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Abstract

In this paper we present an algorithm for drawing an undirected graph
G that takes advantage of the structure of the modular decomposition
tree of GG. Specifically, our algorithm works by traversing the modular
decomposition tree of the input graph G on n vertices and m edges in a
bottom-up fashion until it reaches the root of the tree, while at the same
time intermediate drawings are computed. In order to achieve aestheti-
cally pleasing results, we use grid and circular placement techniques, and
utilize an appropriate modification of a well-known spring embedder al-
gorithm. It turns out, that for some classes of graphs, our algorithm runs
in O(n 4 m) time, while in general, the running time is bounded in terms
of the processing time of the spring embedder algorithm. The result is a
drawing that reveals the structure of the graph G and preserves certain
aesthetic criteria.
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1 Introduction

The problem of automatically generating a clear and readable layout of complex
structures inside a graph is receiving increasing attention in the literature [9]. In
this work we present a drawing algorithm that takes advantage of the modular
decomposition of a graph. Our goal is to highlight the global structure of the
graph and reveal the regular structures within it. The usage of the modular
decomposition has been considered by many authors in the past to efficiently
solve other algorithmic problems [5, 1, 6, 20, 19].

Our approach takes advantage of the modular decomposition of the input
graph G, which is a recursive tree-like partition that reveals modules of G, i.e.,
sets of vertices having the same neighborhood. By exploiting the properties of
these modules and especially the properties of the modular decomposition tree
T(G), we are able to draw the modules separately using different techniques
for each one. To achieve aesthetically pleasing results, we utilize a grid place-
ment technique, a circular drawing paradigm, and a modification of a spring
embedder method, on the appropriate modules. Our algorithm relies on cre-
ating intermediate drawings in a systematic fashion by traversing the modular
decomposition tree of the input graph from bottom to top, while at the same
time certain parameters are appropriately updated. In the end, the drawing of
the graph G is obtained by traversing T(G) from the root to the leaves, in order
to compute the final coordinates of the vertices in the drawing area, using the
parameters computed in the previous traversal of T'(G). It turns out that this
way of processing T'(G) enables us to visualize the graph in various levels of
abstraction.

Many techniques for drawing hierarchical clustered graphs deal with a graph
and its tree representation [2, 11, 12, 15, 17, 27, 34, 35]. All these methods
address the problem of visualization, by drawing the non-leaf nodes of the tree
as simple closed curves. Brandenburg [2] uses an underlying tree-like structure
of a graph in order to layout graph grammars. Force directed methods have
also been developed to support and show the structure of a clustered graph
that is a 2-level decomposition scheme [24, 39]. Also, in [27, 28], the drawing
of a clustered graph is considered as a problem of avoiding overlapping vertices
with non-uniform size. So far in the literature, two main classes of solutions
to the non-uniform vertex overlapping problem exist: the layout adjustment
algorithms [13, 21, 23, 29], which are post-processing approaches employed after
a final layout is generated, and the force-integration approaches [22, 28, 37, 39],
where overlapping is avoided at the same time the layout is created, by a force
directed algorithm. This is achieved by modifying the attractive and repulsive
forces of the existing methods. Related to modular decomposition there is an
algorithm for generating drawings of directed graphs based on a specific parse
tree [34, 35]. It is important to note that the approach for the directed graphs
apply only on certain digraphs which are decomposed by two different operations
(known as series and parallel) [34].

The theory of modular decomposition originates from Gallai’s work for com-
puting a transitive orientation [20]. Modular decomposition is also known as sub-
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stitution decomposition, X-join decomposition, and clan decomposition. There
has been an increasing interest for designing a simple and fast algorithm for
computing the modular decomposition of a graph [7, 8, 14, 31, 32]. Some of
the linear-time algorithms that use different approaches are given by [8, 31].
Quite recently it has been proposed a linear-time algorithm for computing the
modular decomposition of a directed graph [30]. A great number of NP-hard
optimization problems can be efficiently solved if a solution for the decomposed
subgraphs is known by using modular decomposition. To name a few of them
we refer to the problem of computing the treewidth and the minimum fill-in [1].
Moreover it has been proposed to obtain efficient algorithms by expressing op-
timization problems in monadic second-order logic [6]. Other application areas
of modular decomposition arise in biological clustering of proteins [19].

To achieve aesthetically pleasing results, our algorithm utilizes a grid place-
ment technique, a circular drawing paradigm, and a modification of a spring
embedder method, on the appropriate modules. It turns out that our draw-
ing methods must take into account the size of non-uniform vertices. Under
this constraint, we propose a modified spring embedder algorithm that falls
in the category of force-integration approaches. Vertex-to-vertex overlapping
is avoided by applying vertex size constraints gradually and by introducing a
reducing factor, based on the density of the input graph, that acts on the attrac-
tive forces between vertices. We note that considering other aesthetic criteria,
such as the number of vertex-to-edge crossings, would conflict with our basic
goal of the exposal of desired subgraphs.

In addition, there are cases in which the final drawing of our algorithm
takes time linear in the size of the input graph. This arises from the fact that
certain classes of graphs have been considered by many authors in the past (see
[5]), who explored the structural and algorithmic properties of their modular
decomposition trees. It follows that the structure of their trees ensures that
each tree node can be processed in time linear in the size of the given part
of the tree. Thus, since T(G) can be constructed in time linear in the size of
the graph G [8, 31], the processing of the entire modular decomposition tree
and consequently its drawing takes time linear in the size of the input graph.
Furthermore, our drawing algorithm highlights the global structure of the graph
and reveals the regular structures inside the graph.

However in some cases the algorithm produces some unnecessary edge cross-
ings and vertex-to-edge overlapping since it tries to display the symmetry of
vertices being in the same module. For that purpose we slightly modify our
basic algorithm and propose an alternative drawing approach that takes the
vertex-to-edge crossings into account. We achieve this by relaxing certain con-
strains that used to hold together all the vertices of a module. Although the
readability of the new drawing is being improved (in the sense of less edge
crossings), the symmetry of certain subgraphs is relegated. Therefore we pro-
pose both algorithms in order to achieve the goal of exposing regular structures
and the ability of reading a clear drawing of a graph.

Our work is organized as follows. In Section 2 we establish the notation and
related terminology and we present background results. In particular, we show
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structural properties of a unique tree representation of a graph and establish our
drawing conventions with respect to the tree representation. In Section 3, we
describe our drawing algorithm, while in Section 4 we propose a modification
of a spring embedder algorithm and give their efficient analysis for a given
graph. In Section 5 we compute the time complexity of our algorithm and
show that the drawings of some classes of graphs can be computed in linear
time. Section 6 presents some examples of graphs computed by our drawing
algorithm. In Section 7 we slightly modify the algorithm and propose another
drawing approach, and, finally, in Section 8 we conclude our work and discuss
possible future extensions.

