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Abstract

This paper addresses the problem of designing drawing algorithms
that receive as input a planar graph G, a partitioning of the vertices of
G into k different semantic categories V0, · · · , Vk−1, and k disjoint sets
S0, · · · , Sk−1 of points in the plane with |Vi| = |Si| (i ∈ {0, · · · , k − 1}).
The desired output is a planar drawing such that the vertices of Vi are
mapped onto the points of Si and such that the curve complexity of the
edges (i.e. the number of bends along each edge) is kept small. Particular
attention is devoted to outerplanar graphs, for which lower and upper
bounds on the number of bends in the drawings are established.
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1 Introduction

Semantic constraints for the vertices of a graph G define the placement that
these vertices must have in a readable visualization of G [5, 10, 13]. For ex-
ample, in the context of database design some particularly relevant entities of
an ER schema may be required to be represented in the center and/or along
the boundary of the diagram (see, e.g., [14]). Similarly in social network visu-
alization the positions of the vertices can be defined to reflect their centrality
(see, e.g., [4]). A possible way of modeling semantic constraints for a (sub)set
{v1, v2, · · · , vh} of the vertices of a graph G is to specify a set {p1, p2, · · · , ph} of
locations for their placement. Often, it is sufficient for the application that every
vertex vi (i = 1, · · · , h) is placed at any of the given locations pj (1 ≤ j ≤ h),
that is the mapping of each vertex to a specific location is not part of the in-
put. A key reference in this scenario is the work by Kaufmann and Wiese [11].
Given a planar graph G with n vertices and a set S of n distinct points in the
plane, they show how to compute a planar drawing of G such that each ver-
tex is mapped to any point of S and every edge bends at most twice, which
is proved to be worst case optimal. It is also known that for specific classes
of graphs, such as outerplanar graphs and trees, the number of bends per edge
can be reduced to zero (see, e.g., [2, 3, 8]). The work by Kaufmann and Wiese,
however, does not seem to be immediately scalable to applications where the
vertices of G are grouped based on their relevance or meaning, and for each of
these groups a different semantic constraint should be applied (for example a
subset of the vertices on the boundary, some others in a central position, and
so on). A solution in this case could be to fix in advance the location of each
vertex in each semantic category and then route the edges. Halton [9] and,
independently, Pach and Wenger [12], showed that a planar graph G always
admits a planar drawing such that the location of each vertex is part of the
input; however, fixing the vertex positions in advance may give rise to drawings
with high visual complexity. Pach and Wenger [12] show that a linear number
of bends per edge is asymptotically optimal in the worst case even for graphs
as simple as paths. The bounds of Pach and Wenger have been refined in [1].

This paper studies the above mentioned problem without imposing that the
position of the vertices is part of the input. The input is a planar graph G, a
partitioning of the vertices of G into k different semantic categories V0, · · · , Vk−1,
and k disjoint sets S0, · · · , Sk−1 of points in the plane with |Vi| = |Si| (i ∈
{0, · · · , k − 1}). The required output is a planar drawing such that the vertices
of Vi are mapped to the points of Si; for each vertex v ∈ Vi the drawing algorithm
can choose which point of Si represents v. We study the visual complexity of
these types of drawings, expressed in terms of the number of bends per edge.
The intuition is that if the number of categories is constant, then a constant
number of bends per edge may be sufficient, at least for simple classes of planar
graphs. This type of investigation was started in [6, 7], where the apparently
simple case of k = 2 is studied. In [7] and in [6] a constant number of bends
per edge is proved to be sufficient for constructing planar poly-line drawings
of subclasses of outerplanar graphs, including paths, cycles, caterpillars, and
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wreaths. In [6] it is also shown that there exists a 2-outerplanar graph G with a
vertex partition V0, V1 and two disjoint sets S0, S1 of points such that any planar
drawing of G that maps a vertex v ∈ Vi to a distinct point of Si (i = 0, 1) has
at least one edge with a linear number of bends. The 2-outerplanarity of the
counterexample on one hand, and the outerplanarity of the families of graphs
for which a constant number of bends per edge is possible, motivated us to
further investigate how many bends are required for general outerplanar graphs
and then extend the research to cases where k > 2.

In this paper, each integer i ∈ {0, · · · , k−1} identifying a partition set of the
vertices of G is called a color, G is called a k-colored graph, and the set of points
S = S0∪· · ·∪Sk−1 such that |Vi| = |Si| (for each color i ∈ {0, · · · , k−1}) is called
a k-colored set compatible with G. A planar drawing of G such that each v ∈ Vi

is mapped to a distinct point p ∈ Si is a point-set embedding of G on S. Graph
G is k-colored point-set embeddable if it admits a point-set embedding on every
k-colored set compatible with G. It may be worth remarking that [11] and [9, 12]
can be regarded as studies about 1-colored point-set embeddable graphs and n-
colored point-set embeddable graphs, respectively. The main focus of this paper
is the study of k-colored point-set embeddable graphs for values of k such that
1 ≤ k ≤ n. Our main results are as follows.

• Every outerplanar 2-colored graph is 2-colored point-set embeddable with
at most 5 bends per edge. Also, a 2-colored embedding of this type can
be computed in O(n log n) time. (See Section 3).

• For every positive integer h > 0, there exists an outerplanar 3-colored
graph G, whose number of vertices depends on h, and a set of points S
compatible with G such that every point-set embedding of G on S has an
edge with more than h bends. (See Section 4).

• For k colors in which one restricts all the points of the point set with the
same color to vertical regions separated by vertical lines, at most 4k + 1
bends per edge are required for outerplanar graphs. The drawings can be
computed in O(n log n + kn) time. (See Section 5).

2 Preliminaries

Let G = (V,E) be a graph. A k-coloring of G is a partition {V0, V1, . . . , Vk−1}
of V where the integers 0, 1, . . . , k−1 are called colors. In the rest of this section
the index i is 0 ≤ i ≤ k−1 if not differently specified. For each vertex v ∈ Vi we
denote by col(v) the color i of v. For any subset of vertices U ⊆ Vi we denote
by col(U) the color i of all the elements of U . A graph G with a k-coloring is
called a k-colored graph.

