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C-Planarity of C-Connected Clustered Graphs
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Abstract

We present the first characterization of c-planarity for c-connected
clustered graphs. The characterization is based on the interplay between
the hierarchy of the clusters and the hierarchies of the triconnected and
biconnected components of the underlying graph. Based on such a char-
acterization, we provide a linear-time c-planarity testing and embedding
algorithm for c-connected clustered graphs. The algorithm is reasonably
easy to implement, since it exploits as building blocks simple algorith-
mic tools like the computation of lowest common ancestors, minimum
and maximum spanning trees, and counting sorts. It also makes use of
well-known data structures as SPQR-trees and BC-trees. If the test fails,
the algorithm identifies a structural element responsible for the non-c-
planarity of the input clustered graph.
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1 Introduction

In most networks it is possible to find semantic relationships among compo-
nents that allow to group them into clusters. For example, in a social network
representing employees of a company and their work relationships it could be
desirable to group the people of each department together. As another exam-
ple, the routers of the Internet are often grouped into areas, that in turn can be
grouped into Autonomous Systems.

When representing a network containing clusters, it is quite common to
draw the elements of each cluster inside the same region of the plane. Also,
disjoint clusters typically lie into disjoint regions. The clustered planarity field
studies the interplay between the classical planarity of graphs and the presence of
clusters. For its practical interest and because of its theoretical appeal, clustered
planarity is attracting increasing attention (see, e.g., [17, 10, 15, 16, 11, 3]).

More formally, a clustered graph C(G, T ) consists of a graph G and of a
rooted tree T such that the leaves of T are the vertices of G (see Fig. 1.a
and 1.b). Each internal node ν of T corresponds to the subset V (ν) of the
vertices of G (called cluster) that are the leaves of the subtree rooted at ν.
Each non-leaf node of T has at least two children. The subgraph of G induced
by V (ν) is denoted as G(ν). An edge e between a vertex of V (ν) and a vertex of
V −V (ν) is said to be incident on ν. Graph G and tree T are called underlying
graph and inclusion tree, respectively. A clustered graph is c-connected if for
each node ν of T we have that G(ν) is connected (e.g., the clustered graph in
Fig. 1.a and 1.b is c-connected).

In a drawing of a clustered graph C(G, T ) vertices and edges of G are drawn
as points and curves [12], and each node ν of T is a simple closed region R(ν)
such that:

• R(ν) contains the drawing of G(ν);

• R(ν) contains a region R(µ) if and only if µ is a descendant of ν in T ; and

• any two regions R(ν1) and R(ν2) do not intersect if ν1 is not an ancestor
or a descendant of ν2.

See Fig. 1.a for an example of a drawing of a clustered graph. Consider an edge
e and a node ν of T . If e crosses the boundary of R(ν) more than once, we
say that edge e and region R(ν) have an edge-region crossing. A drawing of
a clustered graph is c-planar if it does not have edge crossings or edge-region
crossings. A clustered graph is c-planar if it admits a c-planar drawing (e.g.,
the clustered graph in Fig. 1.a and 1.b is c-planar).

The problem of characterizing the c-planar clustered graphs has been tack-
led from many points of view and from many authors. Namely, Feng, Cohen,
and Eades [20] have shown that a clustered graph C(G, T ) is c-planar iff G has
a planar embedding such that for each node ν of T all the vertices and edges
of G−G(ν) are on the external face of the embedding of G(ν). However, such
a characterization is more a characterization of the c-planarity of the embed-
dings rather than a structural characterization of the c-planarity of the graphs.
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Figure 1: (a) A drawing of a clustered graph C(G, T ). The underlying graph G
of C is drawn with thick lines. (b) The inclusion tree T of C. (c) The SPQR-
tree of G. The boxes contain the skeletons of selected nodes. The triple on each
virtual edge represents lcc(e), lsc(e), and hsc(e), respectively. The faces of the
skeletons are labelled with their lcc.
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Another characterization of the c-planar embeddings, based on the connectiv-
ity properties of their dual graphs, is due to Dahlhaus [9]. A further elegant
characterization has been given by Cornelsen and Wagner [5] for a subclass of
clustered graphs. Namely, a completely connected clustered graph is c-planar
iff its underlying graph is planar, where completely connected means that for
each node ν of T , G(ν) and G − G(ν) are connected (e.g., the clustered graph
in Fig. 1.a and 1.b is not completely connected).

Testing a clustered graph for c-planarity is a problem of unknown time com-
plexity in the general case [6]. There are several families of non-c-connected
clustered graphs for which the c-planarity testing problem has been shown to
be polynomial-time solvable.

• The results [2, 1] by Biedl, Kaufmann, and Mutzel on “partitioned draw-
ings” of graphs can be interpreted as linear-time c-planarity tests for non-
connected “flat” clustered graphs with exactly two clusters. A clustered
graph C(G, T ) is flat if all the leaves of T have distance two from the root.

• Gutwenger et al. presented a polynomial-time algorithm for c-planarity
testing for almost connected clustered graphs [22], i.e., graphs for which
all nodes corresponding to the non-connected clusters lie on the same path
in T starting at the root of T , or graphs in which for each non-connected
cluster its parent cluster and all its siblings in T are connected.

• Cortese et al. studied the class of non-connected clustered graphs such
that the underlying graph is a cycle and the clusters at the same level of
T also form a cycle, where two clusters are considered adjacent if they
are incident to the same edge [7]. The c-planarity testing and embedding
problem is linear for this class of graphs.

• Goodrich et al. introduced a polynomial-time algorithm for producing pla-
nar drawings of extrovert clustered graphs [21], i.e., graphs for which all
clusters are connected or extrovert. A cluster µ with parent ν is extrovert
if and only if ν is connected and each connected component of µ has a
vertex with an edge that is incident to a cluster which is external to ν.

• Cortese et al. showed that the c-planarity testing and embedding problem
is polynomial-time solvable for rigid clustered cycles, that is, for flat clus-
tered graphs where the underlying graph is a cycle and the graph of the
clusters’ adjacencies is planar and has a fixed embedding [8].

• Jeĺınková et al. presented a polynomial-time algorithm for testing the c-
planarity of “k-rib-Eulerian” graphs [24]. A graph is k-rib-Eulerian if it
is Eulerian and it can be obtained from a 3-connected planar graph with
k vertices, for some constant k, by replacing some edges with one or more
paths in parallel.

• Di Battista and Frati showed how to test in linear time the c-planarity of
embedded flat clustered graphs with at most five vertices per face [13].
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Concerning c-connected clustered graphs, there exist three polynomial-time
algorithms, discussed below, to test their c-planarity.

• Feng, Cohen, and Eades presented in [20, 19] a quadratic-time algorithm.
Their algorithm visits the inclusion tree of the clusters bottom-up, start-
ing from the leaves. The subgraph induced by each cluster is tested for
planarity with the constraint that the vertices adjacent to other clusters
must be incident to the external face. If the test is positive the cluster
is replaced in its parent by a “gadget” representing all its possible em-
beddings. All such planarity tests are performed using PQ-trees, whose
structure is similar to the one of the adopted gadgets.

• Lengauer [25] found a result analogous to the one in [20, 19], but in a
different context. Namely, in that case the clustered graph is specified
in terms of a set of graph patterns and in terms of their composition.
The time complexity of the algorithm is linear in the size of the input.
However, the input size of Lengauer’s algorithm can be quadratic in the
size of the represented clustered graph.

• Dahlhaus [9] proposed a linear-time algorithm based on the following main
ingredients: a decomposition of G into its biconnected and triconnected
components, a weight of each cluster proportional to its size, and the
above mentioned characterization of c-planar embeddings. The testing
algorithm is based on the incremental construction of a certain planar
embedding and on a final test that checks whether this embedding is c-
planar. The work in [9] contains many interesting ideas and profound
intuitions. However, it has also some weak points: it is hard to find in
the paper a complete algorithmic description, there is no complete proof
of correctness, and it is not clear how to perform in linear time some of
the algorithmic steps.

In this paper we present the first (as far as we know) structural character-
ization of c-planarity for c-connected clustered graphs whose underlying graph
is biconnected. The characterization is based on the interplay between the hi-
erarchy of the clusters and the hierarchy of the triconnected components of the
underlying graph G. It is given in terms of properties of the skeletons of the
nodes of the SPQR-tree of G. Notice that in at least two other papers [9, 25] the
relationship between triconnectivity and c-planarity has already been studied.
We also easily extend the characterization to general clustered graphs exploiting
the decomposition of G into its biconnected components.

Further, based on our c-planarity characterization, we present a new linear-
time c-planarity testing and embedding algorithm for c-connected clustered
graphs. Such an algorithm is reasonably easy to implement, since it is based
on simple algorithmic tools as the computation of lowest common ancestors,
minimum and maximum spanning trees, and counting sorts. It also makes use
of well-established data structures as SPQR-trees and BC-trees [14, 23] (both in
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their simple static version). If the test fails, our algorithm identifies a structural
element responsible for the non-c-planarity of the input clustered graph.

The paper is organized as follows. In Section 2 we give basic definitions.
In Section 3 we present the characterization for c-connected clustered graphs
whose underlying graph is biconnected. Section 4 extends the characterization
to c-connected clustered graphs whose underlying graph is simply connected.
In Section 5 we describe a linear-time algorithm for testing the c-planarity of
c-connected clustered graphs whose underlying graph is biconnected, and in Sec-
tion 6 we extend such an algorithm to handle clustered graphs whose underlying
graph is simply connected. Finally, in Section 7, we compare our results with
previous ones. Section 8 contains our conclusions.

2 Background

We assume familiarity with planarity and connectivity of graphs [18]. We also
assume some familiarity with graph drawing [12].

A drawing D of a graph G(V,E) is a mapping of each vertex v ∈ V to a
distinct point D(v) of the plane and of each edge (u, v) ∈ E to a Jordan curve
joining points D(u) and D(v). Given a drawing D of a graph G, two edges
intersect if they share a point which is not a common end-vertex. A drawing
with no intersection is planar and a graph is planar if it admits a planar drawing.
A planar drawing partitions the plane into topologically connected regions called
faces. The unbounded face is called the external face. Let G be a planar graph.
An embedded planar graph GΓ is an equivalence class of planar drawings of G
with the same circular ordering for the adjacency lists of the vertices and with
the same external face. Such a choice Γ of a circular ordering of the adjacency
lists and of the external face is called planar embedding of G.

A graph G(V,E) is connected if every pair of vertices of G is connected by
a path. A separating k-set of a graph G is a set of k vertices whose removal
increases the number of connected components of G. Separating 1-sets and
2-sets are called cutvertices and separation pairs, respectively. A connected
graph is said to be biconnected if it has no cutvertex. The maximal biconnected
subgraphs of a graph are its blocks. Observe that each edge of G falls into a
single block of G, while cutvertices are shared by different blocks. The block
cutvertex tree, or BC-tree, of a connected graph G has a B-node for each block
of G and a C-node for each cutvertex of G. Edges in the BC-tree connect
each B-node µ to the C-nodes associated with the cutvertices in the block of µ.
The BC-tree of G may be thought as rooted at a specific block ν. Consider a
cutvertex v of a BC-tree rooted at ν. The graph obtained by merging the blocks
of which v is an ancestor is called the pertinent graph of v, and is denoted by
pertinent(v).