2 Preliminaries

We consider finite undirected graphs with no loops or multiple edges. For a
graph G, we denote by V(G) and E(G) the vertex set and the edge set of G,
respectively. Let S be a subset of the vertex set of a graph G. Then, the
subgraph of G induced by S is denoted by G[S]. A clique is a set of pairwise
adjacent vertices. The degree of a vertex x in the graph G, denoted d(z), is
the number of edges incident on x. For a graph G on n vertices and m edges,
D(G) = 2m/n is the average degree of G. The complement of a graph G is
denoted by G.

Let T be a rooted tree. For convenience, we refer to a vertex of a tree as
a node. The parent of a node t of T is denoted by p(t), whereas the node set
containing the children of ¢ in T is denoted by ch(t). Let h be the height of the
tree T. Then, we denote by L; the node set containing the nodes of the i-th
level of T', for 0 < i < h where the root is at level 0.

2.1 Modular Decomposition

A subset M of vertices of a graph G is said to be a module of G, if every
vertex outside M is either adjacent to all vertices in M or to none of them.
The emptyset, the singletons, and the vertex set V(G) are t¢rivial modules and
whenever G has only trivial modules it is called a prime (or indecomposable)
graph. It is easy to see that the chordless path on four vertices, Py, is a smallest
non-trivial prime graph, since graphs with three vertices are decomposable [5].
A non-trivial module is also called homogeneous set. A module M of the graph G
is called a strong module, if for any module M’ # M of G, either M’ N M = ()
or one module is included into the other. Let M be a module of a graph G. If
G[M] is a disconnected graph, then M is called a parallel module. If G[M] is a
disconnected graph, then M is called a series module. If both G[M] and G[M]
are connected graphs, then M is called a neighborhood module.

The modular decomposition of a graph G is a linear-space representation of
all the partitions of V(G) where each partition class is a module. The modular
decomposition tree T(G) of the graph G (or md-tree for short) is a unique labelled
tree associated with the modular decomposition of G in which the leaves of T'(G)
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are the vertices of G' and the set of leaves associated with the subtree rooted
at an internal node induces a strong module of G. Thus, the md-tree T(G)
represents all the strong modules of G. An internal node is labelled by either P
(for parallel module), S (for series module), or N (for neighborhood module).
It is shown that for every graph G on n vertices and m edges, the md-tree
T(G) is unique up to isomorphism, the number of nodes in T'(G) is O(n) and it
can be constructed in O(n + m) time [8, 31]. More details about the modular
decomposition of a graph can be found in [7, 8, 14, 31, 32].

Let ¢ be an internal node of the md-tree T(G) of a graph G. We denote by
M (t) the module corresponding to ¢, which consists of the set of vertices of G
associated with the subtree of T'(G) rooted at node t; note that M(t) is a strong
module for every (internal or leaf) node ¢ of T(G). Let ti,ta,...,t, be the
children of the node t of md-tree T(G). We denote by G(t) the representative
graph of node t defined as follows: V(G(t)) = {t1,%2,...,tp} and t;t; € E(G(¢))
if there exists edge vive € E(G) such that vy € M(t;) and vy € M(t;). For
the P-, S-, and N-nodes, it is easy to see that the following lemma holds by
definition (see also Proposition 18 in [6] and Theorem 2.2 in [31]).

Lemma 2.1. Let G be a graph, T(G) its modular decomposition tree, and t an
internal node of T(G). Then, G(t) is an edgeless graph if t is a P-node, G(t) is
a complete graph if t is an S-node, and G(t) is a prime graph if t is an N-node.

In Figure 1 we show a graph G on 14 vertices and its modular decomposition
tree T(G). Since G is disconnected, the root (node t1) of T(G) is a P-node.
The graphs G[M (t2)] and G[M(t3)] are the two connected components of G
which are shown on the left and right side, respectively, in Figure 1(a). Their
representative graphs G(t2) and G(t3) consist of 4 (= |ch(t2)|) and 7 (= |ch(ts3)|)
vertices, respectively.

In general, using modular decomposition for solving a problem can be quite
challenging. A great number of NP-hard optimization problems, such as weighted
maximum clique and coloring, can be easily solved if a solution is known for ev-
ery representative graph in the modular decomposition tree. A typical algorithm
for exploiting the modular decomposition often has the following structure (see
for example [1] and [6]). First, the algorithm computes the modular decom-
position tree T(G) of the input graph G using one of the known linear-time
algorithms [8, 30, 31]; then, in a bottom-up fashion, the algorithm computes for
each node t of T(G) the optimal value for the subgraph G[M (t)] of G induced
by the set of all leaves of the subtree of T'(G) rooted at t. Thus, the compu-
tation starts by assigning the optimal value to the leaves. Then the algorithm
computes the optimal value of each interior node ¢ by using the optimal values
of all the children of ¢ depending on the type of the node. Finally the optimal
value of the root is the optimal value of the problem for the input graph G.

Thus to specify such a modular decomposition based algorithm we only have
to describe how to obtain the value for the leaves and which formula to evaluate
or which subproblem to solve on P-nodes, S-nodes, and N-nodes using the values
of all children as input (see for an exposition [5]). In the present work we utilize
a modular decomposition based algorithm to draw arbitrary graphs, combined
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Figure 1: (a) A graph G and (b) its modular decomposition tree T'(G).

to well known drawing techniques such as circular drawings and force directed
methods.

2.2 Modular Decomposition Based Drawing

Our drawing algorithm is based on the modular decomposition tree of a given
graph G. We deal with box-shaped vertices with a specific size. For every
t € T(G) we define c(t) = (z(t),y(t)) € R? to be the coordinates of the center
of node t, and b(t) = (w(t), h(t)) € R? to be the dimensions of the box of node
t, where w(t) and h(t) are the width and the height of the box, respectively.
In other words, c¢(t) is the center of the box b(t). We adopt the straight-line
drawing convention and we impose the following constraints:

C1 vertices do not overlap;

C2 vertices in every strong module M(t), induced by an internal node t of
T(G), are drawn close (in terms of their Euclidean distance) to each other;
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C3 wvertices in every strong module M (t), induced by an internal node ¢ of
T(G), are drawn according to the structure (edgeless or complete or prime)
of the representative graph G(t);

Observe that we do not consider other aesthetic criteria that are applied
commonly in graph drawing algorithms such as the constraint of no vertex-
to-edge crossing [9]. The reason is that constraints C1-C3 tend to produce
drawings of graphs that reveal the structures of the induced modules. On the
other hand classical constraints may be useful in terms of general readability
of a drawing, but they cancel the expository properties of C1-C3. A natural
technique is to incorporate both kinds of criteria with the best possible manner
so that the output drawing exposes important structures while at the same time
certain aesthetic criteria are satisfied. However the criteria C1-C3 are somehow
incompatible with other aesthetic criteria in the sense that a group of vertices
(module) cannot be spread in the layout. Therefore we put as a primary goal
the achievement of C1-C3 and we also propose an alternative drawing approach
that tries to incorporate other aesthetic criteria.