Let S be a set of distinct points in the plane. For any point p ∈ S we denote
by x(p) and y(p) the x- and y-coordinates of p, respectively. A k-coloring of
S is a partition {S0, S1, . . . , Sk−1} of S. A set of points S with a k-coloring is
called a k-colored set. For each point p ∈ Si col(p) denotes the color i of p, and
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for any subset R ⊆ Si col(R) denotes the color i of all the elements of R. A
k-colored set S is compatible with a k-colored graph G if |Vi| = |Si| for every
i; if G is planar we say that G has a point-set embedding on S if there exists a
planar drawing of G such that: (i) every vertex v is mapped to a distinct point
p of S with col(p) = col(v), (ii) each edge e of G is drawn as a polyline λ; a
point shared by any two consecutive segments of λ is called a bend of e.

A k-colored sequence σ is a sequence of (possibly repeated) colors c0, c1, . . . ,
cn−1 such that 0 ≤ cj ≤ k − 1 (0 ≤ j ≤ n − 1). We say that σ is compatible
with a k-colored graph G if color i occurs |Vi| times in σ. Let S be a k-colored
set. Throughout the paper we always assume that the points of S have different
x-coordinates (if not we can rotate the plane so to achieve this condition). Let
p0, p1, . . . , pn−1 be the points of S with x(p0) < x(p1) < . . . < x(pn−1). The
k-colored sequence col(p0), col(p1), . . . col(pn−1) is called the k-colored sequence
induced by S, and is denoted as seq(S).

A graph G is Hamiltonian if it has a simple cycle that contains all its vertices;
such a cycle is called a Hamiltonian cycle of G. If G is a k-colored graph
and σ = c0, . . . , cn−1 is a k-colored sequence compatible with G, a k-colored
Hamiltonian cycle of G consistent with σ is a Hamiltonian cycle v0, v1, . . . , vn−1

such that col(vj) = cj (0 ≤ j ≤ n − 1). If such a cycle exists, G is said to
be k-colored Hamiltonian consistent with σ. Let G be a planar k-colored graph
and let σ be a k-colored sequence compatible with G. It is always possible to
augment G with dummy edges so that the resulting (not necessarily planar)
graph has a k-colored Hamiltonian cycle H consistent with σ and including all
dummy edges. Let Ψ be a planar embedding of G and suppose that Γ is a
drawing of G∪H such that: (i) The drawing of G in Γ preserves Ψ; (ii) no two
dummy edges of H cross; (iii) each edge e of G crosses the dummy edges of H
at most d times, for some positive integer d. Each crossing between an edge e of
G and a dummy edge of H is replaced in Γ with a dummy vertex that we call a
division vertex for e and we say that H is an augmenting k-colored Hamiltonian
cycle of G consistent with σ with at most d division vertices per edge. We also
say that H (with at most d division vertices per edge) is constructed on Ψ.

Lemma 1 Let G be a planar k-colored graph, let σ be a k-colored sequence com-
patible with G, and let b be a positive integer. If G admits a point-set embedding
with at most b bends per edge on any k-colored set S such that seq(S) = σ, then
G admits an augmenting k-colored Hamiltonian cycle consistent with σ and with
at most b − 1 division vertices per edge constructed on some planar embedding
of G.

Proof: Let S be a set of points p0, p1, . . . , pn−1 that lie on a line l parallel to
the x-axis such that x(pj) < x(pj+1) (j = 0, . . . , n − 2) and seq(S) = σ. By
hypothesis G admits a point-set embedding Γ on S with at most b bends per
edge.

We now describe how to obtain an augmenting k-colored Hamiltonian cycle
of G consistent with σ and with at most b − 1 division vertices per edge. For
an illustration refer to Figure 1. Assume vertex vi of G is placed at point pi for
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all i. For each pair of consecutive vertices vi and vi+1 (0 ≤ i ≤ n− 2), if vi and
vi+1 are not adjacent in G we add edge (vi, vi+1) in Γ as a straight-line segment
connecting vi and vi+1. If vn−1 and v0 are not adjacent in G we add edge
(vn−1, v0). This edge is drawn as a polyline as follows. Let p be the leftmost
point shared by l and Γ (point p may or may not coincide with v0) and let q be
the rightmost point shared by l and Γ (point q may or may not coincide with
vn−1). Edge (vn−1, v0) consists of three pieces: segment pv0 (if p and v0 coincide
this segment is empty), a polyline connecting p and q on the external face of
Γ and segment qvn−1 (if q and vn−1 coincide this segment is empty). Cycle
C = v0, v1, . . . , vn−1 is an augmenting k-colored Hamiltonian cycle consistent
with σ. The edges of C cross an edge e of Γ a number of times that is at most
the number of times that e crosses the line l. Any of the segments of the polyline
representing e crosses l only if its endpoints are on different half-planes defined
by l. Since the endvertices of e are points of l, a crossing can happen only when
two consecutive bends of e are on different half-planes defined by l. Since e has
at most b bends, it crosses l at most b − 1 times, so the result follows. �

1 2 5 6
43 7

(a)

1 2 5 6
43 7

(b)

Figure 1: (a) A point-set embedding of a planar graph G with at most 4 bends per
edge. (b) An augmenting 3-colored Hamiltonian cycle of G (bold edges). Every edge
of G has at most 3 division vertices.

Lemma 2 Let G be a planar k-colored graph, let σ be a k-colored sequence
compatible with G, and let b be a positive integer. If G has a planar embedding
on which an augmenting k-colored Hamiltonian cycle consistent with σ and with
at most b division vertices per edge can be constructed, then G admits a point-set
embedding with at most 2b + 1 bends per edge on any k-colored set S such that
seq(S) = σ.

Proof: Let S be a k-colored set such that seq(S) = σ. By hypothesis it is
possible to find an augmenting k-colored Hamiltonian cycle H of G consistent
with σ such that each edge has at most b division vertices. We will now use
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H in order to construct the point-set embedding of G on S. The technique is
similar to the one described in [11]. For an illustration see Figure 2.

Let H = w0, w1, . . . , wn′−1 be the augmenting k-colored Hamiltonian cycle of
G, where the starting vertex w0 of H is chosen so that the vertices of G appear in
H ordered coherently with σ. Cycle H contains also the division vertices, which
are not vertices of G. We give these vertices a new color k. In order to host
them we define a new set of points S′ by adding a suitable number of points to
S, all colored k and placed so that if q0, q1, . . . , qn′−1 are the points of S′ ordered
according to their x-coordinates, then c(qj) = c(wj) (j = 0, . . . , n′ − 1). In the
following we denote as G′ the augmented graph obtained by adding edges and
dummy vertices to G in order to find H.

