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Abstract

Bar k-visibility graphs are graphs admitting a representation in which
the vertices correspond to horizontal line segments, called bars, and the
edges correspond to vertical lines of sight which can traverse up to k

bars. These graphs were introduced by Dean et al. [4] who conjectured
that bar 1-visibility graphs have thickness at most 2. We construct a bar
1-visibility graph having thickness 3, disproving their conjecture. Further-
more, we define semi bar k-visibility graphs, a subclass of bar k-visibility
graphs, and show tight results for a number of graph parameters includ-
ing chromatic number, maximum number of edges and connectivity. Then
we present an algorithm partitioning the edges of a semi bar 1-visibility
graph into two plane graphs, showing that for this subclass the (geometric)
thickness is indeed bounded by 2.
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1 Introduction

Visibility is a major topic in discrete geometry where a wide range of classes
of visibility graphs has been studied, see e.g. [1], [2], [5], [9], [10]. Among the
best studied variants are the traditional bar visibility graphs, they admit a com-
plete characterization which has been obtained independently by Wismath [15]
and Tamassia and Tollis [14]. In the Graph Drawing Symposium 2005, Dean,
Evans, Gethner, Laison, Safari and Trotter [4], [3] introduced the class of bar
k-visibility graphs (BkVs) which ‘interpolates’ between two classes of graphs
with a representation by a family of intervals, namely between bar visibility
graphs and interval graphs. Dean et al. are mainly interested in measurements
of closeness to planarity of bar k-visibility graphs. They prove a bound of 4 for
the thickness of bar 1-visibility graphs and conjecture that they actually have
thickness at most 2. In Section 2 we disprove this conjecture by showing that
there are bar 1-visibility graphs with thickness 3.

The second main focus of this paper is a subclass of bar k-visibility graphs
called semi bar k-visibility graphs (SBkVs). These graphs emerge when consid-
ering bars which extend in only one direction (called semi bars). In Section 3,
we show a number of properties for this subclass, including tight results on their
chromatic number, clique number, maximum number of edges and connectivity.
We also show how to reconstruct a bar representation of a given SBkV with
maximum number of edges.

In Section 4 we turn back to thickness and show that semi bar 1-visibility
graphs have thickness at most 2, thus, this subclass of B1Vs fulfills the conjec-
ture of Dean et al.. The proof is based on an algorithm that partitions the edges
of a given SB1V G into two planar graphs. We also construct a straight-line
embedding of G for which the algorithm can be used, thus showing that even
the geometric thickness of SB1Vs is bounded by 2.

1.1 Bar k-Visibility Graphs

Let a collection of pairwise disjoint horizontal line segments (called bars) in the
Euclidean plane be given. Construct a graph based on these bars as follows:
Take a set of vertices representing the bars. Two vertices are joined by an edge
iff there is a line of sight between the two corresponding bars (we then say that
the bars see each other). A line of sight is a vertical line segment connecting
two bars and intersecting at most k other bars. A graph is a bar k-visibility
graph (BkV) if it admits such a bar representation.

We call the lines of sight that do not intersect any bar (other than the two it
connects) direct, all others are indirect lines of sight. We also use these adjectives
for the corresponding edges.

Note that ordinary bar visibility graphs can be regarded as bar 0-visibility
graphs, and interval graphs as bar ∞-visibility graphs. Given a bar representa-
tion, we can consider the induced BkV for any k. We will most often deal with
the case k = 1. Figure 1 shows an example of a B1V where lines of sight are
indicated by dashed lines.
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Figure 1: Example of a bar 1-visibility graph.

Throughout this paper, we assume that all bars are located at different
heights. This can easily be obtained by slightly altering the y-coordinates of
some bars. We also assume all endpoints of bars to have pairwise different
x-coordinates by slightly permutating the x-coordinates of the endpoints in a
given bar representation. (This might result in additional edges, but since we
consider problems that only get harder when the number of edges increases, our
results extend to general BkVs.) Note that with this assumption, lines of sight
can be thought of as pillars of positive width.

1.2 Semi Bar k-Visibility Graphs

A semi bar k-visibility graph (SBkV) is a bar k-visibility graph admitting a
representation in which all left endpoints of bars are at x = 0. Note that for
k = 0, these graphs have been investigated in [2] where they are identified as
the graphs of representation index 1 + 1/2.

For the class of SBkVs the assumption that all endpoints of bars have differ-
ent x-coordinates only refers to the right endpoints. For convenience, we always
think of semi bar representations rotated counterclockwise as shown in Figure 2.

r1

r1r2

r2

r3

r3
r4r4

r5r5
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Figure 2: Example of a semi bar 1-visibility graph.

Label the bars of a semi bar representation r1, r2, . . . , rn by decreasing y-
coordinate of the upper endpoint, i.e., by decreasing height. Reading these labels
from left to right we obtain a permutation of [n] which completely determines
the graph. The SB1V in Figure 2 is encoded by the permutation (2, 4, 6, 3, 5, 1).