Definition 2.1. A drawing with the previous constraints is called a modular
decomposition based drawing (or md-drawing for short) I'(G) of the graph G
which is a mapping between the vertices and the Euclidean space R?: T'(G) :
V(G) — R

Our problem is to produce a drawing I'(G) for a given graph G with non-
uniform, box-shaped vertices. Clearly I'(G) = T'(G[M(root)]). To produce
the final drawing, our algorithm needs to compute a drawing based on the
representative graph G(t), for every internal node ¢t € T(G).

Definition 2.2. A relative drawing I'(¢t,T(G)) is an md-drawing of the repre-
sentative graph G(¢).

We mention that the frame boundaries of a drawing are the horizontal and
vertical sides of the smallest rectangle that covers the drawing. The frame
boundaries of a relative drawing I"(¢,T(G)), define the dimensions of the box
b(t) of node t.

2.3 Modular Decomposition as a Clustering Technique

Modular decomposition can be thought as a quite effective clustering technique,
that aligns naturally with graph drawing notions, since it clusters vertices with
the same neighborhood. This is even more evident if we compare modular
decomposition to previous suggestions that were either too specialized (i.e.,
partition into cycle of cliques [3]), too broad (biconnected components [9]) or
too heuristic (i.e., structural clustering [25]). It is also of great importance
that we suggest a technique that automatically creates and draws clusters, in
opposition to other drawing methods that are applied on an already clustered
graph.
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A useful insight on qualifying tree-like decompositions is given in [16]. This
work presents some design criteria that should be fulfilled by the decomposi-
tion trees so that graph visualization applications can substantially benefit from
their usage. Two of the general clustering criteria are that good decompositions
should (i) exhibit a strong relationship between vertices in the same cluster and
(ii) preserve the relevant connectivity properties of the graph, so that the viewer
can grasp them even observing a contraction of it. Modular decomposition sat-
isfies both these criteria, because a cluster (module) consists of vertices having
the same neighborhood. We note that for directed graphs the usage of the
corresponding modular decomposition achieves both goals as shown in previous
works [34, 35].

Finally, other clustering techniques [25] may not preserve the information
of the graph in various levels of contractions. The representative graph of an
arbitrary clustered graph, also known as the quotient graph [8, 25], results by
contracting all clusters into single nodes. Notice that an edge in the quotient
graph may represent few edges from the original graph connecting some ver-
tices which belong in different clusters. Thus, by examining the representative
graph of clusters computed with any arbitrary manner, one looses information
about the connectivity of the graph. On the other hand in modular decomposi-
tion based clustering if two nodes, which represent a contraction of two clusters
(modules) are connected, then all the vertices of these clusters are also con-
nected. In this way there is no loss of information by examining the edges of
the representative graph obtained by contracting the modules of the graph (see
also [34]).

3 The Algorithm

Let G be a graph on n vertices vy, vs,...,v, with non-uniform dimensions
b(v1),b(v2),...,b(vy,), respectively, and m edges. Our algorithm first computes
the md-tree T'(G) using one of the known linear-time algorithms [8, 31]. For
every internal node ¢ € T(G) we perform an initialization step, by setting its
box dimensions to zero. We recall that the boxes of the leaves of T'(G) have
predefined dimensions, since they are the vertices of G. In this step, we also set
the center of every node t € T(G) to zero.

In bottom-up fashion, we traverse the md-tree T(G) and calculate the rela-
tive drawing I (¢, T) for every internal node ¢t. More precisely, according to the
type of node t (P or S or N) we apply a specific drawing algorithm to layout all
the children of ¢, using the representative graph G(t); recall that G(t) is either
an edgeless, or a complete, or a prime graph. This relative drawing modifies the
coordinates of the center c¢(¢;) for every node t; € ch(t), taking into account the
dimensions of the non-uniform boxes b(t;). This implies that only the children
of ¢ obtain the new coordinates according to the relative drawing. In order to
apply the new coordinates to the subtree rooted at t, and finally to the graph
G[M (t)], we store the displacements from the previous coordinates, dis(t;) for
every t;. We use dis(t;) to update the coordinates of the vertices of G[M (t)]
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in a later step. In addition, we update the dimensions of the box of node ¢ in
proportion to the frame boundaries of the relative drawing I"(¢,T).

Finally, we traverse the md-tree T'(G) in a top-down fashion and for every
internal node t € T(G), we add the displacement dis(t) to the centers of the
boxes of every child node ¢; € ch(t). In this way, all the vertices of G[M (t)]
obtain the right coordinates relative to the center of their ancestor node ¢. Thus,
the final output drawing I'(G) of G, is T'(G[M (root)]).

We mention that every relative drawing uses a predefined constant k; as the
preferred edge length of the drawing at the level set L;, 0 < i < h — 1, of the
md-tree T(G). Two approaches can be considered regarding the preferred edge
lengths k;. In the first, all k; hold the same value and in the second, k; vary as
an inversely proportional function of i (see also [38]). With the second approach,
each module of G can be drawn further apart and can be distinguished more
clearly, whereas with the first approach more compact drawings are created.

The algorithm, called Module_Drawing, is given in detail in Algorithm 1.
We note that the preferred edge lengths k; are global variables. The relative
drawings are done by means of three functions, namely, Draw_Edgeless, which is
applied on a P-node, Draw_Complete, which is applied on a S-node, and Draw-
Prime, which is applied on a N-node. Recall that the leaves of T'(G) are the
vertices of G.

Algorithm Module_Drawing

Input: A graph G on n vertices and m edges.
Output: An md-drawing I'(G) of the graph G.

1. Construct the modular decomposition tree T' of the graph G;

2. Initialize the centers c(t) < (0,0) for every t € T
and set b(t) « (0,0) for every internal node ¢ € T}

3. Compute the node sets Lo, L1,..., Ly of the levels 0,1,...,h of T,
and assign values to the preferred edge lengths k;;
4. for i=h—1downto0 do { bottom-up fashion}
for every internal node t € L; do
4.1 if tisaP-node then TIV(¢,T)« Draw_Edgeless(t,T);
4.2 else if ¢ is an S-node then I"(¢,T) «— Draw_Complete(t,T);
4.3 else {t is an N-node} (¢, T) < Draw-Prime(t,T);
4.4  Compute the displacement dis(¢;), for each node t; € ch(t),
with respect to the previous placement;
4.5 Update the size of the rectangle box b(t),
according to the frame boundaries of I (¢, T);
5. for i=0downtoh—1 do { top-down fashion}
for every internal node t € L; do
for every child t; € ch(t) do c(t;) « c(t;) + dis(t);
6. Return the drawing I'(G) = T (r,T) computed in the root r of T’



Papadopoulos and Voglis, MD drawings, JGAA, 11(2) 481-511 (2007) 490

Algorithm 1: Module_Drawing.

