Journal of Graph Algorithms and Applications
http://jgaa.info/ vol. 11, no. 2, pp. 345-369 (2007)

Large-Graph Layout Algorithms at Work:
An Experimental Study

Stefan Hachul — Michael Junger

Institut fiir Informatik
Universitat zu Koln
Pohligstrafle 1, 50969 Koln, Germany
{hachul,mjuenger}@informatik.uni-koeln.de

Abstract

In the last decade several algorithms that generate straight-line draw-
ings of general large graphs have been invented. In this paper we investi-
gate some of these methods that are based on force-directed or algebraic
approaches in terms of running time and drawing quality on a big va-
riety of artificial and real-world graphs. Our experiments indicate that
there exist significant differences in drawing qualities and running times
depending on the classes of tested graphs and algorithms.

Article Type Communicated by Submitted Revised
Regular paper P. Eades and P. Healy January 2006 January 2007

Hachul and Jiinger, Large-Graph Layout Alg., JGAA, 11(2) 345-369 (2007) 346

1 Introduction

What do biochemical reactions of proteins in baker’s yeast, the ecosystem of
plankton, sea perch, and anchovy, the American electricity network, and the
international air traffic have in common? They can be modeled as graphs.

In general a graph G = (V, E) is used to model information that can be
described as objects (the node set V') and connections between those objects
(the edge set FE).

One fundamental tool for analyzing such graphs is the automatic generation
of layouts that visualize the graphs and are easy to understand. A popular
class of algorithms that is used to visualize general graphs are force-directed
graph-drawing methods. Those methods generate drawings of a given general
graph G = (V, E) in the plane in which each edge is represented by a straight
line connecting its two adjacent nodes. The computation of the drawings is
based on associating G with a physical model. Then, an iterative algorithm
tries to find a placement of the nodes so that the total energy in the underlying
physical system is minimal. Important esthetic criteria are uniformity of edge
length, few edge crossings, non-overlapping nodes and edges, and the display of
symmetries if some exist.

Classical force-directed algorithms like [5, 16, 7, 4, 6] are used successfully in
practice (see e.g., [2]) for drawing general graphs containing few hundreds of ver-
tices. However, in order to generate drawings of graphs that contain thousands
or hundreds of thousands of vertices more efficient force-directed techniques
have been developed [21, 20, 9, 8, 13, 23, 12, 11]. Besides fast force-directed
algorithms other very fast methods for drawing large graphs (see e.g., [14, 17])
have been invented. These methods are based on techniques of linear algebra
instead of physical analogies. But they strive for the same esthetic drawing
criteria.

Previous experimental tests of these methods are mainly restricted to regular
graphs with grid-like structures (see e.g., [14, 17,9, 23, 13]). Since general graphs
share these properties quite seldom, and since the test environments of these
experiments are different, a standardized comparison of the methods on a wider
range of graphs is needed.

In this study we experimentally compare some of the fastest state-of-the-art
algorithms for straight-line drawing of general graphs on a big variety of graph
classes. In particular, we investigate the force-directed algorithm GRIP of Gajer
and Kobourov [9] and Gajer et al. [8], the Fast Multi-scale Method (FMS) of
Harel and Koren [13], and the Fast Multipole Multilevel Method (FM®) of Hachul
and Jiinger [12, 11]. We did not test other efficient force-directed methods like
FADE of Quigley and Eades [20] and JIGGLE of Tunkelang [21] since the original
implementations were not available to us or the implementations did not allow
to import test graphs, respectively.

The examined algebraic methods are the algebraic multigrid method ACE of
Koren et al. [17] and the high-dimensional embedding approach (HDE) of Harel
and Koren [14]. Additionally, one of the fastest classical force-directed al-
gorithms, namely the grid-variant algorithm (GVA) of Fruchterman and Rein-

Hachul and Jiinger, Large-Graph Layout Alg., JGAA, 11(2) 345-369 (2007) 347

gold [7], is tested as a benchmark.

After a short description of the tested algorithms in Section 2 and a presen-
tation of the experimental framework in Section 3, our results will be presented
in Section 4.

2 The Algorithms

2.1 The Grid-Variant Algorithm (GVA)

The grid-variant algorithm (GVA) of Fruchterman and Reingold [7] is based on a
model of pairwise repelling charged particles (the nodes) and attracting springs
(the edges), similar to the model of the Spring Embedder of Eades [5]. Since a
naive exact calculation of the repulsive forces acting between all pairs of charges
needs ©(|V2|) time per iteration, GVA only calculates the repulsive forces acting
between nodes that are placed relatively near to each other. Therefore, the
rectangular drawing area is subdivided into a regular square grid. The repulsive
forces that act on a node v that is contained in a grid box B are approximated by
summing up only the repulsive forces that are induced by the nodes contained
in B and the nodes in the grid boxes that are neighbors of B. If the number
of iterations is assumed to be constant, the best-case running time of GVA is
O(|V| + |E|). The worst-case running time, however, remains O(|V|? + |E|).

2.2 The Method GRIP

Gajer and Kobourov [9] and Gajer et al. [8] developed the force-directed multi-
level algorithm GRIP. In general, multilevel algorithms are based on two phases.
A coarsening phase, in which a sequence of coarse graphs with decreasing sizes is
computed and a refinement phase in which successively drawings of finer graphs
are computed, using the drawings of the next coarser graphs and a variant of a
suitable force-directed single-level algorithm.

