
level planarity with respect to T , we can prevent any violation of the leveling
by examining the null-space of F . For example, if the edge e13 in s5 needs an
additional dummy vertex, this can be compensated by adding a dummy vertex
to e11 in s1 and a dummy vertex to one of e16, e17 or e18 in s10 since the columns
corresponding to s1, s5 and s10 in F are linearly dependent.

312 M. Harrigan and P. Healy A Significant Spanning Tree

5 Crossing Minimization

An embedding algorithm is implied by makeTreeDAGLevelPlanar. Fixing columns
(jL, jR and jF) determines the relative order of their corresponding vertices on
their respective levels. However, we have some freedom when positioning the re-
maining vertices. We use this freedom to minimize the number of edge crossings
involving edges that are not part of the significant spanning tree ET .

We use an order induced by a Fiedler vector ~x of L(G): if the relative
order of two vertices u, v on the same level has not been decided and ~xu <

~xv then we set u to the left of v. This heuristic has previously been used
to determine exact x-coordinates when drawing a directed graph [6] and for
the 2-level crossing minimization problem [28]. It is based on a result of [30]
that shows a strong relation between the minimum linear arrangement (MLA)
problem of a bipartite graph, the bipartite crossing number and an algorithm for
finding an approximate solution to the MLA problem [23]: Given an undirected
graph G = (V,E), the MLA problem is to determine a bijection f : V →
{1 . . . |V |} such that

∑

(u,v)∈E |f(u)− f(v)| is minimized. [23] use a Fiedler

vector ~x of L(G) to induce an order (if ~xu < ~xv then f(u) < f(v)) which is
unique up to the relative order of repeated eigenvector elements. [30] show that
in most cases, if we have an approximate solution to the MLA problem for a
bipartite graph G = (V1 ∪ V2, E), we can place the vertices of V1 and V2 on
two levels in the order obtained from f to obtain a good approximation for the
2-level crossing minimization problem. Empirical evidence [28] suggests that
this heuristic efficiently provides good solutions for the 2-level case and [6] have
used it with much success over an arbitrary number of levels. It is worth noting
that this order is determined globally, i.e. for all vertices on all levels at the
same time.

6 Bringing It All Together

We now outline how the approach from the preceding sections can be used to
draw an entire directed graph. The dependency relationship between packages
in large software systems tend to have a specific structure. Packages depend
on base packages with common functionality that is shared with many other
packages and on certain application-specific packages. Supposing this graph has
a significant spanning tree, e.g. the tree that propagates the most centrality, we
can draw it so that this spanning tree is emphasized.

Figure 14 depicts the largest connected component of the dependency graph
for packages of the Python programming language1 after removing any redun-
dant dependencies by computing its transitive reduction. The significant span-
ning tree (solid edges) was computed as in Sect. 3 and the orders of the ver-
tices on each level were determined by the embedding algorithm implied by
makeTreeDAGLevelPlanar along with the crossing minimization heuristic. The
computation of the final x-coordinates was based on the work of [4] and the

1http://www.python.org/

JGAA, 12(3) 293–317 (2008) 313

python-

gnome-
python-
desktop

gnome-
python-
extras

pygtkglext rtgraph
python-
gtkextra

gst-
python

gnome-
python

orbit-
python

pygtk

pycrypto pythoncard

Package A

Package B

depends on

fxpy

pyopengl soya reportlab

imagingeditobjpyopenalmantissaladaptor
twisted-
words

epydoc
twisted-
mail pyparsing nevow pyvorbis

pyoggormsqlobjectdjangoadodb-pyaxiomvertexdocutils
twisted-
snmp

twisted-
namespair

twisted-twisted-
lore

twisted-
news

twisted-
web2

twisted-
flow

twisted-
runner

twisted-
conch

twisted-
xishtestoob

twisted pysnmp epsilon pysqlite mysql-python formencode psycopg kinterbasdb

egenix-mx-basesetuptoolspyopensslpyserialtwibber4suite

pyxml pygoogle medusa cheetah

soappy

fpconst

lxml pyode

pyrex

wxpythonpytablesvisual

gmpym2crypto

PyQt

pykde pyqwt fonttools scientificpython pygame

pytz tlslite winpdb

sip

pyclimatettfquery drpython pycairo

pyorbit

dateutil

pyprotocols

cgkit

bonobo-
python

cryptlib py

paramikonumpy

simpleparse

matplot lib

numeric numarray

twisted-
web

twisted-
docspyds

Figure 14: The dependency graph for Python packages.

less significant edges (dashed edges) were added in by hand. The technique of
Sect. 4.6 has not been applied.