The formal descriptions of functions Draw_FEdgeless and Draw_Complete are
given below whereas the function Draw-Prime is described in detail in Section 4.
All these functions are aware of the preferred edge length, denoted by k, which
may be different for each level of T'(G). We note here, that one can use different
drawing techniques for each relative drawing to fulfill desired aesthetic criteria.
Our approach draws edgeless graphs on an underlying grid, complete graphs in a
circular way, and prime graphs using a spring embedder method. We point out
that there are other well known techniques for drawing the nodes (intermediate
drawings) of the tree, such as the inclusion tree layout convention [27] or more
general the floor-planning approach used in VLST design [26]. Although these
approaches can be applied in order to produce the final drawing of the graph,
we choose the technique described in Algorithm Module_Drawing for clarity and
simplicity reasons.

3.1 Function Draw_Edgeless

Vertices are placed by function Draw_Edgeless, keeping in mind that there are
no connecting edges between them. This is achieved by a grid placement of the
nodes in an arbitrary order. Since the nodes have non-uniform sizes, the task
of minimizing the drawing area is NP-hard by the two dimensional bin packing
problem [27]. A way to avoid this is to allow only two possible arrangements of
the nodes, either horizontal or vertical. In [27] this restricted problem is solved
in polynomial time by using a dynamic programming approach. Here we do not
allow this restriction and propose a simple algorithm for the grid placement of
the nodes, even though one can easily apply the approach of [27] whenever the
problem of minimizing the drawing area is primary.

The approach that we propose is quite simple. The Euclidean distance be-
tween the boundaries of two nodes placed adjacent on the grid is at least k. For
symmetry reasons, we distribute evenly the space between the nodes in each
row, so that a complete alignment is achieved. Each row is then processed one
by one and it is placed below the previous one, keeping distance of at least k
from the bottom boundary of the previous row. The function Draw_Edgeless is
given in details below.

Function Draw_Edgeless(t,T)
1. Set r = L/|ch(t)|—‘, c= { |ch(t)|—‘ and define a grid F' of r rows and ¢

columns;

2. For every t; € ch(t), map t; in arbitrary order, to be at position F(i, j);

3. for every row i of F' do

3.1 For every t; mapped in row 4, set y(¢;) = 0 and z(¢;) such that the
shortest horizontal distance between the boundaries of the neighbor-
hood boxes is k.
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Figure 2: Hlustrating Function Draw_Edgeless.

32 Set w;=(c—1)-k+ Z w(ty)

t;Erow ¢

4. Set Wipa, = max(w;);

5. for i=2tor do

and h; = max (h(t;));

t;Erow 1

5.1 For every t; mapped in row i of F', update z(¢;) such that the total

length of row i be wyqa4;

5.2 For every t; mapped in row i of F', update y(t;) such that the shortest
vertical distance between the neighborhood rows of height h;_; and

hiy1is k;

6. Return I"(¢,T), containing the centers c(¢;) for every ¢; € ch(t);

In Figure 2 we illustrate the output of function Draw_Edgeless on 14 dis-
connected vertices with non-uniform sizes, using preferred edge length k& = 30.
The algorithm computes a grid F' of 4 rows and 4 columns. In Step 3 of func-
tion Draw_Edgeless, the quantities hq, hs, h3, hy are computed according to the
height of the vertices of each row. Also in Step 4 the quantity w,,q. is set as
the maximum length, among the 4 rows of F. Note that, in the last row of the
grid, vertices t13 and t14 are aligned left and right, respectively.
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3.2 Function Draw_Complete

Function Draw_Complete is basically a circular drawing algorithm, eventhough
the representative graph G(t) is a complete graph. We have chosen to draw
complete graphs in this way, in order to expose the structure of a series module
(see constraint C3). Furthermore, a circular drawing satisfies the aesthetic
criterion of symmetry and is the usual way of representing complete graphs
in textbooks.

Six and Tolis [36] proposed an approach for placing group of vertices in a
circular way so that the number of edge crossings is low. Their algorithm is
based on a force-directed technique and requires at least n? steps for a graph
on n vertices. However in our case all edges between the corresponding group
of vertices (modules) are present, since G(t) is a complete graph. Thus we do
not seek to achieve a drawing with low number of edge crossings within G(t),
since we focus on the close placement of the vertices of G(t) and the ability of
distinguishing the property of G(t) being a complete graph. Next we present a
quite simple deterministic algorithm for placing non-uniform sized vertices in a
circular way that runs in O(n) time and without the knowledge of the edges of
the graph.

The vertices of the series module are placed in an arbitrary order on equal
arcs, on the circumference of a cycle centered at ¢(t). The initial radius is de-
termined by the smallest sized box. More specifically, function Draw_Complete
process each node t; € ch(t) one by one. It computes a value f(¢;) that repre-
sents the maximum distance from the center ¢(t;) of the box b(t;), to a point
on its boundary. We use f(t;) to determine the distance between two adjacent
vertices in the circle, in the following way. For every vertex t; we calculate two
radiuses r1 and ro that define two concentric circles centered at ¢(t). In the
circle defined by r1, vertex t; and its previous ¢;_; are placed on a 6 degrees
arc, so that the minimum distance from their boundaries, is k. The radius 75
defines a circle where t; and ¢,41 are placed in the same way. To prevent over-
laps, we set 7(¢;) to be the maximum of these two radiuses. In the special case
where the box b(¢;) of ¢; has the same dimensions with any of the two adjacent
vertices in the circle C, we set r(t;) to be the radius defined by the equal sized
box adjacent vertex. With this approach, we achieve that equal sized boxes are
placed on the same circle, without any overlap, since the unequal sized vertex
will be placed on a different circle. Finally, we draw every vertex t¢; on the circle
defined by radius r(¢;), with angle 8. Obviously, for a complete graph with uni-
form nodes the drawing is a perfect circle. The formal description of function
Draw_Complete is given in details below.

Function Draw_Complete(t, T)

1. For every t; € ch(t) set f(t;) as the half of the length of the diagonal of
box b(t;);

2. Define a circle C on |ch(t)| vertices and set § = ‘ciﬁ;

3. For every t; € ch(t) map t; in arbitrary order, on the circle C;
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Figure 3: Illustrating Function Draw_Complete.