This simple way of encoding SBkVs is one reason why it is interesting to
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further explore this subclass: It yields a strong combinatorial structure which
enables us to find tight results for many graph parameters, as we will see in
Section 3.

1.3 Thickness

Thickness is a parameter that measures how far a graph is from being planar:
The (graph-theoretic) thickness of a graph G, denoted by θ(G), is defined as
the minimum number of planar subgraphs whose union is G.

Determining the thickness of a graph is NP-hard (see [11]). Exact values
are only known for very few classes of graphs. For a survey on theoretical and
practical aspects see [13].

Note that in the definition of thickness, the planar embeddings of the sub-
graphs do not have to coincide. The geometric thickness of G asks for the mini-
mum number of subgraphs/colors in the following setting: Choose a straight-line
embedding of G and a coloring of the edges such that crossing edges have differ-
ent colors, the edges of each color then form a plane graph. Geometric thickness
was introduced in [11] with the notion of “doubly linear” graphs; the name of
geometric thickness was introduced in [6] and has been called that ever since.
In [6], Eppstein showed that graph-theoretic thickness and geometric thickness
are not even asymptotically equivalent.

2 A Bar 1-Visibility Graph with Thickness 3

In [4], Dean et al. used the Four Color Theorem to show that the thickness
of B1Vs is bounded by 4. They conjectured that the correct bound is 2. In
this section we construct a B1V with thickness 3. We will often talk about a
2-coloring of a graph G = (V,E), meaning a 2-coloring of the edges such that
each color class is the edge set of a planar graph on V . Given a 2-coloring (with
blue and red) we define Gblue and Gred as the graphs on V with all blue and all
red edges, respectively.

Here is a brief outline of the construction: First we analyze a quite simple
type of graph which has thickness 2 but with the property that every 2-coloring
has uniform substructures, so called lampions. Assuming that the original graph
is large enough we can assume arbitrarily large lampions. In a second step we
introduce a series of slight perturbations into the original graph. It is shown
that most of these perturbations have to be incorporated into lampions and the
number of perturbations in one lampion is proportional to its size. However a
lampion can only absorb a constant number of the perturbations. This yields a
contradiction to the assumption that a 2-coloring exists.

We start with an Autobahn where we have heaped up the median strip:
Consider the bar representation of the graph An shown in Figure 3. This graph
has four outer vertices A,B,C,D and a set Vinner of n inner vertices. Each inner
vertex vi is adjacent to all outer vertices, and additionally to the inner vertices
vi−2, vi−1, vi+1 and vi+2.
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Figure 3: The Autobahn-graph An

Since An contains a K4,n as subgraph we know that An is non-planar (as-
suming n ≥ 3), hence, θ(An) ≥ 2. To show that θ(An) = 2 we let Gblue consist
of all direct edges and Gred consist of all indirect edges. Figure 4 shows the
partition.

A ABB

C
CD D

Gblue Gred

· · ·· · ·· · ·
v1 v1 v2v2 v3 v3 v4v5 v6

vn

Figure 4: A partition of An into two planar graphs.

Let Vinner = {v1, v2, . . . , vn}, such that the indices represent the order of the
right endpoints of the bars from left to right. The inner neighbors of vi are
vi−2, vi−1, vi+1 and vi+2. The graph G[Vinner] induced by the inner vertices is
maximal outerplanar with an interior zig-zag.

A lampion in a 2-coloring of An consists of a set W = {vi, vi+1, . . . vj} of
consecutive inner vertices and a partition {S1, S2}, {S3, S4} of the four outer
vertices such that Gblue consists of all zig-zag edges of G[W ] and all edges
connecting vertices from W with S1 and S2, while Gred consist of the two outer
paths of G[W ] and all edges connecting vertices from W with S3 and S4 (of
course exchanging red and blue again yields a lampion). The set W is the core
of the lampion. See Figure 5 for a lampion coloring of the core. Note that
Figure 4 shows a lampion with core Vinner together with the additional edges
between the four outer vertices.

Lemma 1 For every k ∈ IN there is an n ∈ IN such that in every 2-coloring of
An there is a W ⊂ Vinner with |W | ≥ k such that W is the core of a lampion.

Proof: Each inner vertex has four outer neighbors. Let us call an edge con-
necting an inner and an outer vertex a transversal edge. Consider the blue
transversal edges; at each vertex there can be 0, 1, 2, 3 or 4 of them. But Gblue
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Figure 5: A lampion coloring of G[W ].

is planar and therefore does not contain a K3,3. Thus, at most two inner vertices
can have the same three outer neighbors in Gblue. There are

(

4

3

)

= 4 different
triples of outer neighbors in Gblue, so there can be at most eight inner vertices
with more than two outer neighbors in Gblue. We might find another eight in
Gred. These irregular vertices break the sequence v1, v2, v3, . . . , vn of inner ver-
tices of An into at most 17 pieces. By pigeon-holing, there must be at least one
piece with size n′ ≥ (n − 16)/17 such that in the induced 2-coloring of An′ all
inner vertices are incident to exactly two blue and two red transversal edges.