Determine a planar embedding Ψ of G′ such that edge (w0, wn′−1) lies on
the external face (notice that Ψ always exists). Map each vertex wj to point
qj (j = 0, . . . , n′ − 1) in S′ and draw the edges of path P = H \ {(w0, wn′−1)}
as straight-line segments between their end-vertices. Draw each remaining edge
e using two segments, one with slope s > 0 and the other with slope −s. We
prevent e from crossing the previously drawn edges in P by choosing our slope
s to be greater than the absolute value of the slope of each edge in P. With
segments of slope ±s, it is possible to draw e above or below P. In order for
the drawing to preserve the planar embedding Ψ, draw e above P if e is on the
left-hand side when walking from w0 to wn′−1 in G, and below P, otherwise.

The resulting drawing is planar except that edges outside P that are in-
cident on the same vertex may contain overlapping segments. To eliminate
overlapping, perturb overlapping edges by decreasing the absolute value of their
segment slopes by slightly different amounts. The slope changes are chosen to be
small enough to avoid creating edge crossings while preserving the same planar
embedding. For details about this rotation see [11].

The drawing obtained by the technique described above is a point-set em-
bedding of G′ on S′ with at most one bend per edge. Removing the vertices
and edges added to obtain G′ from G we have a point-set embedding of G on
S. Consider an edge e of G and suppose that e is split by means of b division
vertices in G′. Then there are b+1 edges in G′ corresponding to e. This implies
that e has at least b + 1 bends in the point-set embedding of G on S. Every di-
vision vertex w of e has two straight-line segments incident on it in the drawing
of G′. If these two segments have different slopes, when w is removed there is
an additional bend at the point where w was drawn. This implies that, in the
worst case, e has b additional bends for a total of 2b + 1 bends. �

3 Outerplanar 2-colored Graphs

A graph is outerplanar if it admits a planar embedding such that all vertices are
on the external face. A graph is 2-outerplanar if it admits a planar embedding
such that removing all vertices on the external face, results in all the remaining
vertices being on the external face. The following result is proved in [6].

Theorem 1 [6] For every n ≥ 4 there exists a 2-outerplanar 2-colored graph G
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Figure 2: (a) A planar 3-colored graph. (b) A 3-colored set of points S. (c) An
augmenting k-colored Hamiltonian cycle of G. Graph G has been augmented to a
planar 4-colored graph G′ by means of division vertices and dummy edges. Every
edge has at most b = 3 division vertices. (d) Construction of the point-set embedding
of G′ on a set of points S′ obtained by adding more points to the set S in order to host
the division vertices. In this drawing some edges can overlap. (e) The final point-set
embedding of G′ on S′. Overlaps are removed. Every edge e has at most one bend.
(f) The point-set embedding of G on S obtained by removing the division vertices and
the dummy edges. Every edge has at most 2b + 1 = 7 bends per edge.

with 2n vertices and a 2-colored set compatible with G such that the maximum
number of bends per edge of every point-set embedding of G on S is Ω(n).
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Motivated by Theorem 1, we prove that every outerplanar 2-colored graph
G admits a point-set embedding with at most 5 bends per edge on any 2-colored
set S compatible with G.

Let Ψ be a planar embedding of G with all vertices on the external face. We
prove that G admits an augmenting 2-colored Hamiltonian cycle constructed
on Ψ, consistent with σ = seq(S), and with at most 2 division vertices per
edge. The result then follows from Lemma 2. Since every outerplanar graph
can be made biconnected by adding edges while maintaining the outerplanarity,
we can assume, without loss of generality, that G is biconnected. In this case
the boundary of the external face of G is a simple cycle C containing all vertices
of G. The edges of G that are not in C are called chords. We start by proving
that every simple cycle C admits an augmenting 2-colored Hamiltonian cycle
H consistent with σ and with at most 1 division vertex per edge. To this aim
we describe an algorithm that computes H. We then shall describe how it
is possible to obtain from H an augmenting 2-colored Hamiltonian cycle of G
consistent with σ and with at most two division vertices per edge. The idea is
illustrated in Figure 3.
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Figure 3: (a) An outerplanar 2-colored graph G. (b) An augmenting 2-colored Hamil-
tonian cycle of the external boundary of G, with at most 1 division vertex per edge.
(c) An augmenting 2-colored Hamiltonian cycle of G with at most 2 division vertices
per edge.

Let σ = c0, . . . , cn−1 be the color sequence. We order the vertices of C
counterclockwise starting from an arbitrary vertex whose color is c0. More
formally, let v0 be a vertex of C such that col(v0) = c0; we walk counterclockwise
along C starting from v0 and write u < v if u is encountered before v. Also,
given a subset of vertices U ⊆ V (C) we write first(U) to denote the first vertex of
U according to < and with last(U) the last vertex of U according to <. Given
a vertex v ∈ U , next(v) denotes the vertex of U that is immediately after v
according to <.

The construction of H begins with v0 and adds one vertex of C per step (plus
possibly one division vertex). The vertex of C added at Step i will be denoted
as vi. Also, we denote as Hi the set of vertices added to H up to Step i and
as Gi the augmented graph constructed up to Step i, i.e. the graph consisting
of C plus all dummy edges and division vertices possibly added during Steps
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0, 1, . . . , i. We also define the following sets:

• NBi = {v | v ∈ V (C), v 6∈ Hi,first(Hi) < v < last(Hi)}

• F c
i = {v | v ∈ V (C), last(Hi) < v, col(v) = c}, where c = 0, 1 (notice that

F c
i ∩ Hi = ∅)

Sets NBi and F c
i partition the set of vertices of C that must be still added

to H at the end of Step i. Intuitively, the vertices in NBi have been already
encountered moving counterclockwise on C, while the vertices in F c

i have yet to
be encountered. At the end of Step i, the following invariants are maintained:

Invariant 1 All vertices of NBi have the same color.

Invariant 2 All vertices of NBi are on the external face of Gi.

Invariant 3 Vertex vi is on the external face of Gi.

Invariant 4 If vi 6= last(Hi), then for each vertex u such that vi < u <
last(Hi), we have u ∈ Hi.

At Step i + 1 the algorithm chooses the vertex vi+1 of C to be added to H; the
addition of vi+1 may imply the addition to H of some dummy edges and one
division vertex. We say that a dummy edge is added inside C if it is inserted on
the left-hand side when walking counterclockwise around C. In order to choose
and add vi+1, the algorithm distinguishes between the following cases:

Case 1: NBi 6= ∅ and col(NBi) = ci+1. The algorithm chooses vi+1 = last(NBi).
If vi and vi+1 are not adjacent in C, a dummy edge (vi, vi+1) is added on
the external face of Gi (see, e.g., the addition of vertices v4 and v5 in
Figure 3(b)).