4. for everyt; € ch(t) do

f(ta)+k4f(tio1) _ [ +E+Hf(tig1)

41 Set = S and  ry = ST,

4.2.

where t;_1 and t;11 are the two adjacent vertices of ¢; in the circle
C;

if b(tl) = b(ti_l) then T‘(tz) =T1;

else if b(t;) =b(t;+1) then r(t;) =ro;

else 7r(t;) = max(ry,r2);

5. For every t; € ch(t), put (calculate c¢(¢;)) ¢; on a circle, centered on c(¢)
with radius r(¢;);

6. Return I"(¢,T), containing the centers c(¢;) for every t; € ch(t);

In Figure 3(a) we present an illustration of Draw_Complete on 9 vertices
with preferred edge length k& = 30. The algorithm computes 4 different ra-
diuses, according to the size of each box, namely rq,79,73,74. Note that ver-

tices to, 13, ..

., t7 are placed on a circle of radius r1, since they have the same

sizes. It is also clear, that each value f(¢;) defines a circumcircle around the
box b(t;) (see for example f(ts), f(t9)). Figure 3(b) is the final relative drawing
of the S-node ¢, with 9 children. Remark that the representative graph G(t) is
a complete graph.

For the time complexity of functions Draw_Edgeless and Draw_Complete, it
is easy to see that the following lemma holds.
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Lemma 3.1. Let T(G) be a modular decomposition tree of graph G and let
ch(t) be the set of children of a P-node (resp. an S-node) t € T(G). Function
Draw_Edgeless (resp. Draw_Complete) constructs a relative drawing T (t,T) in
O(|ch(t)]) time.

4 Modified Spring Embedder

In this section we describe in detail a spring embedder algorithm for the im-
plementation of function Draw_Prime. Recall that this function is applied on
an N-node ¢ € T(G). Since the representative graph G(t) is a prime graph,
function Draw_Prime requires the vertex set V(G(t)) and the edge set E(G(t)).

The main task of Draw_Prime is to combine the aesthetic properties of a
spring embedder algorithm with the constraint that no vertex-to-vertex over-
lapping occurs. The fact that Draw_Prime is applied on the representative graph
G(t) that contains vertices with non-uniform sizes, makes the drawing task more
demanding.

The function Draw_Prime falls in the category of force-integration approaches
[28, 22]. Tt is based on the Fruchterman & Reingold (FR) spring embedder algo-
rithm [18] and follows the general guidelines of Harel & Koren [22]. Draw_Prime
consists of a main iteration loop, that is repeated until some termination criteria
are met. There are three basic steps to each iteration: (i) calculate the effect
of the edge-attractive forces (ii) calculate the effect of vertex-to-vertex repulsive
forces and (iii) limit the total displacement by a quantity called temperature
which is decreased over the iterations. The temperature is decreased by a cool-
ing schedule, the choice of which greatly affects the quality of the drawing. To
summarize, Draw_Prime starts with an initial random placement of the vertices
and an initial temperature, and performs the main iteration loop, until the un-
derlying physical system reaches an equilibrium state. As presented in [18], we
choose a two phase cooling scheme: the first phase starts with a constant initial
temperature and reduces it using an exponential cooling scheme, and the sec-
ond phase, which starts after a number of iterations, maintains a constant low
temperature.

As already mentioned, we must take into account the size of the children ¢;
of a node t so that vertices of G(t) would not overlap. To achieve this, we have
modified the formulas for the attractive and the repulsive forces between the
vertices of the graph. The final formulae for the forces will be presented later in
the section. We will first describe the heuristics that we use to avoid overlapping.
According to [22], the first modification to the original FR algorithm will result
the following formulae for the attractive f, and the repulsive f,. forces:

T%R k?
FR . fa(TFR) = T and fT(TFR) = E
7"12va k?
Modified FR: fo(rmrr) = . B and  f(rmrr) = e

where rpr = ||c(t;) — c(tj)ll2, Tmrr = f(ti,t;), and f(t;,t;) is the shortest
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(a) (b)

Figure 4: Drawings of a graph using Modified FR forces (a) from the first
iteration and (b) after the first 50 iterations.

distance between the boundaries of the boxes b(t;) and b(t;). The variable k is
the preferred edge length for the drawing and € is a small positive number.

The next extension is to impose the vertex size constraints gradually. Specif-
ically, at the early iterations of our spring embedder the vertices of the prime
graph are considered dimensionless, and thus, we use the forces of the FR algo-
rithm. This policy, combined with a large initial temperature, allows the layout
to escape possible local optimum states. In this way a possible cluttered lay-
out is found at early stages of the algorithm, and then, we use the Modified
FR repulsive and attractive forces to fully prevent overlaps (see also [22]). In
Figure 4(a) we show a drawing example of a graph taken from [22] using only
Modified FR attractive and repulsive forces and in Figure 4(b) we present a
better layout of the same graph using our technique.

After thorough experimental testing we noticed that in many cases, and
especially for some small choices of preferred edge length k, the results were not
satisfactory. Vertex overlapping could not be avoided, since k was small with
respect to the dimensions of the vertices. This defect appeared most frequently
when the representative prime graph G(t) was dense. The reason is that the
large number of attractive forces, combined with a small value of k, do not
allow large vertices to be in a certain distance in order to avoid overlapping. To
overcome this problem we decided to use a factor w in the calculation of the edge
attractive forces, inversely proportional to the graph’s density. In this manner,
we succeed in weakening edge attractive forces, and allowing the algorithm to
position vertices without overlaps.

Hereafter we will denote by G the representative graph G(t). To compute
the reducing factor w, we use the average degree D(G) that can be thought as
a measure for the connectivity of G. To be more precise, we use D~(G) as
the factor in the Modified FR edge attractive force calculation f,. It follows
that the use of D~1(G) as a multiplicative factor weakens the attractive forces
between vertices. Note that, since the smallest prime graph is a Py, for a prime
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ﬁ
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(a)

Figure 5: Drawings of a 5 x 5 grid using (a) w = D71(G) = 0.31 and (b) w = 1.

graph G we have: 0 < D~Y(G) < 0.57.

So far, we have explained how the usage of D~!(G) will aid in the pro-
cess of obtaining a better layout of dense graphs. However, when the graph
is sparse, such an approach will lead to wasted drawing space, since vertices
will be attracted by a small number (|E(G)]|) of weak forces. To overcome this,
after a certain point in the algorithm we use D(G) as the multiplicative fac-
tor so that the final layout would be more compact. The distinction between
sparse and dense graphs is rather vague. One approach is to put a threshold
in the middle of the interval of the previous inequality of D~!(G) and consider
dense the graphs G such that D~1(G) < 0.28 and sparse the graphs such that
D~1(G) > 0.28. However this approach leads to a possible misjudgement of
sparse and dense graphs, since there is no reason of such a uniform distribution
of D71(G). Another way is to choose a number ¢, 1 < ¢ < 2, and define the
graph to be sparse if |[E(G)| = O(|]V(G)]?) [33]. Applying such a heuristic for
distinguishing sparse and dense graphs gives the desired multiplicative factor for
each corresponding case. Experimental results, lead us to use the multiplicative
factor D™1(G) from the beginning, regardless whether the graph is sparse or
dense. The reason is that this technique provides additional help to overcome
possible local minimum states. Moreover it can be thought of as a heuristic in
order to allow the drawing to occupy large drawing area at early iterations so
that its structure has the ability to be unfolded by weakening forces. At final
iterations we strengthen the attractive forces in order to reduce the area and
achieve a more compact layout.