The coarsening phase of GRIP is based on the construction of a maximum
independent set filtration or MIS filtration of the node set V. A MIS filtration
is a family of sets {V =: Vo, V4,...,Vi} with § C Vi C Vk_1... C V; so that
each V; with ¢ € {1,...,k} is a maximal subset of V;_; for which the graph-
theoretic distance between any pair of its elements is at least 2°=! + 1. Gajer
and Kobourov [9] use a Spring Embedder-like method as a single-level algorithm
at each level. The used force vector is similar to that used in the method of
Kamada and Kawai [16], but is restricted to a suitable chosen subset of V;.

Other notable specifics of GRIP are that it computes the MIS filtration only
and no edge sets of the coarse graphs Gy, ..., Gy that are induced by the filtra-
tions. Furthermore, it is designed to place the nodes in an n-dimensional space
(n > 2), to draw the graph in this space, and to project it into two or three
dimensions.

The asymptotic running time of the algorithm, excluding the time that is
needed to construct the MIS filtration, is ©(|V|(log diam(G)?)) for graphs with

Hachul and Jiinger, Large-Graph Layout Alg., JGAA, 11(2) 345-369 (2007) 348

bounded maximum node degree, where diam(G) denotes the diameter of G.

2.3 The Fast Multi-scale Method (FMS)

In order to create the sequence of coarse graphs in the force-directed multilevel
method FMS, Harel and Koren [13] use an O(k|V]) algorithm that finds a 2-
approximative solution of the A"P-hard k-center problem [10]. The node set V;
of a graph G; in the sequence Gy, ..., G} is determined by the approximative
solution of the k;-center problem on G with k; > k;;q for alli € {0,..., k—1}.

The authors use a variation of the algorithm of Kamada and Kawai [16] as
a force-directed single-level algorithm. In order to speed up the computation of
this method, they modify the energy function of Kamada and Kawai [16] that
is associated with a graph G; with i € {0,...,k — 1}. The difference to the
original energy of Kamada and Kawai [16] is that only some of the |V (G;)] — 1
springs that are connected with a node v € V(G;) are considered.

The asymptotic running time of FMS is ©(|V||E|). Additionally, ©(|V|?)
memory is needed to store the distances between all pairs of nodes.

2.4 The Fast Multipole Multilevel Method (FM?)

The force-directed multilevel algorithm FM® has been introduced by Hachul and
Jinger [12, 11]. Tt is based on a combination of an efficient multilevel technique
with an O(|V|log|V|) approximation algorithm to obtain the repulsive forces
between all pairs of nodes.

In the coarsening step subgraphs with a small diameter (called solar systems)
are collapsed to obtain a multilevel representation of the graph. In the used
single-level algorithm, the bottleneck of calculating the repulsive forces acting
between all pairs of charged particles in the Spring Embedder-like force model
is overcome by rapidly evaluating potential fields using a novel multipole-based
tree code. The worst-case running time of FM® is O(|V|log |V| + |E|) with linear
memory requirements.

2.5 The Algebraic Multigrid Method ACE

In the description of their method ACE, Koren et al. [17] define the quadratic
optimization problem

(P) min 7Lz sothat z7z =1 in the subspace 271, =0.

Here, n = |V| and L is the Laplacian matrix of G.

The minimum of (P) is obtained by the eigenvector that corresponds to the
smallest positive eigenvalue of L. The problem of drawing the graph G in two
dimensions is reduced to the problem of finding the two eigenvectors of L that
are associated with the two smallest eigenvalues.

Instead of calculating the eigenvectors directly, an algebraic multigrid al-
gorithm is used. Similar to the force-directed multilevel ideas, the idea is to

Hachul and Jiinger, Large-Graph Layout Alg., JGAA, 11(2) 345-369 (2007) 349

express the originally high-dimensional problem in lower and lower dimensions,
solving the problem at the lowest dimension, and progressively solving a high-
dimensional problem by using the solutions of the low-dimensional problems.

The authors do not give an upper bound on the asymptotic running time of
ACE in the number of nodes and edges.

2.6 High-Dimensional Embedding (HDE)

The method HDE of Harel and Koren [14] is based on a two phase approach
that, first, generates an embedding of the graph in a very high-dimensional
vector space and, then, projects this drawing into the plane.

The high-dimensional embedding of the graph is computed by, first, using
a linear time algorithm for approximatively solving the k-center problem [10].
A fixed value of k = 50 is chosen, and k is also the dimension of the high-
dimensional vector space. Then, breadth-first search starting from each of the k
center nodes is performed resulting in k& |V|-dimensional vectors that store the
graph-theoretic distances of each v € V' to each of the k centers. These vectors
are interpreted as a k-dimensional embedding of the graph.

In order to project the high-dimensional embedding of the graph into the
plane, the k vectors are used to define a covariance matrix S. The z- and y-
coordinates of the two-dimensional drawing are obtained by calculating the two
eigenvectors of S that are associated with its two largest eigenvalues. HDE runs
in O(|V| + |E|) time.

3 The Experiments

3.1 Test-Environment, Implementations, and Parameter
Settings

All experiments were performed on a 2.8 GHz Intel Pentium 4 PC with one
gigabyte of memory running Linux.

We tested an implementation of GVA by S. Nidher and D. Alberts that is
part of the AGD [15] library, an implementation of GRIP by R. Yusufov that
is available from [24], and implementations of FMS, ACE, HDE by Y. Koren that
are available from [18]. Finally, we tested our own implementation of FM3.

