
Journal of Graph Algorithms and Applications
http://www.cs.brown.edu/publications/jgaa/

vol. 3, no. 4, pp. 3–29 (1999)

Drawing Clustered Graphs on an Orthogonal

Grid

Peter Eades

Department of Computer Science and Software Engineering
University of Newcastle

http://www.cs.newcastle.edu.au/

Qingwen Feng

Tom Sawyer Software
http://www.tomsawyer.com/

Hiroshi Nagamochi

Department of Applied Mathematics and Physics
Kyoto University

http://www.kyoto-u.ac.jp/

Abstract

Clustered graphs are graphs with recursive clustering structures over
the vertices. For graphical representation, the clustering structure is rep-
resented by a simple region that contains the drawing of all the vertices
which belong to that cluster. In this paper, we present an algorithm which
produces planar drawings of clustered graphs in a convention known as
orthogonal grid rectangular cluster drawings. If the input graph has n
vertices, then the algorithm produces in O(n) time a drawing with O(n2)
area and at most 3 bends in each edge. This result is as good as existing
results for classical planar graphs. Further, we show that our algorithm
is optimal in terms of the number of bends per edge.

Communicated by Giuseppe Di Battista and Petra Mutzel.
Submitted: May 1998. Revised: December 1998 and April 1999.

This work was supported by a research grant from the Australian Research Council

and a grant from the Kyoto University Foundation. The work was partially car-

ried out while the second and third authors were visiting the University of Newcas-

tle. Authors’ email addresses: eades@cs.newcastle.edu.au, wfeng@tomsawyer.com,

naga@kuamp.kyoto-u.ac.jp.

P. Eades et al., Drawing Clustered Graphs, JGAA, 3(4) 3–29 (1999) 4

1 Introduction

Graphs are commonly used to model relational information in computing. Many
software systems need a graph drawing function. Examples include CASE
tools [50], management information systems [22], software visualization tools [49],
and VLSI design tools [20]. Graph drawing algorithms aim to produce drawings
which are easy to read and easy to remember. Many graph drawing algorithms
have been designed, analyzed, tested and used in visualization systems [7].

With increasing complexity of the information that we want to visualize,
more structures are needed on top of the classical graph model. Clustered
graphs are graphs with recursive clustering structures (see Figure 1). This type
of clustering structure appears in many structured diagrams [20, 26, 28, 38].

Drawing algorithms for clustered graphs are difficult. Heuristic methods for
drawing similar structures have been developed by Sugiyama and Misue [30, 39],
North [31], and by Madden et al. [25]. Algorithms for constructing straight-line
drawings of clustered graphs are given in [9, 10, 15]; note, however, that straight-
line drawings of clustered graphs can require exponential area [15].

In this paper, we present a linear time algorithm which produces planar
drawings of clustered graphs in a convention called “orthogonal grid rectangu-
lar cluster drawings”. We apply a technique to order the clusters of the graph
recursively, and we use a “visibility representation” for directed graphs to pro-
duce our drawings.

SU UNSW

Griffith

QUT

UQJCU

Ncle UTS

UNE

Deakin

LaTrobe

MU

Monash

Victoria

Melbourne

Sydney

NSW

Queensland
Brisbane

Figure 1: An example of a clustered graph.

P. Eades et al., Drawing Clustered Graphs, JGAA, 3(4) 3–29 (1999) 5

1

2
4

7

8

3

6

5

1

2

3

4

6

8

7

5

(b)(a)

Figure 2: (a) A planar graph. (b) A visibility representation of the graph.

The orthogonal grid drawing convention appears in a number of applica-
tions, such as VLSI circuit design [27, 29, 47, 48] and diagrammatic interfaces
for relational information systems [1, 42, 32, 35, 40]. Under the orthogonal
grid drawing convention, minimizing the number of bends and minimizing the
area are the main criteria both for diagram readability and for VLSI design
applications.

For classical graphs, several basic results regarding planar orthogonal grid
drawings have appeared in the literature. It has been shown by Valiant [48]
that any planar graph of degree at most 4 admits a planar orthogonal grid
drawing with area O(n2); further, there are graphs which need quadratic area.
Tamassia [41] presented an O(n2 logn) time algorithm that computes a planar
orthogonal grid drawing with a given planar embedding so that the number
of bends is minimized. Garg and Tamassia [19] have shown that if the planar
embedding is not given, then the problem is NP-hard.

Several linear time algorithms for planar orthogonal grid drawings of classical
graphs have been developed. Tamassia and Tollis [44, 45] have presented an
algorithm that outputs drawings with O(n2) area, where n is the number of the
vertices of the graph. If the graph is biconnected, then there are at most 2n +4
bends in the drawing; otherwise, there are at most 2.4n + 2 bends. Further,
there are at most 4 bends in each edge. If the graph is biconnected, then all but
2 edges have at most 2 bends. Kant [23, 24] has presented an algorithm which
improves the result of Tamassia and Tollis in some cases. For triconnected
graphs, Kant’s algorithm draws on an n × n grid with at most 2 bends per

P. Eades et al., Drawing Clustered Graphs, JGAA, 3(4) 3–29 (1999) 6

edge (if n > 6), and the total number of bends is no more than d3n/2e + 4.
If the graph is connected with degree at most 3, then the algorithm draws on
an bn/2c × bn/2c grid with at most 2 bends in each edge and no more than
bn/2c + 1 bends in total. Even and Granot [11] have presented an algorithm
such that for any planar graph with degree at most 4, the drawing has O(n2)
area, and there are at most 3 bends in each edge. Lower bounds on the area
and the number of bends for planar orthogonal drawings of graphs have been
presented by Tamassia, Tollis and Vitter [46], and by Biedl [4].

Another useful representation for planar graphs is the visibility representa-
tion [36, 43]. Figure 2 shows a planar graph and a visibility representation of
the graph. Visibility representation is related to orthogonal drawing in that it is
often used as a basis for constructing an orthogonal drawing. Several orthogonal
drawing algorithms [11, 44, 45] first construct a visibility representation of the
graph, then transform it to an orthogonal drawing.

In Section 3, we present an algorithm for planar drawing of clustered graphs
using the same approach. Given an n vertex clustered graph of maximum degree
4, our algorithm produces in O(n) time an orthogonal grid rectangular cluster
drawing with O(n2) area and with at most 3 bends in each edge. This result is
as good as the results for classical planar graphs [11, 24, 45]. Further, Section
4 presents a class of graphs each of which has a set of Ω(n) edges each of which
require at least 3 bends; thus there is no algorithm that can improve on the
worst case performance of our algorithm with respect to the number of bends
per edge. A byproduct of our method is a visibility algorithm for clustered
graphs; given an n vertex clustered graph (with no limit on the degree), the
algorithm produces a visibility representation where the clusters are represented
by rectangles. A clustered graph, together with the visibility representation
and orthogonal drawing produced by our algorithm, is in Figure 3. Section 5
concludes with some extensions of our work and some open problems.