Considering only the blue transversal edges of An′ , the resulting subgraph
G′

blue is a subgraph of a blown-up K4 as illustrated in Figure 6. This subgraph
is not arbitrary but has the property that every inner vertex has exactly two
incident edges.

A

BC

D

Figure 6: Blown-up K4.

Now it remains to planarly embed the inner edges of An′ , i.e. those of
G[V ′

inner]. To our disposition we have the ≤ 4 ‘large faces’ of the blown-up
K4, which makes eight faces in total for the two planar graphs. In each of
these faces we can embed at most three inner edges. There are other cases with
fewer large faces which have in turn more inner vertices at the boundary. In
all cases it is impossible to embed more than 12 edges between inner vertices
with different outer neighbors in G′

blue, the red subgraph may contain another
12 irregular edges. These at most 24 irregularities break the sequence of inner
vertices of An′ into at most 25 pieces, we remain with a 2-coloring of An′′ with
n′′ ≥ (n′−24)/25 such that all inner vertices are incident to the same two outer
vertices in G′

blue and to the other two outer vertices in G′

red.
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We now have K2,n′′ as a subgraph in both G′′

blue and in G′′

red. The good
thing about this is that K2,n′′ has an (essentially) unique planar embedding.
Consequences for the inner edges of An′ are exploited in the following facts.

Fact 1. Every inner vertex of An′′ has at most two incident inner edges of each
color.

It follows that the 2-coloring of An′′ induces a 2-coloring of G[V ′′

inner] such that
each color consists of a set of paths and cycles.

Fact 2. The set of blue inner edges of An′′ contains at most one cycle. The
same holds for the red inner edges. If there is a monochromatic cycle, then it is
a spanning cycle of V ′′

inner.

There is not much freedom for a 2-coloring of the inner edges of An′′ with these
properties: We almost have a lampion coloring on G[V ′′

inner]. The exception is
that there can be a single Z-structure (see Figure 7) in one color.

· · ·· · ·

G[Vinner]

Figure 7: One Z-structure and no monochromatic cycle force all other colors.

Removing the Z-structure leaves two consecutive pieces of the sequence of
inner vertices. These pieces of V ′′

inner have a lampion coloring. The size of the
larger piece can be estimated as n′′′ ≥ (n′′ − 4)/2. This proves the lemma. 2

Well-prepared we can now look at the variant Bn of An in which we have
slightly perturbed some of the inner bars, see Figure 3.

A
B

C
D

...

Vinner

Figure 8: The modified Autobahn-graph Bn.

To obtain Bn, we have elongated every (say) tenth inner bar by pulling its
left endpoint to the left, such that it is further left than the left endpoint of
the bar directly above. With this modification we introduce an additional edge
between the elongated bar vi and vi−3, but in turn we lose the edge between
the bar vi−1 and the lowest outer bar D. Let us call the vertices corresponding
to the elongated bars modified vertices.
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Theorem 1 The graph Bn is a bar 1-visibility graph with thickness 3, for n
large enough.

Proof: We will show that Bn has no 2-coloring. It follows that its thickness
is at least 3, and since we can easily use a 2-coloring of An and embed the
independent additional edges in a third graph, B3 has thickness exactly 3.

Assume that Bn admits a 2-coloring. We first show that any 2-coloring of
Bn would have to be very much like a 2-coloring of An.

The vertices corresponding to a bar directly above a modified one – let us
call them reduced – have only three outer neighbors. To avoid a K3,3 in one color
there can be at most 16 inner vertices incident to more than two transversal
edges. In particular, most reduced vertices have to divide their three incident
transversal edges into two of one color and one of the other. As in the proof of
the lemma we consider a continuous piece in the sequence of inner vertices such
that all inner vertices have at most two transversal edges of each color. The
graph induced by the largest of these pieces and the outer vertices is Bn′ .

The blue subgraph G′

blue of Bn′ is a subgraph of a blown-up K4 where at
least 9/10 of the inner vertices have degree 2 and the remaining reduced vertices
have degree 1. As in the proof of the lemma it can be argued that there is only a
constant number c of edges in G′

blue which join two inner vertices such that there
are at least three different outer neighbours of these two vertices, i.e., which join
two inner vertices which do not belong to the same blown-up edge of K4. The
constant can be bounded as c ≤ 24. The red graph may contribute another set
of c irregular edges. Removing the irregularities will break the sequence of inner
vertices into at most 2c + 1 pieces. The graph induced by the largest of these
pieces and the special vertices is Bn′′ . Assuming that the edges between inner
vertices and D are blue in the 2-coloring of Bn′′ the transversal edges of G′′

blue

and G′′

red are shown in Figure 9.

· · · · · ·· · · · · · · · ·

D

vv

Figure 9: Embedding of a reduced vertex v in G′′

blue and G′′

red.

Let v = vi−1 be a reduced vertex, the neighbors vi and vi−3 of v both have
inner degree 5 (provided they are sufficiently far from the ends of the sequence
of inner vertices).