Case 2: NBi = ∅ or col(NBi) 6= ci+1. The algorithm chooses vi+1 = first(F
ci+1

i ).
Vertices vi and vi+1 are connected in H according to the following sub-
cases:

Case 2.a: vi = last(Hi). If vi+1 = next(last(Hi)), then vi and vi+1 are
adjacent in C and therefore no dummy edge needs to be added (see,
e.g., the addition of vertex v7 in Figure 3(b)). If vi+1 6= next(last(Hi)),
a dummy edge (vi, vi+1) is added inside C (see, e.g., the addition of
vertex v8 in Figure 3(b)).

Case 2.b: vi 6= last(Hi) and vi+1 = next(last(Hi)). A dummy edge
(vi, vi+1) is added on the external face of Gi (see, e.g., the addition
of vertex v6 in Figure 3(b)).

Case 2.c: vi 6= last(Hi) and vi+1 6= next(last(Hi)). The algorithm splits
edge (last(Hi),next(last(Hi))) by means of a division vertex d, which
is added to H between vi and vi+1. A dummy edge (vi, d) is added
on the external face of Gi and a dummy edge (d, vi+1) is added inside
C. For example, in Figure 3(b), the addition of vertex v10 is done by
inserting a division vertex d that splits (v8, v11), and the two dummy
edges (v9, d), (d, v10).
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Lemma 3 Let C be a 2-colored simple cycle and let σ be a 2-colored sequence
compatible with C. Then C admits an augmenting 2-colored Hamiltonian cycle
consistent with σ and with at most 1 division vertex per edge.

Proof: In order to prove the statement we show that the algorithm described
above correctly computes an augmenting 2-colored Hamiltonian cycle of C. To
this aim we prove that at the end of Step i the graph Gi is planar (i.e. the
dummy edges added by the algorithm do not violate planarity) and that Invari-
ants 1, 2, 3, and 4 hold. We prove this by induction. At step 0 G0 is planar
since G0 = C and the four invariants trivially hold because NB0 is empty and
v0 is on the external face of G0. Assume now that at the end of Step i > 0, Gi

is planar and Invariants 1-4 hold. We prove that this is true also at the end of
Step i + 1.

Planarity In Cases 1 and 2.b the dummy edge (vi, vi+1) is (possibly) added
on the external face of Gi. This edge can be added without violating
planarity since both vi and vi+1 are on the external face of Gi. Vertex vi

is on the external face of Gi by Invariant 3, and vi+1 is on the external
face of Gi either by Invariant 2 because vi+1 ∈ NBi (Case 1), or because
last(Hi) < vi+1 and therefore no dummy edge of Gi has an end-vertex
after vi+1. In Case 2.a either no dummy edge is added, or a dummy edge
is added inside C. Since vi = last(Hi) no dummy edge of Gi has an end-
vertex after vi. Also vi < vi+1 and therefore edge (vi, vi+1) does not cross
any other dummy edge. In Case 2.c two dummy edges are added: (vi, d)
and (d, vi+1). Edge (vi, d) does not violate planarity because vi and d are
both on the external face of Gi. Vertex vi is on the external face of Gi by
Invariant 3 and d is on the external face of Gi because no dummy edge
of Gi is incident on a vertex after last(Hi). Edge (d, vi+1) can be added
without violating the planarity constraint since no dummy edge of Gi is
incident on a vertex that is after last(Hi).

Invariant 1 In Cases 1 and 2.b NBi+1 ⊆ NBi and therefore Invariant 1 holds
by induction. In Cases 2.a and 2.c NBi+1 = NBi ∪U where U = {u | u ∈
C, last(Hi) < u < vi+1}. Since vi+1 = first(F

ci+1

i ), then col(U) 6= ci+1. We
have that either NBi = ∅ and hence Invariant 1 holds, or col(NBi) 6= ci+1,
i.e. col(U) = col(NBi) and Invariant 1 holds also in this case.

Invariant 2 In Case 2.a Invariant 2 holds by induction, because in this case
either no dummy edge is added, or it is added inside C.

In Cases 1 and 2.b NBi+1 ⊆ NBi and therefore any vertex u ∈ NBi+1

is on the external face of Gi by induction. If u is not on the external
face of Gi+1, then it must be v < u < w, where (v, w) is the dummy edge
(possibly) added on the external face of Gi at Step i+1. In Case 1 we have
vi+1 < vi. Namely, if vi = last(Hi), then trivially vi+1 < vi; if, otherwise,
vi 6= last(Hi) then, by Invariant 4, no vertex of NBi is between vi and
last(Hi) and therefore vi+1 < vi also in this case. Since vi+1 = last(NBi)
then u < vi+1 for any u ∈ NBi+1. Thus Invariant 2 holds in Case 1. In
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Case 2.b vi < vi+1 because vi+1 = next(last(Hi)). Also, by Invariant 4,
no vertex of NBi is between vi and last(Hi). This implies that u < vi for
any u ∈ NBi+1. Also in Case 2.b Invariant 2 holds.

In Case 2.c two dummy edges are added, edge (vi, d) and edge (d, vi+1).
Edge (d, vi+1) is added inside C and therefore it does not affect the validity
of Invariant 2. If u ∈ NBi+1, then either u ∈ NBi or last(Hi) < u. In
both cases u is on the external face of Gi. Namely, if u ∈ NBi, then u is
on the external face of Gi by induction, otherwise it is on the external face
of Gi because no dummy edge is incident of Gi on a vertex that is after
last(Hi). If u is not on the external face of Gi+1, it must be vi < u < d.
However, if u ∈ NBi, then u < vi because no vertex of NBi is between vi

and last(Hi); if, instead, last(Hi) < u, then d < u because d splits edge
(last(Hi),next(last(Hi))). In both cases u is on the external face of Gi+1

and Invariant 2 holds.

Invariant 3 In Cases 2.a, 2.b and 2.c, we have vi+1 = last(Hi+1). Since none
of the dummy edges of Gi is incident on a vertex that is after last(Hi+1),
vi+1 is on the external face of Gi+1 and Invariant 3 holds. In Case 1 vi+1 is
on the external face of Gi by induction (since vi+1 ∈ NBi). The addition
of edge (vi, vi+1) leaves vi+1 on the external face of Gi+1 and therefore
Invariant 3 holds also in this case.