2 Terminology

A clustered graph C = (G, T) consists of an undirected graph G = (V, A) and a
rooted tree T = (V,A) such that the leaves of T are exactly the vertices of G.
For a node ν in T , let chl(ν) denote the set of children of ν , and pa(ν) denote
the parent of ν (if ν is not the root). Each node ν of T represents a cluster V (ν)
of the vertices of G that are leaves of the subtree rooted at ν . The subgraph of
G induced by V (ν) is denoted by G(ν). Note that tree T describes an inclusion
relation between clusters. If a node ν ′ is a descendant of a node ν in the tree
T , then we say the cluster of ν ′ is a sub-cluster of ν .

In a drawing of a clustered graph C = (G, T), graph G is drawn as points
and curves as usual. For each node ν of T , the cluster is drawn as simple closed
region R that contains the drawing of G(ν), such that:

(1) the regions for all sub-clusters of ν are completely contained in the interior

P. Eades et al., Drawing Clustered Graphs, JGAA, 3(4) 3–29 (1999) 7

of R;

(2) the regions for all other clusters are completely contained in the exterior
of R;

(3) if there is an edge e between two vertices of V (ν) then the drawing of e is
completely contained in R.

We say that the drawing of edge e and region R have an edge-region crossing

��
��
��
��

��
��
��
��

��
��
��
��

����

��
��
��
��

��
��
��
��

���
���
���
���

����

��
��
��
��

���
���
���
���

������

��
��
��
��

����

��
��
��
��

������
��
��
��

��
��
��
��

��
��
��
��

����

������

��
��
��
�� ������

������

(c)

�
�
�
�
�

�
�
�
�
�

(a)
(b)

Figure 3: (a) A clustered graph, (b) The visibility representation output by our
algorithm, and (c) The orthogonal drawing output by our algorithm.

P. Eades et al., Drawing Clustered Graphs, JGAA, 3(4) 3–29 (1999) 8

if the drawing of e crosses the boundary of R more than once. A drawing of a
clustered graph is c-planar if there are no edge crossings or edge-region crossings.
If a clustered graph C has a c-planar drawing then we say that it is c-planar.

A clustered graph C = (G, T) is a connected clustered graph if each cluster
induces a connected subgraph of G. The following results from [14, 16] charac-
terize c-planarity in a way which can be exploited by our drawing algorithms.

Theorem 1 A connected clustered graph C = (G, T) is c-planar if and only if
the graph G is planar and there exists a planar drawing D of G, such that for
each node ν of T , all the vertices and edges of G−G(ν) are in the external face
of the drawing of G(ν).

Let C1 = (G1, T1) and C2 = (G2, T2) be two clustered graphs such that T1

is a subtree of T2 and for each node ν of T1, G1(ν) is a subgraph of G2(ν). We
say that C1 is a sub-clustered-graph of C2.

Theorem 2 A clustered graph C = (G, T) is c-planar if and only if it is a
sub-clustered graph of a connected and c-planar clustered graph.

From Theorem 2, we can assume that we are given a connected clustered
graph when drawing a c-planar clustered graph. For each vertex u, a doubly-
linked list A(u) of edges around u is given; the edges in A(u) appear around u
in the order of the list in the embedding. In the rest of the paper, we further
assume that in a clustered graph C = (G, T), every non-leaf node of tree T has
at least two children. Hence the size of T = (V,A) is O(|V| + |A|) = O(n).

Our techniques use the concept of planar st-graphs [2]. A planar st-graph
is a planar directed graph with one source s and one sink t, such that both the
source and the sink above can be embedded on the boundary of the same face,
say the external face.

3 Orthogonal Drawings for C-planar Clustered
Graphs

An orthogonal grid rectangular cluster drawing (OGRC drawing) of a clustered
graph maps the graph onto a grid, where edges are drawn as sequences of hor-
izontal and vertical segments, vertices are drawn on grid points, and region
boundaries for clusters are drawn as rectangles. Figure 1 is derived from an
OGRC drawing. In this section, we present an algorithm that produces a c-
planar OGRC drawing for a given c-planar clustered graph C = (G, T) in which
each vertex of G has degree at most 4 in G. The drawing has O(n2) area, and
at most 3 bends in each edge. The algorithm works in linear time, and consists
of three phases:

(1) visibility representation;

P. Eades et al., Drawing Clustered Graphs, JGAA, 3(4) 3–29 (1999) 9

(2) orthogonalization;

(3) bend reduction.

It is clear that OGRC drawings are restricted to clustered graphs in which each
vertex of G has degree at most 4 in G; however, the visibility representation
(phase 1) can be constructed for any c-planar clustered graph. We treat the
three phases in turn.

3.1 Visibility Representation

A visibility representation Γ for a planar st-graph G maps each vertex v into a
horizontal segment Γ(v), and each edge e into a vertical segment Γ(e) such that:

(1) Segments Γ(u) and Γ(v) are disjoint for distinct vertices u and v.

(2) If e = (u, v), then the segment Γ(e) has its bottom endpoint on Γ(u), its
top endpoint on Γ(v) and does not intersect any other segment.

A visibility representation of a clustered graph C = (G, T) consists of a
visibility representation of G as well as an isothetic rectangle for each node ν
of T , such that the rectangles satisfy the same constraints as the regions for
clusters as given in Section 2. An example is in Figure 3(b).

The first phase of our algorithm produces a visibility representation of the
input clustered graph. The input clustered graph is enhanced by adding some
dummy vertices and edges; this makes a classical graph. A visibility drawing of
this classical graph is made; the horizontal lines connecting two horizontal bars
(where each horizontal bar represents a dummy vertex) become the horizontal
sides of the cluster rectangles, and the vertical lines representing the dummy
edges become the vertical sides of the rectangles.

The visibility phase has the following steps:

1. Triangulate an input clustered graph C = (G, T), and compute a specific
kind of st-numbering, called a “c-st numbering”.

2. Find specific kinds of facial triangles, called “support triangles” for each
cluster in the triangulated graph; intuitively, these form the left and right
boundaries for each cluster.