The provided executables of ACE, HDE, and FMS are Microsoft Windows ex-
ecutables. They were tested on the same machine but using Windows as oper-
ating system, instead.

In order to obtain a fair comparison, we ran each algorithm with the same
set of standard-parameter settings (given by the authors) on each tested graph.
However, we are aware that in some cases it might be possible to obtain better
results by spending a considerable amount of time with trial-and-error searching
for an optimal set of parameters for each algorithm and graph.

Hachul and Jiinger, Large-Graph Layout Alg., JGAA, 11(2) 345-369 (2007) 350

3.2 The Set of Test Graphs

Since only few implementations can handle disconnected and weighted graphs,
we restrict our attention to connected unweighted graphs, here.

We generated several classes of artificial graphs to examine the scaling of
the algorithms on graphs with predefined structures but different sizes.

These are random grid graphs that were obtained by, first, creating regular
square grid graphs and, then, randomly deleting 3% of the nodes. The sier-
pinski graphs were created by associating the Sierpinski Triangles with graphs.
Furthermore, we generated complete 6-nary trees.

The next two classes of artificial graphs were designed to test how well the
algorithms can handle highly non-uniform distributions of the nodes and high
node degrees. Therefore, we created these graphs in a way so that one can expect
that an energy-minimal configuration of the nodes in a drawing that relies on a
Spring Embedder-like force model induces a tiny subregion of the drawing area
which contains ©(|V|) nodes. In particular, we constructed trees that contain
a root node r with |V|/4 neighbors. The other nodes were subdivided into six
subtrees of equal size rooted at r. We called these graphs snowflake graphs.

Additionally we created spider graphs by constructing a circle C' containing
25% of the nodes. Each node of C is also adjacent to 12 other nodes of the
circle. The remaining nodes were distributed on 8 paths of equal length that
were rooted at one node of C. In contrast to the snowflake graphs, the spider
graphs have bounded maximum degree.

The last kind of artificial graphs are graphs with a relatively high edge
density |E|/|V| > 14. We call them flower graphs. They are constructed by
joining 6 circles of equal length at a single node before replacing each of the
nodes by a complete subgraph with 30 nodes (K3p).

The rest of the test graphs are taken from real-world applications. In par-
ticular, we selected graphs from the ATET graph library [1], from C. Walshaw’s
graph collection [22], and a graph that describes a social network of 2113 people
that we obtained from C. Lipp.

We partitioned the artificial and real-world graphs into two sets. The first
set are graphs that consist of few biconnected components, have a constant max-
imum node degree, and have a low edge density. Furthermore, one can expect
that an energy-minimal configuration of the nodes in a Spring Embedder draw-
ing of such a graph does not contain ©(|V]) nodes in an extremely tiny sub-
region of the drawing area. Since one can anticipate from previous experi-
ments [14, 17, 9, 13] that graphs contained in this set do not cause problems
for many of the tested algorithms, we call the set of these graphs kind. The
second set is the complement of the first one, and we call the set of these graphs
challenging.

Table 1 gives an overview of the structures of the tested graphs.

Hachul and Jiinger, Large-Graph Layout Alg., JGAA, 11(2) 345-369 (2007) 351

|E| max.

Type Name V| |E| | B| 1 | degree
rnd_grid_032 985 1834 2 1.8 4

Kind rnd_grid_100 9497 17849 6 1.8 4
Artic rnd_grid_320 97359 | 184532 2 1.9 4
ficial sierpinski_06 1095 2187 1 2.0 4
sierpinski_08 9843 19683 1 2.0 4
sierpinski_10 88575 177147 1 2.0 4

Kind crack 10240 30380 1 2.9 9
Real fe_pwt 36463 144794 55 3.9 15
World finan_512 74752 261120 1 34 54
fe_ocean 143437 409593 39 2.8 6
tree_06_04 1555 1554 1554 1.0 7
tree_06_05 9331 9330 9330 1.0 7
tree_06_06 55987 55986 | 55986 1.0 7
snowflake_A 971 970 970 1.0 256

Chal- snowflake_B 9701 9700 9700 1.0 2506
lenging | snowflake C 97001 97000 | 97000 1.0 | 25006
Arti- spider_A 1000 2200 801 2.2 18
ficial spider_B 10000 22000 8001 2.2 18
spider_C 100000 220000 | 80001 2.2 18

flower_A 930 13521 11 145 30

flower_B 9030 131241 1 14.5 30

flower_C 90030 | 1308441 1| 14.5 30

ug_380 1104 3231 27 2.9 856

Chal- esslingen 2075 5530 867 2.6 97
lenging | add_32 4960 9462 951 1.9 31
Real dg_1087 7602 7601 7601 1.0 6566
World | besstk_33 8738 291583 1] 333 140
besstk_31 35586 572913 48 | 16.1 188

Table 1: The test graphs and their structures

3.3 The Criteria of Evaluation

The natural criteria to evaluate a graph-drawing algorithm in practice are the
needed running times and the quality of the drawings.

In order to evaluate the quality of the drawings, we focus on the aesthetic
criteria that all tested algorithms strive for (i.e., uniformity of edge length, few
edge crossings, non-overlapping nodes and edges, and the display of symmetries).