A split pair {u, v} of a graph G is either a separation pair or a pair of
adjacent vertices. A maximal split component of G with respect to a split pair
{u, v} (or, simpler, a maximal split component of {u, v}) is either an edge (u, v)
or a maximal subgraph G′ of G such that G′ contains u and v and {u, v} is
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not a split pair of G′. A vertex w distinct from u and v belongs to exactly
one maximal split component of {u, v}. We call the split component of {u, v}
a subgraph of G that is the union of any number of maximal split components
of {u, v}.

In the following, we summarize SPQR-trees. For more details, see [14].
SPQR-trees are closely related to the classical decomposition of biconnected
graphs into triconnected components. Let {s, t} be a split pair of G. A maximal
split pair {u, v} of G with respect to {s, t} is a split pair of G distinct from {s, t}
such that, for any other split pair {u′, v′} of G, there exists a split component of
{u′, v′} containing vertices u, v, s, and t. Let e = (s, t) be an edge of G, called
reference edge. The SPQR-tree T of G with respect to e describes a recursive
decomposition of G induced by its split pairs. Tree T is a rooted ordered tree
whose nodes are of four types: S, P, Q, and R. Denote by G′ the st-biconnectible
graph obtained from G by removing e. Each node µ of T has an associated st-
biconnectible multigraph, called the skeleton of µ and denoted by skeleton(µ).
Also, it is associated with an edge of the skeleton of the parent ν of µ, called
the virtual edge of µ in skeleton(ν). Tree T is recursively defined as follows.

Trivial Case: If G consists of exactly one edge between s and t, then T consists
of a single Q-node whose skeleton is G itself.

Parallel Case: If the split pair {s, t} has at least two maximal split compo-
nents G1, . . . , Gk (k ≥ 2), the root of T is a P-node µ. Graph skeleton(µ)
consists of k parallel edges between s and t, denoted e1, . . . , ek.

Series Case: If the split pair {s, t} has exactly one maximal split component
G′ which is not a single edge and if G′ has cutvertices c1, . . . , ck−1 (k ≥ 2)
in this order on a path from s to t, the root of T is an S-node µ. Graph
skeleton(µ) is the path e1, . . . , ek, where ei connects ci−1 with ci (i =
2 . . . k − 1), e1 connects s with c1, and ek connects ck−1 with t.

Rigid Case: If none of the above cases applies, let {s1, t1}, . . . , {sk, tk} be the
maximal split pairs ofG with respect to {s, t} (k ≥ 1) and, for i = 1, . . . , k,
let Gi be the union of all the maximal split components of {si, ti}. The
root of T is an R-node µ. Graph skeleton(µ) is the triconnected graph
obtained from G by replacing each subgraph Gi with the edge ei between
si and ti.

Except for the trivial case, µ has children µ1, . . . , µk, in this order, such that
µi is the root of the SPQR-tree of graph Gi ∪ (ui, vi) with respect to reference
edge (ui, vi) (i = 1, . . . , k). Edge (ui, vi) is said to be the virtual edge of node µi

in skeleton(µ) and of node µ in skeleton(µi). Graph Gi is called the pertinent
graph of node µi, and of edge (ui, vi) and it is denoted by pertinent(ui, vi).
Vertices u and v are the poles of Gi.

The tree T so obtained has a Q-node associated with each edge of G, except
the reference edge e. We complete the SPQR-tree T by adding another Q-
node, representing the reference edge e, and making it the parent of µ so that
it becomes the root of T (see Fig. 1.c for an example).



232 P.F. Cortese et al. C-Planarity of C-Connected Clustered Graphs

The SPQR-tree T of a graph G with n vertices and m edges has m Q-nodes
and O(n) S-, P-, and R-nodes. Also, the total number of vertices of the skeletons
stored at the nodes of T is O(n).

A biconnected graph G is planar if and only if the skeletons of all the nodes
of the SPQR-tree T of G are planar. An SPQR-tree T rooted at a given Q-node
can be used to represent all the planar embeddings of G having the reference
edge (associated with the Q-node at the root) on the external face. Namely,
any embedding can be obtained by selecting one of the two possible flips of each
skeleton around its poles and selecting a permutation of the children of each
P-node with respect to their common poles.

3 A Characterization of the C-Connected

C-Planar Clustered Graphs whose Underlying

Graph is Biconnected

In this section we characterize the c-planarity of a c-connected clustered graph
C(G, T ) when G is planar and biconnected. First, we introduce some definitions
on the cluster hierarchy. Given a connected non-empty subgraph G′ of G, the
allocation cluster of G′, denoted by ac(G′) is the lowest common ancestor in T of
the vertices of G′. The allocation cluster represents the lowest cluster containing
all the vertices of G′. In the following we refer to the allocation clusters of many
special subgraphs of G like edges, paths, and cycles. For example in Fig. 1 the
allocation cluster of path 3, 5, 8 is γ. Two clusters α and β of T are comparable
when they are on the same path from a leaf to the root of T . If α and β are
comparable, the operators ≺, �, and max are defined, where α � β (α ≺ β)
means that α is an ancestor (proper ancestor) of β and max(α, β) is the farthest
cluster from the root between α and β. The following properties are easy to
prove.

Property 1 Given two connected subgraphs G′ and G′′ of G sharing a vertex,
ac(G′) and ac(G′′) are comparable. Also, if G′′ ⊆ G′ then ac(G′) � ac(G′′).

Property 2 Let G′ be a connected subgraph of G. There is at least one edge
e ∈ G′ such that ac(e) = ac(G′).

For example, in Fig. 1 the subgraph induced by vertices 3, 5, 8, 7 has alloca-
tion cluster equal to α and ac((3, 7)) = α.

Property 3 There is at least one edge e ∈ G such that ac(e) is the root of T .

Now we relate the concept of allocation cluster, typical of the clusters hi-
erarchy, to the hierarchy of the triconnected components of G, represented by
the SPQR-tree T . A lowest connecting path of a virtual edge e = (u, v) of the
skeleton of a node of T is a path between u and v in pertinent(e) with max-
imum allocation cluster. Observe that by Property 1 all the paths connecting
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u and v are pairwise comparable. The lowest connecting cluster of e, denoted
by lcc(e) is the allocation cluster of the lowest connecting path of e. Fig. 2
shows an example of a virtual edge e and its lowest connecting path. The allo-
cation cluster of path p1 = (u, x, w, y, v) is β, while the allocation cluster of path
p2 = (u, x, z, y, v) is α. Only p1 is a lowest connecting path of e, and lcc(e) = β.
Observe that if e ∈ G the lowest connecting path of e is the edge itself.

(a) (b) (c)

v

u

e

β
v

α

u

x

y

γ

δ

w
z

z

w

α

β

γ δ

x y vu

Figure 2: Lowest connecting paths and clusters. (a) A virtual edge e = (u, v).
(b) Graph pertinent(e); the thick lines show the lowest connecting path p1. (c)
Tree T restricted to the clusters in pertinent(e).

Consider a skeleton of a node µ of T and a path p composed by virtual edges
of the skeleton. The lowest connecting cluster of p is the lowest common ancestor
of the lowest connecting clusters of the edges of p. To have some intuition on this
definition, consider that each edge of p corresponds to a pertinent graph that
has a lowest connecting path. Hence, we can see p as “representative” of the
concatenation of the lowest connecting paths traversing such pertinent graphs.
Each of such paths has an allocation cluster; the lowest connecting cluster is the
lowest common ancestor of such allocation clusters. We shall adopt the same
definition of lowest connecting cluster also for cycles and faces of skeleton(µ).
Also, for technical reasons we define the lowest connecting cluster of an external
face as the root of the inclusion tree T . In Fig. 1.c the faces of the skeletons are
labelled with the corresponding lowest connecting clusters.

Now we relate the above definitions to the c-planar embeddings. In the
following when we refer to a planar embedding of a pertinent graph we always
suppose that it has its poles on the external face.

Theorem 1 A planar embedding of a c-connected clustered graph is c-planar
iff it does not exist a cycle c that encloses an edge e such that ac(e) ≺ ac(c).
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Proof: The idea of the proof of necessity is that ac(e) ≺ ac(c) implies that the
region of the drawing representing ac(c) would enclose the region representing
a proper ancestor of ac(c). The sufficiency is proved by observing that if c and
e do not exist, then there exists a drawing such that the enclosure relationships
of the regions representing the clusters respect the inclusion tree.

Let C(G, T ) be a c-connected clustered graph. First, we prove that if a
planar embedding Γ of G is c-planar then every cycle c of Γ does not enclose
any edge e such that ac(e) ≺ ac(c). Suppose that there exist in Γ a cycle c and
an edge e such that e is enclosed in c and that ac(e) ≺ ac(c). It follows that the
region R(α) representing the allocation cluster α of c encloses an edge whose
allocation cluster β is a proper ancestor of α. Since G(α) is connected and since
Γ is planar, then R(β) is enclosed in R(α) and so Γ is not c-planar.

Now, in the hypothesis that Γ is a planar embedding of G such that every
cycle c of Γ does not enclose any edge e with ac(e) ≺ ac(c), we prove that Γ
is c-planar. Construct any planar drawing of G with embedding Γ and draw
any region R(γ) representing a cluster γ of T so that R(γ) “surrounds” G(γ),
i.e., R(γ) contains any vertex and edge of G(γ) and does not contain a vertex
or an edge of G − G(γ). The obtained drawing D of C is a c-planar drawing.
Namely, since D is a planar drawing then it has no edge crossings; further, the
construction of the regions and the c-connectivity of C implies that D has no
edge-region crossings. It remains to show that D does not contain two regions
R(α) and R(β), respectively associated to clusters α and β of T , such that: (i)
R(α) encloses R(β) and (ii) α is not an ancestor of β. This is done by showing
that if there exist in D regions R(α) and R(β) that verify conditions (i) and (ii),
then there exists a cycle c of Γ that encloses an edge e such that ac(e) ≺ ac(c).