In G′′

red they have degree (at most) 2, hence, they must have degree 3 in
G′′

blue. This is only possible if vi, vi−1 and vi−3 form a blue triangle. Since vi−1

can have no further blue inner neighbors it follows that the edges vi−1vi−2 and
vi−1vi+1 must be red.
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Now consider the edge vi−2vi−3. Let us first suppose that this edge is colored
blue. To avoid closing a blue cycle, the edge vi−2vi must be red. Then to avoid
a red cycle the edge vivi+1 must be blue. Continuing that way the colors of
all edges to the right of the blue triangle in Figure 10 are uniquely determined.
On the other side consider the parity of blue and red edges at vi−2, this forces
vi−2vi−4 to be blue, while the parity at vi−3 forces two red edges. To avoid a
red cycle vi−4vi−5 must be blue, whence, parity forces vi−4vi−6 to be red. That
way the color of edges left of the blue triangle is determined. The complete
picture is shown in Figure 10: We have found a blue Z-structure.

· · · · · ·

vi

vi−1

vi−2

vi−3

vi−4

vi−5

vi+2

vi+1
G[Vinner]

Figure 10: The blue edge vi−3vi−2 implies a blue Z.

Now suppose that the color of the edge vi−3vi−2 is red. Recalling that
vi−1vi−2 and vi−1vi+1 are red, consider the parity at vi−2 which forces vi−2vi

and vi−2vi−4 to be blue. Now, parity at vi forces the red edges vivi+1 and
vivi+2. Hence, we have a red Z-structure in this case, see Figure 11.

· · ·· · ·

vi

vi−1

vi−2

vi−3

vi−4

vi−5

vi+2

vi+1
G[Vinner]

Figure 11: The red edge vi−3vi−2 implies a red Z.

We have seen that, given a modified vertex in Bn′′ , the parity condition and
the cycle-freeness of the colored graphs induced by the inner vertices of Bn′′

enforce a Z-structure. The zig-zag emanating from such a Z-structure in one
direction has to run into the Z-structure of a second modified vertex. The outer
paths of the other color make a turn at a modified vertex – and close a cycle
at a second one. This is a contradiction since the blue triangles of the modified
vertices are the only monochromatic cycles in G[V ′′

inner]. The contradiction shows
that for large1 n there is no 2-coloring of Bn, hence, the thickness of the graph
is 3. 2

Our construction of a B1V with thickness 3 and the upper bound of 4 by
Dean et al. [4] leave a gap waiting to be closed. Considering that the graph of
our proof only requires a few independent edges in the third planar layer, the
following conjecture seems plausible:

1A rough computation yields that n ≥ 25000 should do.
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Conjecture 1 The thickness of bar 1-visibility graphs is at most 3.

3 Parameters of Semi Bar k-Visibility Graphs

In this section we present some structural properties of semi bar k-visibility
graphs, before turning to their thickness in Section 4. We will see why SBkVs
form an interesting subclass of BkVs: Their strong combinatorial structure gives
rise to a number of proof techniques yielding tight results for different graph
parameters.

3.1 Basic Properties

Semi bar 0-visibility graphs are outerplanar, as observed in [2] (for a proof
see [12]). For k > 0, SBkVs in general are non-planar. Here we show that they
are (2k + 2)-degenerate, which is a useful property for limiting their minimum
degree and always provides a point of attack for induction proofs. We will
see that the upper bounds on the chromatic number and the clique number of
SBkVs follow easily.

Definition 1 A graph G is called ℓ-degenerate if every subgraph of G has a
vertex of degree at most ℓ.

Lemma 2 Semi bar k-visibility graphs are (2k + 2)-degenerate for all k ≥ 0.

Proof: The vertex corresponding to the shortest bar in a bar representation
always has degree at most 2(k + 1). 2

Corollary 2 The chromatic number of a semi bar k-visibility graph is at most
2k + 3, for all k ≥ 0.

Proof: This can be seen with a standard inductive argument. For the induction
step, take out a vertex v of degree 2k + 2, color the remaining graph, and use
the free color when re-inserting v. 2

Example 3 To see that there are SBkVs attaining the chromatic number 2k+3
for all k ≥ 0, consider Figure 12 which shows a schematic bar representation
of K2k+3. Note that for any complete graph on n ≤ 2k + 2 vertices, a bar
representation can be found by leaving out some of the bars in Figure 12.

Corollary 4 The clique number of SBkVs is 2k + 3.

Proof: Since SBkVs are (2k + 2)-degenerate, no such graph can contain a
complete subgraph on more than 2k + 3 vertices. 2

We have seen above that the largest possible chromatic number of SBkVs
coincides with the size of the largest complete SBkV. However, this does not
transfer to every particular SBkV and its induced subgraphs.

Example 5 Figure 13 shows an SBkV containing C5 as induced subgraph.

Corollary 6 In general, SBkVs are not perfect.
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k + 1k + 1

Figure 12: A complete SBkV on 2k + 3 bars.

v1 v2 v3 v4 v5
kkkk

Figure 13: Example of a non-perfect SBkV: The vi form an induced C5.