Invariant 4 In Cases 2.a, 2.b and 2.c, we have vi+1 = last(Hi+1) and therefore
Invariant 4 does not apply. In Case 1 NBi+1 ⊂ NBi and therefore for
any vertex u ∈ NBi+1 we have u < vi+1 because vi+1 = last(NBi). This
implies that for any vertex v such that vi+1 < v < last(Hi+1), we have
v ∈ Hi+1, i.e. Invariant 4 holds.

This concludes the proof that the algorithm described above correctly com-
putes an augmenting 2-colored Hamiltonian cycle of C. Also, since the algorithm
adds at most one division vertex per edge, the augmenting 2-colored Hamilto-
nian cycle of C has at most one division vertex per edge. �

Lemma 4 Let G be an outerplanar 2-colored graph and let Ψ be a planar embed-
ding of G having all vertices on the external face. Let σ be a 2-colored sequence
compatible with G. Then G admits an augmenting 2-colored Hamiltonian cycle
constructed on Ψ, consistent with σ, and with at most 2 division vertices per
edge.

Proof: Since every outerplanar graph can be made biconnected by adding edges
while maintaining outerplanarity, we assume that G is biconnected. Let C be
the boundary of the external face of G in Ψ. We remove all the chords from G
and compute an augmenting 2-colored Hamiltonian cycle of C consistent with σ
and with at most one division vertex per edge, by using the algorithm described
above. If we add back the chords of G to the graph Gn−1, i.e. the augmented
graph constructed at the end of the algorithm, these edges will cross the edges
of H that are inside C. For each crossing between an edge eH of H and a chord
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ech of G we add a division vertex d that splits both eH and ech. Thus we obtain
an augmenting 2-colored Hamiltonian cycle of G. To complete the proof we
must show that every chord ech is split by at most two division vertices. To this
aim observe that an edge eH = (u,w) of H must cross ech only if an endvertex
v of ech is such that u < v < w. We show that for each vertex v there can be at
most one edge eH = (u,w) of H such that u < v < w. Since edge eH is inside
the cycle C, it is a dummy edge added at some Step i (0 ≤ i ≤ n − 1) when
Cases 2.a or 2.c apply. After the addition of this edge, vertex v and all the other
vertices between v and w become vertices of NBi. According to the algorithm
the vertices of NBi are added to H by means of edges that are either edges of
C or dummy edges on the external face of Gi (Case 1). This implies that any
other dummy edge incident on a vertex between v and w is not inside C and
therefore edge eH = (u,w) is the only edge of H such that u < v < w. Since
each chord ech has two endvertices, there is at most one division vertex on ech

for each of them and therefore at most two division vertices for each chord. �

Theorem 2 An outerplanar 2-colored graph G admits a point-set embedding
with at most 5 bends per edge on any 2-colored set compatible with G. Such a
point-set embedding can be computed in O(n log n) time, where n is the number
of vertices of G.

Proof: Let G be any outerplanar 2-colored graph, and let S be any 2-colored set
compatible with G. Let σ = seq(S). By Lemma 4, G admits an augmenting 2-
colored Hamiltonian cycle consistent with σ and with at most 2 division vertices
per edge. Therefore by Lemma 2 G admits a point-set embedding with at most 5
bends per edge on S. This concludes the proof concerning the curve complexity.

About the time complexity of the algorithm that computes a point-set em-
bedding, we can consider that: (i) Ordering the points of S according to in-
creasing values of the x-coordinates takes O(n log n) time; (ii) An augmenting
2-colored Hamiltonian cycle with at most 2 division vertices per edge can be
computed in O(n) time using the algorithm described at the beginning of this
section; (iii) From the 2-colored Hamiltonian cycle a point-set embedding of G
on S can be constructed in O(n) time with the technique illustrated in the proof
of Lemma 2. Therefore the overall time complexity is O(n log n). �

4 Outerplanar 3-colored Graphs

Since, by Theorem 2, outerplanar 2-colored graphs are 2-colored point-set em-
beddable with O(1) bends per edge, one may wonder whether the number of
bends per edge remains constant for values of k larger than 2. Unfortunately,
this may not be the case even for 3 colors.

In this section we describe an infinite family of outerplanar 3-colored graphs
such that for any integer h ≥ 0 there exists a graph in the family and a set
of points S such that any point-set embedding of the graph on S contains an
edge having more than h bends. Our family of outerplanar 3-colored graphs is
parametric with n; every member of this family, denoted as Gn, has 3n vertices
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and is defined as follows. Gn consists of a simple cycle formed by n vertices of
color 0, followed (in the counterclockwise order) by n vertices of color 1, followed
by n vertices of color 2 (notice that Gn actually has 3n vertices). The vertex of
color 1 adjacent in the cycle to a vertex of color 0 is denoted as v1; the vertex of
color 2 adjacent in the cycle to a vertex of color 1 is denoted as v2; the vertex of
color 0 adjacent in the cycle to a vertex of color 2 is denoted as v0. Also, in Gn

every vertex colored i is adjacent to vi (i = 0, 1, 2) and vertices v0, v1, v2 form a
3-cycle. Figure 4(a) is an example of Gn for n = 12.
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Figure 4: (a) Graph G12. (b) An illustration for the proof of Lemma 5. Cycle C′ is
highlighted in bold.

To prove our lower bound, we consider all possible planar embeddings of
Gn; for each planar embedding Ψ of Gn we will prove that every augmenting
k-colored Hamiltonian cycle constructed on Ψ and consistent with seq(S) has
more than h division vertices for some edge of Gn.

For a planar embedding Ψ of Gn and a cycle C ∈ Gn we say that C separates
a subset V ′ from a subset V ′′ of the vertices of Gn if all vertices of V ′ lie in the
interior of the region bounded by C and all vertices of V ′′ are in the exterior of
this region.

Lemma 5 Let h > 0 be a positive integer and let Gn be such that
n = (h + 1)(25h2 + 2) + 25h2. Let Ψ be a planar embedding of Gn and let C be
the cycle v0, v1, v2. If C does not separate any two vertices, then at least one of
the following conditions holds for Ψ:

C.1 There exists a face f in Ψ having at least 25h2 vertices of each color and
containing vertices v0, v1, and v2.