Suppose G = (V, E) is a graph and I is a drawing of G. Let Ir(e) denote
the length of an edge e € E in I' and [V denote the average edge length of an
edge in I'. To measure the uniformity of the edges, we calculated the normalized
standard deviation of the edge length that is

Hachul and Jiinger, Large-Graph Layout Alg., JGAA, 11(2) 345-369 (2007) 352

av 2
eckE r
We counted the number of edge crossings in I' (denoted by ecnr) as well as
the number of pairs of edges that completely overlap each other (denoted by
eonr). To compare these measures on graphs with different sizes, we define the
relative edge-crossing number (recnr) and the relative edge-overlapping number
(reonr) of a drawing I" of G as follows:

_ lecnr|

|eonr|
recnp 1= =

reony 1=

|E| |E|

We did not measure the number of (partially) overlapping nodes. The reason
is that per default some implementations represent nodes by points (ACE, HDE),
whereas the others draw them as circles that occupy nonempty area. Since
symmetry-detection is NP-hard [19], we did not explicitly measure the sym-
metry of a given drawing and printed the drawing, instead. One of the most
important implicit goals of a graph-drawing algorithm is that an individual user
is satisfied with a drawing. Therefore, we provide printouts of the computed
drawings, too.

4 The Results

4.1 Comparison of the Running Times

The running times of the methods GVA, FM3, GRIP, FMS, ACE, and HDE for the
tested graphs are presented in Table 2.

As expected, in most cases GVA is the slowest method among the force-
directed algorithms. The largest graph fe_ocean is drawn by GVA in 5 hours and
20 minutes.

The method FM2 is significantly faster than GVA for all tested graphs. The
running times range from less than 2 seconds for the smallest graphs to less than
6 minutes for the largest graph fe_ocean. The sub-quadratic scaling of FM3 can
be experimentally confirmed for all classes of tested graphs.

Except for the dense graphs flower_.B and besstk_33 GRIP is faster than
FM® (up to a factor of 9). Unfortunately, we could not examine the scaling
of GRIP for the largest graphs due to an error in the executable.

Since the memory requirement of FMS is quadratic in the size of the graph,
the implementation of FMS is restricted to graphs that contain at most 10,000
nodes. The running times of FMS are comparable with those of FM3 for the
smallest and the medium sized kind graphs. In contrast to this, the CPU times of
FMS increase drastically for several challenging graphs, in particular for graphs
that either contain nodes with a very high degree or have a high edge density.

Hachul and Jiinger, Large-Graph Layout Alg., JGAA, 11(2) 345-369 (2007) 353

Type Name CPU Time in Seconds
GVA FM®> [GRIP| FMS ACE HDE

rnd_grid_032 125 1.9 0.3 1.0 <0.1| <O0.1
Kind rnd_grid_100 203.4 19.1 4.4 32.0 0.5 0.1
Artic rnd_grid_320 6316.1 | 2154 | (FE) (M) 4.1 1.3
ficial sierpinski_06 13.1 1.8 0.3 1.0 <0.1| <0.1
sierpinski_08 171.7 16.8 4.8 33.0 1.0 0.1
sierpinski_10 || 3606.4 | 162.0| (E)| (M)| 234| 1.0
Kind | crack 317.5| 23.0| 6.8 (M) 0.4 0.2
Boal | fePWE 1869.1| 69.0| (E)| (M)| ()| 0.5
World | finan-512 6319.8 | 158.2| (BE)| (M) 75| 1.0
fe_ocean 19247.0 | 355.9| (E) (M) 4.0 3.4
tree_06_04 14.3 26| 0.3 20| <0.1] <0.1
tree_06_-05 130.3 17.7| 24 43.0 0.5 <0.1
tree_06_06 1769.2 | 121.3| (E)| (M)| 45| 0.5
snowflake_A 8.0 16| 0.4 73.0 04| <0.1
Chal- | snowflake B 143.2| 174| 6.1| 3320.0 (T)| <o0.1
lenging | snowflake C || 14685.7 | 166.5| (E)| (M)| (1) 0.8
Arti- | spider_A 17.6| 19| 04 10| 11| <01
ficial spider_B 189.0 17.7 7.2 47.0 8.9 0.1
spider_C 4568.3 | 177.2| (B)| (M)| 280.7| 1.3
flower_A 61.7 1.2 0.7 1.0 <0.1| <O0.1
flower B 595.1 11.9| 19.3 46.0 14 0.2
flower_C 118415 | 1214 (BE)| (M)| (T)| 1.4
ug-380 23.1 2.1 0.4 1.0 <0.1| <O0.1
Chal- | esslingen 43.8 4.0 0.5] 404.0 1.0 <0.1
lenging | add_32 80.6| 12.1| 1.6 17.0 05| < 0.1
Real | dg_1087 624.8| 18.1| 3.6| 5402.0| 108.4| < 0.1
World | besstk_33 1494.6 23.8| 29.1| 6636.0 0.4 0.3
besstk_31 43384 836| (E)| (M) 19| 0.7

Table 2: The test graphs and the running times that are needed by the tested
algorithms to draw them. Explanations: (E) No drawing was computed due to
an error in the executable. (M) No drawing was computed because the memory
is restricted to graphs with < 10,000 nodes. (7') No drawing was computed
within 10 hours of CPU time. B denotes the sets of biconnected components of
the graphs. Best values are printed bold. Worst values are underlined.

The algorithm ACE is much faster than the force-directed algorithms for
nearly all kind graphs. However, the running times grow extremely if ACE is
used to draw several of the challenging graphs.