3.2 Maximum Number of Edges

In this section, we show a tight upper bound for the maximum number of edges
in an SBkV, and we characterize the bar representations of SBkVs attaining
this bound.

Let us start with some edge counting. If an SBkV on n ≤ 2k + 3 vertices
is given, then by Proposition 4 the tight upper bound on its number of edges
is

(

n
2

)

. For n = 2k + 2 and n = 2k + 3 this bound coincides with the bound for
larger n given in the following theorem:

Theorem 2 A semi bar k-visibility graph on n ≥ 2k + 2 vertices has at most
(k + 1)(2n − 2k − 3) edges.

Proof: Think of the edges as being directed from longer to shorter bars. Since
each bar has at most 2(k+1) longer neighbors, each vertex has at most 2(k+1)
incoming edges. Thus we have a first upper bound of 2n(k + 1) on the number
of edges.

Let us look more closely at the longest bars: The vertex r1 corresponding to
the longest bar does not have any incoming edges, r2 has at most one, r3 two,
and so on until reaching r2k+2 which has no more than 2k + 1 incoming edges.
Subtracting these edges that we over-counted in our first bound from 2n(k +1),
we obtain the desired upper bound:

2n(k + 1) −
2k+2
∑

i=1

i = 2n(k + 1) −
1

2
(2k + 2)(2k + 3) = (k + 1)(2n − 2k − 3)
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2

For any k ≥ 0 and n ≥ 2k +2, semi bar k-visibility graphs with (k +1)(2n−
2k − 3) edges exist. See Figure 14 for a schematic bar representation of such a
maximal SBkV : The k +1 leftmost bars together with the k +1 rightmost bars
form a complete graph. We call these bars outer bars and the corresponding
vertices outer vertices. Every shorter bar has k + 1 incoming edges from either
side. Here we speak of inner bars and inner vertices.

. . .

k + 1k + 1

Figure 14: Structure of a maximal SBkV

Note that any maximal SBkV has to have a bar representation with the
pattern described above. The 2(k + 1) outer bars have to induce a complete
graph, and every inner bar has to have k + 1 incoming edges from either side –
thus, the outer bars need to be the longest ones. (However, there is some more
freedom in the pattern than the figure might suggest, as there are other orders
in which the 2k + 2 longest bars form a complete graph).

We now have a quite good idea of the structure of maximal SBkVs: One
can represent all of them by starting with 2k + 2 bars inducing a clique and
inserting bars in the middle one by one, by order of their length.

3.3 Reconstructing Semi Bar k-Visibility Representations

One of the first questions one can ask about a semi bar k-visibility graph
G = (V,E) is how to find a bar representation of a given graph which is known
to be an SBkV. With some additional information as input, we can explicitly
construct all bar representations inducing G, as we show in the following. We
first need some new terminology here.

Given a bar representation B of G, we label the bars from left to right and
denote the corresponding order of the vertices with t1, t2, . . . , tn a t-order of
V . As there might be many bar representations of G, there can also be many
valid t-orders. Recall that in the introductory Section 1.2, we labeled vertices
r1 to rn according to the length of the bars. This order will be called r-order in
the following.

For a given valid t-order of V , there are some edges that need to be contained
in the graph, because the bars in a corresponding representation automatically
see each other. We call these edges the trivial edges:
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Definition 7 Let an SBkV G = (V,E) with bar representation B be given. Let
V = {t1, t2, . . . , tn} in the t-order induced by B. An edge titj ∈ E is called a
trivial edge if |i − j| ≤ k + 1.

Note that the vertex represented by the shortest bar in B is only incident to
trivial edges.

If G is given without a corresponding bar representation, knowing a valid
t-order of the vertices is equivalent to knowing a valid set Ē of trivial edges:
From Ē one can uniquely deduce a t-order such that Ē fulfills the above def-
inition. In the following theorem, we need one piece of this information as
additional input.

Theorem 3 For k ≥ 0, let an SBkV G be given with a valid t-order of its
vertices. Then an r-order of the vertices can be computed which, together with
the given t-order, defines a bar representation inducing G.

Proof: The idea is to find a bar representation by first choosing a vertex which
will be represented by the shortest bar, then deleting it from the graph, and
iterating this until we have defined a complete r-order of the vertices.

Let Ē denote the set of trivial edges defined by the given t-order. Since we
know that a bar representation with this t-order exists, we know that there is
at least one vertex which is only incident to edges in Ē. The crucial observation
is that this property determines exactly the vertices that can be represented by
the shortest bar in a bar representation of G (see Figure 15). Thus, choose one
such vertex as rn and delete it from G.

t3 t6 t9

Figure 15: An SBkV G. Possible choices apart from t3 for the shortest bar in a
bar representation inducing G are t6 and t9.

The t-order of the remaining vertices can be used to define a new set of
trivial edges. Now in each step i for i descending to 1, we use the current set of
trivial edges to find candidates for ri, choose one of them and delete it from the
graph. Then we use the t-order to readjust the set of trivial edges. In the end
we have an r-order of the vertices which defines a bar representation inducing
G. 2

Note that the above construction does not just yield one r-order inducing
G with the given t-order, one can in fact find all such bar representations of G
this way.