In Figure 5 we show two drawings of a 5 x 5 grid with random dimensioned
vertices. The preferred edge length is set to k = 60, which is a small number
with respect to the dimensions of the vertices. In Figure 5(a) the factor w =
D~YG) = 0.31 is used in the early iterations for the calculation of the attractive
forces. We consider grid graphs to be sparse, which implies that the factor is



Papadopoulos and Voglis, MD drawings, JGAA, 11(2) 481-511 (2007) 497

reversed (w = D(G)) at final iterations and, thus, the layout becomes more
compact. In Figure 5(b) the multiplicative factor w is set to one in all iterations.

Having described the two main features of our spring embedder algorithm,
we can present the attractive and repulsive forces of function Draw_Prime (DP)
as follows. We mention that the early and the final iterations coincide with the
first and the second part of the cooling schedule, respectively.

2 2
w-Tpp k

DP: fo(rpp) = — = and [, (rpp) = (1)

max(rpp,€)
| le(t:) = ce(ty)]], at early iterations
where, rpp = { f(ti,tj), at final iterations

D~Y@G), at early iterations
and w = at final iterations, and
if G is sparse.

For the practical behavior of algorithm Draw_Prime, it is crucial to discuss
about the termination criteria. Commonly, the algorithm stops if it reaches a
maximum number of iterations. Nevertheless, we use a heuristic to determine
whether the drawing reached a state of minimum energy and the algorithm can
be stopped. This heuristic is based on the total displacement of all the vertices
at one main iteration.

In the j-th iteration we calculate the total displacement o (j) for all ¢; € ch(t):

o)=Y lsta)lle. (2)

t;Ech(t)

Every k iterations we compute the mean value & (j, k) of the differences of total

displacement
J+r—1

a(j, k) =~ Y lo+1)—o(). (3)

1=j
The algorithm stops if
5(] + K, 2”) — g(]a ﬂ)
(j, k)

SC =

< €,

where € < 1 is small positive number. Quantity sc has been extensively tested as
a termination criterion with very promising results. In detail function Draw_Prime
is presented below.

Function Draw_Prime(t,T)

1. while iterations < maxiter do

1.1 for every vertex t; € V(G(t)) do
Set the displacement s(t;) := 0;
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for every vertex t; #t; € V(G(t)) do
calculate the displacement s(t;) using the repulsive force f,
between vertices t; and ¢; as described in Equation (1);
1.2 for every edge t;t; € E(G(t)) do
calculate the displacements s(¢;), s(¢;) using the attractive force

Ja

between vertices ¢; and t; as described in Equation (1);

1.3 for every vertex t; € V(G(t)) do
calculate the coordinates ¢(t;) using min (7, s(t;));

1.4 if convergence criterion is met then break;
1.5 if T <7,;, then

if G(t)is dense then w = 1/w;
else
reduce the temperature 7;

2. Return IV(¢,T), containing the centers c¢(¢;) for every t; € V(G(t));

We denote by ¢ the number of the main iterations needed by our spring
embedder algorithm. Fruchterman & Reingold suggested that £ is proportional
to the size of the graph [18]. Tunkelang in his PhD thesis viewed ¢ as a lin-
ear function of the number of vertices [37]. Since the second step inside the
main iteration of Draw_Prime requires |V (G)|? operations, we conclude with
the following lemma.

Lemma 4.1. Let T(G) be a modular decomposition tree of graph G and let ch(t)
be the set of children of an N-node t € T(G). Function Draw_Prime constructs
a relative drawing T (t,T) in O(L-|ch(t)|?) time, where £ is the number of main
iterations that a spring embedder algorithm performs.

A faster drawing technique for prime graphs can be incorporated in our
general framework of Algorithm Module_Drawing, as long as it conforms with
the following constraints: (i) takes node sizes into account and (ii) prevents
overlaps, regardless of the preferred edge length.

5 Time Complexity

Next, we introduce the definition of the prime cost of a graph which we will
need in our analysis. Let G be a graph and T'(G) be its modular decomposition
tree. We denote by «(G) = {t1,ts,...,ts} the set of the N-nodes of T(G). We
define the prime cost of G as the value

$(G)= Y L-[ch(D)P,

tea(Q)



Papadopoulos and Voglis, MD drawings, JGAA, 11(2) 481-511 (2007) 499

where ch(t) denotes the set of children of node ¢ in T(G) and ¢ is the number
of iterations of the spring embedder.

It is not difficult to see that for any mn-vertex graph G, we have ¢(G) =
O(¢ - n?); for an n-vertex Pj-free graph (also known as cograph) G we have
¢(G) = 0, since its md-tree (also known as cotree) does not contain any N-
node [5]. Tt follows that in other classes of graphs their prime cost is constant.
For example, any N-node of the md-tree of a Ps-reducible graph! contains at
most five children [5]. Hence for an n-vertex Pj-reducible graph G we have
¢(G) = O(1). We notice that these classes of graphs arise in applications such
as examination scheduling problems and semantic clustering of index terms [5].

Theorem 5.1. Let G be a graph on n vertices and m edges. Algorithm Mod-
ule_Drawing constructs an md-drawing T'(G) in O(n + m + ¢(G)) time, where
o(Q) is the prime cost of the input graph G.

Proof. Step 1 of Module_Drawing takes O(n + m) time, since the construction
of the modular decomposition tree T(G) of the graph G can be implemented
in linear time using one of the known algorithms in [8, 31]. Step 2 and the
computation of the level sets Lo, L1, ..., L,—_1 of the tree T(G) in Step 3 can be
performed in O(n) time, since the tree T(G) contains O(n) nodes. Addition-
ally, note that exactly one of the functions Draw_Edgeless, Draw_Complete and
Draw_Prime is applied on each of the nodes of T(G).

When the functions Draw_Edgeless and Draw_Complete are applied on a
P-node and an S-node ¢, respectively, the relative drawing is computed in
O(|ch(t)|) time (Lemma 3.1). Lastly, function Draw_Prime requires O(¢-|ch(t)|?)
time (Lemma 4.1), when applied on a N-node t. Steps 4.4 and 4.5 require |ch(?)|
time and constant time respectively.