The linear time method HDE is by far the fastest algorithm. It needs less
than 3.4 seconds for drawing even the largest tested graph.

Hachul and Jiinger, Large-Graph Layout Alg., JGAA, 11(2) 345-369 (2007) 354

4.2 Comparison of the Drawings
4.2.1 Uniformity of Edge Lengths

Figure 1 shows the normalized standard deviations of the edge lengths or of the
drawings I" for the tested kind and challenging graphs.

= E=)
joy) jo)]
o GVAé — 5 25 GVA3 —
-5 FM®™ —=— - FM®° ——
o) FMS —— & 20 FMS ——
8 4} ACE —— g ACE ——
B B 15
. 3 g
B o
o, o 10
' 1 /)
e | el : s
g 2 — > *—
Kind Graphs Challenging Graphs

Figure 1: The normalized standard deviations of the edge lengths of the draw-
ings for the kind graphs (left) and challenging graphs (right).

For the kind graphs the op values of the drawings that are computed by GVA,
FM3, FMS, and HDE are below 1 while the o values associated with ACE are still
below 2. This indicates that for those graphs the goal of generating drawings
with uniform edge lengths has been reached well by all algorithms.

The or values of some drawings of challenging graphs that are generated by
HDE and ACE exceed values of 5 and 25, respectively. In contrast to this, the
or values of GVA and FMS remain below 1 for the majority of the drawings of
the challenging graphs. All or values associated with drawings computed by
FM® are smaller than 1.

Notice that it is not possible to obtain the measures or, recnr, and reonr for
the drawings generated by GRIP, since the used implementation of GRIP pro-
vides screen output only. Hence, in this case we had to restrict ourselves to
printing screenshots for visual comparisons.

4.2.2 Edge Crossings and Overlapping Edges

The relative edge-crossing numbers recnr and the relative edge-overlapping
numbers reonr of the drawings I' generated by the algorithms are listed in
Tables 3 and 4, respectively.

For the kind graphs, the multilevel and algebraic methods generate com-
parable and significantly smaller numbers of edge crossings than the classical
force-directed method GVA.

With two exceptions, the recnp values of the drawings of the challenging
graphs that are generated by FM® are smaller than the corresponding values of
GVA. The recny values of ACE are much smaller than those of FM3 for several
challenging artificial graphs, while they are comparable with those of FM® for the

Hachul and Jiinger, Large-Graph Layout Alg., JGAA, 11(2) 345-369 (2007) 355

recnr
Type Name GVA FIP FMS ACE | HDE

rnd_grid_032 3.82 0 0 0 <0.01

Kind rnd_grid_100 14.75 0 0 0 <0.01

Arti. | nd-grid 320 181.51 0 (N)| <0.01| <0.01

ficial sierpinski_06 2.00 0.05 <0.01 0 0.02

sierpinski_08 9.49 0.07 0.01 0.02 0.08

sierpinski_10 99.97 0.09 (N) 0.27 0.01

Kind crack 30.82| <0.01 (N) 0 0.07

Real fe_pwt 150.70 2.45 (N) (N) 1.61

World finan_512 301.25 18.81 (N)| 12.27 21.27

fe_ocean 622.48 7.13 (N) 9.07 8.24

tree_06_04 2.21 1.16 7.89 0.01 0

tree_06_05 9.33 1.89 11.48 0 22.92

tree_06_06 70.68 3.31 (N) 4.16 128.82

snowflake_A 0.63 0 0.10| <0.01 0.62

Chal- | snowflake B 1.46 0 8.18 (N) 6.92

lenging | snowflake_C 15.53 0 (N) (N)| 195.87

Arti- spider_A 15.62 16.55 1.17 6.60 1.25

ficial spider_B 154.70 132.96 1.64 0 0

spider_C 2522.89 | 1029.64 (N) 0 0

flower_A 46.71 49.08 5.63 0.26 0.55

flower_B 64.90 51.57 1.90 0.06 0.34

flower_C 578.22| 53.39 (M| (N)| 0.30

ug_380 22.93 19.55 13.67 | 20.99 1.35

Chal- | esslingen 47.52 23.71 28.42 20.81 3.89

lenging | add_32 8.65 1.69 5.75 0.89 5.80

Real | dg_1087 1.74| < 0.01 37.07 5.92 6.49

World | besstk_33 720.94 376.18 | 4171.05| 413.56 | 113.86

besstk_31 708.69 94.26 (N)| 63.00| 611.21

Table 3: The relative edge-crossing numbers (recnr) of the drawings I' com-
puted by the tested algorithms. The entry (N) indicates that no drawing was
computed. Best values are printed bold. Worst values are underlined.

challenging real-world graphs. Depending on the classes of tested challenging
graphs, the recnr values of the drawings computed by FMS and HDE vary a lot:
FMS and HDE generate many crossings for the 6-nary trees and the snowflake
graphs but comparatively few crossings for the spider and flower graphs.

No drawing of a kind graph generated by GVA or FM?® contains overlapping
edges. In contrast to this, few pairs of overlapping edges exist in many drawings
of kind graphs computed by FMS and ACE, and in all drawings computed by HDE.

The challenging graphs spider_A and esslingen are the only graphs in the test
set that contain parallel edges, resulting in minimum relative edge-overlapping

Hachul and Jiinger, Large-Graph Layout Alg., JGAA, 11(2) 345-369 (2007) 356

reony
Type Name GVA | FI® | FIS ACE HDE

rnd_grid_032 0 0 0.03 0 <0.01

. rnd_grid_100 0 0 0 0 0.03

Kind .