3. Extend the original graph C = (G, T) with dummy vertices and edges.

4. Extend the c-st numbering.

5. Find a constrained visibility drawing, and replace the dummy vertices and
edges with rectangles.

P. Eades et al., Drawing Clustered Graphs, JGAA, 3(4) 3–29 (1999) 10

Our method depends critically on the constrained visibility algorithm of
Di Battista, Tamassia and Tollis [3]; this is reviewed and extended slightly in
the following subsection. Then we describe each of the steps above in turn.

The algorithm described by the steps above produces a visibility represen-
tation of the input clustered graph, and does not require that the input graph
has maximum degree 4. However, for Section 3.2, the input must be restricted
to maximum degree four, and some alignment constraints must be used to limit
the number of edge bends in the final drawing. These alignment constraints are
described in subsection 3.1.7.

Some remarks on the construction of the visibility representation are in sub-
section 3.1.8.

3.1.1 Constrained visibility drawings

The Constrained Visibility algorithm described in [3] takes as inputs a planar
st-graph G and a set Π of paths in G, and it produces a visibility drawing of G
so that the x-coordinates of Γ(e) and Γ(e′) are the same whenever e and e′ are
the edges in the same path in Π. The set Π is restricted to “non-crossing paths”
in the following sense. Two paths π1 and π2 of G are said to be non-crossing
if they are edge disjoint and do not cross at common vertices, that is, there is
no vertex v of G with edges e1, e2, e3 and e4 incident in this clockwise order
around v, such that e1 and e3 are in π1 and e2 and e4 are in π2.

For each vertex u in G, the original algorithm Constrained Visibility of [3]
chooses the y-coordinate of Γ(u) to be the length of the longest directed path
from s to u in G. In fact, we can vary the original algorithm to use a topological
order λ of an st-graph G as an additional input of Constrained Visibility: the
y-coordinate of Γ(u) is λ(u) for each u ∈ V . Looking at it in a different way, we
apply Constrained Visibility to the graph obtained by inserting λ(v)− λ(u)− 1
new vertices in each directed edge (u, v), regarding the resulting paths as part
of the set of non-crossing paths. This variation is important for some of the
details below.

In our algorithm, the y coordinates of the vertices are the “c-st numbers” of
the vertices, a specific kind of topological order, as defined in the next subsection.

3.1.2 Computing a c-st numbering

When transforming the clustered graph to a planar st-graph, we need to consider
the clustering structure so that the visibility representation that we produce re-
spects the clustering constraints. This is achieved by computing an st-numbering
of the vertices of G such that the vertices that belong to the same cluster are
numbered consecutively. We call this numbering c-st numbering. The c-st num-
bers are used for the y-coordinates of vertices; the consecutiveness ensures that
the vertices of each cluster occupy a vertical range. In this paper, a c-st num-
bering λ : V → {1, 2, . . . , n} of an n vertex clustered graph may have the same

P. Eades et al., Drawing Clustered Graphs, JGAA, 3(4) 3–29 (1999) 11

number assigned to more than one vertex, as long as it does not violate the
property that a vertex u(6= s, t) is adjacent to two neighbors v and w such that
λ(v) < λ(u) < λ(w).

Lemma 1 [9, 10] Suppose that C = (G, T) is a connected c-planar clustered
graph, and G is triangulated. Then a c-st numbering of C can be found in O(n)
time.

Proof: The algorithm for obtaining a c-st numbering is complex and given fully
in [9, 10]; here we briefly sketch the main thrust of the algorithm.

For a cluster ν ∈ V, let G∗(ν) be the (classical) graph obtained from G(ν) by
shrinking each child cluster V (ν ′), for each ν ′ ∈ chl(ν), to a single vertex. An st
numbering of G∗(ρ), where ρ is the root of the cluster tree T , can be computed in
linear time using the algorithm of Even and Tarjan [13]. Now suppose that ν is a
child of the root. In this case, we need to augment G∗(ν) (with vertices and edges
from G∗(ρ), ρ ∈ chl(ν)) and apply the algorithm recursively to the augmented
graph. Using the order of the children ν of ρ given by the st numbering of G∗(ρ),
together with the c-st numberings of each V (ν) provided by recursion, one can
obtain a c-st numbering of the complete clustered graph. 2

With this c-st numbering, we transform a clustered graph into a planar
st-graph by applying directions for edges of G according to the c-st numbering.

3.1.3 Find support triangles for each cluster

Next we show how to obtain the 4 bounding sides of the rectangle for a cluster
ν . To do this, we need some further terminology. We say that an edge is an
outward edge (resp., inward edge) of a cluster ν if its tail (resp., head) is inside
the cluster and its head (resp., tail) is outside the cluster.

As preprocessing, we introduce two new edges (s∗, s) and (t, t∗) with new
vertices s∗ and t∗ outside of G so that each cluster ν has an outward edge and an
inward edge. Then we triangulate the graph, as shown in Figure 4, introducing
two edges between s∗ and t∗; the use of these new edges is described later. The
resulting graph G∗ is clearly a planar st-graph with source s∗ and sink t∗.

Note that an outward edge for a cluster ν may well be an outward edge for
several clusters, and in fact the sum of the number of outward edges for cluster ν
over all clusters ν may be quadratic. We are aiming for a linear time algorithm;
to this end we identify a linear number of outward edges with which we can
form a rectangle for each cluster. Let L+(ν) and R+(ν) denote the leftmost
outward edge and the rightmost outward edge of a cluster ν ∈ V respectively
in G∗ (it is possible that L+(ν) = R+(ν)). Similarly, L−(ν) and R−(ν) denote
the leftmost inward edge and the rightmost inward edge of ν respectively.

Identifying the edges L−(ν), L+(ν), R−(ν) and R+(ν) helps to define new
dummy edges that will form the four bounding sides of the rectangle for a
cluster ν . There are at most four of these edges for each cluster, so that the

P. Eades et al., Drawing Clustered Graphs, JGAA, 3(4) 3–29 (1999) 12

G

s

t

t*

s*

Figure 4: Extending G to G∗.

total number of them is linear. The main difficulty is ensuring that the time
required to identify the edges is linear; the remainder of this subsection presents
the algorithm for this.

Note that for each node ν in T , L−(ν) and L+(ν) are contained in the same
facial triangle in G∗, since G∗ is triangulated. Similarly, R−(ν) and R+(ν) are
in the same facial triangle in G∗. A facial triangle which contains L−(ν) and
L+(ν) (or R−(ν) and R+(ν)) for a cluster ν is a support triangle of ν . Any
node ν in T has exactly two support triangles (one on its left, and one on its
right), where the added edges incident to s∗ or t∗ ensure the existence of support
triangles of the root cluster of G. The support triangles are used to compute the
edges L−(ν), L+(ν), R−(ν) and R+(ν) for all nodes ν in T . Firstly, however,
we must show how to compute the support triangles.