By the construction of the regions, there exists in D a cycle c belonging to
G(α) that encloses the subgraph G∗ = G(β). If β is a proper ancestor of α
then trivially ac(e) ≺ ac(c), for some edge e ∈ G∗. Otherwise, consider the
subgraph G′ of G that is inside c in D, where c ∈ G′. By the c-connectivity of
C, G′ is connected. Since α is not an ancestor of β and since β is not a proper
ancestor of α then α and β are not comparable. This implies that the allocation
cluster of G′ is a proper ancestor of both c and G∗, that is ac(G′) ≺ ac(c) and
ac(G′) ≺ ac(G∗). By Property 2 there exists at least one edge e ∈ G′ such that
ac(e) = ac(G′). Edge e can not be part of c and so it is enclosed in c. Hence, we
obtain ac(e) = ac(G′) ≺ ac(c), so we derived a contradiction and this concludes
the proof. 2

Given a node µ of the SPQR-tree T of the underlying graph G of the clus-
tered graph C(G, T ), an embedding of skeleton(µ) is c-planar if every cycle c
of skeleton(µ) does not enclose an edge e of skeleton(µ) with lcc(e) ≺ lcc(c).
Intuitively, the c-planarity of a skeleton is the one of the embedded graph ob-
tained by substituting each edge of the skeleton with its lowest connecting path.

Lemma 1 If an embedding Γ of skeleton(µ) is c-planar then for any cycle c in
Γ and for any face f inside c we have that lcc(c) � lcc(f).
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The proof of Lemma 1 is analogous to the one of Theorem 1.
Given a virtual edge e = (u, v) and a c-planar embedding Γ of pertinent(e),

a lowest connecting path s of e separates pertinent(e) into two embedded sub-
graphs each containing s. We call highest side hs(Γ, s) and lowest side ls(Γ, s)
such subgraphs, where ac(hs(Γ, s)) � ac(ls(Γ, s)). By Properties 1 and 2 we
have:

Property 4 ac(hs(Γ, s)) = ac(pertinent(e)).

Hence, the value of ac(hs(Γ, s)) does not depend on the choice of the c-
planar embedding Γ and of s and we can define the highest side cluster of e,
hsc(e) = ac(pertinent(e)).

Lemma 2 The value of ac(ls(Γ, s)) does not depend on the choice of s.

Proof: Suppose, by contradiction, that there exist two different lowest connect-
ing paths s1 and s2, with lcc(s1) = lcc(s2) = γ, such that α = ac(ls(Γ, s1)),
β = ac(ls(Γ, s2)), and α 6= β. By Property 1, we have that α and β are compa-
rable. Assume, w.l.o.g, that α ≺ β � γ. Then, there exists an edge e1 such that
ac(e1) = α. Edge e1 belongs to ls(Γ, s1) and does not belong to ls(Γ, s2), then
e1 is necessarily enclosed in a simple cycle c composed by subpath s1 of s1 and
subpath s2 of s2 (see Fig. 3). By Property 1, lcc(s1) and lcc(s2) are comparable.
By construction, lcc(c) = min{lcc(s1), lcc(s2)} � γ ≻ α. Hence, by Theorem 1,
Γ would be a non-c-planar embedding, contradicting the hypothesis. 2

Due to Lemma 2 we can define the lowest side cluster of Γ lsc(Γ) = ac(ls(Γ, s))
and the lowest side cluster of e, lsc(e) = maxΓ{lsc(Γ)}. Observe that the
definitions of hsc(e) and of lsc(e) hold only if pertinent(e) is c-planar. For
technical reasons if pertinent(e) is not c-planar we define hsc(e) = lsc(e) =⊥,
where ⊥ is by convention a proper ancestor of any cluster. See Fig. 4 for an
example. As another example, Fig. 1 contains, for each virtual edge e of the
represented skeletons, a triple describing lcc(e), lsc(e), and hsc(e), respectively.

Property 5 For each edge e of the skeleton of a node of T , hsc(e) � lsc(e) �
lcc(e).

Property 6 Let c be a cycle of virtual edges in a skeleton of a node of T and
let e be an edge of c. We have that lcc(c) is comparable with lcc(e), with lsc(e),
and with hsc(e).

Property 7 Let e = (u, v) be a virtual edge. Suppose that pertinent(e) is c-
planar. Then in any c-planar embedding Γ of pertinent(e) and for any lowest
connecting path s of e there exist two edges e1 ∈ hs(Γ, s) and e2 ∈ ls(Γ, s) such
that ac(e1) = hsc(e) and ac(e2) � lsc(e). Also, if hsc(e) ≺ lcc(e) then there
exists an edge e1 ∈ hs(Γ, s) such that ac(e1) = hsc(e) and e1 6∈ s. Similarly,
if lsc(e) ≺ lcc(e) then there exists e2 ∈ ls(Γ, s) such that ac(e2) � lsc(e) and
e2 6∈ s.
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Figure 3: Illustration for the proof of Lemma 2. The paths s1 and s2 are drawn
in thick lines, while the subpaths s1 and s2 are drawn in dashed lines.
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Figure 4: (a) A virtual edge e = (u, v). (b) Graph pertinent(e). (c) Tree T
restricted to the clusters in pertinent(e). We have that lcc(e) = δ, lsc(e) =
β, and hsc(e) = α. If the edge e′ is removed from pertinent(e) then lsc(e)
becomes δ.
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Two comparable virtual edges e1 and e2 of a skeleton of a node of T are
incompatible when, assuming w.l.o.g. lcc(e1) � lcc(e2), one of the following
conditions hold: (i) lcc(e1) ≺ lcc(e2) and hsc(e2) ≺ lcc(e1); (ii) lcc(e1) = lcc(e2),
hsc(e1) ≺ lcc(e1), and hsc(e2) ≺ lcc(e2).

For example, the skeleton of the P-node shown in Fig. 1.c has three virtual
edges that are pairwise compatible. Now we can formulate the characterization.

Theorem 2 Let C(G, T ) be a c-connected clustered graph where G is planar
and biconnected, and let T be the SPQR tree of G rooted at an edge whose
allocation cluster is the root of T . C is c-planar if and only if for each node µ
of T the following conditions are true:

1. If µ is an R node then the embedding of skeleton(µ) is c-planar and each
edge e of skeleton(µ) is incident to two faces f1 and f2 such that the
lowest connecting cluster of f1 is an ancestor of the highest side cluster of
e and the lowest connecting cluster of f2 is an ancestor of the lowest side
cluster of e.

2. If µ is a P node then

(a) it does not exist a set of three edges of skeleton(µ) that are pairwise
incompatible and

(b) there exists at most one edge e∗ of skeleton(µ) such that the lowest
side cluster of e∗ is a proper ancestor of the lowest connecting clus-
ter of e∗ and if there exists such e∗ then for each edge e 6= e∗ of
skeleton(µ) the lowest connecting cluster of e is an ancestor of the
lowest side cluster of e∗.

3.1 Proof of the Sufficiency

The sufficiency of the conditions of Theorem 2 can be proved by structural induc-
tion starting from the leaves of T . For each leaf µ (Q node) of T , pertinent(µ) is
trivially c-planar. We prove the inductive step by considering any non-leaf node
µ with children µ1, µ2, . . . , µk. Namely, we suppose that their pertinent graphs
are c-planar and argument that, if the conditions of the theorem are satisfied,
then also pertinent(µ) is c-planar. This is done by means of two lemmas, one
for the R nodes and the other for the P nodes. The lemma for the R nodes is
valid for all nodes whose skeleton has a fixed embedding and so it is formulated
in the most general setting. The case of the S nodes is trivial. A special lemma
describes the situation of the root of T and completes the proof of sufficiency.

Lemma 3 Let µ be a node of T and let Γµ be a c-planar embedding of skele-
ton(µ). If (i) the pertinent graphs of the children of µ are c-planar, and (ii)
each edge e of skeleton(µ) is incident to two faces f1 and f2 of Γµ such that
lcc(f1) � hsc(e) and lcc(f2) � lsc(e), then pertinent(µ) is c-planar.
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Proof: Let e1, e2, . . . , ek be the edges of skeleton(µ) and consider for each
ei, i = 1, . . . , k, a c-planar embedding Γi of pertinent(ei) such that lsc(Γi) =
lsc(ei).

Denoting by fi1 and fi2 the faces of Γµ incident to ei, construct an embedding
Γ of pertinent(µ) by turning each Γi, i = 1, . . . , k, so that hs(Γi, si) is toward
fi1 and ls(Γi, si) is toward fi2 with lcc(fi1) � hsc(ei) and lcc(fi2) � lsc(e). The
second condition of the lemma makes this possible.

By supposing that Γµ is c-planar, we show that Γ is also c-planar, that is
for any cycle c of Γ and any edge e that is enclosed in c we have ac(c) � ac(e)
(see Theorem 1).

We denote by e∗ = (v1, v2) the edge of skeleton(µ) containing e in per-
tinent(e∗) and we denote by f∗

1 and f∗

2 the faces incident to e∗ in Γµ for
which lcc(f∗

1 ) � hsc(e∗) and lcc(f∗

2 ) � lsc(e∗). Let Γ∗ be the embedding of
pertinent(e∗) in Γ. We also denote by c∗ the cycle in Γµ whose edges ei contain
in

⋃
(pertinent(ei)) all the edges of c.

Edge e∗ may be part of c∗ or can be enclosed in c∗. In both cases at least
one of f∗

1 and f∗

2 is enclosed by c∗. If c∗ encloses f∗

1 , we have hsc(e∗) � ac(e) by
definition of hsc(e∗), lcc(f∗

1 ) � hsc(e∗) by hypothesis and by the construction
of Γ, lcc(c∗) � lcc(f∗

1 ) by Lemma 1, and ac(c) � lcc(c∗) by definition of lowest
connecting cluster. Hence, ac(c) � lcc(c∗) � lcc(f∗

1 ) � hsc(e∗) � ac(e).
If c∗ encloses f∗

2 (and does not enclose f∗

1 ), consider a lowest connecting path
s of e∗ and the path p ⊂ c between v1 and v2 in pertinent(e∗). If e ∈ ls(Γ∗, s)
then lsc(e∗) � ac(e) by definition of lsc(e∗), lcc(f∗

2 ) � lsc(e∗) by hypothesis and
by the construction of Γ, lcc(c∗) � lcc(f∗

2 ) by Lemma 1, and ac(c) � lcc(c∗) by
definition of lowest connecting cluster, so ac(c) � lcc(c∗) � lcc(f∗

2 ) � lsc(e∗) �
ac(e). If e ∈ hs(Γ∗, s) then there exists a simple cycle c formed by p and s,
or by a part of them, such that e is enclosed by or is part of c. In both cases
the c-planarity of Γ∗ implies that ac(c) � ac(e). Also, ac(p) � ac(c) (ac(p) is
an ancestor of ac(s) and of ac(c)) and since p is part of c ac(c) � ac(p). So
ac(c) � ac(p) � ac(c) � ac(e). 2

Lemma 4 Let µ be a P node such that the pertinent graphs of its children are c-
planar. Suppose that: (i) it does not exist a set of three edges of skeleton(µ) that
are pairwise incompatible, (ii) there exists at most one edge e∗ of skeleton(µ)
such that lsc(e∗) ≺ lcc(e∗), and (iii) if there exists e∗ then each edge e 6= e∗ of
skeleton(µ) is such that lcc(e) � lsc(e∗). Then pertinent(µ) is c-planar

Proof: First, observe that all the edges of skeleton(µ) are pairwise comparable
since they share the poles. Subdivide the edges of skeleton(µ) into two ordered
sets IL = {l1, l2, . . . , lp} and IR = {r1, r2, . . . , rq} such that all the edges in
IL (in IR) are pairwise compatible. This partition exists since the nature of
the incompatibility relationship guarantees that if skeleton(µ) does not contain
three pairwise incompatible edges then the incompatibility graph is bipartite.
Also the edges in IL (in IR) are ordered so that lcc(lp) � lcc(lp−1) � . . . � lcc(l1)
(lcc(rq) � lcc(rq−1) � . . . � lcc(r1)). If two or more edges li, li+1, . . . , lm
(rj , rj+1, . . . , rn) in IL (in IR) have the same lowest connecting cluster, they are
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ordered so that hsc(lm) � hsc(lm−1) � . . . � hsc(li) (hsc(rn) � hsc(rn−1) �
. . . � hsc(rj)). If two or more edges li (rj) in IL (in IR) have the same lowest
connecting cluster and the same highest side cluster, they are ordered in any
way.