C.2 There exists a cycle C ′ containing vertices v0, v1, and v2 and such that:
(i) C ′ has at most 25h2 + 2 edges, (ii) at least (h + 1)(25h2 + 2) vertices
of a color i (i = 0, 1, 2) are inside C ′, (iii) every vertex of V −{v0, v1, v2}
with color different from i is outside C ′.

Proof: It is simple to observe that in every planar embedding of Gn there are
exactly two faces whose boundary contain vertices of the three colors. If C does
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not separate any two vertices, one of these two faces has C as its boundary. Let
f be the face of Ψ containing vertices of the three colors whose boundary is not
C. For each color i in Gn, exactly two vertices of color i are adjacent to vertices
of different color, and each vertex of color i except vi has degree two or three
and is adjacent to two vertices of the same color; this implies that all vertices
of f having color i are consecutive along the boundary of f (i = 0, 1, 2).

If Condition C.1 does not hold, then the number of vertices of at least one
color, say 0, along the boundary of f is k < 25h2. Let v′

0 be the vertex of f
having color 0 and adjacent to v0; if v0 is the only vertex of f having color 0, let
v′
0 = v1. Refer to Figure 4(b). Consider the cycle C ′ = v0, v

′
0, π(v′

0, v1), v1, v2,
where π(v′

0, v1) is the path along the boundary of f that goes from v′
0 to v1.

Cycle C ′ has k+2 < 25h2 +2 vertices, therefore it has at most 25h2 +1 vertices,
and hence edges.

As cycle C does not separate any two vertices, and C and C ′ share exactly
two edges ((v1, v2), (v2, v0)), it follows that C ′ separates at least n − 25h2 =
(h + 1)(25h2 + 2) vertices of color 0 from all vertices of color 1 and 2 distinct
from v1 and v2. �

We are now in the position to prove the following theorem.

Theorem 3 For every h > 0, there exists an outerplanar 3-colored graph G
with 3 · ((h +1)(25h2 +2)+25h2) vertices and a set of points S compatible with
G, such that every point-set embedding of G on S has an edge with more than
h bends.

Proof:

We prove the theorem by reductio ad absurdum. Therefore consider that
there exists h > 0 such that for any outerplanar 3-colored graph G and for any
set of points S compatible with G, G admits at least a point-set embedding
with at most h bends per edge on S. This also holds for Gn and therefore, by
Lemma 1, for any set of points S and for any planar embedding Ψ of G there
exists an augmenting 3-colored Hamiltonian with at most h−1 division vertices
per edge built on Ψ and consistent with seq(S). We shall prove that this is not
true. As a matter of fact we shall show that, for each planar embedding Ψ of Gn,
every augmenting 3-colored Hamiltonian cycle constructed on Ψ and consistent
with the alternating sequence σ of the 3 colors (i.e., σ = 0, 1, 2, 0, 1, 2, . . . , 0, 1, 2)
has more than h − 1 division vertices for some edge of Gn. Let H be one such
augmenting 3-colored Hamiltonian cycle and let C be the cycle v0, v1, v2. Note
that in any planar embedding of Gn all vertices having a same color are either
inside or outside the region bounded by C; hence if C separates any two vertices
u and v, it separates all vertices with the same color as u from all vertices with
the same color as v (except, of course, v0, v1, and v2). We distinguish between
two cases.

Case 1. Ψ is such that C separates all vertices of a color i, except vi, from all
vertices of a different color j, except vj .
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Case 2. Ψ is such that C does not separate any two vertices of Gn. Without
loss of generality, assume that all vertices of Gn are on or outside C.

In Case 1, since H is consistent with σ, each vertex of color i is adjacent in
H to a vertex of color j. Therefore there are n − 1 edges of H that cross C in
Ψ; it follows that one edge of C has at least n−1

3 > h division vertices.
In Case 2, either Condition C.1 or Condition C.2 of Lemma 5 holds for Ψ.
If Condition C.1 holds, there exists a face f in Ψ having at least 25h2 vertices

of each color, containing vertices v0, v1, and v2, and such that all vertices of f
having color i are consecutive along the boundary of f (i = 0, 1, 2). The three
edges (v0, v1), (v1, v2), and (v2, v3) are not on the boundary of f .

Consider the 25h2 vertices of color 0 (denote them as U0) that are on the
boundary of f . Each of these vertices must be connected in H to a vertex of
color 1 and to a vertex of color 2. Hence, there are 50h2 edges of H incident on
the vertices of U0. If more than h of these edges are completely outside face f ,
then edge (v0, v1) is crossed more than h times, i.e. it has more than h division
vertices and the statement is true.

Suppose otherwise that at most h edges incident on the vertices of U0 are
completely outside face f . This implies that at least 50h2 − h edges intersect
face f . An edge e of H intersecting f could not be completely inside f (i.e. it
could cross the boundary of f); the portion of e inside f is called a sub-edge and
will be regarded as an edge possibly having division vertices as its endvertices.
Denote the set of sub-edges as SE. We write u < v if u is encountered before v
when walking clockwise along the boundary of f , starting from v0.

We partition SE into six sets: each set SEi,j ⊆ SE (i, j ∈ {0, 1, 2}) contains
those sub-edges such that one end-vertex is a (division) vertex u such that
vi < u < v(i+1) mod 3 and the other one is (division) vertex v such that vj <

v < v(j+1) mod 3. One of these sets SEi,j (0 ≤ i, j ≤ 2) contains at least 50h2
−h

6
sub-edges; assume this set is SE0,1. Let e1 = (u1, v1) and e2 = (u2, v2) be two
edges of SE0,1. Since e1 and e2 cannot cross because they belong to H which is a
simple cycle, it follows that if u1 < u2, then v2 < v1. Let em = (um, vm) ∈ SE0,1

and eM = (uM , vM ) ∈ SE0,1 be the two sub-edges of SE0,1 such that for any
other sub-edge (u, v) ∈ SE0,1, um < u < uM . See also Figure 5.