7 Conclusion

We have presented a method of drawing a directed graph that emphasizes a
significant spanning tree. The spanning tree is a tree DAG with multiple sources
and so it is more appropriate to give each of these vertices root status than to
nominate any single vertex and hang the subtrees from it. We ensure the level
planarity of the spanning tree by inserting dummy vertices and restrict the
possible level embeddings so that no two significant edges cross. These steps
can be performed in linear time using a sparse form of matrix storage. We
also show that finding a minimum number of dummy vertices to ensure level
planarity even when the tree DAG has exactly one vertex of in-degree greater
than one is NP-Hard.

The remaining freedom in the order of the vertices on their respective levels

314 M. Harrigan and P. Healy A Significant Spanning Tree

is used to reduce the number of edge crossings between the remaining edges. We
avoid the level-by-level sweep found in most implementations of the Sugiyama
framework by using a globally oriented Fiedler vector as a multi-level crossing
minimization heuristic. Upwardly directed edges in the final drawing can be
fixed using compensating dummy vertices, provided the edges are not part of a
directed cycle.

8 Acknowledgments

The authors are grateful to the referees for their helpful comments.

JGAA, 12(3) 293–317 (2008) 315

References

[1] B. Alidaee and N. Womer. Scheduling with Time Dependent Processing
Times: Review and Extensions. Journal of the Operational Research Soci-
ety, 50(7):711–720, 1999.

[2] P. Bonacich. Factoring and Weighting Approaches to Status Scores and
Clique Identification. Journal of Mathematical Sociology, 2:113–120, 1972.

[3] R. Botafogo, E. Rivlin, and B. Schneiderman. Structural Analysis of Hy-
pertexts: Identifying Hierarchies and Useful Metrics. ACM Transactions
on Information Systems, 10(2):142–180, 1992.

[4] U. Brandes and B. Köpf. Fast and Simple Horizontal Coordinate Assign-
ment. In P. Mutzel, M. Jünger, and S. Leipert, editors, Proceedings of
the 9th International Symposium on Graph Drawing (GD’01), pages 31–44.
Springer, 2002.

[5] C. Buchheim, M. Jünger, and S. Leipert. Drawing Rooted Trees in Linear
Time. Software – Practice and Experience, 36(6):651–665, 2006.

[6] L. Carmel, D. Harel, and Y. Koren. Combining Hierarchy and Energy
for Drawing Directed Graphs. IEEE Transactions on Visualization and
Computer Graphics, 10(1):46–57, 2004.

[7] T. Cheng and Q. Ding. The Complexity of Scheduling Starting Time
Dependent Tasks with Release Times. Information Processings Letters,
65(2):75–79, 1998.

[8] G. Di Battista and E. Nardelli. Hierarchies and Planarity Theory. IEEE
Transactions on Systems, Man and Cybernetics, 18(6):1035–1046, 1988.

[9] G. Di Battista and R. Tamassia. On-Line Maintenance of Triconnected
Components with SPQR-Trees. Algorithmica, 15(4):302–318, 1996.

[10] P. Eades and S. Whitesides. Drawing Graphs in Two Layers. Theoretical
Computer Science, 131(2):361–374, 1994.

[11] P. Eades and N. Wormald. Edge Crossings in Drawings of Bipartite Graphs.
Algorithmica, 11(4):379–403, 1994.

[12] J. Fowler and S. Kobourov. Minimum Level Nonplanar Patterns for Trees.
In S. Hong, T. Nishizeki, and W. Quan, editors, Proceedings of the 15th

International Symposium on Graph Drawing (GD’07) (to appear). Springer,
2008.

[13] D. Harel and Y. Koren. A Fast Multi-Scale Method for Drawing Large
Graphs. Journal of Graph Algorithms and Applications, 6(3):179–202, 2002.

316 M. Harrigan and P. Healy A Significant Spanning Tree

[14] M. Harrigan and P. Healy. On Layering Directed Acyclic Graphs. In
M. Jünger, S. Kobourov, and P. Mutzel, editors, Graph Drawing, volume
05191 of Dagstuhl Seminar Proceedings, Germany, 2005.