Consider the embedding Γµ of skeleton(µ) obtained by placing its edges
in the order I = {lp, . . . , l1, r1, . . . , rq}. We show that skeleton(µ) is c-planar.
This is done by considering three edges e1, e2, e3 that appear in this order in Γµ

and by proving that the lowest connecting cluster of the cycle c = {e1, e3} is an
ancestor of the lowest connecting cluster of e2. If e1 and e3 are both in IL (in
IR), then lcc(c) = lcc(e1) � lcc(e2) (resp. lcc(c) = lcc(e3) � lcc(e2)). Otherwise
e1 ∈ IL and e3 ∈ IR. Suppose e2 ∈ IL (e2 ∈ IR), lcc(c) � lcc(e1) � lcc(e2)
(resp. lcc(c) � lcc(e3) � lcc(e2)).

We now show that Γµ is such that each edge e of skeleton(µ) is incident
to two faces f1 and f2 such that lcc(f1) � hsc(e) and lcc(f2) � lsc(e). The
internal faces of Γµ consist of two edges that are consecutive in I. We denote
by {e1, e2} an internal face of Γµ between edges e1 and e2. We have that
lcc({li, li+1}) = lcc(li+1), for 1 ≤ i < p, and that lcc({rj, rj+1}) = lcc(rj+1),
for 1 ≤ j < q. Since li and li+1, for 1 ≤ i < p (rj and rj+1, for 1 ≤ j < q),
are compatible, then lcc({li, li+1}) � hsc(li) (lcc({rj , rj+1}) � hsc(rj)). Also
denoting by fe the external face of Γµ we clearly have lcc(fe) � hsc(lp) and
lcc(fe) � hsc(rq). By the second condition on the P nodes there exists at most
one edge e∗ such that lsc(e∗) ≺ lcc(e∗), and so lcc(f2) � lsc(e) can be violated
only for e = e∗. By the ordering of the edges in Γ(µ), we have that either
e∗ = r1 or e∗ = l1. W.l.o.g. suppose that e∗ = r1. By the third condition on
the P nodes lcc({l1, r1}) � lcc(l1) � lsc(r1). By Lemma 3 we can conclude that
pertinent(µ) is c-planar. 2

Lemma 5 Let C(G, T ) be a c-connected clustered graph and let (u, v) be an edge
of G such that ac(u, v) is the root of T . If C(G − (u, v), T ) admits a c-planar
embedding with u and v on the external face, then C is c-planar.

Proof: Since ac((u, v)) is the root of T , it is easy to see that (u, v) cannot
create cycles enclosing an edge whose allocation cluster is a proper ancestor of
the allocation cluster of the cycle. Hence, by Theorem 1, C admits a c-planar
embedding obtained by adding (u, v) to the one of C(G − (u, v), T ). 2

The above lemma completes the proof of sufficiency.

3.2 Proof of the Necessity

The proof of the necessity of Theorem 2 is split into five lemmas, that, considered
altogether, constitute a complete proof. Before giving such lemmas, we discuss
the following issue: how limiting is the choice of rooting T to a specific edge
whose allocation cluster is the root of T ? The answer is in the following theorem.

Theorem 3 Let C(G, T ) be a c-connected c-planar clustered graph and let Γ be
any c-planar embedding of C. Let e be an edge whose allocation cluster is the
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root of T . Change the external face of Γ choosing as external any face containing
e. The resulting planar embedding is still c-planar.

Proof: Let f be the external face of Γ and let Γ′ be the embedding of C derived
from Γ with external face g containing e. By contradiction, suppose that Γ′ is
not c-planar. By Theorem 1, there exists in Γ′ a cycle c that encloses an edge e
such that ac(e) ≺ ac(c). Note that, ac(c) cannot be the root of T , hence we have
also ac(e) ≺ ac(c). Consider c and f in Γ′, either (i) c encloses f and separates
f from g or (ii) c does not encloses f and hence f and g are not separated by
c. In the first case, Γ cannot be c-planar since in this embedding c encloses e.
In the second case, Γ cannot be c-planar since in this embedding c encloses e.
In both cases we have a contradiction. 2

Now we start the proof of the necessity. The first two lemmas are aimed to
prove the necessity of the conditions on the skeletons of the R nodes.

Lemma 6 Let µ be an R node of T such that the conditions of Theorem 2
are satisfied for all nodes of the subtree rooted at µ but for µ itself. Namely,
suppose that the embedding of skeleton(µ) with its poles on the external face is
not c-planar. Then C is not c-planar.

Proof: Because of the non-c-planarity, the unique embedding of skeleton(µ)
with its poles u and v on the external face contains a cycle c∗ that encloses an
edge e∗ such that lcc(e∗) ≺ lcc(c∗). It is possible to find in each embedding
of pertinent(µ) a cycle c corresponding to c∗ by substituting each virtual edge
e∗ of c∗ with a lowest connecting path of e∗. By the definition of lowest con-
necting path, ac(c) = lcc(c∗). Also, by the definition of lcc(e∗) we have that
pertinent(e∗) contains an edge e with ac(e) = lcc(e∗). Since µ is an R node,
in any embedding of pertinent(µ) e lies inside c. So, because of Theorem 1,
pertinent(µ) is not c-planar with (u, v) on the external face and C is not c-
planar with the root of T on the external face. By Theorem 3 it follows that C
is not c-planar. 2

Lemma 7 Let µ be an R node of T such that the conditions of Theorem 2
are satisfied for all nodes of the subtree rooted at µ but for µ itself. Namely,
suppose that skeleton(µ) contains an edge e incident to two faces f1 and f2
(lcc(f1) � lcc(f2)) with hsc(e) ≺ lcc(f1) or lsc(e) ≺ lcc(f2), then C is not
c-planar.

Proof: Concatenating the lowest connecting paths of the edges composing f1
(f2), we can find in pertinent(µ) a cycle c1 (c2) corresponding to f1 (f2) of
skeleton(µ) with ac(c1) = lcc(f1) (ac(c2) = lcc(f2)). Due to Property 7 there
exist two edges e1 and e2 of pertinent(e) such that ac(e1) = hsc(e), ac(e2) �
lsc(e) and that either e1 lies inside c1 and e2 lies inside c2 or e1 lies inside c2
and e2 lies inside c1. In both cases we have a cycle c that contains an edge
e such that ac(e) ≺ ac(c), so pertinent(µ) is not c-planar with (u, v) on the
external face and C is not c-planar with the root of T on the external face. By
Theorem 3 it follows that C is not c-planar. 2
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The next three lemmas are to prove the necessity of the conditions of The-
orem 2 on the skeletons of the P nodes.

Lemma 8 Let µ be a P node of T such that the conditions of Theorem 2 are
satisfied for all nodes of the subtree rooted at µ but for µ itself. Namely, suppose
that skeleton(µ) contains three edges e1, e2, e3 that are pairwise incompatible,
then C is not c-planar.

Proof: Consider any embedding of skeleton(µ) and suppose, w.l.o.g., that
e1, e2, and e3 are embedded in this order around the poles. Consider a cycle
c of pertinent(µ) composed by a lowest connecting path of e1 and by a lowest
connecting path of e3. We have that lcc(c) is the lowest common ancestor
of lcc(e1) and lcc(e3). By applying Property 7 it is possible to find an edge
e ∈ pertinent(e2) such that ac(e) = hsc(e2). Since e2 is incompatible with both
e1 and e3 we have ac(e) = hsc(e2) ≺ lcc(c). Hence, pertinent(µ) is not c-planar
with (u, v) on the external face and C is not c-planar with the root of T on the
external face. By Theorem 3 it follows that C is not c-planar. 2

Lemma 9 Let µ be a P node of T such that the conditions of Theorem 2
are satisfied for all nodes of the subtree rooted at µ but for µ itself. Namely,
suppose that skeleton(µ) contains two edges e∗1 and e∗2 with lsc(e∗1) ≺ lcc(e∗1)
and lsc(e∗2) ≺ lcc(e∗2), then C is not c-planar.

Proof: Consider a lowest connecting path p1 of e∗1 and a lowest connecting path
p2 of e∗2. Let c be the cycle obtained by concatenating p1 and p2; we have that
lcc(c) is the lowest common ancestor of lcc(e∗1) and lcc(e∗2). W.l.o.g. we assume
that lcc(c) = lcc(e∗1). By Property 7 in any embedding of pertinent(e∗1) there
exist edges e1 and e2 that are separated by p1 and are such that ac(e1) = hsc(e∗1)
and ac(e2) � lsc(e∗1). One between e1 and e2 is enclosed by c. By the above
inequalities ac(e1) ≺ lcc(c), ac(e2) ≺ lcc(c), and hence pertinent(µ) is not c-
planar with (u, v) on the external face and C is not c-planar with the root of T
on the external face. By Theorem 3 it follows that C is not c-planar. 2

Lemma 10 Let µ be a P node of T such that the conditions of Theorem 2 are
satisfied for all nodes of the subtree rooted at µ but for µ itself. Namely, suppose
that skeleton(µ) contains an edge e∗ with lsc(e∗) ≺ lcc(e∗) and an edge e 6= e∗

such that lsc(e∗) ≺ lcc(e), then C is not c-planar.

Proof: By Property 5 we have that hsc(e∗) ≺ lcc(e). Consider a lowest connect-
ing path pe∗ of e∗, a lowest connecting path pe of e, and the cycle c = pe∗ ∪ pe;
lcc(c) is the lowest common ancestor of lcc(e∗) and lcc(e). By Property 7 in any
embedding of pertinent(e∗) there exist edges e1 and e2 that are separated by pe∗

and are such that ac(e1) = hsc(e∗) and ac(e2) � lsc(e∗). One between e1 and
e2 is enclosed by c. By the above inequalities ac(e1) ≺ lcc(c), ac(e2) ≺ lcc(c),
and hence with (u, v) on the external face and C is not c-planar with the root
of T on the external face. By Theorem 3 it follows that C is not c-planar. 2

The above lemma completes the proof of necessity of Theorem 2.
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4 Characterization of the C-Planarity of Gen-

eral C-connected Clustered Graphs

In this section we extend the characterization given in Section 3 to general
c-connected clustered graphs.