In order to avoid crossings between sub-edges of SE0,1, we have vM < v <
vm. If the number of edges in the path from vM to vm along the boundary

of f is less than 50h2
−h

6h
= 50h−1

6 , then at least one such edge has more than
h division vertices and the statement is true. Otherwise, the number of edges
(and hence the vertices) in the path from vM to vm along the boundary of f is
at least 50h−1

6 . Denote by v′
M (u′

m respectively) either vM (um respectively), if
vM (um respectively) is not a division vertex, or the vertex that is immediately
before vM (um respectively), if vM (um respectively) is a division vertex. Anal-
ogously, denote by v′

m (u′
M respectively) either vm (uM respectively), if vm (uM

respectively) is not a division vertex, or the vertex that is immediately after
vm (uM respectively), if vm (uM respectively) is a dummy vertex. The cycle
C ′ = v0, u

′
m, um, vm, v′

m, v1, v
′
M , vM , uM , u′

M , v0 separates at least 50h−1
6 vertices

of color 1 (denote them as U1) from all vertices of color 2. Every vertex of U1
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must be connected to a vertex of color 2 in H. Therefore 50h−1
6 edges must cross

cycle C ′ in order to connect a vertex inside C ′ to a vertex outside C ′. Since in
C ′ there are only 8 edges that can be crossed by edges of H (the two sub-edges
em and eM cannot be crossed because they are in H), then at least one of these
8 edges is crossed 50h−1

48 times, i.e. has 50h−1
48 division vertices. Since 50h−1

48 > h
for every h ≥ 1, the statement holds.

If Condition C.2 holds, denote by Ui the set of vertices of color i inside
the cycle C ′ in the statement of Lemma 5. Since H is consistent with σ, each
vertex of Ui is adjacent to vertices with color different from i. Thus at least
(h + 1)(25h2 + 2) edges cross cycle C ′. Since C ′ has at most 25h2 + 2 edges, at
least one edge of C ′ has more than h division vertices. �

v1 v2
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mu

Mw mw
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u

Ma

Figure 5: Illustration for the proof Theorem 3.

5 Outerplanar k-colored Graphs

In contrast with the result of Theorem 3, we prove that given any outerplanar
k-colored graph G (for any constant k > 2), there exist infinitely many k-colored
sets compatible with G for which a point-set embedding of G with a constant
number of bends per edge is possible.

Let S be a k-colored set such that no two points have the same x-coordinate;
assume that the points are ordered by increasing x-values. S is an ordered k-
colored set if, for every color i (0 ≤ i ≤ k − 1), all points of color i appear
consecutively in the ordering (that is, the colors never alternate in the ordering).
The sequence of colors induced by an ordered k-colored set is called an ordered
k-colored sequence.

We first describe an algorithm that, given a k-colored simple cycle C and
a k-colored sequence σ compatible with C, computes an augmenting k-colored
Hamiltonian cycle H of C consistent with σ and with at most k division vertices.
We then use this algorithm to obtain an augmenting k-colored Hamiltonian
cycle of an outerplanar k-colored graph G consistent with σ and with at most
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2k division vertices. Also in this case, the augmenting k-colored Hamiltonian
cycle of G is constructed on a planar embedding of G having all vertices on the
external face.

Let C be a k-colored simple cycle and let σ = c0, . . . , cn−1 be an ordered k-
colored sequence consistent with C. The algorithm computes H by performing
at most k rounds. At each round, it walks along the cycle C either in the
counterclockwise direction, or in the clockwise direction. At each round we
refer to the direction followed in that round as the walking direction. We order
the vertices of C from a starting vertex and according to the walking direction.
For each walking direction, we use the relation < and the notation first(U),
last(U), and next(v) defined in Section 3.

At Step 0, the algorithm adds to H any vertex v0 of color c0. At each Step
i (i = 1, . . . , n − 1), a new vertex vi of color ci is added to H; adding vi may
imply adding some division vertices. Denote by Hi the set of vertices added to
H up to Step i, and as Gi the augmented graph constructed up to Step i, i.e.
the graph consisting of C plus all edges and division vertices added during Steps
0, 1, . . . , i. For each Step i we define the following two sets:

• F c
i = {v | v ∈ V (C), v 6∈ Hi, last(Hi) < v, col(v) = c}, where c = 0, . . . , k−

1

• Ni(u,w) = {v | v ∈ V (C), v 6∈ Hi, u < v < w}, where u < w.

At the end of Step i, the following invariants are maintained:

Invariant 5 Any vertex v 6∈ Hi is on the external face of Gi.

Invariant 6 Vertex vi is on the external face of Gi.

At Step i + 1 the algorithm chooses a vertex vi+1 of C to be added to H. The
addition of vi+1 to H may require the addition to H of some dummy edges
and some division vertices. We say that a dummy edge is added inside C if
it is added on the left-hand side when walking counterclockwise around C. If
F

ci+1

i 6= ∅ we choose vi+1 = first(F
ci+1

i ), else invert the walking direction (which
starts a new round) and repeat the test. Vertices vi and vi+1 can be connected
in H according to different cases:

Case 1: Ni(vi, vi+1) = ∅. Refer to Figure 6(a). If vi and vi+1 are not adjacent
in C, a dummy edge (vi, vi+1) is added on the external face of Gi.

Case 2: Ni(vi, vi+1) 6= ∅. Refer to Figure 6(b). The vertices of Ni(vi, vi+1)
may not form a consecutive sequence along C, because there can be vertices
of Hi intermixed with them. Let σ0, σ1, . . . , σl−1 be the maximal sub-
sequences of consecutive vertices of Ni(vi, vi+1). For each sub-sequence
σj , let sj = first(σj) and tj = last(σj). Also, let s′j be the vertex (either
a “real” vertex of C or a division vertex) that is immediately before sj

and let t′j be the vertex (either a “real” vertex of C or a division vertex)
that is immediately after tj . Edges (s′j , sj) and (tj , t

′
j) are split by means
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Figure 6: An illustration of different cases of the algorithm to compute H for a k-
colored cycle. (a) Case 1 with vi = v4 and vi+1 = v5. Edge (v4, v5) is added on
the external face because N4(v4, v5) = ∅. (b) Case 2 with vi = v5 and vi+1 = v6.
Sub-sequences σ0, σ1, and σ2 are highlighted; dummy vertices are drawn as small
squares.

of the division vertices aj and bj , respectively. The algorithm connects
vi to vi+1 in H by means of the path vi, a0, b0, a1, b1, . . . , al−1, bl−1, vi+1.
Edges (vi, a0), (bj , aj+1) (0 ≤ j ≤ l − 1) and (bl−1, vi+1) are added on the
external face of Gi, while edges (aj , bj) (0 ≤ j ≤ l− 1) are added inside C.

To prove Theorem 4 we first prove the following lemmas.

Lemma 6 Let C be a k-colored simple cycle and let σ be an ordered k-colored se-
quence compatible with C. Then C admits an augmenting k-colored Hamiltonian
cycle consistent with σ and with at most k division vertices per edge.