For the case k = 0, the graph G is outerplanar and one can use a dual tree
to find an explicit formula counting the number of bar representations inducing
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G (see Chapter 2 of [12]). The construction also makes fundamental use of the
given t-order. It remains an open question how a bar representation of an SBkV
can be found if no t-order is given.

3.4 Connectivity

Now we want to determine the connectivity of a bar k-visibility graph G = (V,E)
given with bar representation B. It is clear that G is connected, and it is not
too hard to guess that its connectivity is k + 1, since any bar can see its k + 1
left and k + 1 right neighbors.

Theorem 4 Semi bar k-visibility graphs on more than k+1 vertices are (k+1)-
connected.

Proof: In order to separate the subgraph built by the trivial edges (cf. Def. 7)
of G, a separating set has to contain at least k + 1 vertices. 2

k + 1

Figure 16: A bar representation containing a (k + 1)-separator

Figure 16 shows that in general an SBkV can have a (k + 1)-separator. If
we delete the k + 1 vertices corresponding to the bars in the middle, the graph
falls apart into the two components induced by the three bars on the left and
the remaining ones on the right side. There is an explicit way of characterizing
the (k + 1)-separators:

Proposition 8 Let G = (V,E) be an SBkV given with a bar representation B
and a corresponding t-order of V . Let S ⊂ V . Then S is a (k + 1)-separator of
G if and only if S = {ti, ti+1, . . . , ti+k} for some i with 1 < i < n − k, and left
or right of B(S) in B all bars are shorter than the shortest one in B(S).

Proof: We first show that the two conditions are necessary for S to be a (k+1)-
separator. In order to separate the subgraph built by the trivial edges of G, the
vertices of S have to be successive in the t-order. Also, they must not be located
at one of its ends, else there would be nothing to separate. This proves the first
condition. Now let S = {ti, ti+1, . . . , ti+k} with 1 < i < n− k. Let B(tj) be the
shortest bar in B(S). Suppose that left and right of B(S) there is a bar longer
than B(tj). Let B(tℓ) be the rightmost such bar left of B(S), and let B(tm) be
the leftmost such bar right of B(S). Then there is a line of sight between B(tℓ)
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and B(tm), since there are at most k longer bars which could cloud it. The edge
tℓtm connects the two paths t1, . . . , ti−1 and ti+k+1, . . . , tn. Thus, S cannot be
a separating set.

For the reverse direction observe that any set of vertices with the described
two properties separates the vertices corresponding to the “shorter half” of the
bar representation from the rest of the graph (see Figure 16), and thus is a
(k + 1)-separator. 2

Using the characterization of Proposition 8 one can efficiently find all the
(k + 1)-separators of an SBkV which is given by a permutation defining a bar
representation. This is done by running through the vertices following the
t-order, retaining the longest already seen and the longest not yet seen bar,
and checking for each set of k + 1 successive bars if the shortest among them is
longer than one of the two retained ones.

If we turn to maximal SBkVs, we get an even higher connectivity: By further
exploring the structure of their bar representations one can see that they are
(2k + 2)-connected. (This is the highest possible connectivity of an SBkV since
the shortest bar has at most that many neighbors). The proof uses the global
version of Menger’s Theorem and finds two (k+1)-bundles of independent paths
between any two vertices. The idea is nice and simple – every such path is built
by successively jumping k + 1 bars to the left (right). The whole proof with its
(technical) details can be found in [12].

4 Thickness of Semi Bar 1-Visibility Graphs

Let G = (V,E) be an SB1V given by a bar representation, see e.g. Figure 2.
In this section we present an algorithm which 2-colors the edges of G such
that each color class forms a plane graph in an embedding induced by the bar
representation. Consequently the thickness of an SB1V is at most 2.

Between the full class of B1Vs and the subclass of SB1Vs there is the class of
bar 1-visibility graphs admitting a representation by a set of bars such that there
is a vertical line stabbing all bars of the representation. Note that Theorem 2
implies that already in this intermediate class there are graphs of thickness 3.

4.1 One-Bend Drawing

A one-bend drawing of a graph is a drawing in the plane in which each edge
is a polyline with at most one bend. Here we introduce a one-bend drawing of
SB1Vs with some specified properties. This drawing is not planar in general,
but it will be helpful for the construction and the analysis of the 2-coloring.

Enlarge the bars of each vertex v to a rectangle B(v) with a uniform width.
Recall that we assume that the heights of all bars are different and that B(r1),
B(r2), . . . , B(rn) lists the bars by decreasing height. Assign the stripe between
the horizontal line touching the top of bar B(ri) and the horizontal line touching
the top of bar B(ri−1) to ri. The dotted lines in Figure 17 separate the stripes.
Embed each vertex v at the midpoint of the upper boundary of B(v). We think
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of the edges as being directed from the longer bar (its starting bar) to the shorter
bar (its ending bar).