Theorem 4 Let C(G, T ) be a c-connected clustered graph and let B be the BC-
tree of G rooted at a block ν that contains an edge e whose allocation cluster is
the root of T . C is c-planar if and only if each block µ of B admits a c-planar
embedding Γµ such that the parent cut-vertex of µ (if any) is on the external
face of Γµ and each child cut-vertex ρi of µ is incident to a face fi whose lowest
connecting cluster is an ancestor of the allocation cluster of pertinent(ρi).

Proof: First, we show the sufficiency of the conditions. Suppose each block
µ admits an embedding Γµ respecting the above conditions. We show how to
build a c-planar embedding ΓG of G, by suitably merging the embeddings Γµ.
We traverse top-down B starting at its root ν. Let µ be the current block,
and let µ1, µ2, . . . , µk be the blocks whose parent cutvertices ρ1, ρ2, . . . , ρk (not
necessarily distinct) are children of µ. We select a face fi of Γµ incident to
ρi and whose lowest connecting cluster is an ancestor of the allocation cluster
of pertinent(ρi). We embed Γµi

into fi identifying the two instances of ρi

in µ and µi. Distinct children of the same cutvertex are embedded in such
a way that one does not enclose the other. Now we show that the obtained
embedding ΓG is c-planar. Suppose, by contradiction, that ΓG is not c-planar.
Let p be a simple cycle enclosing an edge e with ac(e) ≺ ac(p). Observe that,
since p is simple, all edges of p are contained into the same block µ∗. If e also
belongs to µ∗, then Γµ∗ is not c-planar, contradicting the hypothesis. Otherwise,
suppose e belongs to pertinent(ρi), where ρi is a child cutvertex of µ∗. Hence,
ac(pertinent(ρi)) � ac(e). By construction, ac(fi) � ac(pertinent(ρi)). Since
each edge of fi belongs or is internal to p, Theorem 1 ensures that ac(p) �
ac(fi). Therefore, we have ac(p) � ac(e) contradicting the hypothesis that
ac(e) ≺ ac(p).

It is trivial that the c-planarity of the blocks of the BC-tree is a necessary
condition for the c-planarity of C. Also, by Theorem 3, the choice of rooting B
to a node ν containing an edge e whose allocation cluster is the root of T , and
the choice of rooting Tν to e are not limiting, that is if a c-planar embedding
ΓG of G exists, then there exists also a c-planar embedding of G with e on the
external face. This leads to assume that ΓG has e on the external face. In order
to show the necessity of the other two conditions, suppose that a block µ∗ 6= ν
does not admit a c-planar embedding with its parent cutvertex on the external
face. Then the blocks that are ancestors of µ∗ have to be embedded inside µ∗

and so e cannot be on the external face of ΓG, contradicting the hypothesis. Now
suppose that a child cutvertex ρi of µ is such that ac(pertinent(ρi)) ≺ ac(fj)
for each face fj of Γµ incident to ρi. By Property 2 pertinent(ρi) contains
an edge ei such that ac(ei) = ac(pertinent(ρi)). So embedding pertinent(ρi)
inside µ creates a cycle fj containing an edge ei such that ac(ei) ≺ ac(fj), while
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embedding µ inside any embedding of pertinent(ρi) implies that e cannot be on
the external face of ΓG, contradicting the hypothesis. Hence, C is not c-planar
with e on the external face and by Theorem 3 it follows that C is not c-planar.

2

5 Testing and Embedding Algorithm: Bicon-

nected Case

In this section we describe a linear-time algorithm for testing the c-planarity
and computing a c-planar embedding for c-connected clustered graphs whose
underlying graph is biconnected. First, we show in Section 5.1 how the c-
planarity characterizations given in Sections 3 and 4 can be modified in such
a way to produce conditions that are easy to check in linear time. Then, we
provide an overview of the algorithm in Section 5.2. Sections 5.3 and 5.4 contain
the description of the two main phases of the algorithm.

5.1 Encoding the Cluster Hierarchy

The characterizations provided by Theorems 1, 2 and 4 only require to test if
a cluster is an ancestor or proper ancestor of another cluster. In fact, we only
need to perform comparisons between clusters that are comparable, i.e., that lie
on the same path from the root to a leaf of T .

Let ψ be a function associating each node µ of T to a value ψ(µ) such that
ψ(µ) > ψ(ν), if ν is the parent of µ. We can recast the c-planarity conditions
by replacing each condition on T with comparisons between suitable values of
ψ. In the following we adopt as function ψ(µ) the depth, denoted d(µ) where
the depth of the root of T is zero and d(µ) = d(ν) + 1 if ν is the parent of µ.

Observe that the use of the depth instead of the allocation cluster allows to
replace several definitions given on the tree T with depth values. Namely, the
lowest connecting cluster lcc(e) of a virtual edge e can be replaced by its depth.
We denote the value of d(lcc(e)) by d(e). Analogously, the lowest connecting
cluster lcc(f) of a face f can be replaced by its depth d(lcc(f)), denoted d(f).
In a similar way we define the highest (lowest) side depth of a virtual edge e as
hsd(e) = d(hsc(e)) (lsd(e) = d(lsc(e)).

According to the above definitions, both the incompatibility of two edges and
the conditions of Theorems 2 and 4, can be restated by replacing each occurrence
of ≺ and � with < and ≤, respectively, and by replacing each occurrence of
ac(·), lcc(·), hsc(·), and lsc(·) with d(·), d(·), hsd(·), and lsd(·), respectively.

5.2 Overview of the Algorithm

The input of the algorithm is a c-connected clustered graph C(G, T ) such that G
is biconnected and planar. The output of the algorithm is a c-planar embedding
of C or a node of the SPQR-tree T for which the c-planarity conditions are not
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verified. The algorithm consists of two phases that are sketched below and fully
described in the following sections.

Preprocessing. This phase consists of three steps.

SPQR-tree Decomposition. First, we compute the depth of each edge
e of G. Second, we compute an SPQR-tree T of G rooted at any
edge er of depth zero.

Skeleton-Labelling. We label each non-virtual edge e of the skeletons
of T with the three labels d(e) = hsd(e) = lsd(e), which are equal
to the depth of the corresponding edge of G. Each virtual edge e is
labeled with d(e) and hsd(e) only, by performing a suitable bottom-
up traversal of T .

Edges-Sorting. We sort the edges of each P node of T with respect to
the value of their depth and, secondarily, with respect to their highest
side depth. The rationale for this sort will be clear later.

Embedding-Construction. We perform a bottom-up traversal of T . We
check if a non-planarity condition is verified for the current node µ, and in
this case we return µ, which is a node of T , such that the pertinent graphs
of its children are c-planar but pertinent(µ) is not. Otherwise, we com-
pute a c-planar embedding of skeleton(µ), and compute the value lsd(e)
for the virtual edge e which represents µ in the skeleton of the parent µ′

of µ. Finally, we construct the c-planar embedding of the whole graph by
means of a top-down traversal of T .

5.3 The Preprocessing Phase

The depth of each edge is computed in constant time with a lowest common
ancestor query performed with the data structure in [27]. The SPQR-tree

Decomposition step can be performed in linear time [23].
In the Skeleton-Labelling step, we perform a bottom-up traversal of T .

Let µ be the current node. Based on the values of d(e) and hsd(e) of the edges
of skeleton(µ), we compute the values of d(e′) and hsd(e′) for the virtual edge
e′ which represents µ in the skeleton of its parent µ′. The value of hsd(e′) is
the minimum of the highest side depth of the edges of µ. It is easy to see that if
µ is an S-node (P-node), d(e′) is the minimum (maximum) of the depths of the
edges of µ. If µ is an R-node, the computation of d(e′) requires a more detailed
analysis of skeleton(µ).

Lemma 11 Let µ be an R-node and let MST be a maximum spanning tree of
skeleton(µ), where the edges are weighted with their depth. The depth of the
path with maximum depth between the poles of µ is the minimum depth of the
edges in the unique path p in MST between the poles of skeleton(µ).

Proof: By definition the depth d(p) is equal to d(lcc(p)), i.e., the minimum
depth of its edges. Let e be an edge of p with depth d(e) = d(p). Suppose, for
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contradiction, that there is a second path p′ with d(p′) > d(e) = d(p). All edges
in p′ have depth greater of d(e). When e is removed, MST splits into two trees
Tu and Tv, one containing the pole u and the other containing the pole v. Each
vertex of skeleton(µ) either falls into Tu or into Tv. Since p′ connects u with v
it necessarily contains an edge e′ which joins a vertex in Tu with a vertex in Tv.
If e′ is chosen to replace e, Tu and Tv are joined into tree T , which has weight
greater than MST , contradicting the hypothesis that MST is the maximum
spanning tree. 2

Since skeleton(µ) is planar and weighted with integer values, a maximum
spanning tree can be constructed in linear time (see for example [4, 26]) with
respect to the size of skeleton(µ). Hence, because of Lemma 11 the whole
Skeleton-Labelling step can be performed in linear time.

The Edges-Sorting step requires special care. In fact, if we performed
a separate counting sort for each P node, since there are instances where the
depth has O(n) values, where n is the number of vertices of G, in the worst
case we spent quadratic time. Hence, we do the following. First, we construct
a unique set EP of the virtual edges of all the P nodes, each e labelled with
d(e), hsd(e), and with its P node. Second, we perform a counting sort of EP

with respect to hsd(e). Third, we perform a second counting sort with respect
to d(e) considering the virtual edges in the order obtained by the first sort. At
this point we have that the elements of EP are sorted according to the value of
their depth and, secondarily, with respect to their highest side depth. Finally,
we scan EP and distribute the edges in their proper skeletons. All this requires
linear time.

5.4 The Embedding-Construction Phase

In the Embedding-Construction phase we first perform a bottom-up traver-
sal of T in which the c-planarity conditions are verified for each node µ and
T is decorated with suitable embedding descriptors. Secondly, we perform a
top-down traversal of T producing a c-planar embedding for graph G taking
into account the values computed for each node µ of T .