Let c(u, v) denote the least common ancestor of two nodes u and v in T . After
O(n) time preprocessing, c(u, v) can be found in O(1) time [21, 37]. Suppose
that τ = (u1, u2, u3) is a facial triangle with directed edges e1 = (u1, u2), e2 =
(u2, u3) and e3 = (u1, u3). If ν is a cluster such that u2 ∈ V (ν) and {u1, u3} ∩
V (ν) = ∅ then τ is a support triangle of ν ; see Figure 5(a). It is easy to
see that τ is a support triangle for all clusters ν on the path from u2 to µ =
min{c(u1, u2), c(u2, u3)} in T , where the minimum means to take the lower node
in T among the two; see Figure 5(b). Thus the following algorithm can be used
to identify the support triangles of each cluster:

P. Eades et al., Drawing Clustered Graphs, JGAA, 3(4) 3–29 (1999) 13

u2

u3

u1
cluster ν

(a)

µ

u1 u2

u3

T
root

(b)

τ

e1

e2

e3

Figure 5: Computing support triangles.

1. Pre-process tree T to prepare for computing c(u, v) for any pair u, v of
vertices of G.

2. For each facial triangle τ = (u1, u2, u3) of G with directed edges e1 =
(u1, u2), e2 = (u2, u3) and e3 = (u1, u3):

(a) compute µ = min{c(u1, u2), c(u2, u3)}
(b) Traverse T from u2 toward the root. Stop the traversal if we reach

µ, or if we encounter a node for which a support triangle has been
assigned. At each node ν traversed (except for the final node), we
assign τ as a support triangle for ν .

From [21, 37], steps 1 and 2(a) take linear time. For step 2(b), note that
since each cluster has two support triangles, each node of T is visited at most
twice. Thus the total running time is O(|T |), that is, linear.

Given the support triangles, it is easy to compute the edges L−(ν), L+(ν),
R−(ν) and R+(ν). For each cluster ν , L−(ν) = e1 and L+(ν) = e2 if e2 =
(u2, u3) is clockwise next to e1 = (u1, u2) around u2; R−(ν) = e1 and R+(ν) =
e2 otherwise. Clearly, the entire running time is O(|V|), that is, O(n).

3.1.4 Extending the graph with dummy vertices and edges

The next step in the algorithm is to modify G(ν) in G∗ recursively from top to
bottom of the tree T , using the edges L−(ν), L+(ν), R−(ν) and R+(ν). The
head and tail of a directed edge e are denoted by head(e) and tail(e) respectively.

P. Eades et al., Drawing Clustered Graphs, JGAA, 3(4) 3–29 (1999) 14

For each cluster ν , we add four dummy vertices `d(ν), `u(ν), rd(ν) and ru(ν),
then add six new edges (see Figure 6):

(tail(L−(ν)), `d(ν)),
(`d(ν), `u(ν)),
(`u(ν), head(L+(ν))),
(tail(R−(ν)), rd(ν)),
(rd(ν), ru(ν)) and
(ru(ν), head(R+(ν))).

The pairs (`d(ν), `u(ν)), (rd(ν), ru(ν)), (`d(ν), rd(ν)) and (`u(ν), ru(ν)) rep-
resent the four sides of a rectangle for ν in the final drawing of the clustered
graph. In T we place these dummy vertices as children of ν which will be new
leaves.

()νlu

()νld

()νru

()νrd

ν()+R

()ν-Rν()-L

ν+L ()

νG() ν()G

Figure 6: Modify G(ν), adding dummy vertices to represent the rectangle.

We modify every subgraph G(ν) recursively as above, obtaining an extended
graph F that includes the dummy vertices for the rectangles.

It can be easily verified that the leftmost outward edge of a cluster does not
change during the modification for the following reasons.

(i) The edge L+(ν) cannot be R−(ν ′) for any other cluster ν ′ (since the graph
G∗ is triangulated).

(ii) Since we apply the transformation from top to bottom, adding new edge
(`u(ν), head(L+(ν)) to G(ν) does not affect the definition of L+(ν ′), L−(ν ′)
or R−(ν ′) for any other cluster ν ′ which is not an ancestor of ν .

Similarly we do not have to recompute the rightmost outward, leftmost in-
ward and rightmost inward edges of a cluster during the modification. It follows
that the above modification can be completed in O(n) time.

P. Eades et al., Drawing Clustered Graphs, JGAA, 3(4) 3–29 (1999) 15

The resulting graph F is clearly a planar st-graph. It is trivial to add the
dummy vertices to T to make an extended cluster tree T ∗; this gives an extended
clustered graph C∗ = (F, T ∗). Since we add 4 dummy vertices and 6 dummy
edges for every node of T , F has O(n) vertices and edges.

3.1.5 Extending the c-st numbering

We extend the c-st numbering λ in C to a c-st numbering λ′ in C∗ such that,
for each cluster ν :

(i) vertices in V (ν) ∪ {`u(ν), `d(ν), ru(ν), rd(ν)} are numbered by λ′ consec-
utively, and

(ii) λ′(`d(ν)) = λ′(rd(ν)) < min{λ′(u) | u ∈ V (ν)}, and max{λ′(u) | u ∈
V (ν)} < λ′(`u(ν)) = λ′(ru(ν)).

To compute the numbering λ′, we consider the tree T of C, where the leaves
u1, . . . , un are arranged from left to right in the order of the c-st numbering
λ. We see that, for two consecutive leaves ui and ui+1, the number δi of new
dummy vertices w that satisfy λ′(ui) < λ′(w) < λ′(ui+1) is 2α− 1, where α is
the number of internal nodes in the path of T between ui and ui+1. Thus all δi

can be obtained by traversing such paths in O(n) time. Based on this, we can
easily extend the c-st numbering λ to a c-st numbering λ′ of F in O(n) time.

()νru

()νrd()νld

()νlu

()νld

()νlu ()νru

()νrd

νG() νG()

Figure 7: Forming a rectangle for a cluster.

3.1.6 Find a constrained visibility drawing

Using the dummy vertices `d(ν), `u(ν), rd(ν) and ru(ν) as corners of rectangles,
we can easily deduce the following result.