The top-down traversal of the md-tree T'(G) in Step 5 is performed in O(n)
time, since each node ¢ of T'(G) is processed once. Keeping in mind that T'(G)
contains O(n) nodes, the overall time complexity of Module_Drawing is O(n +
m + ¢(G)) where ¢(G) is the prime cost of the input graph G. 1

Based on the previous result and by the definition of a prime cost we ob-
tain a linear-time algorithm for computing an md-drawing for certain classes
of graphs. Such classes are the classes of extended Py-reducible graphs, Pj-
reducible graphs, cographs, along with their subclasses, such as, the trivially
perfect graphs and the threshold graphs [5].

6 Implementation and Examples

We have implemented our algorithm in C++. The implementation takes as
input an undirected graph G in GraphML format [4]. The vertices are thought
of as rectangles with a predefined size, i.e., with a specific height and width.
Three files are produced in GraphML format: a file that contains the final
drawing of G, a file that contains the md-tree T(G), and a file that contains

LA Py-reducible graph is a graph for which no vertex belongs to more than one Pj.
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Figure 6: Illustration of Module_Drawing on Trans graph

all the relative drawings computed in each level of T(G). For visualization
purposes, we use the yEd environment [40].

6.1 An Example of Module Drawing

In this section, we illustrate how our algorithm produces a final drawing, by
showing level-by-level relative drawings, on the md-tree of the input graph. For
this purpose we use an input graph from a real life application, which describes
a protein interaction network (see [19] for details). More specifically, the input
graph, which we will call a Trans graph, describes a network of proteins that
define transcriptional regulator complexes. The md-tree of the Trans graph
contains 1 P-node, 6 S-nodes, and 1 N-node. In Figure 6(a) we present the
final drawing of Trans graph using Module_Drawing, in Figure 6(b) we show its
modular decomposition tree and in Figure 6(c) we present level-by-level relative
drawings and how they are combined to result the final layout.

Starting from level 3 of the tree in Figure 6(c), we notice three S-nodes. The
application of the function Draw_Series results in the relative drawings as shown
in the corresponding boxes. Their parent, which is a P-node, causes them to
be drawn on a 1 x 3 grid. Finally, the root of the md-tree is an N-node; in
particular G(root) is an A-shaped graph, that consists of 1 parallel module, 3
series modules, and 1 simple vertex. The final drawing reveals all modules and
gives a useful insight of the structure of the Trans graph. Moreover, function
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Draw_Prime, which is the most expensive part of our algorithm in terms of time
complexity, is applied on a graph of 5 vertices instead of 51. Notice that in the
final drawing depicted in Figure 6(a) the two left most vertices are adjacent with
the simple vertex but their edges are hard to follow since they cross vertices of
the clique that lies next to them. However the parallel module consisting of
three disjoint cliques is clearly exposed.

6.2 Drawing Examples

In all the examples we choose to draw the vertices of a graph over its edges. The
height and width of all the vertices are set to 30 points. As already mentioned
in the description of Module_Drawing, we increase the preferred edge length
k; of the i-th level, starting from the level h — 1 of T(G). Thus, we set kp_1
to a constant and k; = (h — @) - kp—1, for ¢ = h — 2,h — 3,...,0. Obviously,
k; < k;—1. We note that an alternative scheme for increasing the preferred edge
length between levels is presented in [38].

For each example drawn by our algorithm, we present an additional drawing
created by a spring embedder method. For this purpose we apply the Smart
Organic Layout (SOL) utility of yEd [40] with desired parameters. We make
clear that, there is no reason to compare our method to any spring embedder
algorithm, since their drawing goals are different. We use a general purpose
drawing algorithm, such as spring embedder, to obtain a reference layout of a
graph. Note also that we incorporate a spring embedder method in the general
framework of our approach.

Figure 7: Drawings of Ky ¢ using (a) Module Drawing and (b) Smart Organic
Layout.

In Figure 7(a) we present the drawing of a complete bipartite graph Ky g,
using preferred edge lengths k1 = 60, and kg = 120, whereas in Figure 7(b) we
present the drawing of the same graph using SOL with preferred edge length set
to 140. Notice, that our algorithm runs in linear time on the size of the input
graph, since complete bipartite graphs are cographs [5], and manages to expose
the two partitions. Due to the density of the input graph, spring embedder
algorithm does not output an aesthetically pleasing result and overlaps the two
partitions. However observe that in our drawing due to the exposure of the
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Figure 8: Drawings of a cycle of cliques using (a) Module_Drawing and (b)
Smart Organic Layout.

parallel modules by the grid placement there are many vertex-to-edge crossings
that make non-adjacent vertices hard to identify (especially for the vertices lying
in the same y-coordinate).

In Figure 8 we present a drawing of a graph known as cycle of cliques [3].
Module_Drawing manages to expose all the cliques in an aesthetic pleasant way.
Also notice that Draw_Prime algorithm is applied on a graph on 14 vertices
(twice the number of the vertices of the basic cycle), whereas a classical spring
embedder algorithm should take 56 vertices into account.

In the next two figures (Figures 9-10) we present graphs that contain only
neighborhood modules. In general, the output of Module_Drawing is similar to
this of SOL, since both employ spring embedder algorithms. More specifically in
Figure 9 (resp. Figure 10) an underlying grid (resp. path) structure is revealed.
Nevertheless, only our algorithm manages to expose the rest of the structure
hidden in the graph (smaller grids, circles, paths e.t.c). This observation arises
from the fact that we apply a spring embedder algorithm without the force
impact of the vertices that belong to other modules.

Another interesting example can be obtained when two subgraphs are com-
pletely connected to each other. More precisely, in Figure 11(a) we distinguish
two cycles both on 10 vertices, where each vertex of the one cycle is adjacent to
every vertex of the other. Clearly, this structure is vanished in Figure 11(b).

The last example is a graph with an md-tree of 3 levels. We present the
output of our method in Figure 12(a). Notice that our method reveals three
underlying structures: a gear graph?, an A-shaped graph and a complex of
grids. These structures are even more obvious if one looks at the level-by-level
drawings of our method. In Figure 13, we show the md-tree of the graph with

2A gear graph is a wheel graph with a vertex added between each pair of adjacent vertices
of the outer cycle.
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Figure 9: Drawings of a graph using (a) Module Drawing and (b) Smart
Organic Layout.

Figure 10: Drawings of a graph using (a) Module Drawing and (b) Smart
Organic Layout.

Figure 11: Drawings of a graph using (a) Module Drawing and (b) Smart
Organic Layout.

all the intermediate drawings computed by our method. It is useful to consider
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Figure 12: Drawings of a graph using (a) Module_-Drawing and (b) Smart
Organic Layout.

Figure 13: The md-tree of the graph depicted in Figure 12.
this kind of representation as a visualization abstraction of the input graph.