Let µ be the current node in the bottom-up traversal of T , let u and v be its
poles (assumed arbitrarily ordered at the beginning of the computation), and
let e′ be the virtual edge which represents µ in the skeleton of its parent µ′

and let high(e′) be a label associated to it. Suppose skeleton(µ) has been
embedded and let Γµ be its c-planar embedding. We denote right (left) the side
that remains on the right (left) hand when traversing clockwise the external
face of Γµ from v to u. When computing Γµ we assign to high(e′) a value in
{right, left} which denotes which one between the right and left sides of Γµ

corresponds in pertinent(µ) to a path containing an edge e with d(e) = hsd(e′).
Hence, when processing node µ′, we use high(e′) to compute the Boolean value
of flip(µ), that specifies if Γµ has to be reversed when inserted into Γµ′ in the
final top-down traversal.

Provided that the conditions stated in Theorem 2 hold for node µ, we com-
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pute an embedding Γµ of skeleton(µ) (if more than one embedding is possible)
and the values flip(µ1), . . . , f lip(µk) for its children nodes µ1, . . . , µk, in such a
way to minimize lsd(e′). In the following it is specified how S, P and R nodes
are processed.

5.4.1 Embedding Construction for S Nodes.

If µ is an S-node skeleton(µ) has a fixed embedding. We set flip(µ1), . . . , f lip(µk)
so that the corresponding high(e1), . . . , high(ek) are turned towards the same
side of Γµ, say right. Consequently, the left side has minimum depth lsd(e′) =
mini lsd(ei).

5.4.2 Embedding Construction for R Nodes.

Suppose µ is an R node, with children µ1, . . . , µk. Let Γµ be the (unique)
embedding of skeleton(µ).

We have to test the c-planarity of Γµ, and to verify that for each edge e
of skeleton(µ) incident to two faces f1 and f2 of Γµ, with d(f1) ≤ d(f2), if
d(f1) ≤ hsd(e) and d(f2) ≤ lsd(e) (see Theorem 2).

Consider the plane graph G∗ obtained from Γµ by splitting each edge e of Γµ

with a vertex of depth d(e). It is easy to see that the embedding of skeleton(µ)
is c-planar if and only if G∗ is c-planar.

In order to test the c-planarity of a c-connected clustered graph C(G, T ),
where G has a fixed embedding Γ, we rely on Theorem 1. The statement of
Theorem 1 requires to check every cycle of G in order to prove the c-planarity
of Γ. This, of course, is not efficient, since we have an exponential number of
cycles in a plane graph. Observe, however, that the possible values of ac(c) are
as many as the nodes of T . Hence, Theorem 1 can be reformulated as follows:

Lemma 12 An embedding Γ of a c-connected clustered graph C(G, T ) is c-
planar if and only if there is no node α of T such that G(α), induced by the
vertices in α, contains a cycle c that encloses an edge that is not in G(α).

Let C(G, T ) be a c-connected clustered graph where G(V,E) is embedded,
let dmax be the height of T , and let D(V ′, E′) be the dual graph of G. For each
e ∈ E′, weight e with the depth of the corresponding primal edge. For each
integer i ∈ [0, dmax], we define the i-restricted dual Di as the subgraph of D
containing only edges with weight at most i and no isolated vertex.

Theorem 5 Let C(G, T ) be a c-connected clustered graph and let dmax be the
height of T . An embedding Γ of G is c-planar if and only if:

1. for each integer i ∈ [0, dmax], graph Di is connected and

2. an edge er of the root of T is on the external face.

Proof: First, we prove the necessity of Conditions 1 and 2. Suppose that no
edge of the root of T is on the external face of Γ. By Property 3 there is at least
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one edge er of the root of T in G. Hence, the lowest common cluster of the edges
on the external face includes edge er, and Theorem 1 applies. Suppose that the
graph Dk is not connected for a depth k in [0, dmax]. Since by definition Dk

has no isolated vertex, each connected component of Dk contains at least one
edge. Denote with Cr the connected component containing an edge er on the
external face and denote with e′ an edge contained into a connected component
C′ 6= Cr. Consider all edges of D attached to a vertex of C′ which are not in
C′. These edges are not in Dk and the corresponding edges of G form a cycle c.
By Property 2, we have that edges in c can not be shared between two clusters
of level k. Hence, there exists a cluster α of level k containing the cycle c which
separates edges er and e′, not belonging to Tα. Since er is on the external face,
e′ is enclosed by c and Lemma 12 applies.

On the contrary, suppose that the embedding Γ is not c-planar. We show
that both Conditions 1 and 2 can not be verified. By Lemma 12 there exists a
node α of T such that the subtree Tα contains a cycle c that encloses an edge e
which is not in Tα. Consider a path p connecting e to c. By Property 2, p has
an edge e′, enclosed in c, that belongs to a proper ancestor of α. By Condition
2 and by the fact that er is not part of c, we have that er is not enclosed by
c. Hence, each path of D connecting the two edges corresponding to er and e′

uses at least one edge corresponding to an edge of c. It follows that Dk is not
connected. 2

A result similar to Theorem 5 has been presented in [9]. We have the fol-
lowing lemma.

Lemma 13 Let G be an embedded planar graph, let D be its dual with edges
weighted with the depths of the corresponding edges of G. Each i-restricted dual
Di, with i ∈ [0, dmax], is connected if and only if the minimum spanning tree
mST (D) of D, rooted at any vertex vr of D0, is such that edges of non-decreasing
weights are encountered when traversing each path p from vr to a leaf.

Proof: First observe that the i-restricted duals Di, for i ∈ [0, dmax], are the
subgraphs of D restricted to the faces and the edges with weight less or equal
than i, where each face is given the minimum weight of its incident edges.
Also, observe that a weighted graph H is connected if and only if it admits
a (minimum) spanning forest mSF (H) which is a single (minimum) spanning
tree mST (H). Therefore, in order to check if each Di is connected we could
test whether it admits a minimum spanning tree mST (Di). Further, since we
weighted the edges of D with the depth of the corresponding edges of G, we
have that mSF (Di) is a subgraph of mST (Di+1).

If mSF (Di) is not connected for some i then each path in Dk connecting
two nodes on two different components of mSF (Di) uses at least one edge of
weight greater than i. Hence, all paths connecting vr to a node v that belongs
to a different component (tree) of mSF (Di) have at least one edge with weight
greater than i. It follows that the minimum weight path between vr and v is
not monotonically non-decreasing. Suppose now that mST (Dk) has a path p
from vr to a leaf which is not monotonically non-decreasing, i.e., p contains at
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least a sequence of edges of weight j preceded by edge e1 with weight w1 < j
and followed by edge e2 with weight w2 < j. Let i be the maximum between
w1 and w2. Since mSF (Di) is a subgraph of mST (Dk), we have that mSF (Di)
contains e1 and e2, but does not contain the path p, hence it is not connected.

2

The conditions of Lemma 13 can be used to check the c-planarity of the
embedding of the plane graph G∗ in linear time. Let D∗ be the dual of G∗. We
compute a minimum spanning tree mST (D∗) of D∗. As D∗ is planar, mST (D∗)
can be constructed in O(n∗), where n∗ is the number of nodes of D∗ [4, 26].
Then, we easily check in O(n∗) time that the depths are monotonically non-
increasing when traversing mST (D∗) from the root to the leaves.

Consider each children µi corresponding to ei. Edge ei is incident to two
faces, f1 and f2 for which we assume w.l.o.g. d(f1) ≤ d(f2). If d(f1) > hsd(e)
or d(f2) > lsd(e) the algorithm fails since the graph is not c-planar. The
value of high(µi) identifies one of the two faces of ei, we call it fhigh. We
distinguish two cases: (i) fhigh is an internal face of Γµ. If f1 = fhigh then
we set flip(µi) = false, otherwise flip(µi) = true. (ii) fhigh is the external
face. We preferentially embed the lowest side into an internal face. Namely, let
flow be the opposite face of fhigh with respect of ei. If d(flow) ≤ hsd(e) then
flip(µi) = true otherwise flip(µi) = false. This can be done in linear time.

We compute lsd(e′) and high(e′) in the following way. We consider the
ordered split pair {u, v} of e′ and we call br (bl) the path on the external face of
Γµ connecting u to v clockwise (counterclockwise). For each edge ei on br (bl),
let wr,i (wl,i) be the depth of the side of ei to be turned towards the external
face according to flip(ei) computed above and dr = miniwr,i (dl = mini wl,i).
If dl < dr, we set lsd(e′) = dr and high(e′) = left otherwise we set lsd(e′) = dl

and high(e′) = right. Observe that, the procedure according to which flip(µi)
are computed assures that the embedding described is one with maximum value
of lsd(e′) among the possible c-planar embeddings of pertinent(e′).

5.4.3 Embedding Construction for P Nodes

If µ is a P node, we have to test the conditions stated in Theorem 2 for
P nodes. If all the conditions hold, we construct a c-planar embedding for
skeleton(µ) which maximizes the value of lsd(e′), otherwise the graph is not
c-planar. Thanks to the Preprocessing phase, we have a list I(µ) where all
the virtual edges of skeleton(µ) appear ordered with respect to the �e relation-
ship defined as follows: an edge e1 precedes e2 (e1 �e e2) if d(e1) > d(e2) or if
d(e1) = d(e2) and hsd(e1) ≥ hsd(e2).

Condition (a) of Theorem 2 asks to check that skeleton(µ) does not contain
three pairwise incompatible edges. This can be done by checking the bipar-
titeness of the incompatibility graph in a simple constructive way based on
Lemma 14.

Let e1 be the first element of I(µ). Condition (b) of Theorem 2 asks to test
for each edge e ∈ I(µ), with e 6= e1, if d(e) = lsd(e). Also, Condition (b) asks
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to test for each edge e ∈ I(µ), with e 6= e1, if d(e) ≤ lsd(e1). All these tests can
be easily done in time linear in the size of skeleton(µ).

The construction of the embedding of skeleton(µ) consists of the computa-
tion of the order of the edges of µ. Namely, the proof of Theorem 2 ensures that
a c-planar embedding of skeleton(µ) is such that edges are ordered into two
sequences IL = 〈el1 �e el2 �e . . . �e elp〉 and IR = 〈er1

�e er2
�e . . . �e erq

〉,
each one composed by compatible edges. If the incompatibility graph is bipar-
tite we will be able to construct IL and IR. Further, since we want to maximize
the value of lsd(e′), we search for a particular pair IL and IR such that the
difference between maxe∈IL

hsd(e) and maxe∈IR
hsd(e) is maximized.

The computation of IL and IR requires the use of the following lemma.

Lemma 14 Let I be a sequence of virtual edges ordered with respect to the �e

relationship, such that edges in I are pairwise compatible. Suppose e /∈ I is an
edge following all edges in I with respect to the �e relationship. If e is compatible
with the last edge in I then e is compatible with all edges in I.