Arti. | nd-grid 320 0 0 (N) 0 0.08

fcial sierpinski_06 0 0 0.03 0 0.01

sierpinski_08 0 0 0.14 <0.01 0.11

sierpinski_10 0 0 (N) 0.98 1.43

. crack 0 0 (N) 0 0.12

I;Z;? fe_pwt 0 0 (N) (N) 34.25

World finan_512 0 0 (N) 3.68 9.14

fe_ocean 0 0 (N) 0.22 1.67

tree_06_04 0 0 0.38 59.09 78.08

tree_06_05 0 0 0.86 504.27 466.83

tree_06_06 0 0 (N) 2929.74 2030.40

snowflake_A 0 0 42.02 32.11 85.34

Chal- | snowflake B 0 0| 169.77 (N) 398.06

lenging | snowflake_C 0 0 (N) (N)| 16818.82

Arti- spider_A 0.27| 0.27 0.67 19.57 63.50

ficial spider_B 0 0| 6903.67 4248.23 297.13

spider_C 0 0 (N) | 44554.09 | 40163.33

flower_A 0 0 5.14 149.31 160.36

flower_B 0 0 21.63 167.48 210.83

flower_C 0 0 (N) (N) 340.19

ug_380 0 0 1.29 0.79 10.69

Chal- | esslingen 0.14| 0.14 0.97 1.93 2.54

lenging | add_32 0 0 1.21 0.19 5.73

Real | dg_1087 0 0| 109.23| 1882.14| 1390.30

World | besstk_33 0 0| 3416.70 0.13 329.17

besstk_31 0 0 (N) 2.50 | 2386.76

Table 4: The relative edge-overlapping numbers (reonr) of the drawings I' com-
puted by the tested algorithms. The entry (N) indicates that no drawing was
computed. Best values are printed bold. Worst values are underlined.

numbers of 0.27 and 0.14, respectively. Hence, GVA and FM® are the only algo-
rithms that generate drawings with the minimum number of overlapping edges
for all tested graphs. In contrast to this, the recnr values of all drawings of chal-
lenging graphs generated by FMS, ACE, and HDE are positive and reach extremely
high values in many cases.

For FMS an explanation of this behavior might be that the positions have
integer values only, and that the underlying grid-resolution is too small. For
the algebraic methods an explanation of the many overlapping nodes and edges
can be found in [3, 17] and [11].

Hachul and Jiinger, Large-Graph Layout Alg., JGAA, 11(2) 345-369 (2007) 357

Since overlapping edges are at least as undesirable as crossing edges we
additionally compared the sums of the relative edge-crossing numbers and the
dedicated relative edge-overlapping numbers (see Figure 2).

1et06 [GVA —— GVA ——
MS —— 1e+06
10000 } FMS ——
c ACE —— < 10000
3 3 :
L /\//\/ + 100 |-
8 ‘ 8
2 1 / 2 1
0.01 0.01
Kind Graphs Challenging Graphs

Figure 2: The sums of the relative edge-crossing and dedicated relative edge-
overlapping numbers of the drawings for the tested kind graphs (left) and chal-
lenging graphs (right).

For the kind graphs, the recnr values of the drawings computed by GVA are
significantly larger than the sum of recnr and reonr of all other algorithms. For
those graphs FM® and ACE have smaller values than HDE. FM® reaches the lowest
added values of recnpr and reonr for the majority of the challenging graphs. The
other multilevel and algebraic methods have frequently higher added recnr and
reonp values than the classical force-directed algorithm GVA.

4.2.3 The Overall Picture

In the remainder of this section, we will discuss the quality of the drawings of
the tested graphs that are presented in Figures 3 to 10 by keeping the modeled
esthetic criteria in mind.

Note that due to the very restricted drawing area, not all details of each
large graphs can be displayed, here. However, those details can be examined by
creating large printouts or by using simple zoom and pan techniques.

For all kind graphs the classical method GVA does not untangle the drawings
that were induced by the random initial placements. In contrast to this, nearly
all algorithms computed relatively pleasing drawings of the kind graphs (see
Figure 3, Figure 4, and Figure 5(a)-(d)).

None of the drawings of the complete 6-nary trees (see Figure 5(e)-(j)) is
really convincing, since the algorithms either produce many unnecessary edge
crossings or they place many nodes at the same coordinates.

Except FM® none of the tested algorithms displays the global structure of
the snowflake graphs. Even the drawings of the smallest snowflake graph (see
Figure 6(a)-(f)) leave room for improvement. However, GVA and GRIP visualize
parts of its structure in an appropriate way.

Hachul and Jiinger, Large-Graph Layout Alg., JGAA, 11(2) 345-369 (2007) 358

The drawings of the spider_A graph (see Figure 6(g)-(1)) that are generated
by GRIP, FMS, and HDE are not as symmetric as the drawing computed by FM®.
But they display the global structure of the graph. The drawing generated by
GVA shows the dense subregion, but GVA does not untangle the 8 paths. The
paths in the drawing of ACE are not displayed in the same length. The drawings
of the larger spider graphs are of comparable quality.

The drawings of the flower_B graph (see Figure 7(a)-(f)) that are computed
by FMS and HDE display the global structure of the graph but the symmetries
are not as clear as in the drawing generated by FM®. The drawings of the other
flower graphs are of comparable quality.