7 An Alternative Approach

As we noted above in Figures 6(a) and 7(a) there are some cases in which the
output drawing computed by our algorithm has many vertex-to-edge crossings
so that certain adjacencies between vertices are hidden. This is because in
each intermediate drawing T'(¢, G) the algorithm disregards edges outside G(t)
that will play role in a later step. For the complete and prime representative
graphs it makes sense to keep them apart for the rest of the vertices since they
have structural significance within the graph. However for the case of edgeless
representative graphs (parallel modules) the reduction of their vertex-to-edge
crossings may compromise criteria C2 and C3. Here we propose an alternative
approach that tries to reduce the vertex-to-edge crossings by slightly modifying
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Module_Drawing.

The basic idea is to consider forthcoming edges for parallel modules caused
by their grandparents in T(G). Recall that the parent of a parallel module is a
P-node and, thus, its grandparent, if any, must be an S- or an N-node, since no
P-node has a child another P-node in T'(G). If the parent of a P-node is an S-
node then instead of placing all the modules of the S-node in a circular way, we
choose a parallel module with the maximum number of connected components
to be drawn in another cycle outside the one corresponding to the S-node. The
placement of the connected components is done in an arbitrary order. If the
parent of a P-node is an N-node then the children of the P-node are considered
as part of the representative graph of the N-node. Thus with the new approach
the spring embedder acts on every vertex of the P-node separately, whereas with
the previous algorithm those vertices are considered as a unified vertex in the
prime graph.

For that purpose before computing the intermediate drawings we modify
T(G) and denote the output tree by T*(G). In the modified tree T*(G) we
have four types of internal nodes, instead of three types in T'(G). Let ¢ be an
internal node of T'(G) and let ch(t) = {t1,...,ts} be its children in T(G). We
distinguish between the following two cases:

(a) If ¢ is an S-node then let ¢; € ch(t) be the P-node having the maximum
number of children in 7'(G) among the other P-nodes in ch(t). We remove
the subtree rooted at ¢; from T(G) and replace t;’s label by S*. The new
parent of t becomes node t; and the old parent of £ now becomes parent
of t;. That is, in T*(G) the children of ¢; are {t} U ch(t;) and t;’s parent
is t;’s grandparent in T'(G). In the resulting tree 7*(G) node t; marks its
child ¢.

(b) If ¢ is an N-node then for every P-node t; € ch(t) all the children of ¢; in
T(G) become children of ¢ in T*(G) and node ¢; is removed.

Observe that for the N-nodes we modify all of their children labelled as
P-nodes, whereas for the S-nodes we consider at most one child labelled as a
P-node. In Figure 14 we show the modified tree T*(G) of the graph shown in
Figure 1. Notice that node ¢ represents node ¢4 in T(G) and has label S* in
T*(G). The number of children of ¢3 is increased by two with respect to that
of t3, since two of t3’s children in T'(G) are P-nodes. By the construction of
T*(Q) it follows that the representative graphs of the S*- and N-nodes have the
following properties. If ¢ is an S*-node then G(t) is a star graph® where the
central vertex (the vertex of degree more than one) corresponds to the parent
of t in T(G). If t is an N-node then G(t) is not necessarily a prime graph, since
it contains modules coming from the P-nodes in T'(G). Moreover note that an
S-node in T*(G) may have only one child.

Given the modified tree T*(G) of a graph G, we need to reconsider Mod-
ule_Drawing in order to obtain the alternative drawing of G. Observe first that

3A graph on n vertices is called star if it is connected and n — 1 vertices have degree 1.
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t

Figure 14: The modified tree T*(G) of the graph depicted in Figure 1.

for P-, S-, and N-nodes we apply the same corresponding functions as in the
previous case. The difference now in 7%(G) is that we have a new type of in-
ternal node t labelled by S* so that G(t) is a star graph. Its drawing results by
placing the central vertex in the center of a cycle and the rest of the vertices are
placed on the circumference. Recall that the vertices of G(¢) have non-uniform
sizes. There is a straightforward way to obtain such a placement by first ap-
plying Draw_Complete on the vertices of G(¢) excluding the central vertex and,
then, place the central vertex on the center of the cycle. Caution is required
so that the central vertex does not cause any overlapping with the rest of the
vertices placed on the circumference. Thus before applying Draw_Complete we
increase the preferred edge length by a proportional function of the diagonal
length of the central box. By that way we guarantee that no vertex overlapping
occurs in the relative drawing of G(t). It is interesting to note that the main
difference with the previous version is that we introduce a new type of label
in the modified tree that requires the proper description of the corresponding
relative drawing technique.

Regarding the running time observe that modifying the tree T(G) takes O(n)
time since both trees T'(G) and T*(G) contain O(n) nodes. The function for
drawing star graphs for the S*-nodes requires the same amount of time needed
for applying Draw_Complete. However the vertex set of a representative graph
of an N-node in T*(G) may be larger than the corresponding one in T(G),
implying an additional cost to the overall running time.

A drawing of the Trans graph computed by the second approach is shown in
Figure 15 (a). Notice that the spring embedder is able to distinguish the vertices
of the parallel module shown in Figure 6 in such a way that the adjacencies
between those vertices and the simple vertex are easy to follow. In Figure 15 (b)



Papadopoulos and Voglis, MD drawings, JGAA, 11(2) 481-511 (2007) 507

Figure 15: Two drawings computed by the second approach. (a) and (b) contain
the graphs shown in Figures 6 and 7, respectively.

we present the drawing computed by the alternative algorithm for the complete
bipartite graph shown in Figure 7. Observe that although the vertex-to-edge
crossings are not minimized in the output drawing, there are no such crossings
between the vertices of the parallel module placed in the outer cycle.

8 Concluding Remarks

In this paper we have presented a divide-and-conquer technique for drawing
undirected graphs, based on their modular decomposition tree, where each dis-
joint induced subgraph (module) is drawn according to its corresponding struc-
ture (edgeless, complete or prime). For certain classes of graphs, the structure
of their modular decomposition trees ensures that each tree node can be pro-
cessed in linear time. It turns out that our algorithm also reveals the structure
of a graph and exposes regular structures of its subgraphs. Thus, modular de-
composition can be thought as a quite effective clustering technique that can be
exploited to give a better insight in many graphs. By grouping vertices with the
same neighborhood a great reduction on the size of the graph can be achieved,
without loosing any information for the connectivity among modules.

It is interesting to design efficient drawing algorithms for certain classes of
prime graphs, by exploiting their structural properties. In this way the applica-
tion of the spring embedder, which is the most expensive part of our algorithm,
will be avoided. Also, further research includes an investigation for the edge
crossings which appear between modules. It would be interesting to know if
the adjacency between two modules of vertices can be drawn in a planar way
by applying confluent drawings introduced in [10]. Finally, another interesting
point is to apply other linear-time hierarchical decomposition algorithms, such
as split decomposition which divides a connected graph into stars, cliques and
prime graphs [7].
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