Proof: Let elast be the last edge in I. Since e is compatible with elast and
elast �e e, we have that d(e) ≤ hsd(elast). Since all the edges in I are pairwise
compatible, we also have that d(elast) is less or equal than the highest side depth
of all edges in I. It follows that d(e) is less or equal than the highest side depth
of each edge in I, and therefore e is compatible with all edges in I. 2

We build two sequences I1 and I2 by inserting one by one the edges of
I(µ) into one of them. Namely, we start by inserting e1 in I1. Let ei be the
current edge and let e1,last and e2,last be the last inserted elements of I1 and
I2, respectively. If ei is incompatible with both e1,last and e2,last we conclude
that the incompatibility graph is not bipartite. If ei is incompatible with the
last element of one of the two sequences we insert it into the other sequence.
Otherwise, if ei is compatible with both e1,last and e2,last, then we insert it into
the sequence containing min{hsd(e1,last), hsd(e2,last)}. We set IL as the reverse
of I1 and IR = I2.

Since we insert an edge ei into a sequence only if ei is compatible with the
last element of the sequence, and the sequences are ordered with respect to
the �e relationship, Lemma 14 ensures that both IL and IR contain pairwise
compatible edges. If an edge e is compatible with both the sequences, inserting
it into the sequence with smaller value of highest side depth on the last edge
guarantees that the difference between maxe∈IL

hsd(e) and maxe∈IR
hsd(e) is

maximized. In fact, the following property holds:

Property 8 Let I be a sequence of edges ordered with respect to the �e rela-
tionship, such that edges in I are pairwise compatible. The last edge elast in I
has hsd(elast) = maxe∈I(hsd(e)).

According to the construction rules provided in the sufficiency proof of
the characterization given in Subsection 3.1, for each edge ei ∈ IL, we set
flip(ei) = true if high(ei) = right, and flip(ei) = false otherwise. Con-
versely, for each edge ei ∈ IR, we set flip(ei) = true if high(ei) = left, and
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flip(ei) = false otherwise. Finally, the value of lsd(e′) is maximum between
hsd(el1) and lsd(erq

). All the operations performed on a P node can be clearly
executed in linear time.

Finally, we compute the c-planar embedding of G. We start with the cur-
rent embedding equal to the skeleton of the child of the root of T and proceed
by means of a top-down traversal of T . For each node µ of T with children
µ1, . . . , µk, the embeddings of skeletons(µi) are merged into the current embed-
ding. If flip(µi) = true the embedding is flipped before the merge operation.
This computation is linear since each skeleton is flipped at most once.

The whole algorithm is summarized in Figures 6, 7, and 8. From the above
discussion we can state the following theorem.

Theorem 6 Given a c-connected clustered graph C(G, T ), such that G is bi-
connected, the above described algorithm tests the c-planarity of C, and, if C is
c-planar, computes a c-planar embedding of C in linear time.

6 Testing and Embedding Algorithm: General

Case

In this section we extend the algorithm presented in Section 5 to the case of
c-connected clustered graph whose underlying graph is planar and simply con-
nected.

The following lemmas permit to state the correctness of the algorithm.

Lemma 15 Let C(G, T ) be a c-planar clustered graph and let B be the block-
cutvertex tree of G. Let α be a cutvertex of B with parent µ and let {u, α} be a
split pair of µ. Suppose that in a c-planar embedding of C pertinent(α) appears
in an internal face of the embedding of pertinent(u, α). There exists a c-planar
embedding of C such that pertinent(α) is embedded in the external face of the
embedding of pertinent(u, α).

Proof: Suppose that there is no c-planar embedding of G unless pertinent(α) is
inside pertinent(u, α). This implies that in any drawing of C with pertinent(α)
embedded outside pertinent(u, α) at least one of the following two conditions
is verified: (i) there is a cycle c of depth d(c) > d(pertinent(u, α)) enclos-
ing pertinent(u, α); (ii) there are two cycles c1 and c2 of depth greater than
d(pertinent(α)) passing through pertinent(u, α) and enclosing the two faces
outside pertinent(u, α) (see the dotted and dashed cycles of Fig. 5). In case
(i), since c encloses both the faces outside pertinent(u, α), there can not be
a c-planar embedding with pertinent(α) inside pertinent(u, α). In case (ii),
from Fig. 5 it is apparent that the parts of the two cycles c1 and c2 outside
pertinent(u, α) form a cycle enclosing pertinent(u, α). Hence, there can not be
a c-planar embedding with pertinent(α) inside pertinent(u, α). pertinent(u, α).

2
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Figure 5: (a) A portion of the BC-tree for the proof of Lemma 15. (b)
The relationships between three subgraphs pertinent(µ), pertinent(u, α), and
pertinent(α), denoted p(µ), p(u, α) and p(α), respectively.

Lemma 16 Let C(G, T ) be a c-planar clustered graph and let B be the block-
cutvertex tree of G. Let α be a cutvertex of B with children µ1 and µ2. Sup-
pose that in a c-planar embedding of C pertinent(µ2) appears in an internal
face of the embedding of pertinent(µ1). There exists a c-planar embedding
of C such that pertinent(µ2) appears in the external face of the embedding of
pertinent(µ1).

Proof: Suppose that there is no c-planar embedding of G unless pertinent(µ2)
is not placed inside a face of pertinent(µ1). This implies that in any drawing of
C with pertinent(µ2) embedded outside pertinent(µ1) there is a cycle c of depth
d(c) > d(pertinent(µ2)) enclosing pertinent(µ2). Since c necessarily encloses µ1

and µ2, there can not be a c-planar embedding of C such that pertinent(µ2) is
placed inside a face of pertinent(µ1). 2

We now show a linear-time algorithm for testing and embedding a general
c-connected clustered graph.

BC-tree Decomposition. First, for each edge e of G we compute d(e). Sec-
ond, we compute the BC-tree B of G and root B to a block ν containing
an edge e such that d(e) = 0.

BC-tree Labelling. We traverse B bottom-up and compute for each cutvertex
ρi the depth of pertinent(ρi). This is done by taking the minimum depth
of the pertinents of the children blocks of ρi.

Block Preprocessing We perform a second bottom-up traversal of B and ex-
ecute on each block µ a variation of the Preprocessing phase for bicon-
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nected graphs, where the sorting phase is factored out and cut-vertices
are considered. Namely, for each block µ the following two steps are per-
formed.

SPQR-tree Decomposition. First, we compute an SPQR-tree Tµ root-
ed at any edge er whose depth is the minimum depth of the block.

Skeleton Labelling. For each node σ in Tµ, consider each edge e of
skeleton(σ) such that pertinent(e) is a single edge e′. We label e
such that hsd(e) = lsd(e) = d(e) = d(e′). We perform a bottom-up
traversal of Tµ in order to label each virtual edge e with d(e) and
hsd(e). Let e be a virtual edge of any skeleton. The value of d(e) is
computed with the same operations used for biconnected graphs. Let
ρ1, . . . , ρk be the cutvertices of µ contained in skeleton(e) that are
not poles of e, possibly comprehensive of the parent of µ. The value
of hsd(e) is the minimum of the highest side depths of the edges of
skeleton(e) and the depths of pertinent(ρi).

This implies that the parent cutvertex of µ is adjacent to a face f with
lowest depth in the computed embedding for µ. As stated in 4 the
external face can be changed so that the parent cutvertex is incident
to the external face and hence the condition of Theorem 4, modified
as in Section 5.1, is verified.

Edges Sorting. We simultaneously sort the edges of all P nodes of all the com-
puted SPQR-trees with respect to the value of their depth, and secondarily
with respect to their highest side depths. We use a strategy analogous to
that used for biconnected graphs in order to preserve the linearity of this
algorithmic step.

Block Embedding Construction. For each block µ we consider its SPQR-
tree Tµ and perform a bottom-up traversal of it. We check if a non-
planarity condition (see Theorem 2) is verified for the current node σ,
possibly computing a c-planar embedding of skeleton(σ) and the value
of lsd(e) for the virtual edge e which represents σ in the skeleton of its
parent σ′.

In the case σ is a P node, the test of the c-planarity conditions, the com-
putation of the embedding of skeleton(σ), and the computation of lsd(e)
follow the same rules described for biconnected graphs (see Section 5).

In the case σ is an S node, we proceeds as for biconnected graphs. Plus,
consider each vertex ρ of skeleton(σ) which is also a cutvertex and is not
a pole of σ. All the blocks that are children of ρ in B are embedded in the
side where all the highest sides of the children of σ in T are embedded.
The correctness of this approach is implied by Lemmas 15 and 16.

In the case σ is an R node, the existence of cutvertices in skeleton(σ) must
be taken into account. Besides the tests performed for the biconnected case
we have to make sure that the second condition of Theorem 4, modified as
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in Section 5.1, is verified. Namely, each cutvertex ρ that is not a pole of
σ must be incident to a face f of skeleton(σ) with d(f) less or equal than
the depth of pertinent(ρ). When choosing f , an internal face is always
preferred if it respects this condition. All blocks that are children of ρ
in B are embedded in f . The correctness of this approach is implied by
Lemmas 15 and 16. If such a face does not exist the algorithm fails since
the graph is not c-planar.

We compute flips(·) of the children of σ as for biconnected graphs. When
computing lsd(e′) and high(e′) we proceed as for the biconnected graphs
but for the computation of dl and dr, see Section 5 Embedding Con-

struction for R Nodes. Namely, the computation of dr (dl) must take
into account the depth of the cutvertices in br (bl) that have their blocks
embedded in the external face of skeleton(σ).

Observe that, as in the biconnected case, the adopted procedure assures
that the embedding described by flip(·) and by the choices on the cutver-
tices, is one with minimum value of lsd(e′) among the possible c-planar
embeddings of pertinent(e′).

In the case σ is the unique child of the root of Tµ with poles u and v,
besides the regular operations described above, we check if u or v are
cutvertices and embed all their blocks in the external face.

The reporting of the embedding of µ is performed as for biconnected
graphs.

Block Re-rooting and Merging. We consider the computed embedding Γµ

of each block µ of B and we adopt as external face of Γµ a face with
minimum depth incident to the parent cutvertex of µ. We merge together
the obtained embeddings of the blocks.

The whole algorithm is summarized in Figure 9. Due to the above description
the following theorem holds.

Theorem 7 The c-planarity of a c-connected clustered graph can be tested, and
possibly a c-planar embedding can be built, in linear time.

7 Comparison with Previous Results

Few algorithms have been described in the literature to test the c-planarity of a
c-connected clustered graph and possibly compute a c-planar embedding of it.

The algorithm by Feng, Cohen, and Eades [20, 19], which has quadratic-time
complexity, has been regarded for a long time as the only algorithm available
for implementation. It was noted, though, that the results by Lengauer [25],
based on graph grammars, could be used to compute a c-planar embedding of
a graph in linear time with respect to the grammar size [9]. However, it is quite
easy to find examples of clustered graphs whose description in terms of graph
grammars is quadratic in the number of the vertices.
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In [9] Dahlhaus presented an algorithm for c-planarity testing and embedding
of c-connected clustered graphs, both in the case of biconnected and of simply-
connected underlying graphs. Dahlhaus’ algorithm has several differences and
similarities with respect to the algorithms described in Sections 5 and 6 that we
are going to discuss hereunder.