Now draw each edge e = rirj composed of two segments; the first segment
is contained in B(ri), it connects ri with the inflection point xe, the second
segment connects xe with rj within the stripe of rj . Place xe on the vertical
boundary of B(ri) which is closer to rj , with a height which is inside the stripe
of rj . This position of xe avoids crossings between edges emanating from ri. We
call the segment (ri, xe) the vertical part, the segment (xe, rj) the horizontal part
of the edge. Note that the stripe associated with B(v) contains the horizontal
parts of the incoming edges of v. Other edges might cross this stripe, but only
with their vertical parts.

e

ri

rj
xe

Figure 17: A one-bend drawing of an SB1V

4.2 2-Coloring Algorithm

Now we present the algorithm 2PLANAR that provides a 2-coloring of E, i.e., a
partition of the edges into two planar graphs (both on the vertex set V ), using
the given embedding. Thus, the algorithm produces planar embeddings of the
two graphs such that each edge has only one bend. We think of the partition of
the edges as a coloring with blue and red.

The idea of the algorithm is the following: Given a one-bend drawing, start
with r1, color all outgoing edges, move on to r2, and so on. The algorithm uses
an auxiliary coloring of the bars to determine the color of the edges.

Algorithm 2PLANAR

1. Start with r1. Color B(r1) and all outgoing edges of r1 blue. Whenever
such an edge traverses another bar, color that bar red.

2. For i = 2, . . . , n − 1
If B(ri) is uncolored, then color this bar blue.
For each uncolored edge e = rirj

(a) If e is a direct edge, it obtains the color of its starting bar B(ri).

(b) If e is an indirect edge, check if the traversed bar has a color. If so, e
obtains the other color. Otherwise, it receives the color of its starting
bar B(ri), and the traversed bar gets the opposite color.
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Figure 18: A coloring produced by the algorithm 2PLANAR.

Note that 2(b) implies the following:

Invariant. Whenever an edge traverses a bar the colors of the edge and the
color of the bar are different.

Theorem 5 In the given setting, 2PLANAR produces a partition of E into two
plane edge sets.

Proof: We have to show that in the 2-coloring computed by 2PLANAR, any
two crossing edges have different colors.

The one-bend drawing implies that crossings between edges only appear
between the vertical part of one edge and the horizontal part of another edge.
Consider a crossing pair e, f of edges, assume that the crossing is on the vertical
part of e and the horizontal part of f . Hence, the crossing point is inside of
the starting-bar of e, and the edge f is an indirect edge traversing this bar (see
Figure 19).

e1

e1

e2

e2

f1

f2

f2e

e
f f

et = f1

et

Figure 19: Two crossing edges e and f , shown in two possible configurations.
Note that there can be many shorter bars between the bars depicted here.

Let the start-vertex of e be e1 and its end-vertex e2. Similarly, let f lead
from f1 to f2. Suppose that the color of f is red, then the invariant implies that
B(e1) is blue.
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If e is a direct edge it obtains the color of its starting bar, in this case blue.
Thus, assume that e is an indirect edge. Then its color depends on the color
of the traversed bar, let B(et) be this bar. (Note that et = f1 or et = f2 are
possible.)

The key for concluding the proof lies in the following lemma:

Lemma 3 If B(v) is an arbitrary bar, then at most one longer bar can be the
starting bar of indirect edges traversing B(v).

Proof. Assume that x = x1x2 is an edge traversing B(v) with B(x1) longer than
B(v), such that B(x2) is the shortest ending bar among all such edges. Then
we know that between B(x1) and B(v) in the left-to-right-order there can be
no bar longer than B(x2), else it would block the line of sight corresponding to
x.

Suppose there is another edge y = y1y2 starting from a bar B(y1) which is
longer than B(v). The choice of x implies that the horizontal part of y is above
the horizontal part of x. Since y can traverse only one bar it must connect to a
bar B(yi) which is between B(v) and B(x1) in the left-to-right-order. Since y
is above x the bar B(yi) is longer than B(x2). This is in contradiction to the
conclusion of the previous paragraph. △

Back to the proof of the theorem let us first assume that B(et) is shorter than
B(e1). Then by the lemma we know that B(e1) is the only longer bar sending
an edge (e.g. the edge e) through B(et). Therefore B(et) is still uncolored when
the algorithm considers B(e1), therefore, e is colored with the color of B(e1),
which is blue. This shows that the edges e and f have different colors in this
case.

If B(et) is longer than B(e1), then we can deduce et = f1. For if a bar
longer than B(et) would be located strictly between B(f1) and B(f2) in the
left-to-right-order, the line of sight corresponding to f would have to traverse
two bars (B(e1) and this longer bar), which is a contradiction. In addition, we
know that B(f2) is shorter than B(e1), else e and f would not cross. Thus, we
have et = f1, and B(f1) is longer than B(e1). In this case the lemma tells us
that B(f1) is the only longer bar sending an edge through B(e1). It follows that
B(e1) was still uncolored when algorithm considered B(f1). Therefore, the red
color of f was chosen equal to the color of the bar B(f1). The invariant implies
that the edge e, traversing the red bar B(f1), is blue. Hence, again e and f
have different colors. 2

The algorithm shows that SB1Vs have graph-theoretical thickness not more
than 2, and it defines a partition of the edges into two planar graphs, providing
two plane embeddings. Since the positions of each vertex coincide in these two
embeddings, a natural question now is to ask whether we can also bound the
geometric thickness of SB1Vs. Recall that for geometric thickness, straight-line
planar embeddings are needed (cf. Section 1.3). The following theorem shows
that we can turn our one-bend drawing into a straight-line embedding. This
theorem confirms a conjecture from [7].
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Theorem 6 The geometric thickness of SB1Vs is at most 2.