P. Eades et al., Drawing Clustered Graphs, JGAA, 3(4) 3–29 (1999) 16

Theorem 3 Let C = (G, T) be an n vertex clustered graph with a c-planar
embedding. There is a linear time algorithm which constructs a visibility repre-
sentation of G such that each cluster ν of C can be represented by a rectangle.

Proof: We obtain a visibility representation Γ of F with the vertices and
edges of each cluster ν drawn within a rectangle formed by Γ(`d(ν), `u(ν)),
Γ(rd(ν), ru(ν)) and two line segments (Γ(`d(ν)), Γ(rd(ν))) and (Γ(`u(ν)), Γ(ru(ν))),
as in Figure 7. Since this algorithm preserves the embedding of the input, it is
simple to form the rectangles.

Computing the c-st numbering takes linear time, and gives the y coordinate
of each vertex of G. The algorithm for finding support triangles, given in subsec-
tion 3.1.3, also takes linear time. Extending the graph with dummy vertices and
edges and extending the c-st numbering is trivial. Finding a visibility drawing
(e.g., using the algorithm of [3]) takes linear time. 2

vv

Figure 8: Alignment requirement for a vertex v.

Figure 9: Edge alignment rules.

P. Eades et al., Drawing Clustered Graphs, JGAA, 3(4) 3–29 (1999) 17

3.1.7 Edge alignment constraints

Theorem 3 does not use the constraints available in the constrained visibility
algorithm. However, looking ahead to the orthogonalization phase, we require
that some edges around a vertex are aligned. In the orthogonalization phase,
only graphs of maximum degree 4 are considered, and so the edge alignment
rules only apply to such graphs. The dummy edges introduced for triangulation
are not needed here, and the edge alignment constraints only apply at the
original vertices of the graph, and at the vertices `u(v), `d(v), ru(v), and rd(v),
of degree 2.

The purpose of the edge alignment constraints is to avoid unnecessary bends
in the orthogonal drawing. For example, suppose that a vertex v has two in-
coming edges and two outgoing edges; then we require that the right incoming
edge is aligned with the left outgoing edge (see Figure 8). The input of the
orthogonalization phase is restricted to clustered graphs C = (G, T) for which
the vertices in G have maximum degree 4. Thus Figure 9 illustrates all the cases
for our alignment requirements; the edges that are marked by thick lines are
required to be aligned.

All the above alignment requirements together form a complete specification
of the paths that are to be aligned for our visibility representation. Although
some of these paths share common vertices, they do not cross with each other.
This is because there is at most one path going through each original (non-
dummy) vertex of G, and at every dummy vertex, the paths originate from
distinct edges of G and therefore do not cross.

We apply the algorithm Constrained Visibility of [3] to the graph F de-
fined in subsection 3.1.4 with a c-st-numbering and the above requirements for
alignment. In the next phase, we perform orthogonalization operations on this
visibility representation.

3.1.8 Remarks on the visibility phase

The representation provided by Theorem 3 does not depend on the maximum
degree of the graph; it holds for any c-planar clustered graph. Note also that
the triangulation is necessary only for the computation of the c-st numbering
and the support triangles; the dummy edges inserted to make the triangulation
can be omitted after these steps.

3.2 Orthogonalization

For this phase, we assume that the input has maximum degree 4. Note that the
process of adding dummy vertices and edges does not increase the maximum
degree. To transform the visibility representation to an OGRC drawing, we only
need to perform some local operations at each vertex, transforming a horizontal
segment to a point. These local operations are illustrated in Figure 10; symmet-
ric cases for (a), (c), (d), (e) and (f) are omitted for brevity. Note that Figure 10

P. Eades et al., Drawing Clustered Graphs, JGAA, 3(4) 3–29 (1999) 18

covers all the cases that can appear, since we have required that certain edges
around a vertex are aligned. Further, note that a new row is added at every
source or sink of degree 4 (see Figure 10(h) and (i)). The number of rows and
columns becomes at most twice in in the resulting OGRC drawing.

3.3 Bend Reduction

In the OGRC drawing obtained from the previous phase, an edge is bent only
near its endpoints. Hence every edge can have at most 3 bends except in the
following case: the edge is between a source of degree 4 and a sink of degree
4 and it has 2 bends near each endpoint (see Figure 11). We show that this 4
bend case can be eliminated by making some adjustments in the drawing.

Note that graph G in a sub-clustered graph C = (G, T) may have multiple
sources or sinks. For a source or sink u of degree 4 in G, either the leftmost
edge or the rightmost edge gets 2 bends near it, but not both. We say that the

(a) (b) (c)

(d) (e)

(g)(f)

(h) (i)

Figure 10: Orthogonalization rules.

P. Eades et al., Drawing Clustered Graphs, JGAA, 3(4) 3–29 (1999) 19

leftmost or the rightmost edge of source (or sink) u is an extreme edge of u. An
edge e = (u, v) is a critical edge if e is an extreme edge of both u and v.

Suppose that there is an edge e = (u, v) that has 2 bends near u and another
2 bends near v. Then we fix one end u and rotate the edges around the other
end v, letting the edge e bend only once near v (see Figure 12).

However, this operation creates a new bend in the other edge e′ = (v, w) of
v which may be a critical edge. To avoid this, we construct an auxiliary graph
H from G as follows. Let H be the undirected subgraph induced from G by the
set of critical edges, where all isolated vertices are deleted and directions of the
edges are ignored. Note that the degree of any vertex in H is at most two. This
implies that each connected component in H is either a path or cycle. Thus
there is an assignment σ of direction of edges such that each vertex has at most
one outgoing edge and at most one incoming edge. Let tailσ(e) denote the tail
of a critical edge e in terms of such a direction σ. For each critical edge e, we
apply the above rotation procedure to tailσ(e) if tailσ(e) has 2 bends near it in
the current OGRC drawing. Clearly, after applying the rotation procedure (if
necessary) for all tails tailσ(e), there is no critical edge with four bends.

It is easy to see that the entire procedure for reducing bends can be per-
formed in O(n) time and the final OGRC drawing has an O(n) number of rows
and columns (and hence the height and width are O(n)).

Figure 11: An edge with 4 bends.

v

u

e

u

e

v

Figure 12: Reduce a bend on a critical edge e.

P. Eades et al., Drawing Clustered Graphs, JGAA, 3(4) 3–29 (1999) 20

3.4 The complete algorithm

The algorithm Orthogonal Grid Rectangular Draw is described as follows.

Algorithm 1 Orthogonal Grid Rectangular Draw
Input: an n vertex connected clustered graph C = (G, T)

of maximum degree at most 4, and a c-planar em-
bedding of C.