Proof: In order to prove the statement we show that the algorithm described
in Section 5 correctly computes an augmenting k-colored Hamiltonian cycle of C
consistent with σ. To this aim we prove that at the end of Step i the graph Gi is
planar (i.e. the dummy edges added by the algorithm do not violate planarity)
and that Invariants 5 and 6 hold. The proof is by induction.

At Step 0, G0 is planar since G0 = C and the two invariants trivially hold.
Assume now that at the end of Step i > 0, Gi is planar and Invariants 5 and 6
hold. We prove that this is true also at the end of Step i + 1.

Planarity In Case 1 the dummy edge (vi, vi+1) is (possibly) added on the
external face of Gi. This edge can be added without violating planarity
since both vi and vi+1 are on the external face of Gi by Invariants 5
and 6. In Case 2 the algorithm adds 2l + 1 dummy edges (where l is
the number of maximal sequences of vertices of Ni(vi, vi+1)). The l + 1
edges (vi, a0), (bj , aj+1) (0 ≤ j ≤ l − 1) and (bl−1, vi+1) are added on
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the external face of Gi; these edges do not violate planarity because the
endvertices of each of them are on the external face of Gi. Namely, vi

is on the external face by Invariant 6 and vi+1 is on the external face by
Invariant 5 (because vi+1 ∈ F

ci+1

i ). Again by Invariant 5, each vertex sj

and tj (0 ≤ j ≤ l − 1) is on the external face of Gi and therefore each
vertex s′j and t′j is also on the external face of Gi; this implies that each
vertex aj and bj (0 ≤ j ≤ l − 1) is on the external face of Gi.

The l edges (aj , bj) (0 ≤ j ≤ l − 1) are added inside C. Let (aj , bj) be
one such edge and let (u,w) be another dummy edge of Gi. Since σj is a
maximal sequence of vertices of Ni(vi, vi+1), no dummy edge is incident
on a vertex v such that aj < v < bj . This implies that u < aj < bj < w
and therefore the two edges do not cross.

Invariant 5 Trivially v /∈ Hi+1 ⇒ v /∈ Hi. For this reason a vertex v /∈ Hi+1

is on the external face of Gi by Inv. 5, and it cannot be anymore on the
external face of Gi+1 only if u < v < w, where (u,w) is a dummy edge
added during Step i + 1. If v < vi or vi+1 < v, then v is on the external
face of Gi+1 because none of the dummy edges added at Step i+1 has an
endvertex before vi and after vi+1. If vi < v < vi+1 then v ∈ σj for some
j (0 ≤ j ≤ l − 1); since edge (aj , bj) is added inside C and any other edge
added at Step i+1 has endvertices either before aj or after bj , vertex v is
on the external face of Gi+1. This implies that Inv. 5 holds for any vertex
that is not in Hi+1.

Invariant 6 Vertex vi+1 is on the external face of Gi by Inv. 5 (because vi+1 =
first(F

ci+1

i )). Since none of the dummy edges added at Step i + 1 has an
endvertex after vi+1, vi+1 is on the external face of Gi+1.

This concludes the proof that the algorithm described above correctly com-
putes an augmenting k-colored Hamiltonian cycle of C consistent with an ordered
sequence σ. It remains to prove that the number of division vertices per edge is
at most k. Observe that when we connect vi to vi+1 in Case 2, each edge of C
is split at most once. Also, a single edge split during a round is no longer split
until next round (i.e. until we change the walking direction). Namely, since we
always choose vi+1 as F

ci+1

i , while the same walking direction is maintained,
later steps split edges that are after those split in previous steps. This implies
that the number of division vertices is at most the number of rounds. Since
at each round all the vertices of at least one color are added to Hi, then the
number of rounds is at most k and the statement follows. �

Lemma 7 Let G be an outerplanar k-colored graph and let Ψ be a planar embed-
ding of G having all vertices on the external face. Let σ be an ordered k-colored
sequence compatible with G. Then G admits an augmenting k-colored Hamil-
tonian cycle constructed on Ψ, consistent with σ and with at most 2k division
vertices per edge.

Proof: Since every outerplanar graph can be made biconnected by adding edges
while maintaining outerplanarity, we assume that G is biconnected. Let C be
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the boundary of the external face of G. We remove all the chords from G and
compute an augmenting k-colored Hamiltonian cycle of C consistent with σ and
with at most one division vertex per edge, by using the algorithm described
above. If we add back the chords of G to the graph Gn−1, i.e. the augmented
graph constructed at the end of the algorithm, these edges will cross the edges
of H that are inside C. For each crossing between an edge eH of H and a chord
ech of G we add a division vertex d that splits both eH and ech. Thus we obtain
an augmenting k-colored Hamiltonian cycle of G. To complete the proof we
must show that every chord ech is split by at most 2k division vertices. Observe
that an edge eH = (u,w) of H must cross ech only if an endvertex v of ech is
such that u < v < w. We show that for each vertex v there can be at most
k edges eH = (u,w) of H such that u < v < w. Since edge eH is inside the
cycle C, it is a dummy edge added at some Step i (0 ≤ i ≤ n − 1) when Case 2
applies. As observed in the proof of Lemma 6, while the same walking direction
is maintained, the dummy edges added at steps following Step i are incident on
vertices that are after w. That means that the number of edges eH = (u,w) of
H such that u < v < w is at most equal to the number of rounds, i.e. it is at
most k. Since each chord ech has two endvertices, we have at most k division
vertices on ech for each of them and therefore at most 2k division vertices for
each chord. �

Theorem 4 Let G be an outerplanar k-colored graph and let S be an ordered
k-colored set compatible with G. Then G admits a point-set embedding with at
most 4k + 1 bends per edge on S. Such a point-set embedding can be computed
in O(n log n + kn) time, where n is the number of vertices of G.

Proof: By Lemma 2 and Lemma 7, G admits a point-set embedding with at
most 4k + 1 bends per edge on S.

Regarding the time complexity of the algorithm that computes a point-set
embedding we can consider that: (i) Ordering the points of S according to
increasing values of the x-coordinates takes O(n log n) time; (ii) an augmenting
2-colored Hamiltonian cycle with at most 2k division vertices per edge can be
computed in O(kn) time using the algorithm described at the beginning of this
section; (iii) from the 2-colored Hamiltonian cycle a point-set embedding of G
on S can be constructed in O(n) time with the technique illustrated in the proof
of Lemma 2. Therefore the overall time complexity is O(n log n + kn). �
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