[15] M. Harrigan and P. Healy. Practical Level Planarity Testing and Layout
with Embedding Constraints. In S. Hong, T. Nishizeki, and W. Quan,
editors, Proceedings of the 15th International Symposium on Graph Drawing
(GD’07) (to appear). Springer, 2008.

[16] P. Healy and A. Kuusik. Algorithms for Multi-Level Graph Planarity Test-
ing and Layout. Theoretical Computer Science, 320(2–3):331–344, 2004.

[17] P. Healy, A. Kuusik, and S. Leipert. A Characterization of Level Planar
Graphs. Discrete Mathematics, 280(1-3):51–63, 2004.

[18] L. Heath and S. Pemmaraju. Stack and Queue Layouts of Directed Acyclic
Graphs: Part II. SIAM Journal on Computing, 28(5):1588–1626, 1999.

[19] I. Herman, G. Melançon, and M. Marshall. Graph Visualization and Nav-
igation in Information Visualization: A Survey. IEEE Transactions on
Visualization and Computer Graphics, 6(1):24–43, 2000.

[20] H. Hotelling. Analysis of a Complex of Statistical Variables into Principal
Components. Journal of Educational Psychology, 24:417–441, 1933.

[21] M. Jünger, S. Leipert, and P. Mutzel. Level Planarity Testing in Linear
Time. In S. Whitesides, editor, Proceedings of the 6th International Sym-
posium on Graph Drawing (GD’98), pages 224–237. Springer, 1999.

[22] D. Jungnickel. Graphs, Networks and Algorithms. Algorithms and Com-
putation in Mathematics. Springer, 2nd edition, 1999.

[23] M. Juvan and B. Mohar. Optimal Linear Labelings and Eigenvalues of
Graphs. Discrete Applied Mathematics, 36(2):153–168, 1992.

[24] D. Koschützki, K. Lehmann, L. Peeters, S. Richter, D. Tenfelde-Podehl,
and O. Zlotowski. Centrality Indices. In U. Brandes and T. Erlebach,
editors, Network Analysis, pages 16–61. Springer, 2005.

[25] K. Lehmann and S. Kottler. Visualizing Large and Clustered Networks. In
M. Kaufmann and D. Wagner, editors, Proceedings of the 14th International
Symposium on Graph Drawing (GD’06), pages 240–251. Springer, 2007.

[26] T. Munzner. H3: Laying Out Large Directed Graphs in 3D. In Proceedings
of the IEEE Symposium on Information Visualization (InfoVis’97), pages
2–10. IEEE Computer Society, 1997.

[27] T. Munzner. Drawing Large Graphs with H3Viewer and Site Manager. In
S. Whitesides, editor, Proceedings of the 6th International Symposium on
Graph Drawing (GD’98), pages 384–393. Springer, 1998.

JGAA, 12(3) 293–317 (2008) 317

[28] M. Newton, O. Sýkora, and I. Vrto. Two New Heuristics for Two-Sided
Bipartite Graph Drawing. In S. Kobourov and M. Goodrich, editors, Pro-
ceedings of the 10th International Symposium on Graph Drawing (GD’02),
pages 312–319. Springer, 2003.

[29] E. Reingold and J. Tilford. Tidier Drawings of Trees. IEEE Transactions
on Software Engineering, 7(2):223–228, 1981.

[30] F. Shahrokhi, O. Sýkora, L. Székely, and I. Vřto. On Bipartite Draw-
ings and the Linear Arrangement Problem. SIAM Journal on Computing,
30(6):1773–1789, 2001.

[31] K. Sugiyama, S. Tagawa, and M. Toda. Methods for Visual Understand-
ing of Hierarchical Systems. IEEE Transactions on Systems, Man, and
Cybernetics, 11(2):109–125, 1981.

[32] J. Walker. A Node-Positioning Algorithm for General Trees. Software –
Practice and Experience, 20(7):685–705, 1990.

[33] G. Wills. NicheWorks – Interactive Visualization of Very Large Graphs.
Journal of Computational and Graphical Statistics, 8(2):190–212, 1999.

	 Introduction
	 Preliminaries
	 Choosing a Significant Spanning Tree DAG
	 Ensuring Level Planarity
	 The Base Case
	 Interpreting the Base Case as a Scheduling Problem

	 The Recursive Case
	 Proof of Correctness
	 Implementation
	 A Worked Example
	 Violating the Leveling

	 Crossing Minimization
	 Bringing It All Together
	 Conclusion
	 Acknowledgments