Output: a c-planar OGRC drawing of C.

(1) Construct a visibility representation:

(1.1) triangulate G and compute a c-st numbering λ on C;

(1.2) obtain graph F by modifying G to include the dummy vertices for the
rectangles, and compute a c-st numbering λ′ of the resulting clustered
graph C∗ = (F, T ∗);

(1.3) apply algorithm Constrained Visibility to F and λ′.

(2) Construct an OGRC drawing for C from the visibility representation produced
from the previous step, using local operations in Figure 10; obtain rectangles
for clusters from the visibility representation.

(3) Eliminate all the 4 bend edges by using a rotation procedure.

2

For an n vertex clustered graph C = (G, T), we can triangulate G in O(n)
time and compute a c-st numbering on C in O(n) time. Since algorithm Con-
strained Visibility takes linear time [3] in terms of the size of its input, and
the graph F has O(n) vertices and edges, step (1) of our algorithm takes O(n)
time. Clearly, step (2) takes O(n) time. As noted in Section 3.3, step (3) can
be carried out in O(n) time. These make our algorithm take O(n) time. Since
graph F has O(n) vertices, edges and bends, the height and width of the output
drawing are O(n), as observed in Section 3.3. We summarize the performance
of our algorithm in the following theorem.

Theorem 4 Let C = (G, T) be an n vertex connected clustered graph of max-
imum degree at most 4, with a c-planar embedding. The algorithm Orthogo-
nal Grid Rectangular Draw constructs in O(n) time a c-planar OGRC drawing
of C with O(n2) area, and with at most 3 bends in each edge.

P. Eades et al., Drawing Clustered Graphs, JGAA, 3(4) 3–29 (1999) 21

5 a 6 a 7

b1 b2 b3 b4

a 2 a 3 a 4a 1 a

B

A

Figure 13: The sub-clustered-graph I.

4 A Lower Bound for Bends

In this section, we present a class of c-planar embedded clustered graphs of n
vertices, for which every c-planar OGRC drawing requires Ω(n) edges bent more
than twice. This shows that our algorithm Orthogonal Grid Rectangular Draw
is optimal in the worst case (in terms of the number of bends in each edge).

To prove our result, let us first consider a small sub-clustered-graph I (see
Figure 13), which serves as the building block of our cluster graph. There are
two clusters A and B in the sub-clustered-graph I. Cluster A contains vertices
a1, a2, . . . , a7; cluster B contains vertices b1, b2, . . . , b4. We assume that I has
a fixed c-planar embedding; the orderings of the edges around cluster A and
cluster B are shown in Figure 14. The drawings that we discuss in the rest of
this section are all consistent with this embedding.

63 541 2 7 8 9 10

B

A

Figure 14: The embedding for clusters A and B.

P. Eades et al., Drawing Clustered Graphs, JGAA, 3(4) 3–29 (1999) 22

We prove the following lemma.

Lemma 2 In every c-planar OGRC drawing of I, there is at least one edge bent
more than twice.

Proof: In a c-planar OGRC drawing of I, cluster A and B are drawn as disjoint
rectangular regions. Without loss of generality, we assume that the rectangle for
A is drawn above the rectangle for B, and there is a horizontal line ` separating
them. Note that all the edges between A and B have to cross this horizontal
line `, and they cross the line ` in the order shown in Figure 14.

Consider the edge (a4, b1) and the edge (a4, b4), both incident to a4. Suppose
that the edge (a4, b1) has no bend above the line `; it follows that the other edge
(a4, b4) must have more than 2 bends above the line `. On the other hand, if the
edge (a4, b1) has one bend above the line `, then the other edge (a4, b4) must
have more than one bend above the line `. We deduce that at least one of these
two edges has more than one bend above the line `.

With out loss of generality, let us assume that the edge (a4, b4) has more
than one bend above the line `. Now consider the edge (a4, b4) together with
the edge (a7, b4). We can show that at least one of these has a total of more
than two bends, as follows. If the edge (a4, b4) has a bend below the line `, then
it has more than two bends in total; if the edge (a4, b4) has no bend below the
line `, then the other edge (a7, b4) must have more than two bends below the
line `.

Therefore, we have that there is at least one edge in I that has a total of
more than two bends. 2

Now we define a class of clustered graphs Φn (n = 1, 2, . . .) with sub-
clustered-graph I as the building block. Clustered graph Φn consists of a se-
quence of n copies of the sub-clustered-graph I (see Figure 15). The vertex a7 of
a previous copy of I also serves as the vertex a1 of the next copy of I. Clustered
graph Φn has two clusters An and Bn. Cluster An contains the vertices in the
cluster A of each sub-clustered-graph I; cluster Bn contains the vertices in the
cluster B of each sub-clustered-graph I. Clearly, Φn has 10n + 1 vertices.

By Lemma 2, we have the following theorem.

Theorem 5 In every c-planar OGRC drawing of Φn (n = 1, 2, . . .), there are
at least n edges bent more than twice.

5 Remarks

In this paper, we present a linear time algorithmOrthogonal Grid Rectangular Draw
that produces c-planar OGRC drawings with O(n2) area and with at most 3
bends in each edge. These results are as good as the results for classical pla-
nar graphs [11, 24, 45]. Lower bounds for the area of orthogonal drawings of

P. Eades et al., Drawing Clustered Graphs, JGAA, 3(4) 3–29 (1999) 23

1a a 7

b4b1

B n

A n

copies of .In

Figure 15: The construction of the clustered graph Φn.

classical graphs [48] imply that the area of the drawing produced by our algo-
rithm is asymptotically optimal. Further, we show that the performance of our
algorithm is optimal in terms of the number of bends per edge.

Nevertheless, some open problems remain:

• Although the height and the width of our output drawings are both O(n),
our algorithm does not guarantee a good aspect ratio. In practice, our al-
gorithm may produce drawings which clearly prefer one dimension against
the other; this is because we use a visibility representation which is biased
to one dimension. As an example, note that Figure 1 could not be pro-
duced by our algorithm as it is. Recent investigations of “2-dimensional
visibility representations” [6, 17] of planar graphs (each vertex is repre-
sented by a box and each edge is represented by a horizontal or vertical
segment between the sides of the boxes) may prove useful in terms of the
aspect ratio of the drawing.

• Even and Granot [12] have presented some algorithms for grid layout of
block diagrams. Although the drawing requirements there are different
from the requirements of drawing clustered graphs, it would be worthwhile
to investigate whether we can borrow some of the techniques there and
for use in drawing clustered graphs.