We concentrate on the challenging real-world graphs now. The graphs ug_-380
and dg_1087 both contain one node with a very high degree. Furthermore,
dg_1087 has many biconnected components, since it is a tree. Only the drawings
that are computed by GVA, FM3) and GRIP (see Figure 7(g)-(1) and Figure 8(a)-
(f)) clearly display the central regions of these graphs.

The social network esslingen (see Figure 8(g)-(1)) consists of two big well-
connected subgraphs. This can be visualized by FM3, GRIP, and HDE. But the
drawings contain several edge crossings.

Since add_32 that describes a 32 bit adder contains many biconnected com-
ponents, we expect that the drawings have a tree-like shape. This structure is
visualized by GVA, FM?, GRIP, and ACE (see Figure 9(a)-(f)). The drawings of
GVA and GRIP contain comparatively many edge crossings, while the drawing
of ACE displays the global structure, but hides local details.

Finally, we discuss the drawings of the dense graphs besstk_31 and besstk_33.
The drawings of besstk_33 (see Figure 9(g)-(1)) that are generated by FM3, GRIP,
and ACE are comparable and visualize the regular structure of the graph. The
car body that is modeled by the graph besstk_31 (see Figure 10) is visualized
by FM® and ACE only.

5 Conclusion

We can summarize that only GVA, FM3, and HDE generate drawings of all tested
graphs. The force-directed multilevel methods and the algebraic methods are
— except the methods FMS and ACE for some graphs — much faster than the
comparatively slow classical algorithm GVA. HDE, FM® and GRIP scale well on all
tested graphs. FM® needs a few minutes to draw the largest graphs. GRIP is up
to factor 9 faster than FM3 but it could not be tested on the largest graphs. All
tested methods are much slower than HDE that needs only few seconds to draw
even the largest graphs.

As expected, all algorithms, except GVA, generate pleasing drawings of the
kind graphs with relatively uniform edge length and few edge crossings. In
contrast to this, the quality of the computed drawings varies a lot depending
on the structures of the tested challenging graphs. In particular, FMS, HDE, and
ACE frequently generate drawings with many overlapping edges. Unlike this,
FM® generates pleasing drawings for the majority of the challenging graphs. But

Hachul and Jiinger, Large-Graph Layout Alg., JGAA, 11(2) 345-369 (2007) 359

there still remain classes of tested graphs (e.g., the complete trees and the social
network graph esslingen) for which the drawing quality of all tested algorithms
leaves much room for improvement.

A practical advice for developers of graph-drawing systems is as follows:
First use HDE followed by ACE, since they are the fastest methods in all or
many cases, respectively. If the drawings are not satisfactory or one supposes
that important details of the graph’s structure are hidden, use FM3 to obtain
comparable or better results in reasonable time. If those drawings are still not
nice, one should experiment with other methods or try to improve the existing
ones with new concepts.

Acknowledgments

We would like to thank David Alberts, Steven Kobourov, Yehuda Koren, Stefan
Néher, and Roman Yusufov for making the implementations of their algorithms
available to us. We thank Ulrik Brandes, Carola Lipp and Chris Walshaw for
the access to the real-world test graphs.

Hachul and Jiinger, Large-Graph Layout Alg., JGAA, 11(2) 345-369 (2007) 360

References

[1]
2]

The AT&T graph collection: www.graphdrawing.org.

F. Brandenburg, M. Himsolt, and C. Rohrer. An Experimental Comparison
of Force-Directed and Randomized Graph Drawing Methods. In Graph
Drawing 1995, volume 1027 of LNCS, pages 76—87. Springer-Verlag, 1996.

U. Brandes and D. Wagner. In Graph Drawing Software, volume XII of
Mathematics and Visualization, chapter visone - Analysis and Visualization
of Social Networks, pages 321-340. Springer-Verlag, 2004.

R. Davidson and D. Harel. Drawing Graphs Nicely Using Simulated An-
nealing. ACM Transactions on Graphics, 15(4):301-331, 1996.

P. Eades. A heuristic for graph drawing. Congressus Numerantium, 42:149—
160, 1984.

A. Frick, A. Ludwig, and H. Mehldau. A Fast Adaptive Layout Algorithm
for Undirected Graphs. In Graph Drawing 1994, volume 894 of LNCS,
pages 388-403. Springer-Verlag, 1995.

T. Fruchterman and E. Reingold. Graph Drawing by Force-directed Place-
ment. Software—Practice and Experience, 21(11):1129-1164, 1991.

P. Gajer, M. Goodrich, and S. Kobourov. A Multi-dimensional Approach to
Force-Directed Layouts of Large Graphs. In Graph Drawing 2000, volume
1984 of LNCS, pages 211-221. Springer-Verlag, 2001.

P. Gajer and S. Kobourov. GRIP: Graph Drawing with Intelligent Place-
ment. In Graph Drawing 2000, volume 1984 of LNCS, pages 222-228.
Springer-Verlag, 2001.

T. Gonzalez. Clustering to Minimize the Maximum Inter-Cluster Distance.
Theoretical Computer Science, 38:293-306, 1985.

S. Hachul. A Potential-Field-Based Multilevel Algorithm for Drawing Large
Graphs. PhD thesis, Institut fiir Informatik, Universitat zu Kéln, Germany,
2005. http://kups.ub.uni-koeln.de/volltexte/2005/1409.