Proof: Let an SB1V G with a corresponding bar representation be given and
reconsider the definition of a one-bend drawing of G. We change the height of
the stripes Sj , with j increasing to n. In each step, we consider the incoming
edges ê = rirj of vertex rj . We let Sj be so high that the straight-line connection
between ri and rj leaves the bar B(ri) in a point xê inside of Sj . See Figure 20
as illustration.

ê
xê

rj

ri

Sj

Figure 20: We let the stripe Sj be so high that the incoming edges of rj can be
drawn straight.

Having done this for all stripes we obtain a straight-line embedding of G
where each edge ê falls into its “vertical” part from vi to xê and its “horizontal”
part from xê to rj . The vertical part runs inside of the bar B(ri) and the
horizontal part inside of the stripe Sj . This embedding is a one-bend drawing
as defined in Section 4.1 (with the additional property that all edge-bends have
an angle of 180 degree). Thus by Theorem 5 the algorithm 2PLANAR partitions
this drawing into two plane layers. 2

4.3 Structure of the Blue and Red Graph

Given a semi bar 1-visibility graph G = (V,E), we can say more about the effect
of the algorithm 2PLANAR on G: It partitions the edges evenly among the blue
and the red graph. As blue graph let us define Gblue := (V ′, Eblue) by taking
all blue edges on the vertex set V and deleting isolated vertices. The red graph
is defined analogously as Gred := (V ′′, Ered). Recall that from Theorem 2 we
know that an SB1V has at most (k + 1)(2n − 2k − 3) = 4n − 10 edges.

Proposition 9 The blue and the red graph each contain at most 2n− 3 edges.

Proof: We count the incoming blue edges at each vertex and claim that there
are at most two of them. See Figure 21 for an illustration. Consider a bar B(v)
and the closest bar to the left (say) of it that is the starting bar B(w) of an
incoming blue edge at v. Either such an edge arises from a direct line of sight
between B(v) and the blue bar B(w), or it is induced by an indirect line of sight
traversing a red bar B(u).
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Figure 21: Example of an SB1V with 2n − 3 blue edges.

In the first case, any other incoming blue edge from the left has to traverse
B(w) and therefore is colored red. In the second case, any other such edge
would have to traverse B(w) as well as B(u), which is not possible.

Thus there is at most one incoming blue edge from each side, which yields an
upper bound of 2n blue edges. But the vertex r1 represented by the longest bar
has no incoming edges, and r2 has only one. Therefore we can subtract three
edges, obtaining the desired result. The same argument applies to the number
of red edges. 2

The upper bound of Proposition 9 is sharp, as the blue graph in Figure 21
shows: Any vertex except for r1 and r2 has two incoming edges. The pattern
shown by the example in the figure can be used to construct an SB1V with
2n − 3 blue edges for arbitrary n.

The edge bound of 2n− 3 may sound familiar – it also holds for outerplanar
graphs. However, the example in the figure shows that, in general, Gblue and
Gred are not outerplanar: The blue graph induced by the five longest bars forms
a K2,3. In Figure 22, the red graph induced by the vertices t2, t3, t5, t6 and t7
contains K4 as a minor, which can be obtained by contracting the edge t3t5.

t1

t2

t3

t4

t5

t6

t7

t8

Figure 22: The red graph contains K4 as a minor.
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For the case of maximal SB1Vs, there is more structure to explore within
the blue and the red graph defined by 2PLANAR. In fact it can be shown
(see [12]) that in this case they are both Laman graphs, which implies a number
of additional properties.

5 Open Problems

Many questions in the context of bar k-visibility graphs are left open, and new
ones emerged. The following open problems may serve as a starting point for
further research.

1. In [4], it is shown that the thickness of BkVs can be bounded by a function
in k (proven is a quadratic one). What is the smallest such function?

2. What is the largest thickness or geometric thickness of SBkVs?

3. What is the largest chromatic number of BkVs? Dean et al. show an upper
bound of 6k + 6.

4. Hartke, Vandenbussche and Wenger [8] found some forbidden induced sub-
graphs of BkVs. They ask for further characterization of BkVs by forbid-
den subgraphs.

5. Hartke et al. also examined regular BkVs. Are there d-regular BkVs for
d ≥ 2k + 3?

6. What is the largest crossing number of BkVs?

7. What is the largest genus of BkVs?

8. How can SBkVs be characterized?

9. Can SBkVs be recognized in polynomial time?
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