• In recent years, many results have been achieved for orthogonal drawings
of non planar graphs [5, 4, 33, 34]. It seems very profitable to use these
results to extend our algorithm to non planar clustered graphs.

• This paper deals only with graphs of degree at most four. In practice,
algorithms must deal with higher degree vertices. Our methods can be

P. Eades et al., Drawing Clustered Graphs, JGAA, 3(4) 3–29 (1999) 24

Figure 16: Simulation of a degree 10 vertex with a cluster.

extended to such graphs by simulating the larger degree vertices with
clusters; for example, the cluster in Figure16 simulates a vertex of degree
10. It would be interesting to analyze this simulation. However, it is clear
that such a simulation increases the area of the drawing. It would be
useful to investigate whether the methods for solving the related problem
classical graphs [8, 18] can be extended to clustered graphs.

Finally, as a byproduct of our modification from a clustered graph C =
(G, T) to an extended clustered graph C∗ = (F, T ∗) in Section 3.1, we present
a new result in planar straight-line drawings of clustered graphs. In a planar
straight-line drawing of a clustered graph C = (G, T), edges are required to be
drawn as straight-lines and clusters must be drawn as convex polygons. The
question of whether every c-planar clustered graph admits a planar straight-
line drawing or not has been studied and answered affirmatively [9, 10, 14].
However, it is still open whether or not more regular convex bodies such as
circles and rectangles can be used for clusters in a planar straight-line drawing.
The results of this paper together with those in [9, 10] imply that a c-planar
clustered graph C = (G, T) admits a planar straight-line drawing with clusters
drawn as trapezoids, as follows.

We use the extended clustered graph C∗ = (F, T ∗) of C defined in Sec-
tion 3.1. Results in [9, 10] imply that for a given c-planar clustered graph
C = (G, T) and its c-st numbering λ, there is a planar straight-line drawing of
C with the following properties:

(i) the y-coordinate of each vertex u is its c-st number λ(u), and

(ii) the convex polygon for a cluster ν is the convex hull of points in V (ν).

The drawing can be obtained in O(n + D) time, where D denotes the total size
of convex polygons for clusters.

P. Eades et al., Drawing Clustered Graphs, JGAA, 3(4) 3–29 (1999) 25

By applying this result to the clustered graph C∗ extended from C and a
c-st numbering λ′ on C∗, we can obtain a planar straight-line drawing of C∗

in which the convex polygon for each cluster ν is a trapezoid formed by its
dummy vertices `d(ν), `u(ν), rd(ν) and ru(ν) (since λ′(`d(ν)) = λ′(`u(ν)) and
λ′(rd(ν)) = λ′(ru(ν))). This implies the following result.

Corollary 1 Let C = (G, T) be a c-planar clustered graph with n vertices. A
planar straight-line drawing of C in which each cluster is drawn as a trapezoid
can be constructed in O(n) time.

Acknowledgments

The authors wish to thank the referees for several useful suggestions.

References

[1] C. Batini, L. Furlani, and E. Nardelli. What is a good diagram? a prag-
matic approach. In Proc. 4th Int. Conf. on the Entity Relationship Ap-
proach, 1985.

[2] G. Di Battista and R. Tamassia. Algorithms for plane representations of
acyclic digraphs. Theoretical Computer Science, 61:175–198, 1988.

[3] G. Di Battista, R. Tamassia, and I.G. Tollis. Constrained visibility repre-
sentations of graphs. Information Processing Letters, 41:1–7, 1992.

[4] T. Biedl. New lower bounds for orthogonal graph drawings. In Franz J.
Brandenburg, editor, GD’95, volume 1027 of Lecture Notes in Computer
Science, pages 28–39. Springer-Verlag, 1995.

[5] T. Biedl and G. Kant. A better heuristic for orthogonal graph drawings.
Comput. Geom. Theory Appl., 9:159–180, 1998.

[6] P. Bose, A. Dean, J. Hutchinson., and T. Shermer. On rectangle visibility
graphs. In Stephen C. North, editor, GD’96, volume 1190 of Lecture Notes
in Computer Science, pages 25–44. Springer-Verlag, 1997.

[7] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing.
Prentice Hall, Upper Saddle River, NJ, 1999.

[8] Michael Doorley. Automatic Leveling and Layout of Data Flow Diagrams.
PhD thesis, Department of Computer Science and Information Sys tems,
University of Limerick, Ireland, August 1995.

P. Eades et al., Drawing Clustered Graphs, JGAA, 3(4) 3–29 (1999) 26

[9] P. Eades, Q-W. Feng, and X. Lin. Straight-line drawing algorithms for hier-
archical graphs and clustered graphs. Technical Report 96-02, Department
of Computer Science, The University of Newcastle, Australia, 1996.

[10] P. Eades, Q-W. Feng, X. Lin, and H. Nagamochi. Straight-line drawing
algorithms for hierarchical graphs and clustered graphs. Technical Report
98-03, Department of Computer Science, The University of Newcastle, Aus-
tralia, 1998.

[11] S. Even and G. Granot. Rectilinear planar drawings with few bends in
each edge. Technical Report 797, Computer Science Department, Technion,
Israel Institute of Technology, 1994.

[12] S. Even and G. Granot. Grid layout of block diagrams - bounding the
number of bends in each connection. In R. Tamassia and I. G. Tollis,
editors, GD’94, volume 894 of Lecture Notes in Computer Science, pages
64–75. Springer-Verlag, 1995.

[13] S. Even and R. E. Tarjan. Computing an st-numbering. Theoretical Com-
puter Science, 2:339–344, 1976.

[14] Q. Feng. Algorithms for Drawing Clustered Graphs. PhD thesis, Depart-
ment of Computer Science and Software Engineering, University of New-
castle, 1997.

[15] Q. Feng, R. Cohen, and P. Eades. How to draw a planar clustered graph.
In COCOON’95, volume 959 of Lecture Notes in Computer Science, pages
21–31. Springer-Verlag, 1995.

[16] Q. Feng, R. Cohen, and P. Eades. Planarity for clustered graphs. In
ESA’95, volume 979 of Lecture Notes in Computer Science, pages 213–226.
Springer-Verlag, 1995.

[17] U. Fößmeier, G. Kant, and M. Kaufmann. 2-visibility drawings of planar
graphs. In Stephen C. North, editor, GD’96, volume 1190 of Lecture Notes
in Computer Science, pages 155–168. Springer-Verlag, 1997.