S. Hachul and M. Jinger. Drawing Large Graphs with a Potential-
Field-Based Multilevel Algorithm (Extended Abstract). In Graph Drawing
2004, volume 3383 of Lecture Notes in Computer Science, pages 285-295.
Springer-Verlag, 2005.

D. Harel and Y. Koren. A Fast Multi-scale Method for Drawing Large
Graphs. In Graph Drawing 2000, volume 1984 of LNCS, pages 183-196.
Springer-Verlag, 2001.

Hachul and Jiinger, Large-Graph Layout Alg., JGAA, 11(2) 345-369 (2007) 361

[14]

[15]

[18]

[19]

22]

23]

[24]

D. Harel and Y. Koren. Graph Drawing by High-Dimensional Embedding.
In Graph Drawing 2002, volume 2528 of LNCS, pages 207-219. Springer-
Verlag, 2002.

M. Jinger, G. Klau, P. Mutzel, and R. Weiskircher. In Graph Drawing
Software, volume XII of Mathematics and Visualization, chapter AGD - A
Library of Algorithms for Graph Drawing, pages 149-172. Springer-Verlag,
2004.

T. Kamada and S. Kawai. An Algorithm for Drawing General Undirected
Graphs. Information Processing Letters, 31:7-15, 1989.

Y. Koren, L. Carmel, and D. Harel. Drawing Huge Graphs by Algebraic
Multigrid Optimization. Multiscale Modeling and Simulation, 1(4):645-673,
2003.

Y. Koren’s algorithms: research.att.com/"yehuda/index_programs.
html.

J. Manning. Computational complexity of geometric symmetry detection
in graphs. In Great Lakes Computer Science Conference, volume 507 of
Lecture Nodes in Computer Science, pages 1-7. Springer-Verlag, 1990.

A. Quigley and P. Eades. FADE: Graph Drawing, Clustering, and Visual
Abstraction. In Graph Drawing 2000, volume 1984 of LNCS, pages 197-210.
Springer-Verlag, 2001.

D. Tunkelang. JIGGLE: Java Interactive Graph Layout Environment. In
Graph Drawing 1998, volume 1547 of LNCS, pages 413-422. Springer-
Verlag, 1998.

C. Walshaw’s graph collection: staffweb.cms.gre.ac.uk/"c.walshaw/
partition.

C. Walshaw. A Multilevel Algorithm for Force-Directed Graph Drawing.
In Graph Drawing 2000, volume 1984 of LNCS, pages 171-182. Springer-
Verlag, 2001.

R. Yusufov’s implementation of GRIP: www.cs.arizona.edu/ kobourov/
GRIP.

Hachul and Jiinger, Large-Graph Layout Alg., JGAA, 11(2) 345-369 (2007) 362

(a) GVA (b) FM3 (c) GRIP

(j) Fus (k) ACE (1) HDE
Figure 3: (a)-(f) Drawings of rnd_grid_100 and (g)-(1) sierpinski_08 generated
by different algorithms.

Hachul and Jiinger, Large-Graph Layout Alg., JGAA, 11(2) 345-369 (2007) 363

(f\ ava

(h) HDE (i) GVA

—
-

(j) FM3 (k) ACE (1) HDE
Figure 4: (a)-(e) Drawings of crack, (f)-(h) fe_pwt, and (i)-(1) finan_512 gener-
ated by different algorithms.

Hachul and Jiinger, Large-Graph Layout Alg., JGAA, 11(2) 345-369 (2007) 364

(a) GVA (b) FM3

(c) ACE (d) HDE

(h) FMS (i) ACE (j) HDE

Figure 5: (a)-(d) Drawings of fe_ocean and (e)-(j) tree_06_05 generated by dif-
ferent algorithms.

Hachul and Jiinger, Large-Graph Layout Alg., JGAA, 11(2) 345-369 (2007) 365

(c) GRIP
(e) ACE (f) HDE
%%
(h) F) GIP
(j) FMs (k) ACE) DE

Figure 6: (a)-(f) Drawings of snowflake_ A and (g)-(1) spider_A generated by
different algorithms.

Hachul and Jiinger, Large-Graph Layout Alg., JGAA, 11(2) 345-369 (2007) 366

(d) FMS

(s) GVA

(j) FMS (k) ACE

Figure 7: (a)-(f) Drawings of flower B and (g)-(1) ug_380 generated by different
algorithms.

Hachul and Jiinger, Large-Graph Layout Alg., JGAA, 11(2) 345-369 (2007) 367

(a) GVA (b) FM3 (c) GRIP

(d) FMS

(g) GVA (h) FM® (i) GRIP

(j) Fus (k) ACE (1) HDE

Figure 8: (a)-(f) Drawings of dg_1087 and (g)-(1) esslingen generated by different
algorithms

Hachul and Jiinger, Large-Graph Layout Alg., JGAA, 11(2) 345-369 (2007) 368

(d) FMS (¢) ACE (f) HDE

(g) GvA (i) GRIF

(j) FMS (k) ACE (1) HDE
Figure 9: (a)-(f) Drawings of add_32 and (g)-(1) besstk_33 generated by different
algorithms.

Hachul and Jiinger, Large-Graph Layout Alg., JGAA, 11(2) 345-369 (2007) 369

(a) GVA (b) FM3

(c) ACE

Figure 10: (a)-(d) Drawings of besstk_31 generated by different algorithms.