The main similarity is that both algorithms are based on the SPQR and BC-
tree decomposition of the graph. However, in [9] SPQR-trees are not explicitly
mentioned, the decomposition is improperly referred to as a “graph grammar”
decomposition, and the distinction between a structural component and the
corresponding pertinent graph is sometimes blurred.

The main difference, instead, is that the algorithm in [9] is based on a char-
acterization of c-planar embeddings, while the approach described in this paper
is based on a characterization of c-planar graphs. Such a characterization, which
relies on well-established and solid graph theoretic concepts, is provided in Sec-
tion 3. A characterization similar to that used in [9] is provided, instead, by
Theorem 5.

Our approach allows us to directly attribute a non-c-planarity to the inter-
play between the clusters hierarchy and the structure of the graph, rather than
to a particular embedding of it and our definitions are always referred to a graph
and its SPQR or BC-tree decomposition (see, for example, the role played by
the concept of c-planar skeleton). Also, a beneficial consequence of our charac-
terization is that a c-planar embedding of the graph can be incrementally built
until the characterization conditions hold. Otherwise, the algorithm terminates
reporting the non-c-planarity of the clustered graph with a clear identification
of the reason for its failure. In contrast, given a clustered graph, the algorithm
described in [9] always computes a (possibly non-c-planar) embedding of it.
Subsequently, a c-planarity test has to be performed on the produced embed-
ding in order to check whether it is actually c-planar. This strategy relies on
the assumption that if the clustered graph admits some c-planar embeddings,
one of them is indeed found by the algorithm. However, the correctness of this
assumption is not proved.

Although some algorithmic steps are only sketched in [9], it is possible to
recognize several other points in which the two algorithms differ and in which
the approach described in this paper is, in our opinion, easier to understand
and to implement. For example, when labeling a virtual edge with its depth, we
simply compute a maximum spanning tree of the skeleton of the corresponding
component (see Section 5.3 and Lemma 11). In [9], the concept that plays a role
analogous to the depth of a virtual edge is the “axis weight” of a component,
which is computed by means of a circuitous process involving a spanning tree
of the whole graph and a classification of the components into “social” and
“introverted” ones.

Also, the embedding of a P-node is performed in [9] by means of a complex
machinery requiring the computation of a spanning forest of a suitable graph.
Our approach immediately detects a non-c-planarity and then, if it is possi-
ble, computes a c-planar embedding with an intuitive greedy algorithm (see
Lemma 14 and the following description).
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Further, note that the algorithm in [9] has quadratic-time complexity if im-
plemented as described in the paper. In fact, the computation of the embedding
of each P-node requires to sort the parallel components based on integer labels
which, in the worst case, range in [1, n]. Since the number of P-nodes is O(n),
this operation clearly yields an overall O(n2) time complexity. Conversely, our
algorithm performs a counting sort of all virtual edges corresponding to P-nodes
only two times in the preprocessing phase, preserving linearity. Such a strat-
egy could be incorporated into the algorithm in [9] amending its complexity
problem.

Apart from these algorithmic differences, the solid theoretic foundations of
the algorithm described in this paper allows us to focus on structural properties
rather than on implementation codings, providing new insight into the interplay
between the inclusion tree and the graph decomposition trees. For example, the
“weight” of a cluster is defined in [9] as the number of vertices of the graph
contained into the cluster, and is extensively used in all main statements. On
the contrary, we base our characterizations on the natural concept of inclusion
between clusters, which is accounted for by the lowest common ancestor rela-
tionship. In Section 5.1, we show that, since when we need to compare two
clusters one is the ancestor of the other, the concept of lowest common ancestor
can be replaced, for the convenience of the implementation only, by any function
of a large family, of which the “weight” is only an example (we use the depth,
instead).

8 Conclusions and Open Problems

In this paper we present the first characterization of c-planarity for a c-connected
clustered graph C(G, T ), both in the case that G is biconnected and in the gen-
eral case. Based on such a characterization, we provide a linear-time algorithm
to test the c-planarity of C. If C is non-c-planar, our algorithm identifies a struc-
tural element responsible for non-c-planarity. The algorithm is fully described
in terms of elementary steps and is easily implementable in linear time.

One of the most interesting open problems in this field is that of stating
the complexity of the c-planarity testing for non-connected clustered graphs.
However, in our opinion, the c-planarity of c-connected clustered graphs still
deserves further investigation. For example, it would be really interesting to
provide in this context a characterization in terms of obstructive patterns, anal-
ogous to K3,3 and K5 in the Kuratowski’s theorem. Also, the investigation of
c-planarity with additional constraints may be interesting from an applicative
point of view.
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C-planarity algorithm for biconnected graphs

input: A c-connected clustered graph C(G, T ), where G is a planar biconnected graph

output: A c-planar embedding of G if C is c-planar, a node of T violating the c-
planarity conditions otherwise

Preprocessing Phase

for all edge e ∈ G do
compute d(e), hsd(e), lsd(e)

end for
compute the SPQR tree T of G, rooted to an edge with d(e) = 0
for all node µ in T in post-order traversal do

let e′ be the virtual edge representing µ in the skeleton of its parent node.
hsd(e′) = mine∈skeleton(µ) hsd(e)
if µ is an S node then

d(e′) = mine∈skeleton(µ) d(e)
else if µ is a P node then

d(e′) = maxe∈skeleton(µ) d(e)
else if µ is an R node then

Compute a Maximum Spanning Tree MST of skeleton(µ)
Let p be the path between the poles in MST .
d(e′) = d(p)

end if
end for
sort the edges of each P node using a single counting sort.

Embedding Construction Phase

for all node µ in T in post-order traversal do
if µ is an S node then

for all e ∈ skeleton(µ) do
if high(e) = left then

flip(e) = true

else
flip(e) = false

end if
end for
lsd(e′) = mine∈skeleton(µ) lsd(e)
high(e′) = right

else if µ is an P node then
if ProcessPNode(µ,e′)=False then

return µ

end if
else if µ is an R node then

if ProcessRNode(µ,e′)=False then
return µ

end if
end if

end for
construct the c-planar embedding by performing a top-down traversal of T and
considering values of flip(.)
return the embedding of G

Figure 6: The c-planarity testing and embedding algorithm for c-connected
clustered graphs whose underlying graph is biconnected.
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Procedure ProcessPNode(µ,e′)

{The edges of skeleton(µ) are already ordered in a list I(µ)}
let e1 be the first element of I(µ)
for all e 6= e1 in skeleton(µ) do

if d(e) 6= lsd(e) or d(e) > lsd(e1) then
Return False

end if
end for
initialize lists IL = {e1} and IR = {}
for all e 6= e1 in skeleton(µ) do

el=last element in IL, er=last element in IR

if e is incompatible with el then
if e is incompatible with er then

return False
else

append e to IR

end if
else if e is incompatible with er then

append e to IL

else
append e to the list containing min{hsd(el), lsd(er)}

end if
end for
the embedding of skeleton(µ) is ILIR, where IL is the reverse of IL

for all e in IL do
if high(e) 6= left then

flip(e) = true

end if
end for
for all e in IR do

if high(e) 6= right then
flip(e) = false

end if
end for
lsd(e′) = max{mine∈IL

hsd(e), mine∈IR
hsd(e)}

if hsd(el) ≤ hsd(er) then
high(µ) = left

else
high(µ) = right

end if
return True

Figure 7: Testing and embedding procedure for P-nodes.
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Procedure ProcessRNode(µ,e′)

construct the graph G∗ from skeleton(µ)
compute the planar embedding of G∗ with the poles on the external face
compute the dual graph D of G∗

compute the minimum spanning tree mST of D

if mST is non-monotonic then
return False

end if
for all e in skeleton(µ) do

let f1 and f2 be the faces incident to e, with d(f1) ≤ d(f2)
if hsd(e) < d(f1) or lsd(e) < d(f2) then

return False
else

Let fhigh be the face incident to e identified by high(e)
if f1 is the external face AND hsd(e) ≥ d(f2) then

if f1 = fhigh then
flip(e) = true

else
flip(e) = false

end if
else

if f1 6= fhigh then
flip(e) = true

else
flip(e) = false

end if
end if

end if
end for
let {u, v} the ordered split pair of e′

let br the path on the external face of skeleton(µ) connecting u to v clockwise
let bl the path on the external face of skeleton(µ) connecting u to v counterclockwise.
for all ei ∈ br do

let wr,i be the depth of the side of ei to be turned towards the external face
end for
for all ei ∈ bl do

let wl,i be the depth of the side of ei to be turned towards the external face
end for
dr = mini wr,i

dl = mini wl,i

if dl < dr then
lsd(e′) = dr

high(e′) = left

else
lsd(e′) = dl

high(e′) = right

end if
return true

Figure 8: Testing and embedding procedure for R-nodes.
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C-planarity testing and embedding algorithm for connected graphs

input: A c-connected clustered graph C(G, T ), where G is a planar graph

output: “True” and a c-planar embedding of G if C is c-planar, “False” otherwise

Block Preprocessing Phase

for all edge e ∈ G do
Compute d(e), hsd(e), lsd(e)

end for
compute the BC tree B of G, rooted to a block containing an edge e with d(e) = 0
for all cutvertex ρ in B in post-order traversal do

compute the depth of pertinent(ρ)
end for
for all node µ in B in post-order traversal do

compute the SPQR tree Tµ rooted to an edge with minimum depth
For each non-virtual edge e ∈ Tµ compute d(e), hsd(e), lsd(e)
for all node σ ∈ Tµ in post-order traversal do

compute d(σ) as in the biconnected case
let ρi be the cutvertices in skeleton(σ) different from the poles
compute hsd(σ) = mini{hsd(ei), d(pertinent(ρi))}, with ei ∈ skeleton(σ)

end for
end for
Sort the edges of each P node of each block with a single counting sort
Block Embedding Phase

for all node µ in B do
for all node σ ∈ Tµ in post-order traversal do

let ρi be the cutvertices in skeleton(σ) different from the poles
if σ is an S node then

process σ as in the biconnected case
embed the blocks connected to ρi in the highest side of skeleton(σ)

else if σ is an P node then
process σ as in the biconnected case

else if σ is an R node then
test the condition on skeleton(σ) as in the biconnected case
if each ρi is not incident to a face f with d(f) ≤ d(pertinent(ρi)) then

return False
else

embed the blocks of ρi in a suitable (possibly internal) face f

end if
compute the flip for each virtual edge as in the biconnected case
compute lsd(σ) considering the blocks embedded on the external face
compute high(σ) considering the blocks embedded on the external face

end if
end for
construct the embedding Γµ of µ as in the biconnected case
let f be a face with minimum depth incident to the root cutvertex of µ

choose f as external face for Γµ

end for
merge the embedding of the blocks

Figure 9: The c-planarity testing and embedding algorithm for c-connected
clustered graphs
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