[18] U. Fößmeier and M. Kaufmann. Drawing high degree graphs with low bend
numbers. In Franz J. Brandenburg, editor, GD’95, volume 1027 of Lecture
Notes in Computer Science, pages 254–266. Springer-Verlag, 1995.

[19] A. Garg and R. Tamassia. On the computational complexity of upward
and rectilinear planarity testing. In R. Tamassia and I. G. Tollis, editors,
GD’94, volume 894 of Lecture Notes in Computer Science, pages 286–297.
Springer-Verlag, 1995.

[20] D. Harel. On visual formalisms. Communications of the ACM, 31(5):514–
530, 1988.

P. Eades et al., Drawing Clustered Graphs, JGAA, 3(4) 3–29 (1999) 27

[21] D. Harel and R. Tarjan. Fast algorithms for finding nearest common an-
cestors. SIAM J. Computing, 13:338 – 355, 1984.

[22] T. Kamada. Visualizing Abstract Objects and Relations. World Scientific
Series in Computer Science, 1989.

[23] G. Kant. Drawing planar graphs using the lmc-ordering. In Proc. 33th
IEEE Symp. on Foundations of Computer Science, pages 101–110, 1992.

[24] G. Kant. Drawing planar graphs using the canonical ordering. Algorithmica,
16:4–32, 1996.

[25] G. Kar, B.P. Madden, and R.S. Gilbert. Heuristic layout algorithms for
network management presentation services. IEEE Network, pages 29–36,
November 1988.

[26] J. Kawakita. The KJ method – a scientific approach to problem solving.
Technical report, Kawakita Research Institute, Tokyo, 1975.

[27] M.R. Kramer and J. van Leeuwen. The complexity of wire-routing and find-
ing minimum area layouts for arbitrary VLSI circuits. In F.P. Preparata,
editor, Advances in Computing Research, volume 2, pages 129–146. JAI
Press, Greenwich, Conn., 1985.

[28] W. Lai. Building Interactive Digram Applications. PhD thesis, Department
of Computer Science, University of Newcastle, 1993.

[29] C. E. Leiserson. Area-efficient graph layouts (for VLSI). In Proceedings of
the IEEE Symposium on the Foundations of Computer Science, pages 270
– 281, 1980.

[30] K. Misue and K. Sugiyama. An overview of diagram based idea organizer:
D-abductor. Technical Report IIAS-RR-93-3E, ISIS, Fujitsu Laboratories,
1993.

[31] S. North. Drawing ranked digraphs with recursive clusters. In Proc. AL-
COM Workshop on Graph Drawing ’93, September 1993.

[32] J. Nummenmaa and J. Tuomi. Constructing layouts for er-diagrams from
visibility representations. In Proc. 9th Int. Conf. on Entity-Relationship
Approach, pages 303–317, 1990.

[33] A. Papakostas and I. G. Tollis. Improved algorithms and bounds for or-
thogonal drawings. In R. Tamassia and I. G. Tollis, editors, GD’94, volume
894 of Lecture Notes in Computer Science, pages 40–51. Springer-Verlag,
1994.

P. Eades et al., Drawing Clustered Graphs, JGAA, 3(4) 3–29 (1999) 28

[34] A. Papakostas and I. G. Tollis. A pairing technique for area-efficient or-
thogonal drawings. In Stephen C. North, editor, GD’96, volume 1190 of
Lecture Notes in Computer Science, pages 355–370. Springer-Verlag, 1997.

[35] D. Reiner, G. Brown, M. Friedell, J. Lehman, R. McKee, P. Rheingans, and
A. Rosenthal. A database designer’s workbench. In S. Spaccapietra, editor,
Entity-Relationship Approach: Proc. 5th Int. Conf. on Entity-Relationship
Approach (Dijon France 1987), pages 347–360, New York, N.Y., 1987.
North-Holland.

[36] P. Rosenstiehl and R.E. Tarjan. Rectilinear planar layouts and bipo-
lar orientations of planar graphs. Discrete and Computational Geometry,
1(4):343–353, 1986.

[37] B. Schieber and U. Vishkin. On finding lowest common ancestors: simpli-
fication and parallelization. SIAM J. Computing, 17:1253–1262, 1988.

[38] K. Sugiyama and K. Misue. Visualization of structural information: Au-
tomatic drawing of compound digraphs. IEEE Transactions on Systems,
Man and Cybernetics, 21(4):876–892, 1991.

[39] K. Sugiyama and K. Misue. Visualization of structural information: Au-
tomatic drawing of compound digraphs. IEEE Transactions on Software
Engineering, 21(4):876–892, 1991.

[40] R. Tamassia. New layout techniques for entity-relationship diagrams. In
Proc. 4th Int. Conf. on Entity-Relationship Approach, pages 304–311, 1985.

[41] R. Tamassia. On embedding a graph in the grid with the minimum number
of bends. SIAM J. Computing, 16(3):421–444, 1987.

[42] R. Tamassia, G. Di Battista, and C. Batini. Automatic graph drawing
and readability of diagrams. IEEE Transactions on Systems, Man and
Cybernetics, SMC-18(1):61–79, 1988.

[43] R. Tamassia and I.G. Tollis. A unified approach to visibility representations
of planar graphs. Discrete and Computational Geometry, 1(4):321–341,
1986.

[44] R. Tamassia and I.G. Tollis. Efficient embedding of planar graphs in linear
time. In Proc. IEEE Int. Symp. on Circuits and Systems, pages 495–498,
1987.

[45] R. Tamassia and I.G. Tollis. Planar grid embedding in linear time. IEEE
Trans. on Circuits and Systems, CAS-36(9):1230–1234, 1989.

[46] R. Tamassia, I.G. Tollis, and J.S. Vitter. Lower bounds for planar orthog-
onal drawings of graphs. Information Processing Letters, 39:35–40, 1991.

P. Eades et al., Drawing Clustered Graphs, JGAA, 3(4) 3–29 (1999) 29

[47] J.D. Ullman. Computational Aspects of VLSI. Principles of Computer
Science. Computer Science Press, Rockville, Md., 1984.

[48] L. Valiant. Universality considerations in VLSI circuits. IEEE Transactions
on Computers, C-30(2):135–140, 1981.

[49] C. Williams, J. Rasure, and C. Hansen. The state of the art of visual
languages for visualization. In Visualization 92, pages 202 – 209, 1992.

[50] R. Wirfs-Brock, B. Wilkerson, and L. Wiener. Designing Object-Oriented
Software. P T R Prentice Hall, Englewood Cliffs, NJ 07632, 1990.

